1
|
Yamashita A, Kasai H, Maekawa S, Tanaka T, Akaike Y, Ryo A, Enomoto N, Moriishi K. Berberine promotes K 48-linked polyubiquitination of HNF4α, leading to the inhibition of HBV replication. Antiviral Res 2024; 232:106027. [PMID: 39489302 DOI: 10.1016/j.antiviral.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The current antiviral agents for the treatment of chronic infection with hepatitis B virus (HBV) do not completely remove covalently closed circular DNA (cccDNA) and integrated viral DNA fragments from patients. Berberine is an isoquinoline alkaloid extracted from various plants and has been reported to inhibit the replication of various types of DNA. In this study, we tested the effects of berberine and its derivatives on HBV infection. Berberine inhibited viral core promoter activity at the highest level among the compounds tested and suppressed HBV production and cccDNA synthesis in primary human hepatocytes and HBV-infected HepG2-NTCP cells at an EC50 value of 3.6 μM and a CC50 value of over 240.0 μM. Compared with other viral promoter activities, berberine treatment potently downregulated core promoter activity and reduced protein levels, but not RNA levels, of hepatic nuclear factor 4α (HNF4α), which primarily enhances enhancer II/core promoter activity. Furthermore, berberine treatment enhanced K48-linked, but not K63-linked, polyubiquitination and subsequent proteasome-dependent degradation of HNF4α. These results suggest that berberine enhances the polyubiquitination- and proteasome-dependent degradation of HNF4α and then inhibits HBV replication via the suppression of core promoter activity. The development of antiviral agents based on berberine may contribute to the amelioration of HBV-related disorders, regardless of the presence of residual cccDNA or integrated viral DNA fragments.
Collapse
Affiliation(s)
- Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Shinya Maekawa
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan
| | - Yasunori Akaike
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute for Infectious Diseases, Tokyo, 208-0011, Japan
| | - Nobuyuki Enomoto
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
2
|
Yang K, Zhu Y, Chen J, Zhou W. Interleukin-8 in HepG2 cells: Enhancing antiviral proteins in uninfected cells but promoting HBV replication in infected cells. Biochem Biophys Res Commun 2024; 734:150455. [PMID: 39083972 DOI: 10.1016/j.bbrc.2024.150455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
In vitro studies have revealed that hepatitis B virus (HBV) infection upregulates interleukin-8 (IL-8), which enhances HBV replication. Clinically, elevated IL-8 levels in chronic HBV patients are associated with diminished therapeutic efficacy of interferon-α (IFN-α). Our study advances these findings by demonstrating that IL-8 promotes the expression of myxovirus resistance A (MxA) and protein kinase R (PKR) in HepG2 cells via the PI3K-AKT pathway. However, HBV-infected cells fail to exhibit IL-8-induced upregulation of MxA and PKR, likely due to HBV's upregulation of PP2A that inhibits the PI3K-AKT pathway. Notably, IL-8 targets the C/EBPα transcription factor, increasing HBV promoter activity and viral replication, which in turn partially suppresses the expression of MxA and PKR induced by IFN-α. Our findings uncover a mechanism by which HBV may evade immune responses, suggesting potential new strategies for immunotherapy against chronic HBV infection.
Collapse
Affiliation(s)
- Kai Yang
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China.
| | - Yukai Zhu
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Jin Chen
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Weifeng Zhou
- School of Clinical Medicine, Anhui Medical College, Hefei, 230601, China
| |
Collapse
|
3
|
Pastor F, Charles E, Di Vona C, Chapelle M, Rivoire M, Passot G, Chabot B, de la Luna S, Lucifora J, Durantel D, Salvetti A. The dual-specificity kinase DYRK1A interacts with the Hepatitis B virus genome and regulates the production of viral RNA. PLoS One 2024; 19:e0311655. [PMID: 39405283 PMCID: PMC11478819 DOI: 10.1371/journal.pone.0311655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The genome of Hepatitis B virus (HBV) persists in infected hepatocytes as a nuclear episome (cccDNA) that is responsible for the transcription of viral genes and viral rebound, following antiviral treatment arrest in chronically infected patients. There is currently no clinically approved therapeutic strategy able to efficiently target cccDNA (Lucifora J 2016). The development of alternative strategies aiming at permanently abrogating HBV RNA production requires a thorough understanding of cccDNA transcriptional and post-transcriptional regulation. In a previous study, we discovered that 1C8, a compound that inhibits the phosphorylation of some cellular RNA-binding proteins, could decrease the level of HBV RNAs. Here, we aimed at identifying kinases responsible for this effect. Among the kinases targeted by 1C8, we focused on DYRK1A, a dual-specificity kinase that controls the transcription of cellular genes by phosphorylating transcription factors, histones, chromatin regulators as well as RNA polymerase II. The results of a combination of genetic and chemical approaches using HBV-infected hepatocytes, indicated that DYRK1A positively regulates the production of HBV RNAs. In addition, we found that DYRK1A associates with cccDNA, and stimulates the production of HBV nascent RNAs. Finally, reporter gene assays showed that DYRK1A up-regulates the activity of the HBV enhancer 1/X promoter in a sequence-dependent manner. Altogether, these results indicate that DYRK1A is a proviral factor that may participate in the HBV life cycle by stimulating the production of HBx, a viral factor absolutely required to trigger the complete cccDNA transcriptional program.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Emilie Charles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Chiara Di Vona
- Genome Biology Program, Center for Genomic Regulation (CRG), and CIBER of Rare Diseases, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maëlys Chapelle
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | | | - Guillaume Passot
- Service de Chirurgie Générale et Oncologique, Hôpital Lyon Sud, Hospices Civils de Lyon Et CICLY, EA3738, Université Lyon 1, Lyon, France
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Susana de la Luna
- Genome Biology Program, Center for Genomic Regulation (CRG), and CIBER of Rare Diseases, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Julie Lucifora
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - David Durantel
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
4
|
Choudhury A, Ojha PK, Ray S. Hazards of antiviral contamination in water: Dissemination, fate, risk and their impact on fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135087. [PMID: 38964042 DOI: 10.1016/j.jhazmat.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
5
|
Dezhbord M, Kim SH, Park S, Lee DR, Kim N, Won J, Lee AR, Kim DS, Kim KH. Novel role of MHC class II transactivator in hepatitis B virus replication and viral counteraction. Clin Mol Hepatol 2024; 30:539-560. [PMID: 38741238 PMCID: PMC11261224 DOI: 10.3350/cmh.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND/AIMS The major histocompatibility class II (MHC II) transactivator, known as CIITA, is induced by Interferon gamma (IFN-γ) and plays a well-established role in regulating the expression of class II MHC molecules in antigen-presenting cells. METHODS Primary human hepatocytes (PHH) were isolated via therapeutic hepatectomy from two donors. The hepatocellular carcinoma (HCC) cell lines HepG2 and Huh7 were used for the mechanistic study, and HBV infection was performed in HepG2-NTCP cells. HBV DNA replication intermediates and secreted antigen levels were measured using Southern blotting and ELISA, respectively. RESULTS We identified a non-canonical function of CIITA in the inhibition of hepatitis B virus (HBV) replication in both HCC cells and patient-derived PHH. Notably, in vivo experiments demonstrated that HBV DNA and secreted antigen levels were significantly decreased in mice injected with the CIITA construct. Mechanistically, CIITA inhibited HBV transcription and replication by suppressing the activity of HBV-specific enhancers/promoters. Indeed, CIITA exerts antiviral activity in hepatocytes through ERK1/2-mediated down-regulation of the expression of hepatocyte nuclear factor 1α (HNF1α) and HNF4α, which are essential factors for virus replication. In addition, silencing of CIITA significantly abolished the IFN-γ-mediated anti-HBV activity, suggesting that CIITA mediates the anti-HBV activity of IFN-γ to some extent. HBV X protein (HBx) counteracts the antiviral activity of CIITA via direct binding and impairing its function. CONCLUSION Our findings reveal a novel antiviral mechanism of CIITA that involves the modulation of the ERK pathway to restrict HBV transcription. Additionally, our results suggest the possibility of a new immune avoidance mechanism involving HBx.
Collapse
Affiliation(s)
- Mehrangiz Dezhbord
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seong Ho Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Soree Park
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Da Rae Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Nayeon Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Juhee Won
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul, Korea
| | - Ah Ram Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dong-Sik Kim
- Department of Surgery, Division of HBP Surgery and Liver Transplantation, College of Medicine, Korea University, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
6
|
Jeong Y, Han J, Jang KL. Reactive Oxygen Species Induction by Hepatitis B Virus: Implications for Viral Replication in p53-Positive Human Hepatoma Cells. Int J Mol Sci 2024; 25:6606. [PMID: 38928309 PMCID: PMC11204012 DOI: 10.3390/ijms25126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis B virus (HBV) infects approximately 300 million people worldwide, causing chronic infections. The HBV X protein (HBx) is crucial for viral replication and induces reactive oxygen species (ROS), leading to cellular damage. This study explores the relationship between HBx-induced ROS, p53 activation, and HBV replication. Using HepG2 and Hep3B cell lines that express the HBV receptor NTCP, we compared ROS generation and HBV replication relative to p53 status. Results indicated that HBV infection significantly increased ROS levels in p53-positive HepG2-NTCP cells compared to p53-deficient Hep3B-NTCP cells. Knockdown of p53 reduced ROS levels and enhanced HBV replication in HepG2-NTCP cells, whereas p53 overexpression increased ROS and inhibited HBV replication in Hep3B-NTCP cells. The ROS scavenger N-acetyl-L-cysteine (NAC) reversed these effects. The study also found that ROS-induced degradation of the HBx is mediated by the E3 ligase Siah-1, which is activated by p53. Mutations in p53 or inhibition of its transcriptional activity prevented ROS-mediated HBx degradation and HBV inhibition. These findings reveal a p53-dependent negative feedback loop where HBx-induced ROS increases p53 levels, leading to Siah-1-mediated HBx degradation and HBV replication inhibition. This study offers insights into the molecular mechanisms of HBV replication and identifies potential therapeutic targets involving ROS and p53 pathways.
