1
|
Cortes LR, Cisternas CD, Cabahug INKV, Mason D, Ramlall EK, Castillo-Ruiz A, Forger NG. DNA Methylation and Demethylation Underlie the Sex Difference in Estrogen Receptor Alpha in the Arcuate Nucleus. Neuroendocrinology 2021; 112:636-648. [PMID: 34547753 PMCID: PMC8934748 DOI: 10.1159/000519671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurons expressing estrogen receptor (ER) ɑ in the arcuate (ARC) and ventromedial (VMH) nuclei of the hypothalamus sex-specifically control energy homeostasis, sexual behavior, and bone density. Females have more ERɑ neurons in the VMH and ARC than males, and the sex difference in the VMH is eliminated by neonatal treatment with testosterone or a DNA methylation inhibitor. OBJECTIVE Here, we tested the roles of testosterone and DNA methylation/demethylation in development of ERɑ in the ARC. METHODS ERɑ was examined at birth and weaning in mice that received vehicle or testosterone subcutaneously, and vehicle or DNA methyltransferase inhibitor intracerebroventricularly, as neonates. To examine effects of DNA demethylation on the ERɑ cell number in the ARC, mice were treated neonatally with small interfering RNAs against ten-eleven translocase enzymes. The methylation status of the ERɑ gene (Esr1) was determined in the ARC and VMH using pyrosequencing of bisulfite-converted DNA. RESULTS A sex difference in ERɑ in the ARC, favoring females, developed between birth and weaning and was due to programming effects of testosterone. Neonatal inhibition of DNA methylation decreased ERɑ in the ARC of females, and an inhibition of demethylation increased ERɑ in the ARC of males. The promoter region of Esr1 exhibited a small sex difference in percent of total methylation in the ARC (females > males) that was opposite to that in the VMH (males > females). CONCLUSION DNA methylation and demethylation regulate ERɑ cell number in the ARC, and methylation correlates with activation of Esr1 in this region.
Collapse
Affiliation(s)
- Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Carla D Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferrreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| | | | - Damian Mason
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Emma K Ramlall
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Abstract
Synopsis
Females of some species are considered sex-role reversed, meaning that they face stronger competition for mates compared to males. While much attention has been paid to behavioral and morphological patterns associated with sex-role reversal, less is known about its physiological regulation. Here, we evaluate hypotheses relating to the neuroendocrine basis of sex-role reversal. We refute the most widely tested activational hypothesis for sex differences in androgen secretion; sex-role reversed females do not have higher levels of androgens in circulation than males. However, we find some evidence that the effects of androgens may be sex-specific; circulating androgen levels correlate with some competitive phenotypes in sex-role reversed females. We also review evidence that sex-role reversed females have higher tissue-specific sensitivity to androgens than males, at least in some species and tissues. Organizational effects may explain these relationships, considering that early exposure to sex steroids can shape later sensitivity to hormones, often in sex-specific ways. Moving forward, experimental and correlative studies on the ontogeny and expression of sex-role reversal will further clarify the mechanisms that generate sex-specific behaviors and sex roles.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Center for the Integrated Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Matas D, Doniger T, Sarid S, Asfur M, Yadid G, Khokhlova IS, Krasnov BR, Kam M, Degen AA, Koren L. Sex differences in testosterone reactivity and sensitivity in a non-model gerbil. Gen Comp Endocrinol 2020; 291:113418. [PMID: 32027878 DOI: 10.1016/j.ygcen.2020.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 11/28/2022]
Abstract
Although testosterone (T) is a key regulator in vertebrate development, physiology, and behaviour in both sexes, studies suggest that its regulation may be sex-specific. We measured circulating T levels in Baluchistan gerbils (Gerbillus nanus) in the field and in the lab all year round and found no significant sex differences. However, we observed sex differences in circulating T levels following gonadotropin-releasing hormone (GnRH) challenge and T implants in this non-model species. Whereas only males elevated T following a GnRH challenge, females had higher serum T concentrations following T implant insertion. These differences may be a result of different points of regulation along the hypothalamic-pituitary-gonadal (HPG) axis. Consequently, we examined sex differences in the mRNA expression of the androgen receptor (AR) in multiple brain regions. We identified AR and β-actin sequences in assembled genomic sequences of members of the Gerbillinae, which were analogous to rat sequences, and designed primers for them. The distribution of the AR in G. nanus brain regions was similar to documented expression profiles in rodents. We found lower AR mRNA levels in females in the striatum. Additionally, G. nanus that experienced housing in mixed-sex pairs had higher adrenal AR expression than G. nanus that were housed alone. Regulation of the gerbil HPG axis may reflect evolutionary sex differences in life-history strategies, with males ready to reproduce when receptive females are available, while the possible reproductive costs associated with female T direct its regulation upstream.
Collapse
Affiliation(s)
- Devorah Matas
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shani Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mustafa Asfur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel; The Leslie and Susan Gonda (Goldschmidt) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Irina S Khokhlova
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Michael Kam
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
4
|
Arndtsen C, Ballon J, Blackshear K, Corbett CB, Lee K, Peyer J, Holloway KS, Duncan KA. Atypical gene expression of neuroinflammatory and steroid related genes following injury in the photoperiodic Japanese quail. Gen Comp Endocrinol 2020; 288:113361. [PMID: 31830471 DOI: 10.1016/j.ygcen.2019.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Clara Arndtsen
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Jason Ballon
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Katie Blackshear
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Cali B Corbett
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kenneth Lee
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Jordan Peyer
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kevin S Holloway
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA; Psychological Science, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kelli A Duncan
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA; Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
5
|
Okubo K, Miyazoe D, Nishiike Y. A conceptual framework for understanding sexual differentiation of the teleost brain. Gen Comp Endocrinol 2019; 284:113129. [PMID: 30825478 DOI: 10.1016/j.ygcen.2019.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
Vertebrate brains are sexually differentiated, giving rise to differences in various physiological and behavioral phenotypes between the sexes. In developing mammals and birds, the neural substrate underlying sex-dependent physiology and behavior undergoes an irreversible process of sexual differentiation due to the effects of perinatal gonadal steroids and sex chromosome complement. The differentiated neural substrate is then activated in the adult by the sex-specific steroid milieu to facilitate the expression of sex-typical phenotypes. However, this well-established concept does not hold for teleost fish, whose sexual phenotypes (behavioral or otherwise) are highly labile throughout life and can be reversed even in adulthood. Indeed, the available evidence suggests that, in teleosts, neither gonadal steroids early in development nor the sex chromosome complement contribute much to brain sexual differentiation; instead, steroids in adulthood serve to both differentiate the neural substrate and activate it to elicit sex-typical phenotypes in a transient and reversible manner. Evidence further suggests that marked sexual dimorphisms and adult steroid-dependent lability in the neural expression of sex steroid receptors constitute the primary molecular basis for sexual differentiation and lability of the teleost brain. The consequent sexually dimorphic but reversible steroid sensitivity in response to the adult steroid milieu may enable the teleost brain to maintain lifelong sexual lability and to undergo phenotypic sex reversal.
