1
|
Venney CJ, Mérot C, Normandeau E, Rougeux C, Laporte M, Bernatchez L. Epigenetic and Genetic Differentiation Between Coregonus Species Pairs. Genome Biol Evol 2024; 16:evae013. [PMID: 38271269 PMCID: PMC10849188 DOI: 10.1093/gbe/evae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Phenotypic diversification is classically associated with genetic differentiation and gene expression variation. However, increasing evidence suggests that DNA methylation is involved in evolutionary processes due to its phenotypic and transcriptional effects. Methylation can increase mutagenesis and could lead to increased genetic divergence between populations experiencing different environmental conditions for many generations, though there has been minimal empirical research on epigenetically induced mutagenesis in diversification and speciation. Whitefish, freshwater members of the salmonid family, are excellent systems to study phenotypic diversification and speciation due to the repeated divergence of benthic-limnetic species pairs serving as natural replicates. Here we investigate whole genome genetic and epigenetic differentiation between sympatric benthic-limnetic species pairs in lake and European whitefish (Coregonus clupeaformis and Coregonus lavaretus) from four lakes (N = 64). We found considerable, albeit variable, genetic and epigenetic differences between species pairs. All SNP types were enriched at CpG sites supporting the mutagenic nature of DNA methylation, though C>T SNPs were most common. We also found an enrichment of overlaps between outlier SNPs with the 5% highest FST between species and differentially methylated loci. This could possibly represent differentially methylated sites that have caused divergent genetic mutations between species, or divergent selection leading to both genetic and epigenetic variation at these sites. Our results support the hypothesis that DNA methylation contributes to phenotypic divergence and mutagenesis during whitefish speciation.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Clément Rougeux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs (MFFP), Québec, Québec, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
2
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
3
|
Bernal MA, Yule DL, Stott W, Evrard L, Dowling TE, Krabbenhoft TJ. Concordant patterns of morphological, stable isotope, and genetic variation in a recent ecological radiation (Salmonidae: Coregonus spp.). Mol Ecol 2022; 31:4495-4509. [PMID: 35785504 DOI: 10.1111/mec.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Groups of sympatric taxa with low inter-specific genetic differentiation, but considerable ecological differences, offer great opportunities to study the dynamics of divergence and speciation. This is the case of ciscoes (Coregonus spp.) in the Laurentian Great Lakes, which are characterized by a complex evolutionary history and are commonly described as having undergone an adaptive radiation. In this study, morphometrics, stable isotopes and transcriptome sequencing were used to study the relationships within the Coregonus artedi complex in western Lake Superior. We observed general concordance for morphological, ecological and genomic variation, but the latter was more taxonomically informative as it showed less overlap among species in multivariate space. Low levels of genetic differentiation were observed between individuals morphologically identified as C. hoyi and C. zenithicus, which could be evidence of incomplete lineage sorting or recent hybridization between the two groups. Transcriptome-based single nucleotide polymorphisms exhibited significant divergence for genes associated with vision, development, metabolism and immunity among species that occupy different habitats. This study highlights the importance of using an integrative approach when studying groups of taxa with a complex evolutionary history, as individual-level analyses of multiple independent datasets can provide a clearer picture of the patterns and processes associated with the origins of biodiversity.