Collapse
Affiliation(s)
- Yuna Jeong
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Han J, Jang KL. All-trans retinoic acid downregulates HBx levels via E6-associated protein-mediated proteasomal degradation to suppress hepatitis B virus replication. PLoS One 2024; 19:e0305350. [PMID: 38861553 PMCID: PMC11166335 DOI: 10.1371/journal.pone.0305350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
All-trans retinoic acid (ATRA), recognized as the principal and most biologically potent metabolite of vitamin A, has been identified for its inhibitory effects on hepatitis B virus (HBV) replication. Nevertheless, the underlying mechanism remains elusive. The present study reveals that ATRA induces E6-associated protein (E6AP)-mediated proteasomal degradation of HBx to suppress HBV replication in human hepatoma cells in a p53-dependent pathway. For this effect, ATRA induced promoter hypomethylation of E6AP in the presence of HBx, which resulted in the upregulation of E6AP levels in HepG2 but not in Hep3B cells, emphasizing the p53-dependent nature of this effect. As a consequence, ATRA augmented the interaction between E6AP and HBx, resulting in substantial ubiquitination of HBx and consequent reduction in HBx protein levels in both the HBx overexpression system and the in vitro HBV replication model. Additionally, the knockdown of E6AP under ATRA treatment reduced the interaction between HBx and E6AP and decreased the ubiquitin-dependent proteasomal degradation of HBx, which prompted a recovery of HBV replication in the presence of ATRA, as confirmed by increased levels of intracellular HBV proteins and secreted HBV levels. This study not only contributes to the understanding of the complex interactions between ATRA, p53, E6AP, and HBx but also provides an academic basis for the clinical employment of ATRA in the treatment of HBV infection.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Figueroa GB, D'souza S, Pereira HS, Vasudeva G, Figueroa SB, Robinson ZE, Badmalia MD, Meier-Stephenson V, Corcoran JA, van Marle G, Ni Y, Urban S, Coffin CS, Patel TR. Development of a single-domain antibody to target a G-quadruplex located on the hepatitis B virus covalently closed circular DNA genome. J Med Virol 2024; 96:e29692. [PMID: 38804172 DOI: 10.1002/jmv.29692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
To achieve a virological cure for hepatitis B virus (HBV), innovative strategies are required to target the covalently closed circular DNA (cccDNA) genome. Guanine-quadruplexes (G4s) are a secondary structure that can be adopted by DNA and play a significant role in regulating viral replication, transcription, and translation. Antibody-based probes and small molecules have been developed to study the role of G4s in the context of the human genome, but none have been specifically made to target G4s in viral infection. Herein, we describe the development of a humanized single-domain antibody (S10) that can target a G4 located in the PreCore (PreC) promoter of the HBV cccDNA genome. MicroScale Thermophoresis demonstrated that S10 has a strong nanomolar affinity to the PreC G4 in its quadruplex form and a structural electron density envelope of the complex was determined using Small-Angle X-ray Scattering. Lentiviral transduction of S10 into HepG2-NTCP cells shows nuclear localization, and chromatin immunoprecipitation coupled with next-generation sequencing demonstrated that S10 can bind to the HBV PreC G4 present on the cccDNA. This research validates the existence of a G4 in HBV cccDNA and demonstrates that this DNA secondary structure can be targeted with high structural and sequence specificity using S10.
Collapse
Affiliation(s)
- Gerardo B Figueroa
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Simmone D'souza
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Higor S Pereira
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gunjan Vasudeva
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sara B Figueroa
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zachary E Robinson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Maulik D Badmalia
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vanessa Meier-Stephenson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer A Corcoran
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Carla S Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Chen S, Li B, Luo W, Rehman AU, He M, Yang Q, Wang S, Guo J, Chen L, Li X. Paclitaxel-induced Immune Dysfunction and Activation of Transcription Factor AP-1 Facilitate Hepatitis B Virus Replication. J Clin Transl Hepatol 2024; 12:457-468. [PMID: 38779518 PMCID: PMC11106347 DOI: 10.14218/jcth.2023.00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/25/2024] Open
Abstract
Background and Aims Hepatitis B virus (HBV) reactivation is commonly observed in individuals with chronic HBV infection undergoing antineoplastic drug therapy. Paclitaxel (PTX) treatment has been identified as a potential trigger for HBV reactivation. This study aimed to uncover the mechanisms of PTX-induced HBV reactivation in vitro and in vivo, which may inform new strategies for HBV antiviral treatment. Methods The impact of PTX on HBV replication was assessed through various methods including enzyme-linked immunosorbent assay, dual-luciferase reporter assay, quantitative real-time PCR, chromatin immunoprecipitation, and immunohistochemical staining. Transcriptome sequencing and 16S rRNA sequencing were employed to assess alterations in the transcriptome and microbial diversity in PTX-treated HBV transgenic mice. Results PTX enhanced the levels of HBV 3.5-kb mRNA, HBV DNA, HBeAg, and HBsAg both in vitro and in vivo. PTX also promoted the activity of the HBV core promoter and transcription factor AP-1. Inhibition of AP-1 gene expression markedly suppressed PTX-induced HBV reactivation. Transcriptome sequencing revealed that PTX activated the immune-related signaling networks such as IL-17, NF-κB, and MAPK signaling pathways, with the pivotal common key molecule being AP-1. The 16S rRNA sequencing revealed that PTX induced dysbiosis of gut microbiota. Conclusions PTX-induced HBV reactivation was likely a synergistic outcome of immune suppression and direct stimulation of HBV replication through the enhancement of HBV core promoter activity mediated by the transcription factor AP-1. These findings propose a novel molecular mechanism, underscoring the critical role of AP-1 in PTX-induced HBV reactivation.
Collapse
Affiliation(s)
- Shi Chen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Benhua Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Luo
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Adeel ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Miao He
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Qian Yang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinjun Guo
- Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Chen
- The Center of Experimental Teaching Management, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Shen Z, Zhang S, Gao Z, Yu X, Wang J, Pan S, Kang N, Liu N, Xu H, Liu M, Yang Y, Deng Q, Liu J, Xie Y, Zhang J. Intrahepatic homeobox protein MSX-1 is a novel host restriction factor of hepatitis B virus. J Virol 2024; 98:e0134523. [PMID: 38226815 PMCID: PMC10878074 DOI: 10.1128/jvi.01345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection (CHB) is a risk factor for the development of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Covalently closed circular DNA serves as the sole transcription template for all viral RNAs and viral transcription is driven and enhanced by viral promoter and enhancer elements, respectively. Interactions between transcription factors and these cis-elements regulate their activities and change the production levels of viral RNAs. Here, we report the identification of homeobox protein MSX-1 (MSX1) as a novel host restriction factor of HBV in liver. In both HBV-transfected and HBV-infected cells, MSX1 suppresses viral gene expression and genome replication. Mechanistically, MSX1 downregulates enhancer II/core promoter (EnII/Cp) activity via direct binding to an MSX1 responsive element within EnII/Cp, and such binding competes with hepatocyte nuclear factor 4α binding to EnII/Cp due to partial overlap between their respective binding sites. Furthermore, CHB patients in immune active phase express higher levels of intrahepatic MSX1 but relatively lower levels of serum and intrahepatic HBV markers compared to those in immune tolerant phase. Finally, MSX1 was demonstrated to induce viral clearance in two mouse models of HBV persistence, suggesting possible therapeutic potential for CHB.IMPORTANCECovalently closed circular DNA plays a key role for the persistence of hepatitis B virus (HBV) since it serves as the template for viral transcription. Identification of transcription factors that regulate HBV transcription not only provides insights into molecular mechanisms of viral life cycle regulation but may also provide potential antiviral targets. In this work, we identified host MSX1 as a novel restriction factor of HBV transcription. Meanwhile, we observed higher intrahepatic MSX1 expression in chronic hepatitis B virus (CHB) patients in immune active phase compared to those in immune tolerant phase, suggesting possible involvement of MSX1 in the regulation of HBV activity by the host. Lastly, intrahepatic overexpression of MSX1 delivered by recombinant adenoviruses into two mouse models of HBV persistence demonstrated MSX1-mediated repression of HBV in vivo, and MSX1-induced clearance of intrahepatic HBV DNA in treated mice suggested its potential as a therapeutic target for the treatment of CHB.