Collapse
Affiliation(s)
- Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Daichi Miyazoe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Krolick KN, Zhu Q, Shi H. Effects of Estrogens on Central Nervous System Neurotransmission: Implications for Sex Differences in Mental Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:105-171. [PMID: 30470289 PMCID: PMC6737530 DOI: 10.1016/bs.pmbts.2018.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nearly one of every five US individuals aged 12 years old or older lives with certain types of mental disorders. Men are more likely to use various types of substances, while women tend to be more susceptible to mood disorders, addiction, and eating disorders, all of which are risks associated with suicidal attempts. Fundamental sex differences exist in multiple aspects of the functions and activities of neurotransmitter-mediated neural circuits in the central nervous system (CNS). Dysregulation of these neural circuits leads to various types of mental disorders. The potential mechanisms of sex differences in the CNS neural circuitry regulating mood, reward, and motivation are only beginning to be understood, although they have been largely attributed to the effects of sex hormones on CNS neurotransmission pathways. Understanding this topic is important for developing prevention and treatment of mental disorders that should be tailored differently for men and women. Studies using animal models have provided important insights into pathogenesis, mechanisms, and new therapeutic approaches of human diseases, but some concerns remain to be addressed. The purpose of this chapter is to integrate human and animal studies involving the effects of the sex hormones, estrogens, on CNS neurotransmission, reward processing, and associated mental disorders. We provide an overview of existing evidence for the physiological, behavioral, cellular, and molecular actions of estrogens in the context of controlling neurotransmission in the CNS circuits regulating mood, reward, and motivation and discuss related pathology that leads to mental disorders.
Collapse
Affiliation(s)
- Kristen N Krolick
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States
| | - Qi Zhu
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States
| | - Haifei Shi
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States; Cellular, Molecular and Structural Biology, Miami University, Oxford, OH, United States.
| |
Collapse
|
7
|
Cornil CA, Ball GF, Balthazart J. Differential control of appetitive and consummatory sexual behavior by neuroestrogens in male quail. Horm Behav 2018; 104:15-31. [PMID: 29452074 PMCID: PMC6103895 DOI: 10.1016/j.yhbeh.2018.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogens exert pleiotropic effects on multiple physiological and behavioral traits including sexual behavior. These effects are classically mediated via binding to nuclear receptors and subsequent regulation of target gene transcription. Estrogens also affect neuronal activity and cell-signaling pathways via faster, membrane-initiated events. Although the distinction between appetitive and consummatory aspects of sexual behavior has been criticized, this distinction remains valuable in that it facilitates the causal analysis of certain behavioral systems. Effects of neuroestrogens produced by neuronal aromatization of testosterone on copulatory performance (consummatory aspect) and on sexual motivation (appetitive aspect) are described in male quail. The central administration of estradiol rapidly increases expression of sexual motivation, as assessed by two measures of sexual motivation produced in response to the visual presentation of a female but not sexual performance in male Japanese quail. This effect is mimicked by membrane-impermeable analogs of estradiol, indicating that it is initiated at the cell membrane. Conversely, blocking the action of estrogens or their synthesis by a single intracerebroventricular injection of estrogen receptor antagonists or aromatase inhibitors, respectively, decreases sexual motivation within minutes without affecting performance. The same steroid has thus evolved complementary mechanisms to regulate different behavioral components (motivation vs. performance) in distinct temporal domains (long- vs. short-term) so that diverse reproductive activities can be properly coordinated. Changes in preoptic aromatase activity and estradiol as well as glutamate concentrations are observed during or immediately after copulation. The interaction between these neuroendocrine/neurochemical changes and their functional significance is discussed.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, United States
| | | |
Collapse
|
8
|
Molinier C, Reisser CMO, Fields P, Ségard A, Galimov Y, Haag CR. Identification of General Patterns of Sex-Biased Expression in Daphnia, a Genus with Environmental Sex Determination. G3 (BETHESDA, MD.) 2018; 8:1523-1533. [PMID: 29535148 PMCID: PMC5940145 DOI: 10.1534/g3.118.200174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/25/2018] [Indexed: 12/18/2022]
Abstract
Daphnia reproduce by cyclic-parthenogenesis, where phases of asexual reproduction are intermitted by sexual production of diapause stages. This life cycle, together with environmental sex determination, allow the comparison of gene expression between genetically identical males and females. We investigated gene expression differences between males and females in four genotypes of Daphnia magna and compared the results with published data on sex-biased gene expression in two other Daphnia species, each representing one of the major phylogenetic clades within the genus. We found that 42% of all annotated genes showed sex-biased expression in D. magna This proportion is similar both to estimates from other Daphnia species as well as from species with genetic sex determination, suggesting that sex-biased expression is not reduced under environmental sex determination. Among 7453 single copy, one-to-one orthologs in the three Daphnia species, 707 consistently showed sex-biased expression and 675 were biased in the same direction in all three species. Hence these genes represent a core-set of genes with consistent sex-differential expression in the genus. A functional analysis identified that several of them are involved in known sex determination pathways. Moreover, 75% were overexpressed in females rather than males, a pattern that appears to be a general feature of sex-biased gene expression in Daphnia.