Collapse
Affiliation(s)
- Zhongliang Shen
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueping Yu
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaokun Pan
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijun Xu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mu Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Children’s Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
12
|
Song Z, Lin S, Wu X, Ren X, Wu Y, Wen H, Qian B, Lin H, Huang Y, Zhao C, Wang N, Huang Y, Peng B, Li X, Peng H, Shen S. Hepatitis B virus-related intrahepatic cholangiocarcinoma originates from hepatocytes. Hepatol Int 2023; 17:1300-1317. [PMID: 37368186 PMCID: PMC10522522 DOI: 10.1007/s12072-023-10556-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is one of the most common risk factors for intrahepatic cholangiocarcinoma (ICC). However, there is no direct evidence of a causal relationship between HBV infection and ICC. In this study, we attempted to prove that ICC may originate from hepatocytes through a pathological study involving ICC tissue-derived organoids. METHOD The medical records and tumor tissue samples of 182 patients with ICC after hepatectomy were collected. The medical records of 182 patients with ICC were retrospectively analyzed to explore the prognostic factors. A microarray of 182 cases of ICC tumor tissue and 6 cases of normal liver tissue was made, and HBsAg was stained by immunohistochemistry (IHC) to explore the factors closely related to HBV infection. Fresh ICC tissues and corresponding adjacent tissues were collected to make paraffin sections and organoids. Immunofluorescence (IF) staining of factors including HBsAg, CK19, CK7, Hep-Par1 and Albumin (ALB) was performed on both fresh tissues and organoids. In addition, we collected adjacent nontumor tissues of 6 patients with HBV (+) ICC, from which biliary duct tissue and normal liver tissue were isolated and RNA was extracted respectively for quantitative PCR assay. In addition, the expression of HBV-DNA in organoid culture medium was detected by quantitative PCR and PCR electrophoresis. RESULTS A total of 74 of 182 ICC patients were HBsAg positive (40.66%, 74/182). The disease-free survival (DFS) rate of HBsAg (+) ICC patients was significantly lower than that of HBsAg (-) ICC patients (p = 0.0137). IF and IHC showed that HBsAg staining was only visible in HBV (+) ICC fresh tissues and organoids, HBsAg expression was negative in bile duct cells in the portal area. Quantitative PCR assay has shown that the expression of HBs antigen and HBx in normal hepatocytes were significantly higher than that in bile duct epithelial cells. Combined with the IF and IHC staining, it was confirmed that HBV does not infect normal bile duct epithelial cells. In addition, IF also showed that the staining of bile duct markers CK19 and CK7 were only visible in ICC fresh tissue and organoids, and the staining of hepatocyte markers Hep-Par1 and ALB was only visible in normal liver tissue fresh tissue. Real-time PCR and WB had the same results. High levels of HBV-DNA were detected in the culture medium of HBV (+) organoids but not in the culture medium of HBV (-) organoids. CONCLUSION HBV-related ICC might be derived from hepatocytes. HBV (+) ICC patients had shorter DFS than HBV (-) ICC patients.
Collapse
Affiliation(s)
- Zimin Song
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Shuirong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Xiwen Wu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
- Department of Clinical Nutrition, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yifan Wu
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Haoxiang Wen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Baifeng Qian
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Haozhong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yihao Huang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Chenfeng Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Nian Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yan Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Baogang Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Xiaoxing Li
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| | - Hong Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| |
Collapse
|
13
|
Olson AT, Kang Y, Ladha AM, Zhu S, Lim CB, Nabet B, Lagunoff M, Gujral TS, Geballe AP. Polypharmacology-based kinome screen identifies new regulators of KSHV reactivation. PLoS Pathog 2023; 19:e1011169. [PMID: 37669313 PMCID: PMC10503724 DOI: 10.1371/journal.ppat.1011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/15/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.
Collapse
Affiliation(s)
- Annabel T. Olson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Yuqi Kang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Anushka M. Ladha
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Songli Zhu
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Chuan Bian Lim
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Behnam Nabet
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Taranjit S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
14
|
Yoon H, Lee HK, Jang KL. Hydrogen Peroxide Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation in Human Hepatoma Cells. Int J Mol Sci 2023; 24:13354. [PMID: 37686160 PMCID: PMC10488175 DOI: 10.3390/ijms241713354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The hepatitis B virus (HBV) is constantly exposed to significant oxidative stress characterized by elevated levels of reactive oxygen species (ROS), such as H2O2, during infection in hepatocytes of patients. In this study, we demonstrated that H2O2 inhibits HBV replication in a p53-dependent fashion in human hepatoma cell lines expressing sodium taurocholate cotransporting polypeptide. Interestingly, H2O2 failed to inhibit the replication of an HBV X protein (HBx)-null HBV mutant, but this defect was successfully complemented by ectopic expression of HBx. Additionally, H2O2 upregulated p53 levels, leading to increased expression of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induced the ubiquitination-dependent proteasomal degradation of HBx. The inhibitory effect of H2O2 was nearly abolished not only by treatment with a representative antioxidant, N-acetyl-L-cysteine but also by knockdown of either p53 or Siah-1 using specific short hairpin RNA, confirming the role of p53 and Siah-1 in the inhibition of HBV replication by H2O2. The present study provides insights into the mechanism that regulates HBV replication under conditions of oxidative stress in patients.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
| | - Hye-Kyoung Lee
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Yang D, Tian R, Deng R, Xue B, Liu S, Wang L, Li H, Liu Q, Wan M, Tang S, Wang X, Zhu H. The dual functions of KDM7A in HBV replication and immune microenvironment. Microbiol Spectr 2023; 11:e0164123. [PMID: 37623314 PMCID: PMC10581003 DOI: 10.1128/spectrum.01641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
KDM7A (lysine demethylase 7A, also known as JHDM1D) is a histone demethylase, it is mainly involved in the intracellular post-translational modifications process. Recently, it has been proved that the histone demethylase members can regulate the replication of hepatitis B virus (HBV) and the expression of key molecules in the Janus-activated kinase-signal transducer and activator of the transcription (JAK/STAT) signaling pathway by chromatin modifying mechanisms. In our study, we identify novel roles of KDM7A in HBV replication and immune microenvironment through two subjects: pathogen and host. On the one hand, KDM7A is highly expressed in HBV-infected cells and promotes HBV replication in vitro and in vivo. Moreover, KDM7A interacts with HBV covalently closed circular DNA and augments the activity of the HBV core promoter. On the other hand, KDM7A can remodel the immune microenvironment. It inhibits the expression of interferon-stimulated genes (ISGs) through the IFN-γ/JAK2/STAT1 signaling pathway in both hepatocytes and macrophages. Further study shows that KDM7A interacts with JAK2 and STAT1 and affects their methylation. In general, we demonstrate the dual functions of KDM7A in HBV replication and immune microenvironment, and then we propose a new therapeutic target for HBV infection and immunotherapy. IMPORTANCE Histone lysine demethylase KDM7A can interact with covalently closed circular DNA and promote the replication of hepatitis B virus (HBV). The IFN-γ/JAK2/STAT1 signaling pathway in macrophages and hepatocytes is also downregulated by KDM7A. This study provides new insights into the mechanism of HBV infection and the remodeling of the immune microenvironment.
Collapse
Affiliation(s)
- Di Yang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Binbin Xue
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology and Immunology, Institute of Pathogen Biology and Immunology, School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The First Affiliated Hospital and The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Shun Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Mengyu Wan
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Xiaohong Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology and Immunology, Institute of Pathogen Biology and Immunology, School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The First Affiliated Hospital and The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| |
Collapse
|
16
|
Seong MS, Jang JA, Jeong YR, Kim YB, Kyaw YY, Kong HJ, Lee JH, Cheong J. Fibroblast Growth Factor 11 Inhibits Hepatitis B Virus Gene Expression Through FXRα Suppression. J Microbiol 2023; 61:693-702. [PMID: 37646922 PMCID: PMC10477102 DOI: 10.1007/s12275-023-00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 09/01/2023]
Abstract
Fibroblast growth factor 11 (FGF11) is a member of the intracellular FGF family, which shows different signal transmission compared with other FGF superfamily members. The molecular function of FGF11 is not clearly understood. In this study, we identified the inhibitory effect of FGF11 on hepatitis B virus (HBV) gene expression through transcriptional suppression. FGF11 decreased the mRNA and protein expression of HBV genes in liver cells. While the nuclear receptor FXRα1 increased HBV promoter transactivation, FGF11 decreased the FXRα-mediated gene induction of the HBV promoter by the FXRα agonist. Reduced endogenous levels of FXRα by siRNA and the dominant negative mutant protein (aa 1-187 without ligand binding domain) of FXRα expression indicated that HBV gene suppression by FGF11 is dependent on FXRα inhibition. In addition, FGF11 interacts with FXRα protein and reduces FXRα protein stability. These results indicate that FGF11 inhibits HBV replicative expression through the liver cell-specific transcription factor, FXRα, and suppresses HBV promoter activity. Our findings may contribute to the establishment of better regimens for the treatment of chronic HBV infections by including FGF11 to alter the bile acid mediated FXR pathway.