Collapse
Affiliation(s)
- Cécile Molinier
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)- Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Céline M O Reisser
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)- Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
- Université de Fribourg, Ecology and Evolution, Ch. du Musée 10, 1700 Fribourg, Switzerland
- IFREMER Centre du Pacifique, UMR 241 EIO, Labex CORAIL, BP 49, 98719 Taravao, Tahiti, Polynésie Française
| | - Peter Fields
- Universität Basel, Zoology Institute, Evolutionary Biology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Adeline Ségard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)- Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Yan Galimov
- Koltsov Institute of Developmental Biology RAS ul. Vavilova 26, 119334 Moscow, Russia
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)- Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
- Université de Fribourg, Ecology and Evolution, Ch. du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Khillare GS, Sastry KVH, Agrawal R, Saxena R, Mohan J, Singh RP. Expression of gonadotropin and sex steroid hormone receptor mRNA in the utero-vaginal junction containing sperm storage tubules of oviduct during sexual maturation in Japanese quail. Gen Comp Endocrinol 2018; 259:141-146. [PMID: 29174868 DOI: 10.1016/j.ygcen.2017.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
Sex steroid hormones play an important role in reproductive tissue development of avian species. However, their role in Japanese quail is yet to be established. To understand the physiological role of hormones involved in the development of sperm storage tubules (SSTs) in quail, we investigated expression profiles of gonadotropin (LH-R and FSH-R) and sex steroid hormone (PR-R, ER-α and ER-β) receptors in the uterovaginal junction (UVJ) containing SSTs before and during sexual maturation i.e. four to eight weeks. Every week four birds were sacrificed to collect blood and UVJ for sex steroid hormone (progesterone and estrogen) estimation and gene expression profiling of sex steroid hormone (PR-R, ER-α and ER-β) and gonadotropin receptors (LH-R and FSH-R) using qRT-PCR. Receptor expression results showed that the expression of sex steroid receptor (PR-R, ER-α and ER-β) genes were upregulated significantly (P < .05) in SSTs with the advancement of age. The expression of gonadotropin receptors (LH-R and FSH-R) was only high at week 5 and 6 respectively. Serum hormone analysis indicated a significant (P < .05) rise in estradiol till 7th week and progesterone from 7th week onwards. These results suggest that the gonadotropin and sex steroid hormone receptors may have the role in the development and maintenance of UVJ that contains predominantly SSTs during sexual maturation.
Collapse
Affiliation(s)
- Gautam Sudamrao Khillare
- Molecular Physiology Laboratory, Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, India
| | - Kochiganti Venkata Hanumat Sastry
- Molecular Physiology Laboratory, Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, India
| | - Radha Agrawal
- Molecular Physiology Laboratory, Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, India
| | - Ritu Saxena
- Molecular Physiology Laboratory, Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, India
| | - Jag Mohan
- Molecular Physiology Laboratory, Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, India
| | - Ram Pratap Singh
- Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore 641108, India.
| |
Collapse
|
10
|
Voigt C. Neuroendocrine correlates of sex-role reversal in barred buttonquails. Proc Biol Sci 2017; 283:rspb.2016.1969. [PMID: 27881754 DOI: 10.1098/rspb.2016.1969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/24/2016] [Indexed: 11/12/2022] Open
Abstract
Sex differences in brain structure and behaviour are well documented among vertebrates. An excellent model exploring the neural mechanisms of sex differences in behaviour is represented by sex-role-reversed species. In the majority of bird species, males compete over access to mates and resources more strongly than do females. It is thought that the responsible brain regions are therefore more developed in males than in females. Because these behaviours and brain regions are activated by androgens, males usually have increased testosterone levels during breeding. Therefore, in species with sex-role reversal, certain areas of the female brain should be more developed or steroid hormone profiles should be sexually reversed. Here, I studied circulating hormone levels and gene expression of steroid hormone receptors and aromatase in a captive population of barred buttonquails (Turnix suscitator). While females performed courtship and agonistic behaviours, there was no evidence for sexually reversed hormone profiles. However, I found female-biased sex differences in gene expression of androgen receptors in several hypothalamic and limbic brain regions that were already in place at hatching. Such sex differences are not known from non-sex-role-reversed species. These data suggest that increased neural sensitivity to androgens could be involved in the mechanisms mediating sex-role-reversed behaviours.
Collapse
Affiliation(s)
- Cornelia Voigt
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany .,Department of Biology and Evolution, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| |
Collapse
|
11
|
Camacho-Arroyo I, Hansberg-Pastor V, Gutiérrez-Rodríguez A, Chávez-Jiménez J, González-Morán MG. Expression of sex hormone receptors in the brain of male and female newly hatched chicks. Anim Reprod Sci 2017; 188:123-129. [PMID: 29175176 DOI: 10.1016/j.anireprosci.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Chromosomal sex and steroid hormones play a determining role in brain sexual differentiation during chick embryonic development. Hormone effects on the brain are associated with the expression pattern of their intracellular receptors, which is sexually dimorphic in many species. We determined by Western blot the content of progesterone, estrogen, and androgen receptors (PR-A and PR-B, ERα, and AR, respectively) in the cortex, cerebellum, tectum, and hypothalamus of female and male newly hatched chicks. Males presented a higher content of PR-B in the tectum whereas females exhibited a higher content of PR-A in the hypothalamus. ERα was only detected as a band of 66kDa, and it showed a higher content in the cerebellum and tectum of females as compared to these regions in males. Besides, males exhibited a higher content of AR in the tectum than females. Our study suggests that newly hatched chicks show a sexual dimorphism in the expression of sex hormone receptors in brain regions involved in sexual behavior such as the hypothalamus, and in non-sexual behavior such as the optic tectum and the cerebellum.
Collapse
Affiliation(s)
- Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | | | - Araceli Gutiérrez-Rodríguez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Jorge Chávez-Jiménez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - María Genoveva González-Morán
- Facultad de Ciencias, Departamento de Biología Comparada, Laboratorio de Biología de la Reproducción Animal, UNAM, Ciudad de México, México.
| |
Collapse
|
12
|
Balthazart J. Steroid metabolism in the brain: From bird watching to molecular biology, a personal journey. Horm Behav 2017; 93:137-150. [PMID: 28576650 PMCID: PMC5544559 DOI: 10.1016/j.yhbeh.2017.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 11/19/2022]
Abstract
Since Arnold Adolph Berthold established in 1849 the critical role of the testes in the activation of male sexual behavior, intensive research has identified many sophisticated neurochemical and molecular mechanisms mediating this action. Studies in Japanese quail demonstrated the critical role of testosterone action and of testosterone aromatization in the sexually dimorphic medial preoptic nucleus in the activation of male copulatory behavior. The development of an immunohistochemical visualization of brain aromatase in quail then allowed further refinement in the localization of the sites of neuroestrogens production. Testosterone aromatization is required for the activation of both appetitive and consummatory aspects of male sexual behavior. Brain aromatase activity is modulated by steroid-induced changes in the transcription of the corresponding gene but also more rapidly by phosphorylation processes. Sexual interactions with a female also rapidly regulate brain aromatase activity in an anatomically specific manner presumably via the release and action of endogenous glutamate. These rapid changes in estrogen production modulate sexual behavior and in particular its motivational component with latencies ranging between 15 and 30min. Brain estrogens seem to act in a manner akin to a neurotransmitter or at least a neuromodulator. More recently, assays of brain estradiol concentrations in micropunched samples or in dialysis samples obtained from behaviorally active males suggested that aromatase activity measured ex vivo might not be an accurate proxy to the rapid changes in local neuroestrogens production and concentrations. Studies of brain testosterone metabolism are thus not over and will keep scientists busy for a little longer. Elsevier SBN Keynote Address, Montreal.
Collapse
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate, B-4000 Liège, Belgium.
| |
Collapse
|
13
|
Cornil CA, Ball GF, Balthazart J. The dual action of estrogen hypothesis. Trends Neurosci 2015; 38:408-16. [PMID: 26089224 DOI: 10.1016/j.tins.2015.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 11/25/2022]
Abstract
Estradiol (E2) can act in the brain in a relatively fast manner (i.e., seconds to minutes) usually through signaling initiated at the cell membrane. Brain-derived E2 has thus been considered as another type of neurotransmitter. Recent work found that behaviors indicative of male sexual motivation are activated by estrogenic metabolites of testosterone (T) in a fast manner, while sexual performance (copulatory behavior per se) is regulated by brain E2 in a slower manner via nucleus-initiated actions. This functional division between these two types of action appears to generalize to other behavioral systems regulated by E2. We propose the dual action of estrogen hypothesis to explain this functional distinction between these two different modes of action.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, University of Liege, Quartier Hôpital, 15 Avenue Hippocrate, 4000 Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, 2141 Tydings Hall, University of Maryland, College Park, MD 20742-7201, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liege, Quartier Hôpital, 15 Avenue Hippocrate, 4000 Liège, Belgium.
| |
Collapse
|
14
|
Kerver HN, Wade J. Relationships among sex, season and testosterone in the expression of androgen receptor mRNA and protein in the green anole forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:303-14. [PMID: 25471151 DOI: 10.1159/000368388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022]
Abstract
Sexual behavior in male green anole lizards is regulated by a seasonal increase in testosterone (T). However, T is much more effective at activating behavioral, morphological and biochemical changes related to reproduction in the breeding season (BS; spring) compared to nonbreeding season (NBS; fall). An increase in androgen receptor (AR) during the BS is one potential mechanism for this differential responsiveness. AR expression has not been investigated in specific brain regions across seasons in anoles. The present studies were designed to determine relative AR expression in areas important for male (preoptic area, ventromedial amygdala) and female (ventromedial hypothalamus) sexual behavior, as well as whether T upregulates AR in the anole brain. In situ hybridization and Western blot analyses were performed in unmanipulated animals across sex and season, as well as in gonadectomized animals with and without T treatment. Among hormone-manipulated animals, more cells expressing AR mRNA were detected in females than males in the amygdala. T treatment increased the volume of the ventromedial hypothalamus of gonadectomized animals in the BS, but not the NBS. AR protein in dissections of the hypothalamus and preoptic area was increased in males compared to females specifically in the BS. Additionally, among females, it was increased in the NBS compared to the BS. Collectively, these results indicate that differences in central AR expression probably do not facilitate a seasonal responsiveness to T. However, they are consistent with a role for AR in regulating some differences between sexes in the display of reproductive behaviors.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, Mich., USA
| | | |
Collapse
|
15
|
Swanson EM, Snell-Rood EC. A Molecular Signaling Approach to Linking Intraspecific Variation and Macro-evolutionary Patterns. Integr Comp Biol 2014; 54:805-21. [DOI: 10.1093/icb/icu057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Kerver HN, Wade J. Seasonal and sexual dimorphisms in expression of androgen receptor and its coactivators in brain and peripheral copulatory tissues of the green anole. Gen Comp Endocrinol 2013; 193:56-67. [PMID: 23892016 DOI: 10.1016/j.ygcen.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/14/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
Green anoles are seasonally breeding lizards, with an annual rise in testosterone (T) being the primary activator of male sexual behaviors. Responsiveness to T is decreased in the non-breeding season (NBS) compared to breeding season (BS) on a variety of levels, including displays of reproductive behavior and the morphology and biochemistry of associated tissues. To evaluate the possibility that seasonal changes in responsiveness to T are regulated by androgen receptors (AR) and/or two of its coactivators, CREB binding protein (CBP) and steroid receptor coactivator-1 (SRC-1), we tested whether they differ in expression across season in brains of both sexes and in peripheral copulatory tissues of males (hemipenis and retractor penis magnus muscle). AR mRNA was increased in the brains of males compared to females and in copulatory muscle in the BS compared to NBS. In the hemipenis, transcriptional activity appeared generally diminished in the NBS. T-treatment increased AR mRNA in the copulatory muscle and AR protein in the hemipenis, the latter to a greater extent in the BS than the NBS. T also decreased SRC-1 protein in hemipenis. Interpretations are complicated, in part because levels of mRNA and protein expression were not correlated and multiple sizes of the AR and CBP proteins were detected, with some tissue specificity. However, the results are consistent with the idea that differences in receptor and coactivator expression at central and peripheral levels may play roles in regulating sex and seasonal differences in the motivation or physical ability to engage in sexual behavior.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, United States.