Collapse
Affiliation(s)
- Mi So Seong
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong Ah Jang
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Rim Jeong
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Bin Kim
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yi Yi Kyaw
- Advanced Molecular Research Centre, Department of Medical Research, Republic of Union of Myanmar, Yangon, 11191, Myanmar
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
17
|
Han J, Jang KL. All- trans Retinoic Acid Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation. Viruses 2023; 15:1456. [PMID: 37515144 PMCID: PMC10386411 DOI: 10.3390/v15071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to abolish the potential of HBx to downregulate the levels of p14, p16, and p21 and to stimulate cell growth during hepatitis B virus (HBV) infection, contributing to its chemopreventive and therapeutic effects against HBV-associated hepatocellular carcinoma. Here, we demonstrated that ATRA antagonizes HBx to inhibit HBV replication. For this effect, ATRA individually or in combination with HBx upregulated p53 levels, resulting in upregulation of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induces ubiquitination and proteasomal degradation of HBx in the presence of ATRA. The ability of ATRA to induce Siah-1-mediated HBx degradation and the subsequent inhibition of HBV replication was proven in an in vitro HBV replication model. The effects of ATRA became invalid when either p53 or Siah-1 was knocked down by a specific shRNA, providing direct evidence for the role of p53 and Siah-1 in the negative regulation of HBV replication by ATRA.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
18
|
Yao Q, Peng B, Li C, Li X, Chen M, Zhou Z, Tang D, He J, Wu Y, Sun Y, Li W. SLF2 Interacts with the SMC5/6 Complex to Direct Hepatitis B Virus Episomal DNA to Promyelocytic Leukemia Bodies for Transcriptional Repression. J Virol 2023:e0032823. [PMID: 37338350 PMCID: PMC10373549 DOI: 10.1128/jvi.00328-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects approximately 300 million people worldwide, and permanently repressing transcription of covalently closed circular DNA (cccDNA), the episomal viral DNA reservoir, is an attractive approach toward curing HBV. However, the mechanism underlying cccDNA transcription is only partially understood. In this study, by illuminating cccDNA of wild-type HBV (HBV-WT) and transcriptionally inactive HBV that bears a deficient HBV X gene (HBV-ΔX), we found that the HBV-ΔX cccDNA more frequently colocalizes with promyelocytic leukemia (PML) bodies than that of HBV-WT cccDNA. A small interfering RNA (siRNA) screen targeting 91 PML body-related proteins identified SMC5-SMC6 localization factor 2 (SLF2) as a host restriction factor of cccDNA transcription, and subsequent studies showed that SLF2 mediates HBV cccDNA entrapment in PML bodies by interacting with the SMC5/6 complex. We further showed that the region of SLF2 comprising residues 590 to 710 interacts with and recruits the SMC5/6 complex to PML bodies, and the C-terminal domain of SLF2 containing this region is necessary for repression of cccDNA transcription. Our findings shed new light on cellular mechanisms that inhibit HBV infection and lend further support for targeting the HBx pathway to repress HBV activity. IMPORTANCE Chronic HBV infection remains a major public health problem worldwide. Current antiviral treatments rarely cure the infection, as they cannot clear the viral reservoir, cccDNA, in the nucleus. Therefore, permanently silencing HBV cccDNA transcription represents a promising approach for a cure of HBV infection. Our study provides new insights into the cellular mechanisms that restrict HBV infection, revealing the role of SLF2 in directing HBV cccDNA to PML bodies for transcriptional repression. These findings have important implications for the development of antiviral therapies against HBV.
Collapse
Affiliation(s)
- Qiyan Yao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Bo Peng
- National Institute of Biological Sciences, Beijing, China
| | - Cong Li
- National Institute of Biological Sciences, Beijing, China
| | - Xuelei Li
- National Institute of Biological Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingyi Chen
- National Institute of Biological Sciences, Beijing, China
| | - Zhongmin Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Dingbin Tang
- National Institute of Biological Sciences, Beijing, China
| | - Jiabei He
- National Institute of Biological Sciences, Beijing, China
| | - Yumeng Wu
- National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Sharma S, Rawal P, Kaur S, Puria R. Liver organoids as a primary human model to study HBV-mediated Hepatocellular carcinoma. A review. Exp Cell Res 2023; 428:113618. [PMID: 37142202 DOI: 10.1016/j.yexcr.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.
Collapse
Affiliation(s)
- Simran Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, Delhi, India.
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
20
|
Xie Z, Shen S, Huang K, Wang W, Liu Z, Zhang H, Lu M, Sun J, Hou J, Liu H, Guo H, Zhang X. Mitochondrial HIGD1A inhibits hepatitis B virus transcription and replication through the cellular PNKD-NF-κB-NR2F1 nexus. J Med Virol 2023; 95:e28749. [PMID: 37185850 DOI: 10.1002/jmv.28749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Hepatitis B Virus (HBV) replication has been reported to be restricted by the intrahepatic host restriction factors and antiviral signaling pathways. The intracellular mechanisms underlying the significant viremia difference among different phases of the natural history chronic HBV infection remain elusive. We herein report that the hypoxia-induced gene domain protein-1a (HIGD1A) was highly expressed in the liver of inactive HBV carriers with low viremia. Ectopic expression of HIGD1A in hepatocyte-derived cells significantly inhibited HBV transcription and replication in a dose-dependent manner, while silence of HIGD1A promoted HBV gene expression and replication. Similar results were also observed in both de novo HBV-infected cell culture model and HBV persistence mouse model. Mechanistically, HIGD1A is located on the mitochondrial inner membrane and activates nuclear factor kappa B (NF-κB) signaling pathway through binding to paroxysmal nonkinesigenic dyskinesia (PNKD), which further enhances the expression of a transcription factor NR2F1 to inhibit HBV transcription and replication. Consistently, knockdown of PNKD or NR2F1 and blockage of NF-κB signaling pathway abrogated the inhibitory effect of HIGD1A on HBV replication. Mitochondrial HIGD1A exploits the PNKD-NF-κB-NR2F1 nexus to act as a host restriction factor of HBV infection. Our study thus shed new lights on the regulation of HBV by hypoxia-related genes and related antiviral strategies.
Collapse
Affiliation(s)
- Zhanglian Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kuiyuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziying Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixing Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
22
|
Tumor Suppressor p53 Inhibits Hepatitis B Virus Replication by Downregulating HBx via E6AP-Mediated Proteasomal Degradation in Human Hepatocellular Carcinoma Cell Lines. Viruses 2022; 14:v14102313. [PMID: 36298868 PMCID: PMC9609658 DOI: 10.3390/v14102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
HBx, a multifunctional regulatory protein, plays an essential role in the replication and pathogenesis of the hepatitis B virus (HBV). In this study, we found that in human hepatoma cells, the tumor suppressor p53 downregulates HBx via ubiquitin-dependent proteasomal degradation. p53 transcriptional activity that results from HBV infection was not essential for this effect. This was shown by treatment with a potent p53 inhibitor, pifithrin-α. Instead, we found that p53 facilitated the binding of E6-associated protein (E6AP), which is an E3 ligase, to HBx and induced E6AP-mediated HBx ubiquitination in a ternary complex of p53, E6AP, and HBx. The ability of p53 to induce E6AP-mediated downregulation of HBx and inhibit HBV replication was demonstrated in an in vitro HBV infection system. This study may provide insights into the regulation of HBx and HBV replication, especially with respect to p53 status, which may also help in understanding HBV-associated tumorigenesis in patients.
Collapse
|
23
|
Yang X, Dai J, Yao S, An J, Wen G, Jin H, Zhang L, Zheng L, Chen X, Yi Z, Tuo B. APOBEC3B: Future direction of liver cancer research. Front Oncol 2022; 12:996115. [PMID: 36203448 PMCID: PMC9530283 DOI: 10.3389/fonc.2022.996115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Liver cancer is one of the most common cancers in the world, and the rate of liver cancer is high due to the of its illness. The main risk factor for liver cancer is infection with the hepatitis B virus (HBV), but a considerable number of genetic and epigenetic factors are also directly or indirectly involved in the underlying pathogenesis of liver cancer. In particular, the apolipoprotein B mRNA editing enzyme, catalytic peptide-like protein (APOBEC) family (DNA or mRNA editor family), which has been the focus of virology research for more than a decade, has been found to play a significant role in the occurrence and development of various cancers, providing a new direction for the research of liver cancer. APOBEC3B is a cytosine deaminase that controls a variety of biological processes, such as protein expression, innate immunity, and embryonic development, by participating in the process of cytidine deamination to uridine in DNA and RNA. In humans, APOBEC3B has long been known as a DNA editor for limiting viral replication and transcription. APOBEC3B is widely expressed at low levels in a variety of normal tissues and organs, but it is significantly upregulated in different types of tumor tissues and tumor lines. Thus, APOBEC3B has received increasing attention in various cancers, but the role of APOBEC3B in the occurrence and development of liver cancer due to infection with HBV remains unclear. This review provides a brief introduction to the pathogenesis of hepatocellular carcinoma induced by HBV, and it further explores the latest results of APOBEC3B research in the development of HBV and liver cancer, thereby providing new directions and strategies for the treatment and prevention of liver cancer.
Collapse
Affiliation(s)
- Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Dai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Biguang Tuo,
| |
Collapse
|
24
|
Wei XF, Fan SY, Wang YW, Li S, Long SY, Gan CY, Li J, Sun YX, Guo L, Wang PY, Yang X, Wang JL, Cui J, Zhang WL, Huang AL, Hu JL. Identification of STAU1 as a regulator of HBV replication by TurboID-based proximity labeling. iScience 2022; 25:104416. [PMID: 35663023 PMCID: PMC9156947 DOI: 10.1016/j.isci.2022.104416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
The core promoter (CP) of hepatitis B virus (HBV) is critical for HBV replication by controlling the transcription of pregenomic RNA (pgRNA). Host factors regulating the activity of the CP can be identified by different methods. Biotin-based proximity labeling, a powerful method with the capability to capture weak or dynamic interactions, has not yet been used to map proteins interacting with the CP. Here, we established a strategy, based on the newly evolved promiscuous enzyme TurboID, for interrogating host factors regulating the activity of HBV CP. Using this strategy, we identified STAU1 as an important factor involved in the regulation of HBV CP. Mechanistically, STAU1 indirectly binds to CP mediated by TARDBP, and recruits the SAGA transcription coactivator complex to the CP to upregulate its activity. Moreover, STAU1 binds to HBx and enhances the level of HBx by stabilizing it in a ubiquitin-independent manner.