| | | |
Collapse
|
17
|
Charlier TD, Seredynski AL, Niessen NA, Balthazart J. Modulation of testosterone-dependent male sexual behavior and the associated neuroplasticity. Gen Comp Endocrinol 2013; 190:24-33. [PMID: 23523709 PMCID: PMC4761263 DOI: 10.1016/j.ygcen.2013.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022]
Abstract
Steroids modulate the transcription of a multitude of genes and ultimately influence numerous aspects of reproductive behaviors. Our research investigates how one single steroid, testosterone, is able to trigger this vast number of physiological and behavioral responses. Testosterone potency can be changed locally via aromatization into 17β-estradiol which then activates estrogen receptors of the alpha and beta sub-types. We demonstrated that the independent activation of either receptor activates different aspects of male sexual behavior in Japanese quail. In addition, several studies suggest that the specificity of testosterone action on target genes transcription is related to the recruitment of specific steroid receptor coactivators. We demonstrated that the specific down-regulation of the coactivators SRC-1 or SRC-2 in the medial preoptic nucleus by antisense techniques significantly inhibits steroid-dependent male-typical copulatory behavior and the underlying neuroplasticity. In conclusion, our results demonstrate that the interaction between several steroid metabolizing enzymes, steroid receptors and their coactivators plays a key role in the control of steroid-dependent male sexual behavior and the associated neuroplasticity in quail.
Collapse
Affiliation(s)
- Thierry D Charlier
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Belgium.
| | | | | | | |
Collapse
|
18
|
Aste N, Sakamoto E, Kagami M, Saito N. Vasotocin mRNA expression is sensitive to testosterone and oestradiol in the bed nucleus of the stria terminalis in female Japanese quail. J Neuroendocrinol 2013; 25:811-25. [PMID: 23841557 DOI: 10.1111/jne.12076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 06/21/2013] [Accepted: 07/07/2013] [Indexed: 11/29/2022]
Abstract
Vasotocin-producing parvocellular neurones in the medial part of the bed nucleus of the stria terminalis (BSTM) of many species of birds and mammals show sexual dimorphism and great plasticity in response to hormonal and environmental stimuli. In the BSTM of Japanese quail, vasotocin-immunoreactive neurones are visible and sensitive to testosterone exclusively in males. In males, gonadectomy decreases and testosterone restores vasotocin-immunoreactive cells and fibres by acting on vasotocin mRNA transcription. The insensitivity of female vasotocin-immunoreactive neurones to the activating effects of testosterone is the result of organisational effects of early exposure to oestradiol. Female quail also show vasotocin mRNA-expressing neurones in the BSTM, although it is not known whether the insensitivity of the vasotocinergic neurones to testosterone originates at the level of vasotocin gene transcription in this sex. Therefore, initially, the present study analysed the effects of acute treatment with testosterone on vasotocin mRNA expression in the BSTM of gonadectomised male and female quail using in situ hybridisation. Gonadectomy decreased (and a single injection of testosterone increased) the number of vasotocin mRNA-expressing neurones and intensity of the vasotocin mRNA hybridisation signal similarly in both sexes. Notably, testosterone increased vasotocin mRNA expression in ovariectomised females over that shown by intact quail. However, this treatment had no effect on vasotocin immunoreactivity. A second experiment analysed the effects of testosterone metabolites, oestradiol and 5α-dihydrotestosterone, on vasotocin mRNA expression in female quail. Oestradiol (but not 5α-dihydrotestosterone) fully mimicked the effects of testosterone on the number of vasotocin mRNA-expressing neurones and the intensity of the vasotocin mRNA hybridisation signal. Taken together, these results show, for the first time, that gonadal steroids strongly activate vasotocin mRNA expression in the BSTM of female quail.
Collapse
Affiliation(s)
- N Aste
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | | | | | | |
Collapse
|
19
|
Apfelbeck B, Mortega K, Kiefer S, Kipper S, Vellema M, Villavicencio CP, Gahr M, Goymann W. Associated and disassociated patterns in hormones, song, behavior and brain receptor expression between life-cycle stages in male black redstarts, Phoenicurus ochruros. Gen Comp Endocrinol 2013; 184:93-102. [PMID: 23337030 DOI: 10.1016/j.ygcen.2012.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/24/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022]
Abstract
Testosterone has been suggested to be involved in the regulation of male territorial behavior. For example, seasonal peaks in testosterone typically coincide with periods of intense competition between males for territories and mating partners. However, some species also express territorial behavior outside a breeding context when testosterone levels are low and, thus, the degree to which testosterone facilitates territorial behavior in these species is not well understood. We studied territorial behavior and its neuroendocrine correlates in male black redstarts. Black redstarts defend territories in spring during the breeding period, but also in the fall outside a reproductive context when testosterone levels are low. In the present study we assessed if song output and structure remain stable across life-cycle stages. Furthermore, we assessed if brain anatomy may give insight into the role of testosterone in the regulation of territorial behavior in black redstarts. We found that males sang spontaneously at a high rate during the nonbreeding period when testosterone levels were low; however the trill-like components of spontaneously produced song contained less repetitive elements during nonbreeding than during breeding. This higher number of repetitive elements in trills did not, however, correlate with a larger song control nucleus HVC during breeding. However, males expressed more aromatase mRNA in the preoptic area - a brain nucleus important for sexual and aggressive behavior - during breeding than during nonbreeding. In combination with our previous studies on black redstarts our results suggest that territorial behavior in this species only partly depends on sex steroids: spontaneous song output, seasonal variation in trills and non-vocal territorial behavior in response to a simulated territorial intruder seem to be independent of sex steroids. However, context-dependent song during breeding may be facilitated by testosterone - potentially by conversion of testosterone to estradiol in the preoptic area.