Collapse
Affiliation(s)
- Xia-Fei Wei
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shu-Ying Fan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Wei Wang
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shan Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-Yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chun-Yang Gan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Xue Sun
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lin Guo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Pei-Yun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jin-Lan Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Cui
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen-Lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Yuan SY, Yu HB, Yang Z, Qin YP, Ren JH, Cheng ST, Ren F, Law BYK, Wong VKW, Ng JPL, Zhou YJ, He X, Tan M, Zhang ZZ, Chen J. Pimobendan Inhibits HBV Transcription and Replication by Suppressing HBV Promoters Activity. Front Pharmacol 2022; 13:837115. [PMID: 35721154 PMCID: PMC9204083 DOI: 10.3389/fphar.2022.837115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Current anti-HBV therapeutic strategy relies on interferon and nucleos(t)ide-type drugs with the limitation of functional cure, inducing hepatitis B surface antigen (HBsAg) loss in very few patients. Notably, the level of HBsAg has been established as an accurate indicator to evaluate the drug efficacy and predict the disease prognosis, thus exploring a novel drug targeting HBsAg will be of great significance. Herein, by screening 978 compounds from an FDA-approved drug library and determining the inhibitory function of each drug on HBsAg level in HepG2.2.15 cells supernatant, we identified that pimobendan (Pim) has a powerful antiviral activity with relatively low cytotoxicity. The inhibitory effect of Pim on HBsAg as well as other HBV markers was validated in HBV-infected cell models and HBV-transgenic mice. Mechanistically, real-time PCR and dual-luciferase reporter assay were applied to identify the partial correlation of transcription factor CAAT enhancer-binding protein α (C/EBPα) with the cccDNA transcription regulated by Pim. This indicates Pim is an inhibitor of HBV transcription through suppressing HBV promoters to reduce HBV RNAs levels and HBsAg production. In conclusion, Pim was identified to be a transcription inhibitor of cccDNA, thereby inhibiting HBsAg and other HBV replicative intermediates both in vitro and in vivo. This report may provide a promising lead for the development of new anti-HBV agent.
Collapse
Affiliation(s)
- Si-Yu Yuan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi-Ping Qin
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Jerome P. L. Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin He
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen-Zhen Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Infectious Diseases, The Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhen-Zhen Zhang, ; Juan Chen,
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Zhen-Zhen Zhang, ; Juan Chen,
| |
Collapse
|
26
|
Bianca C, Sidhartha E, Tiribelli C, El-Khobar KE, Sukowati CHC. Role of hepatitis B virus in development of hepatocellular carcinoma: Focus on covalently closed circular DNA. World J Hepatol 2022; 14:866-884. [PMID: 35721287 PMCID: PMC9157711 DOI: 10.4254/wjh.v14.i5.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a major global health problem, especially in developing countries. It may lead to prolonged liver damage, fibrosis, cirrhosis, and hepatocellular carcinoma. Persistent chronic HBV infection is related to host immune response and the stability of the covalently closed circular DNA (cccDNA) in human hepatocytes. In addition to being essential for viral transcription and replication, cccDNA is also suspected to play a role in persistent HBV infections or hepatitis relapses since cccDNA is very stable in non-dividing human hepatocytes. Understanding the pathogenicity and oncogenicity of HBV components would be essential in the development of new diagnostic tools and treatment strategies. This review summarizes the role and molecular mechanisms of HBV cccDNA in hepatocyte transformation and hepatocarcinogenesis and current efforts to its detection and targeting.
Collapse
Affiliation(s)
- Claryssa Bianca
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Korri Elvanita El-Khobar
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Caecilia H C Sukowati
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| |
Collapse
|
27
|
Wu DQ, Ding QY, Tao NN, Tan M, Zhang Y, Li F, Zhou YJ, Dong ML, Cheng ST, Ren F, Chen J, Ren JH. SIRT2 Promotes HBV Transcription and Replication by Targeting Transcription Factor p53 to Increase the Activities of HBV Enhancers and Promoters. Front Microbiol 2022; 13:836446. [PMID: 35663860 PMCID: PMC9161175 DOI: 10.3389/fmicb.2022.836446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic hepatitis B (CHB) virus infection is one of the leading causes of cirrhosis and liver cancer. Although the major drugs against CHB including nucleos(t)ide analogs and PEG-interferon can effectively control human hepatitis B virus (HBV) infection, complete cure of HBV infection is quite rare. Targeting host factors involved in the viral life cycle contributes to developing innovative therapeutic strategies to improve HBV clearance. In this study, we found that the mRNA and protein levels of SIRT2, a class III histone deacetylase, were significantly upregulated in CHB patients, and that SIRT2 protein level was positively correlated with HBV viral load, HBsAg/HBeAg levels, HBcrAg, and ALT/AST levels. Functional analysis confirmed that ectopic SIRT2 overexpression markedly increased total HBV RNAs, 3.5-kb RNA and HBV core DNA in HBV-infected HepG2-Na+/taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, SIRT2 silencing inhibited HBV transcription and replication. In addition, we found a positive correlation between SIRT2 expression and HBV RNAs synthesis as well as HBV covalently closed circular DNA transcriptional activity. A mechanistic study suggested that SIRT2 enhances the activities of HBV enhancer I/HBx promoter (EnI/Xp) and enhancer II/HBc promoter (EnII/Cp) by targeting the transcription factor p53. The levels of HBV EnI/Xp and EnII/Cp-bound p53 were modulated by SIRT2. Both the mutation of p53 binding sites in EnI/Xp and EnII/Cp as well as overexpression of p53 abolished the effect of SIRT2 on HBV transcription and replication. In conclusion, our study reveals that, in terms of host factors, a SIRT2-targeted program might be a more effective therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Dai-Qing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Qiu-Ying Ding
- Key Laboratory of Molecular Biology for Infectious Diseases, Centre for Lipid Research, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Na-Na Tao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yuan Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Fan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Mei-Ling Dong
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Fang Ren
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
- *Correspondence: Ji-Hua Ren,
| |
Collapse
|
28
|
Fan SY, Long SY, Liu JJ, Zhang WL, Hu JL. Nicotinamide N-Methyltransferase inhibits HBV replication by suppressing NR5A1 expression invitro. Biochem Biophys Res Commun 2022; 614:70-77. [PMID: 35569378 DOI: 10.1016/j.bbrc.2022.04.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
Chronic hepatitis B virus (HBV) infection can lead to fibrosis, liver cirrhosis, and primary hepatocellular carcinoma. Investigating host factors that regulate HBV replication helps to identify antiviral targets. In the current study, we identified Nicotinamide N-Methyltransferase gene (NNMT) as a novel factor that regulates HBV transcription. NNMT is up-regulated at both the mRNA and protein levels in HepG2.2.15 cells compared to HepG2 cells. Overexpression of NNMT reduces HBV replication in several cell models, while knockdown of NNMT enhances HBV DNA levels. Mechanistically, NNMT suppresses HBV DNA replication by inhibiting HBV RNA transcription. The region required for the inhibitory effect of NNMT was narrowed to nt 1672-1708 in enhancer II by luciferase assays. On the other hand, ChIP assays and EMSA results showed that NNMT does not bind to this region substantially, either directly or indirectly. Next, a collection of hepatic nuclear receptor transcription factors was screened to determine whether they were affected by NNMT overexpression. NR5A1, a positive regulator of HBV replication, decreased significantly after NNMT overexpression. Collectively, the findings of this study shed light on the regulation of HBV transcription.
Collapse
Affiliation(s)
- Shu-Ying Fan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-Yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jia-Jun Liu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen-Lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China.
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Tati S, Alisaraie L. Recruitment of dynein and kinesin to viral particles. FASEB J 2022; 36:e22311. [DOI: 10.1096/fj.202101900rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sayi’Mone Tati
- School of Pharmacy Memorial University of Newfoundland St. John’s Newfoundland Canada
| | - Laleh Alisaraie
- School of Pharmacy Memorial University of Newfoundland St. John’s Newfoundland Canada
| |
Collapse
|
30
|
Shen Z, Wu J, Gao Z, Zhang S, Chen J, He J, Guo Y, Deng Q, Xie Y, Liu J, Zhang J. High mobility group AT-hook 1 (HMGA1) is an important positive regulator of hepatitis B virus (HBV) that is reciprocally upregulated by HBV X protein. Nucleic Acids Res 2022; 50:2157-2171. [PMID: 35137191 PMCID: PMC8887475 DOI: 10.1093/nar/gkac070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is associated with liver cirrhosis and hepatocellular carcinoma. Upon infection of hepatocytes, HBV covalently closed circular DNA (cccDNA) exists as histone-bound mini-chromosome, subjected to transcriptional regulation similar to chromosomal DNA. Here we identify high mobility group AT-hook 1 (HMGA1) protein as a positive regulator of HBV transcription that binds to a conserved ATTGG site within enhancer II/core promoter (EII/Cp) and recruits transcription factors FOXO3α and PGC1α. HMGA1-mediated upregulation of EII/Cp results in enhanced viral gene expression and genome replication. Notably, expression of endogenous HMGA1 was also demonstrated to be upregulated by HBV, which involves HBV X protein (HBx) interacting with SP1 transcription factor to activate HMGA1 promoter. Consistent with these in vitro results, chronic hepatitis B patients in immune tolerant phase display both higher intrahepatic HMGA1 protein levels and higher serum HBV markers compared to patients in inactive carrier phase. Finally, using a mouse model of HBV persistence, we show that targeting endogenous HMGA1 through RNA interference facilitated HBV clearance. These data establish HMGA1 as an important positive regulator of HBV that is reciprocally upregulated by HBV via HBx and also suggest the HMGA1-HBV positive feedback loop as a potential therapeutic target.
Collapse
Affiliation(s)
- Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity,National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity,National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity,National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingwen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity,National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingjing He
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity,National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity,National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity,National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
31
|
Multiomics Analysis of Endocytosis upon HBV Infection and Identification of SCAMP1 as a Novel Host Restriction Factor against HBV Replication. Int J Mol Sci 2022; 23:ijms23042211. [PMID: 35216324 PMCID: PMC8874515 DOI: 10.3390/ijms23042211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem and the primary cause of cirrhosis and hepatocellular carcinoma (HCC). HBV intrusion into host cells is prompted by virus–receptor interactions in clathrin-mediated endocytosis. Here, we report a comprehensive view of the cellular endocytosis-associated transcriptome, proteome and ubiquitylome upon HBV infection. In this study, we quantified 273 genes in the transcriptome and 190 endocytosis-associated proteins in the proteome by performing multi-omics analysis. We further identified 221 Lys sites in 77 endocytosis-associated ubiquitinated proteins. A weak negative correlation was observed among endocytosis-associated transcriptome, proteome and ubiquitylome. We found 33 common differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and Kub-sites. Notably, we reported the HBV-induced ubiquitination change of secretory carrier membrane protein (SCAMP1) for the first time, differentially expressed across all three omics data sets. Overexpression of SCAMP1 efficiently inhibited HBV RNAs/pgRNA and secreted viral proteins, whereas knockdown of SCAMP1 significantly increased viral production. Mechanistically, the EnhI/XP, SP1, and SP2 promoters were inhibited by SCAMP1, which accounts for HBV X and S mRNA inhibition. Overall, our study unveils the previously unknown role of SCAMP1 in viral replication and HBV pathogenesis and provides cumulative and novel information for a better understanding of endocytosis in response to HBV infection.
Collapse
|
32
|
Nosaka T, Naito T, Murata Y, Matsuda H, Ohtani M, Hiramatsu K, Nishizawa T, Okamoto H, Nakamoto Y. Regulatory function of interferon-inducible 44-like for hepatitis B virus covalently closed circular DNA in primary human hepatocytes. Hepatol Res 2022; 52:141-152. [PMID: 34697871 DOI: 10.1111/hepr.13722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
AIM Curing hepatitis B virus (HBV) infection requires elimination of covalently closed circular DNA (cccDNA). Interferon (IFN)-γ has noncytolytic antiviral potential; however, elimination of cccDNA could not be achieved. To enhance the regulatory effect, we comprehensively analyzed the host factors associated with cccDNA amplification and IFN-γ and IFN-α effects using an in vitro HBV infection system showing various transcription levels. METHODS Primary human hepatocytes were infected with HBV using genomic plasmids carrying the basic core promoter mutation A1762T/G1764A and/or the precore mutation G1896A and treated with IFN-γ and IFN-α. Comprehensive and functional studies involving microarray and small interfering RNA analysis revealed the host factors related to cccDNA regulation. RESULTS The HBV infection system reproduced the HBV life cycle and showed various propagation levels. Microarray analysis revealed 53 genes correlated with the cccDNA levels. Of the 53 genes, expression of IFN-induced protein 44-like (IFI44L) was significantly upregulated by IFN-γ and IFN-α. The anti-HBV effect of IFI44L is exerted regardless of IFN-γ or IFN-α by inhibiting the activation of nuclear factor-κB and signal transducer and activator of transcription 1 pathways. CONCLUSIONS Using the in vitro HBV infection system, an IFN-inducible molecule, IFI44L, associated with cccDNA amplification, was identified. These results suggest an innovative molecular strategy for the regulation of HBV cccDNA by controlling a novel host factor, IFI44L.
Collapse
Affiliation(s)
- Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yosuke Murata
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidetaka Matsuda
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Katsushi Hiramatsu
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
33
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
34
|
Xu XY, Wang DY, Li YP, Deyrup ST, Zhang HJ. Plant-derived lignans as potential antiviral agents: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:239-289. [PMID: 34093097 PMCID: PMC8165688 DOI: 10.1007/s11101-021-09758-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/20/2021] [Indexed: 05/04/2023]
Abstract
Medicinal plants are one of the most important sources of antiviral agents and lead compounds. Lignans are a large class of natural compounds comprising two phenyl propane units. Many of them have demonstrated biological activities, and some of them have even been developed as therapeutic drugs. In this review, 630 lignans, including those obtained from medicinal plants and their chemical derivatives, were systematically reviewed for their antiviral activity and mechanism of action. The compounds discussed herein were published in articles between 1998 and 2020. The articles were identified using both database searches (e.g., Web of Science, Pub Med and Scifinder) using key words such as: antiviral activity, antiviral effects, lignans, HBV, HCV, HIV, HPV, HSV, JEV, SARS-CoV, RSV and influenza A virus, and directed searches of scholarly publisher's websites including ACS, Elsevier, Springer, Thieme, and Wiley. The compounds were classified on their structural characteristics as 1) arylnaphthalene lignans, 2) aryltetralin lignans, 3) dibenzylbutyrolactone lignans, 4) dibenzylbutane lignans, 5) tetrahydrofuranoid and tetrahydrofurofuranoid lignans, 6) benzofuran lignans, 7) neolignans, 8) dibenzocyclooctadiene lignans and homolignans, and 9) norlignans and other lignoids. Details on isolation and antiviral activities of the most active compounds within each class of lignan are discussed in detail, as are studies of synthetic lignans that provide structure-activity relationship information.
Collapse
Affiliation(s)
- Xin-Ya Xu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200 P. R. China
| | - Dong-Ying Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001 P. R. China
| | - Yi-Ping Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 P. R. China
| | - Stephen T. Deyrup
- Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12211 USA
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
35
|
Ma X, Li H, Gong Y, Liu F, Tong X, Zhu F, Yang X, Yang L, Zuo J. Psoralen inhibits hepatitis B viral replication by down-regulating the host transcriptional machinery of viral promoters. Virol Sin 2022; 37:256-265. [PMID: 35305922 PMCID: PMC9170971 DOI: 10.1016/j.virs.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B virus (HBV) is a global public health challenge due to its highly contagious nature. It is estimated that almost 300 million people live with chronic HBV infection annually. Although nucleoside analogs markedly reduce the risk of liver disease progression, the analogs do not fully eradicate the virus. As such, new treatment options and drugs are urgently needed. Psoralen is a nourishing monomer of Chinese herb and is known to inhibit virus replication and inactivate viruses. In this study, we evaluated the potential of psoralen as an anti-HBV agent. Quantitative PCR and Southern blot analysis revealed that psoralen inhibited HBV replication in HepG2.2.15 cells in a concentration-dependent manner. Moreover, psoralen was also active against the 3TC/ETV-dual-resistant HBV mutant. Further investigations revealed that psoralen suppressed both HBV RNA transcription and core protein expression. The transcription factor FOXO1, a known target for PGC1α co-activation, binds to HBV pre-core/core promoter enhancer II region and activates HBV RNA transcription. Co-immunoprecipitation showed that psoralen suppressed the expression of FOXO1, thereby decreasing the binding of FOXO1 co-activator PGC1α to the HBV promoter. Overall, our results demonstrate that psoralen suppresses HBV RNA transcription by down-regulating the expression of FOXO1 resulting in a reduction of HBV replication. Psoralen is a nourishing monomer of Chinese herb that inhibits the replication of HBV. Psoralen decreases the expression of transcription factor FOXO1 of pre-core/core promoter. Psoralen suppresses HBV replication by down-regulation FOXO1 in HBV-producing cells.