Collapse
Affiliation(s)
- Beate Apfelbeck
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Seewiesen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Testosterone modulation of angiogenesis and neurogenesis in the adult songbird brain. Neuroscience 2013; 239:139-48. [PMID: 23291451 DOI: 10.1016/j.neuroscience.2012.12.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/17/2023]
Abstract
Throughout life, new neurons arise from the ventricular zone of the adult songbird brain and are recruited to the song control nucleus higher vocal center (HVC), from which they extend projections to its target, nucleus robustus of the arcopallium (RA). This process of ongoing parenchymal neuronal addition and circuit integration is both triggered and modulated by seasonal surges in systemic testosterone. Brain aromatase converts circulating testosterone to estradiol, so that HVC is concurrently exposed to both androgenic and estrogenic stimulation. These two signals cooperate to trigger HVC endothelial cell division and angiogenesis, by inducing the regionally-restricted expression of vascular endothelial growth factor (VEGF), its matrix-releasing protease MMP9, and its endothelial receptor VEGFR2. The expanded HVC microvascular network then secretes the neurotrophic factor BDNF, which in turn supports the recruitment of newly generated neurons. This process is striking for its spatial restriction and hence functional specificity. While androgen receptors are broadly expressed by the nuclei of the vocal control system, estrogen receptor (ERα) expression is largely restricted to HVC and its adjacent mediocaudal neopallium. The geographic overlap of these receptor phenotypes in HVC provides the basis for a regionally-defined set of paracrine interactions between the vascular bed and neuronal progenitor pool that both characterize and distinguish this nucleus. These interactions culminate in the focal attraction of new neurons to the adult HVC, the integration of those neurons into the extant vocal control circuits, and ultimately the acquisition and elaboration of song.
Collapse
|
21
|
Hiraki T, Takeuchi A, Tsumaki T, Zempo B, Kanda S, Oka Y, Nagahama Y, Okubo K. Female-specific target sites for both oestrogen and androgen in the teleost brain. Proc Biol Sci 2012; 279:5014-23. [PMID: 23075834 DOI: 10.1098/rspb.2012.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To dissect the molecular and cellular basis of sexual differentiation of the teleost brain, which maintains marked sexual plasticity throughout life, we examined sex differences in neural expression of all subtypes of nuclear oestrogen and androgen receptors (ER and AR) in medaka. All receptors were differentially expressed between the sexes in specific nuclei in the forebrain. The most pronounced sex differences were found in several nuclei in the ventral telencephalic and preoptic areas, where ER and AR expression were prominent in females but almost completely absent in males, indicating that these nuclei represent female-specific target sites for both oestrogen and androgen in the brain. Subsequent analyses revealed that the female-specific expression of ER and AR is not under the direct control of sex-linked genes but is instead regulated positively by oestrogen and negatively by androgen in a transient and reversible manner. Taken together, the present study demonstrates that sex-specific target sites for both oestrogen and androgen occur in the brain as a result of the activational effects of gonadal steroids. The consequent sex-specific but reversible steroid sensitivity of the adult brain probably contributes substantially to the process of sexual differentiation and the persistent sexual plasticity of the teleost brain.
Collapse
Affiliation(s)
- Towako Hiraki
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ellis JMS, Riters LV. Vocal parameters that indicate threat level correlate with FOS immunolabeling in social and vocal control brain regions. BRAIN, BEHAVIOR AND EVOLUTION 2011; 79:128-40. [PMID: 22179056 DOI: 10.1159/000334078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/26/2011] [Indexed: 12/22/2022]
Abstract
Transmitting information via communicative signals is integral to interacting with conspecifics, and some species achieve this task by varying vocalizations to reflect context. Although signal variation is critical to social interactions, the underlying neural control has not been studied. In response to a predator, black-capped chickadees (Poecile atricapilla) produce mobbing calls (chick-a-dee calls) with various parameters, some of which convey information about the threat stimulus. We predicted that vocal parameters indicative of threat would be associated with distinct patterns of neuronal activity within brain areas involved in social behavior and those involved in the sensorimotor control of vocal production. To test this prediction, we measured the syntax and structural aspects of chick-a-dee call production in response to a hawk model and assessed the protein product of the immediate early gene FOS in brain regions implicated in context-specific vocal and social behavior. These regions include the medial preoptic area (POM) and lateral septum (LS), as well as regions involved in vocal motor control, including the dorsomedial nucleus of the intercollicular complex and the HVC. We found correlations linking call rate (previously demonstrated to reflect threat) to labeling in the POM and LS. Labeling in the HVC correlated with the number of D notes per call, which may also signal threat level. Labeling in the call control region dorsomedial nucleus was associated with the structure of D notes and the overall number of notes, but not call rate or type of notes produced. These results suggest that the POM and LS may influence attributes of vocalizations produced in response to predators and that the brain region implicated in song control, the HVC, also influences call production. Because variation in chick-a-dee call rate indicates predator threat, we speculate that these areas could integrate with motor control regions to imbue mobbing signals with additional information about threat level.
Collapse
Affiliation(s)
- Jesse M S Ellis
- Department of Zoology, University of Wisconsin, Madison, WI 53709, USA.
| | | |
Collapse
|
23
|
Niessen NA, Balthazart J, Ball GF, Charlier TD. Steroid receptor coactivator 2 modulates steroid-dependent male sexual behavior and neuroplasticity in Japanese quail (Coturnix japonica). J Neurochem 2011; 119:579-93. [PMID: 21854393 DOI: 10.1111/j.1471-4159.2011.07438.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Steroid receptor coactivators are necessary for efficient transcriptional regulation by ligand-bound nuclear receptors, including estrogen and androgen receptors. Steroid receptor coactivator-2 (SRC-2) modulates estrogen- and progesterone-dependent sexual behavior in female rats but its implication in the control of male sexual behavior has not been studied to our knowledge. We cloned and sequenced the complete quail SRC-2 transcript and showed by semi-quantitative PCR that SRC-2 expression is nearly ubiquitous, with high levels of expression in the kidney, cerebellum and diencephalon. Real-time quantitative PCR did not reveal any differences between intact males and females the medial preoptic nucleus (POM), optic lobes and cerebellum. We next investigated the physiological and behavioral role of this coactivator using in vivo antisense oligonucleotide techniques. Daily injections in the third ventricle at the level of the POM of locked nucleic acid antisense targeting SRC-2 significantly reduced the expression of testosterone-dependent male-typical copulatory behavior but no inhibition of one aspect of the appetitive sexual behavior was observed. The volume of POM, defined by aromatase-immunoreactive cells, was markedly decreased in animals treated with antisense as compared with controls. These results demonstrate that SRC-2 plays a prominent role in the control of steroid-dependent male sexual behavior and its associated neuroplasticity in Japanese quail.
Collapse
|
24
|
Pfannkuche KA, Gahr M, Weites IM, Riedstra B, Wolf C, Groothuis TGG. Examining a pathway for hormone mediated maternal effects--yolk testosterone affects androgen receptor expression and endogenous testosterone production in young chicks (Gallus gallus domesticus). Gen Comp Endocrinol 2011; 172:487-93. [PMID: 21536043 DOI: 10.1016/j.ygcen.2011.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/29/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
In vertebrates maternal androgens can substantially influence developing offspring, inducing both short and long term changes in physiology and behavior, including androgen sensitive traits. However, how the effects of maternal hormones are mediated remains unknown. Two possible pathways are that maternal androgens affect parts of the hypothalamus-pituitary-gonadal axis (HPG axis) or the sensitivity to androgens by affecting androgen receptor (AR) densities within the brain. To investigate both pathways, testosterone within the physiological range or vehicle only was injected into the egg yolk of unincubated chicken eggs and AR mRNA expression in different brain nuclei as well as plasma testosterone levels were measured in two week old male and female chicks that had hatched from these eggs. Our results showed a significant sex difference in plasma testosterone levels with males showing higher levels than females. Furthermore, AR mRNA expression as well as plasma testosterone levels were significantly lower in chicks hatched from testosterone treated eggs. These results suggest a compensatory mechanism for avoiding potential detrimental effects of high testosterone levels.
Collapse
Affiliation(s)
- K A Pfannkuche
- Behavioral Biology Research Group, Center for Behavior and Cognitive Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Seredynski AL, Ball GF, Balthazart J, Charlier TD. Specific activation of estrogen receptor alpha and beta enhances male sexual behavior and neuroplasticity in male Japanese quail. PLoS One 2011; 6:e18627. [PMID: 21533185 PMCID: PMC3077394 DOI: 10.1371/journal.pone.0018627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/07/2011] [Indexed: 01/01/2023] Open
Abstract
Two subtypes of estrogen receptors (ER), ERα and ERβ, have been identified in humans and numerous vertebrates, including the Japanese quail. We investigated in this species the specific role(s) of each receptor in the activation of male sexual behavior and the underlying estrogen-dependent neural plasticity. Castrated male Japanese quail received empty (CX) or testosterone-filled (T) implants or were daily injected with the ER general agonist diethylstilbestrol (DES), the ERα-specific agonist PPT, the ERβ-specific agonist DPN or the vehicle, propylene glycol. Three days after receiving the first treatment, subjects were alternatively tested for appetitive (rhythmic cloacal sphincter movements, RCSM) and consummatory aspects (copulatory behavior) of male sexual behavior. 24 hours after the last behavioral testing, brains were collected and analyzed for aromatase expression and vasotocinergic innervation in the medial preoptic nucleus. The expression of RCSM was activated by T and to a lesser extent by DES and PPT but not by the ERβagonist DPN. In parallel, T fully restored the complete sequence of copulation, DES was partially active and the specific activation of ERα or ERβ only resulted in a very low frequency of mount attempts in few subjects. T increased the volume of the medial preoptic nucleus as measured by the dense cluster of aromatase-immunoreactive cells and the density of the vasotocinergic innervation within this nucleus. DES had only a weak action on vasotocinergic fibers and the two specific ER agonists did not affect these neural responses. Simultaneous activation of both receptors or treatments with higher doses may be required to fully activate sexual behavior and the associated neurochemical events.
Collapse
Affiliation(s)
- Aurore L. Seredynski
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Gregory F. Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Thierry D. Charlier
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
26
|
Adkins-Regan E. Neuroendocrine contributions to sexual partner preference in birds. Front Neuroendocrinol 2011; 32:155-63. [PMID: 21277320 DOI: 10.1016/j.yfrne.2011.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/13/2011] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
A majority of birds are socially monogamous, providing exceptional opportunities to discover neuroendocrine mechanisms underlying preferences for opposite-sex partners where the sexes form extended affiliative relationships. Zebra finches have been the focus of the most systematic program of research to date in any socially monogamous animal. In this species, sexual partner preference can be partially or largely sex reversed with hormone manipulations during early development, suggesting a role for organizational hormone actions. This same conclusion emerges from research with Japanese quail, which do not form long-term pairs. In zebra finches, social experience manipulations during juvenile development also can sex reverse partner preference, either alone or in combination with an early hormone manipulation. Although there are several candidate brain regions where neural mechanisms could underlie these effects of hormones or social experience, the necessary research has not yet been done to determine their involvement. The neuroendocrinology of avian sexual partner preference is still frontier territory.
Collapse
Affiliation(s)
- Elizabeth Adkins-Regan
- Department of Psychology and Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7601, USA.
| |
Collapse
|
27
|
Bian C, Zhang D, Guo Q, Cai W, Zhang J. Localization and sex-difference of steroid receptor coactivator-1 immunoreactivities in the brain of adult female and male mice. Steroids 2011; 76:269-79. [PMID: 21145336 DOI: 10.1016/j.steroids.2010.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/10/2010] [Accepted: 11/29/2010] [Indexed: 11/24/2022]
Abstract
Females and males are different in brain and behaviors. These differences are mediated by steroids and their nuclear receptors which require coactivators to regulate the transcription of target genes. Studies have shown that these coactivators are critical for modulating steroid hormone action in the brain. Steroid receptor coactivator-1 has been implied in the regulation of reproduction, stress, motor learning, and limited studies have reported the sex-specific difference of SRC-1 mRNA or protein expression in specific brain regions, but the expression and differences of SRC-1 immunoreactivities in adult female and male brain remain unclear. In this study we reported that in both sexes, high levels of SRC-1 immunoreactivities were detected in olfactory bulb, cerebral cortex, hippocampus, Purkinje cells, some limited diencephalon and brainstem nuclei. The immunopositive materials were predominantly detected in cell nucleus, but in some regions they were also detected in the processes or fiber-like structures. In most of the brain regions studied, males possessed significantly higher levels of SRC-1 immunoreactivities than that of females. Higher levels of SRC-1 were detected in some nuclei related to learning and memory, motor regulation and reproduction indicated its potential roles in neurodegeneration and sex-dependent behavior and structure; the region- and sex-specific localization of SRC-1 immunoreactivities in agreement with that of some steroid receptors, indicating this coactivator play important roles in these hormone-reactive regions and cell groups related to reproduction, learning and memory, integration of motor and sense.