Collapse
|
36
|
Lee S, Yoon H, Han J, Jang KL. Hepatitis C virus core protein inhibits hepatitis B virus replication by downregulating HBx levels via Siah-1-mediated proteasomal degradation during coinfection. J Gen Virol 2021; 102. [PMID: 34882535 DOI: 10.1099/jgv.0.001701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the mechanism remains unclear. Here, we found that HCV core protein inhibits HBV replication by downregulating HBx levels during coinfection in human hepatoma cells. For this effect, HCV core protein increased reactive oxygen species levels in the mitochondria and activated the ataxia telangiectasia mutated-checkpoint kinase two pathway in the nucleus, resulting in an upregulation of p53 levels. Accordingly, HCV core protein induced p53-dependent activation of seven in absentia homolog one expression, an E3 ligase of HBx, resulting in the ubiquitination and proteasomal degradation of HBx. The effect of the HCV core protein on HBx levels was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, providing evidence for the inhibition of HBV replication by HCV core protein. The present study may provide insights into the mechanism of HCV dominance in HBV- and HCV-coinfected patients.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea.,Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
37
|
Xu HQ, Wang CG, Zhou Q, Gao YH. Effects of alcohol consumption on viral hepatitis B and C. World J Clin Cases 2021; 9:10052-10063. [PMID: 34904075 PMCID: PMC8638036 DOI: 10.12998/wjcc.v9.i33.10052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is the main target organ for hepatitis viruses and the vital organ for alcohol metabolism. These two factors of viral hepatitis and alcohol abuse in combination can exert dual harmful actions, leading to enhanced damage to the liver. Epidemiological studies have revealed a higher prevalence of hepatitis C virus (HCV) infection among alcoholics than the general population. The interaction of alcohol with viral hepatitis [e.g., hepatitis B virus (HBV), HCV] and the underlying mechanisms are not fully understood. The effects of alcohol on viral hepatitis include promoted viral replication, weakened immune response, and increased oxidative stress. Clinically, alcohol abuse is correlated with an increased risk of developing end-stage liver cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B and C, suggesting that the combination of alcohol and HBV/HCV lead to more severe liver damage. The influence of mild to moderate alcohol drinking on the HBV-induced liver fibrosis, cirrhosis, and hepatocellular carcinoma among patients infected with HBV remains unclear. Unlike HBV infected patients, no safe level of alcohol intake has been established for patients with HCV. Even light to moderate alcohol use can exert a synergistic effect with viral hepatitis, leading to the rapid progression of liver disease. Furthermore, interferon-based therapy is less effective in alcohol drinkers than in control patients, even after abstinence from alcohol for a period of time. Therefore, abstaining from alcohol is highly recommended to protect the liver, especially in individuals with HBV/HCV infection, to improve the clinical efficacy of antiviral treatment and prevent the rapid progression of chronic viral hepatitis.
Collapse
Affiliation(s)
- Hong-Qin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chun-Guang Wang
- Department of Surgery, The Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin Province, China
| | - Qiang Zhou
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Yan-Hang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
38
|
Canonical and Divergent N-Terminal HBx Isoform Proteins Unveiled: Characteristics and Roles during HBV Replication. Biomedicines 2021; 9:biomedicines9111701. [PMID: 34829930 PMCID: PMC8616016 DOI: 10.3390/biomedicines9111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a viral regulatory and multifunctional protein. It is well-known that the canonical HBx reading frame bears two phylogenetically conserved internal in-frame translational initiation codons at Met2 and Met3, thus possibly generating divergent N-terminal smaller isoforms during translation. Here, we demonstrate that the three distinct HBx isoforms are generated from the ectopically expressed HBV HBx gene, named XF (full-length), XM (medium-length), and XS (short-length); they display different subcellular localizations when expressed individually in cultured hepatoma cells. Particularly, the smallest HBx isoform, XS, displayed a predominantly cytoplasmic localization. To study HBx proteins during viral replication, we performed site-directed mutagenesis to target the individual or combinatorial expression of the HBx isoforms within the HBV viral backbone (full viral genome). Our results indicate that of all HBx isoforms, only the smallest HBx isoform, XS, can restore WT levels of HBV replication, and bind to the viral mini chromosome, thereby establishing an active chromatin state, highlighting its crucial activities during HBV replication. Intriguingly, we found that sequences of HBV HBx genotype H are devoid of the conserved Met3 position, and therefore HBV genotype H infection is naturally silent for the expression of the HBx XS isoform. Finally, we found that the HBx XM (medium-length) isoform shares significant sequence similarity with the N-terminus domain of the COMMD8 protein, a member of the copper metabolism MURR1 domain-containing (COMMD) protein family. This novel finding might facilitate studies on the phylogenetic origin of the HBV X protein. The identification and functional characterization of its isoforms will shift the paradigm by changing the concept of HBx from being a unique, canonical, and multifunctional protein toward the occurrence of different HBx isoforms, carrying out different overlapping functions at different subcellular localizations during HBV genome replication. Significantly, our current work unveils new crucial HBV targets to study for potential antiviral research, and human virus pathogenesis.
Collapse
|
39
|
Han J, Kim H, Jeong H, Yoon H, Jang KL. Proteasomal activator 28 gamma stabilizes hepatitis B virus X protein by competitively inhibiting the Siah-1-mediated proteasomal degradation. Biochem Biophys Res Commun 2021; 578:97-103. [PMID: 34555669 DOI: 10.1016/j.bbrc.2021.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Proteasomal activator 28 gamma (PA28γ) upregulates the levels of HBx, a regulatory protein of hepatitis B virus (HBV) to stimulate HBV replication; however, the detailed mechanism remains unknown. Here, we found that PA28γ impaired the ability of seven in absentia homolog 1 (Siah-1) as an E3 ubiquitin ligase of HBx. PA28γ competitively inhibited the binding of Siah-1 to HBx in human hepatoma cells. Accordingly, PA28γ increased the stability of HBx and decreased HBx ubiquitination, abolishing the potential of Siah-1 to downregulate HBx levels. PA28γ also executed its role as an antagonist of Siah-1 during HBV replication, as demonstrated by an in vitro HBV replication system. The present study may provide insights into the mechanisms underlying the regulation of HBV replication.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Haeji Kim
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyerin Jeong
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunyoung Yoon
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea; Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
40
|
Tang Y, Ma T, Jia S, Zhang Q, Liu S, Qi L, Yang L. The Mechanism of Interleukin-35 in Chronic Hepatitis B. Semin Liver Dis 2021; 41:516-524. [PMID: 34233371 DOI: 10.1055/s-0041-1731708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interleukin-35 (IL-35) is a newly identified inhibitory cytokine. It has recently been found to play an extremely important role in chronic hepatitis B disease, which makes it likely to be a target for new therapies for hepatitis B malady. IL-35 modulates a variety of immune mechanisms to cause persistent viral infections, such as affecting the ratio of helper T cells, reducing the activity of cytotoxic T cells, hindering the antigen presentation capacity for dendritic cells, and increasing the transcription level of hepatitis B virus. On the other hand, IL-35 can control the inflammation caused by hepatitis B liver injury. Therefore, to seek a breakthrough in curing hepatitis B disease, the contradictory part of IL-35 in the occurrence and development of this sickness is worthy of further discussion and research. This article will systematically review the biological effects of IL-35 and the specific mechanisms affecting the disease.
Collapse
Affiliation(s)
- Ying Tang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Tianyi Ma
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Shengnan Jia
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Qian Zhang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Siqi Liu
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Ling Qi
- Department of Core Medical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lanlan Yang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
41
|
Novel function of SART1 in HNF4α transcriptional regulation contributes to its antiviral role during HBV infection. J Hepatol 2021; 75:1072-1082. [PMID: 34242702 DOI: 10.1016/j.jhep.2021.06.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Our understanding of the interactions between HBV and its host cells is still quite limited. Spliceosome associated factor 1 (SART1) has recently been found to restrict HCV. Thus, we aimed to dissect its role in HBV infection. METHODS SART1 was knocked down by RNA interference and over-expressed by lentiviral or adeno-associated virus (AAV) vectors in HBV-infected cell cultures and in vivo in HBV-infected mice. Luciferase reporter assays were used to determine viral or host factor promoter activities, and chromatin immunoprecipitation (ChIP) was used to investigate protein-DNA interactions. RESULTS In HBV-infected cell cultures, downregulation of SART1 did not affect covalently closed circular HBV DNA but resulted in markedly enhanced HBV RNA, antigen expression and progeny virus production. On the other hand, HBV transcription and replication were significantly inhibited by overexpression of SART1. Similar results were observed in AAV-HBV-infected mice persistently replicating HBV. Inhibition of Janus kinases had no effect on SART1-mediated inhibition of HBV replication. HBV promoter assays revealed that SART1 reduced HBV core promoter activity. By screening known HBV transcription factors, we found that SART1 specifically suppressed the expression of hepatocyte nuclear factor 4α (HNF4α). Luciferase reporter and ChIP assays demonstrated a direct downregulation of HNF4α expression by association of SART1 with the HNF4α proximal P1 promoter element. CONCLUSIONS We identify SART1 as a novel host factor suppressing HBV cccDNA transcription. Besides its effect on interferon-stimulated genes, SART1 exerts an anti-HBV activity by suppressing HNF4α expression, which is essential for transcription of HBV cccDNA. LAY SUMMARY Hepatitis B virus (HBV) infects hepatocytes and persists in the form of covalently closed circular DNA (cccDNA), which remains a major obstacle to successful antiviral treatment. In this study, using various HBV models, we demonstrate that the protein SART1 restricts HBV cccDNA transcription by suppressing a key transcription factor, HNF4α.
Collapse
|
42
|
Abstract
The hepatitis B virus (HBV) is a member of the Hepadnaviridae family, which includes small DNA enveloped viruses that infect primates, rodents, and birds and is the causative factor of chronic hepatitis B. A common feature of all these viruses is their great specificity by species and cell type, as well as a peculiar genomic and replication organization similar to that of retroviruses. The HBV virion consists of an external lipid envelope and an internal icosahedral protein capsid containing the viral genome and a DNA polymerase, which also functions as a reverse transcriptase.
Collapse
Affiliation(s)
- Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Mauro Viganò
- Hepatology Division, San Giuseppe Hospital Multimedica Spa, Via San Vittore 12, 20123 Milan, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, University of Milan, Via F. Sforza 35, Milan 20122, Italy.
| |
Collapse
|
43
|
Abounouh K, Kayesh MEH, Altawalah H, Kitab B, Murakami S, Ogawa S, Tanaka Y, Dehbi H, Pineau P, Kohara M, Benjelloun S, Tsukiyama-Kohara K, Ezzikouri S. Blocking neddylation elicits antiviral effect against hepatitis B virus replication. Mol Biol Rep 2021; 49:403-412. [PMID: 34716866 DOI: 10.1007/s11033-021-06886-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hepatitis B Virus (HBV) is the most common cause of chronic liver disease worldwide. The mechanisms that regulate HBV viral replication remain poorly defined. Here, we show that blocking of the neddylation elicits antiviral effect against HBV replication, indicating that NEDD8 supports viral production. METHODS AND RESULTS To explore role of neddylation, HBV-replicating HepG2.2.15.7 cells and HBV-infected HepG2-hNTCP-30 cells were treated with siNEDD8 and MLN4924, a potent and selective NEDD8-activating enzyme inhibitor. Cell viability, intracellular and extracellular HBV DNA, covalently closed circular DNA (cccDNA), HBsAg, HBeAg, and HBcrAg were measured to assess the consequences of the various treatments on viral replication. Our data showed that HBV infection increased NEDD8 expression in human liver cell lines. Symmetrically, NEDD8 knockdown by siRNA or MLN4924 treatments decreased HBV replication in HepG2.2.15.7 and HepG2-hNTCP-30 cells. Notably, HBsAg, and HBeAg secretions were strongly suppressed in the culture supernatants, but not the HBcrAg. These results indicate that the suppression of NEDD8 decreases HBV replication. However, cccDNA steady level confirms once again its persistence and longevity in chronic infection. CONCLUSION The manipulation of the neddylation pathway can thus provide new tools interfering with HBV persistence as well as novel therapeutic strategies against chronic hepatitis B.
Collapse
Affiliation(s)
- Karima Abounouh
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.,Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.,Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Safat, Kuwait
| | - Bouchra Kitab
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shuko Murakami
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shintaro Ogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hind Dehbi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.
| |
Collapse
|
44
|
Kong F, Li Q, Zhang F, Li X, You H, Pan X, Zheng K, Tang R. Sirtuins as Potential Therapeutic Targets for Hepatitis B Virus Infection. Front Med (Lausanne) 2021; 8:751516. [PMID: 34708060 PMCID: PMC8542665 DOI: 10.3389/fmed.2021.751516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/15/2021] [Indexed: 01/15/2023] Open
Abstract
Sirtuins (SIRTs) are well-known histone deacetylases that are capable of modulating various cellular processes in numerous diseases, including the infection of hepatitis B virus (HBV), which is one of the primary pathogenic drivers of liver cirrhosis and hepatocellular carcinoma. Mounting evidence reveals that HBV can alter the expression levels of all SIRT proteins. In turn, all SIRTs regulate HBV replication via a cascade of molecular mechanisms. Furthermore, several studies suggest that targeting SIRTs using suitable drugs is a potential treatment strategy for HBV infection. Here, we discuss the molecular mechanisms associated with SIRT-mediated upregulation of viral propagation and the recent advances in SIRT-targeted therapy as potential therapeutic modalities against HBV infection.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- Laboratory Department, The People's Hospital of Funing, Yancheng, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: A Comprehensive Overview. Front Microbiol 2021; 12:724877. [PMID: 34603251 PMCID: PMC8482013 DOI: 10.3389/fmicb.2021.724877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus' biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jolien Vanhove
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium.,Early Discovery Biology, Charles River Laboratories, Beerse, Belgium
| | - Bryan Severyn
- Janssen Research & Development, Janssen Pharmaceutical Companies, Springhouse, PA, United States
| | - Lore Verschueren
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| |
Collapse
|
46
|
Kong F, Zhang F, Liu X, Qin S, Yang X, Kong D, Pan X, You H, Zheng K, Tang R. Calcium signaling in hepatitis B virus infection and its potential as a therapeutic target. Cell Commun Signal 2021; 19:82. [PMID: 34362380 PMCID: PMC8349099 DOI: 10.1186/s12964-021-00762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
As a ubiquitous second messenger, calcium (Ca2+) can interact with numerous cellular proteins to regulate multiple physiological processes and participate in a variety of diseases, including hepatitis B virus (HBV) infection, which is a major cause of hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. In recent years, several studies have demonstrated that depends on the distinct Ca2+ channels on the plasma membrane, endoplasmic reticulum, as well as mitochondria, HBV can elevate cytosolic Ca2+ levels. Moreover, within HBV-infected cells, the activation of intracellular Ca2+ signaling contributes to viral replication via multiple molecular mechanisms. Besides, the available evidence indicates that targeting Ca2+ signaling by suitable pharmaceuticals is a potent approach for the treatment of HBV infection. In the present review, we summarized the molecular mechanisms related to the elevation of Ca2+ signaling induced by HBV to modulate viral propagation and the recent advances in Ca2+ signaling as a potential therapeutic target for HBV infection. Video Abstract.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu China
| |
Collapse
|
47
|
Ligat G, Verrier ER, Nassal M, Baumert TF. Hepatitis B virus-host interactions and novel targets for viral cure. Curr Opin Virol 2021; 49:41-51. [PMID: 34029994 PMCID: PMC7613419 DOI: 10.1016/j.coviro.2021.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Chronic infection with HBV is a major cause of advanced liver disease and hepatocellular carcinoma. Nucleos(t)ide analogues effectively control HBV replication but viral cure is rare. Hence treatment has often to be administered for an indefinite duration, increasing the risk for selection of drug resistant virus variants. PEG-interferon-α-based therapies can sometimes cure infection but suffer from a low response rate and severe side-effects. CHB is characterized by the persistence of a nuclear covalently closed circular DNA (cccDNA), which is not targeted by approved drugs. Targeting host factors which contribute to the viral life cycle provides new opportunities for the development of innovative therapeutic strategies aiming at HBV cure. An improved understanding of the host immune system has resulted in new potentially curative candidate approaches. Here, we review the recent advances in understanding HBV-host interactions and highlight how this knowledge contributes to exploiting host-targeting strategies for a viral cure.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France.
| | - Eloi R Verrier
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France.
| | - Michael Nassal
- University Hospital Freiburg, Dept. of Internal Medicine 2/Molecular Biology, D79106 Freiburg, Germany.
| | - Thomas F Baumert
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.
| |
Collapse
|
48
|
Qu B, Brown RJP. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 2021; 13:v13071327. [PMID: 34372533 PMCID: PMC8310268 DOI: 10.3390/v13071327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| |
Collapse
|
49
|
Singh P, Kairuz D, Arbuthnot P, Bloom K. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J Gastroenterol 2021; 27:3182-3207. [PMID: 34163105 PMCID: PMC8218364 DOI: 10.3748/wjg.v27.i23.3182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Global prophylactic vaccination programmes have helped to curb new hepatitis B virus (HBV) infections. However, it is estimated that nearly 300 million people are chronically infected and have a high risk of developing hepatocellular carcinoma. As such, HBV remains a serious health priority and the development of novel curative therapeutics is urgently needed. Chronic HBV infection has been attributed to the persistence of the covalently closed circular DNA (cccDNA) which establishes itself as a minichromosome in the nucleus of hepatocytes. As the viral transcription intermediate, the cccDNA is responsible for producing new virions and perpetuating infection. HBV is dependent on various host factors for cccDNA formation and the minichromosome is amenable to epigenetic modifications. Two HBV proteins, X (HBx) and core (HBc) promote viral replication by modulating the cccDNA epigenome and regulating host cell responses. This includes viral and host gene expression, chromatin remodeling, DNA methylation, the antiviral immune response, apoptosis, and ubiquitination. Elimination of the cccDNA minichromosome would result in a sterilizing cure; however, this may be difficult to achieve. Epigenetic therapies could permanently silence the cccDNA minichromosome and promote a functional cure. This review explores the cccDNA epigenome, how host and viral factors influence transcription, and the recent epigenetic therapies and epigenome engineering approaches that have been described.
Collapse
Affiliation(s)
- Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Dylan Kairuz
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| |
Collapse
|
50
|
Prifti GM, Moianos D, Giannakopoulou E, Pardali V, Tavis JE, Zoidis G. Recent Advances in Hepatitis B Treatment. Pharmaceuticals (Basel) 2021; 14:417. [PMID: 34062711 PMCID: PMC8147224 DOI: 10.3390/ph14050417] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatitis B virus infection affects over 250 million chronic carriers, causing more than 800,000 deaths annually, although a safe and effective vaccine is available. Currently used antiviral agents, pegylated interferon and nucleos(t)ide analogues, have major drawbacks and fail to completely eradicate the virus from infected cells. Thus, achieving a "functional cure" of the infection remains a real challenge. Recent findings concerning the viral replication cycle have led to development of novel therapeutic approaches including viral entry inhibitors, epigenetic control of cccDNA, immune modulators, RNA interference techniques, ribonuclease H inhibitors, and capsid assembly modulators. Promising preclinical results have been obtained, and the leading molecules under development have entered clinical evaluation. This review summarizes the key steps of the HBV life cycle, examines the currently approved anti-HBV drugs, and analyzes novel HBV treatment regimens.
Collapse
Affiliation(s)
- Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Erofili Giannakopoulou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Vasiliki Pardali
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - John E. Tavis
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| |
Collapse
|