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Shapingba, Chongqing, China
| | | | | | | | | |
Collapse
|
28
|
Voigt C, Ball GF, Balthazart J. Effects of sex steroids on aromatase mRNA expression in the male and female quail brain. Gen Comp Endocrinol 2011; 170:180-8. [PMID: 20951703 PMCID: PMC3010426 DOI: 10.1016/j.ygcen.2010.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/23/2010] [Accepted: 10/05/2010] [Indexed: 11/18/2022]
Abstract
Castrated male quail display intense male-typical copulatory behavior in response to exogenous testosterone but ovariectomized females do not. The behavior of males is largely mediated by the central aromatization of testosterone into estradiol. The lack of behavioral response in females could result from a lower rate of aromatization. This is probably not the case because although the enzymatic sex difference is clearly present in gonadally intact sexually mature birds, it is not reliably found in gonadectomized birds treated with testosterone, in which the behavioral sex difference is always observed. We previously discovered that the higher aromatase activity in sexually mature males as compared to females is not associated with major differences in aromatase mRNA density. A reverse sex difference (females>males) was even detected in the bed nucleus of the stria terminalis. We analyzed here by in situ hybridization histochemistry the density of aromatase mRNA in gonadectomized male and female quail that were or were not exposed to a steroid profile typical of their sex. Testosterone and ovarian steroids (presumably estradiol) increased aromatase mRNA concentration in males and females respectively but mRNA density was similar in both sexes. A reverse sex difference in aromatase mRNA density (females>males) was detected in the bed nucleus of subjects exposed to sex steroids. Together these data suggest that although the induction of aromatase activity by testosterone corresponds to an increased transcription of the enzyme, the sex difference in enzymatic activity results largely from post-transcriptional controls that remain to be identified.
Collapse
Affiliation(s)
- Cornelia Voigt
- GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
- Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Gregory F. Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
- Corresponding author: Jacques Balthazart, University of Liège, GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, Avenue de l’Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium, Phone 32-4-366 59 70 -- FAX 32-4-366 59 71 --
| |
Collapse
|
29
|
Balthazart J, Charlier TD, Cornil CA, Dickens MJ, Harada N, Konkle ATM, Voigt C, Ball GF. Sex differences in brain aromatase activity: genomic and non-genomic controls. Front Endocrinol (Lausanne) 2011; 2:34. [PMID: 22645508 PMCID: PMC3355826 DOI: 10.3389/fendo.2011.00034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022] Open
Abstract
Aromatization of testosterone into estradiol in the preoptic area plays a critical role in the activation of male copulation in quail and in many other vertebrate species. Aromatase expression in quail and in other birds is higher than in rodents and other mammals, which has facilitated the study of the controls and functions of this enzyme. Over relatively long time periods (days to months), brain aromatase activity (AA), and transcription are markedly (four- to sixfold) increased by genomic actions of sex steroids. Initial work indicated that the preoptic AA is higher in males than in females and it was hypothesized that this differential production of estrogen could be a critical factor responsible for the lack of behavioral activation in females. Subsequent studies revealed, however, that this enzymatic sex difference might contribute but is not sufficient to explain the sex difference in behavior. Studies of AA, immunoreactivity, and mRNA concentrations revealed that sex differences observed when measuring enzymatic activity are not necessarily observed when one measures mRNA concentrations. Discrepancies potentially reflect post-translational controls of the enzymatic activity. AA in quail brain homogenates is rapidly inhibited by phosphorylation processes. Similar rapid inhibitions occur in hypothalamic explants maintained in vitro and exposed to agents affecting intracellular calcium concentrations or to glutamate agonists. Rapid changes in AA have also been observed in vivo following sexual interactions or exposure to short-term restraint stress and these rapid changes in estrogen production modulate expression of male sexual behaviors. These data suggest that brain estrogens display most if not all characteristics of neuromodulators if not neurotransmitters. Many questions remain however concerning the mechanisms controlling these rapid changes in estrogen production and their behavioral significance.
Collapse
Affiliation(s)
- Jacques Balthazart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
- *Correspondence: Jacques Balthazart, Research Group in Behavioral Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of Liège, Avenue de l’Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium. e-mail:
| | - Thierry D. Charlier
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Charlotte A. Cornil
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Molly J. Dickens
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Nobuhiro Harada
- Molecular Genetics, Fujita Health UniversityToyoake, Aichi, Japan
| | - Anne T. M. Konkle
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Cornelia Voigt
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Gregory F. Ball
- Department of Psychological and Brain Science, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
30
|
Wacker DW, Wingfield JC, Davis JE, Meddle SL. Seasonal changes in aromatase and androgen receptor, but not estrogen receptor mRNA expression in the brain of the free-living male song sparrow, Melospiza melodia morphna. J Comp Neurol 2010; 518:3819-35. [PMID: 20653036 DOI: 10.1002/cne.22426] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Free-living male song sparrows experience three annually repeating life history stages associated with differential expression of sex steroid-dependent reproductive and aggressive behavior. In the breeding stage, they display reproductive and aggressive behavior and have elevated circulating testosterone levels. During molt, males show little or no aggression and no reproductive behavior, and have basal levels of circulating testosterone. In the non-breeding stage, they display high levels of aggression and no reproductive behavior, and have basal levels of circulating testosterone. In order to understand more fully the neural regulation of seasonal aggressive and reproductive behavior, birds were collected during all three life history stages, and levels of neural aromatase, androgen receptor (AR), and estrogen receptor alpha (ERalpha) and beta (ERbeta) mRNA expression were measured. Breeding males had the highest levels of aromatase expression in both the preoptic area (POA) and medial preoptic area/medial bed nucleus of the stria terminalis (mPOA/BSTm), and the highest AR expression levels in the POA, consistent with the well-established role these regions play in the regulation of male reproductive behavior. Aromatase expression in the ventromedial nucleus of the hypothalamus (VMH) was higher during breeding and non-breeding compared with molt, suggesting that the VMH may play a role in the estrogen-dependent regulation of aggression in this species. AR expression also varied in medial HVC and pvMSt, a newly described periventricular region in the medial striatum. ERalpha and ERbeta mRNA expression did not vary seasonally in any brain region examined, suggesting that estrogen-dependent changes in behavior are mediated by differences in neural estrogen synthesis.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| | | | | | | |
Collapse
|