Collapse
Affiliation(s)
- Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, Alabama 36849, United States of America.,Department of Biological Sciences and RENEW Institute, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Daniel L Yule
- U.S. Geological Survey, Great Lakes Science Center - Lake Superior Biological Station, 2800 Lake Shore Drive E., Ashland, WI 54806, United States of America
| | - Wendylee Stott
- Michigan State University CESU working for U.S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105-2807, United States of America
| | - Lori Evrard
- U.S. Geological Survey, Great Lakes Science Center - Lake Superior Biological Station, 2800 Lake Shore Drive E., Ashland, WI 54806, United States of America
| | - Thomas E Dowling
- Wayne State University, Department of Biological Sciences, Detroit, Michigan, 48202, United States of America
| | - Trevor J Krabbenhoft
- Department of Biological Sciences and RENEW Institute, University at Buffalo, Buffalo, NY 14260, United States of America
| |
Collapse
|
4
|
Salisbury SJ, Ruzzante DE. Genetic Causes and Consequences of Sympatric Morph Divergence in Salmonidae: A Search for Mechanisms. Annu Rev Anim Biosci 2021; 10:81-106. [PMID: 34758272 DOI: 10.1146/annurev-animal-051021-080709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeatedly and recently evolved sympatric morphs exhibiting consistent phenotypic differences provide natural experimental replicates of speciation. Because such morphs are observed frequently in Salmonidae, this clade provides a rare opportunity to uncover the genomic mechanisms underpinning speciation. Such insight is also critical for conserving salmonid diversity, the loss of which could have significant ecological and economic consequences. Our review suggests that genetic differentiation among sympatric morphs is largely nonparallel apart from a few key genes that may be critical for consistently driving morph differentiation. We discuss alternative levels of parallelism likely underlying consistent morph differentiation and identify several factors that may temper this incipient speciation between sympatric morphs, including glacial history and contemporary selective pressures. Our synthesis demonstrates that salmonids are useful for studying speciation and poses additional research questions to be answered by future study of this family. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S J Salisbury
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada; ,
| | - D E Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada; ,
| |
Collapse
|
5
|
Scott GR, Dalziel AC. Physiological insight into the evolution of complex phenotypes: aerobic performance and the O2 transport pathway of vertebrates. J Exp Biol 2021; 224:271829. [PMID: 34387318 DOI: 10.1242/jeb.210849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Evolutionary physiology strives to understand how the function and integration of physiological systems influence the way in which organisms evolve. Studies of the O2 transport pathway - the integrated physiological system that transports O2 from the environment to mitochondria - are well suited to this endeavour. We consider the mechanistic underpinnings across the O2 pathway for the evolution of aerobic capacity, focusing on studies of artificial selection and naturally selected divergence among wild populations of mammals and fish. We show that evolved changes in aerobic capacity do not require concerted changes across the O2 pathway and can arise quickly from changes in one or a subset of pathway steps. Population divergence in aerobic capacity can be associated with the evolution of plasticity in response to environmental variation or activity. In some cases, initial evolutionary divergence of aerobic capacity arose exclusively from increased capacities for O2 diffusion and/or utilization in active O2-consuming tissues (muscle), which may often constitute first steps in adaptation. However, continued selection leading to greater divergence in aerobic capacity is often associated with increased capacities for circulatory and pulmonary O2 transport. Increases in tissue O2 diffusing capacity may augment the adaptive benefit of increasing circulatory O2 transport owing to their interactive influence on tissue O2 extraction. Theoretical modelling of the O2 pathway suggests that O2 pathway steps with a disproportionately large influence over aerobic capacity have been more likely to evolve, but more work is needed to appreciate the extent to which such physiological principles can predict evolutionary outcomes.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Anne C Dalziel
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
6
|
Huang Y, Lack JB, Hoppel GT, Pool JE. Parallel and Population-specific Gene Regulatory Evolution in Cold-Adapted Fly Populations. Genetics 2021; 218:6275754. [PMID: 33989401 PMCID: PMC8864734 DOI: 10.1093/genetics/iyab077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differentiation in gene expression levels and alternative splicing (intron usage) between three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evidence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also implement a flexible method to estimate cis- vs trans-encoded contributions to expression or splicing differences at the adult stage. The apparent contributions of cis- vs trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of elevated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation. These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and widespread process.
Collapse
Affiliation(s)
- Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Grant T Hoppel
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
7
|
Rajkov J, El Taher A, Böhne A, Salzburger W, Egger B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol Ecol 2020; 30:274-296. [PMID: 33107988 DOI: 10.1111/mec.15709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild-caught individuals. Here, we investigated the contribution of habitat-specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake-river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake-like pond set-up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set-up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set-up were based on a plastic response. Finally, gene expression and bacterial communities of wild-caught individuals and individuals acclimatized to lake-like pond conditions showed shifts underlying adaptive phenotypic plasticity.
Collapse
Affiliation(s)
- Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Athimed El Taher
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Chen J, Liang L, Li Y, Zhang H. Molecular Response to High Hydrostatic Pressure: Time-Series Transcriptomic Analysis of Shallow-Water Sea Cucumber Apostichopus japonicus. Front Genet 2020; 11:355. [PMID: 32425972 PMCID: PMC7203883 DOI: 10.3389/fgene.2020.00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Hydrostatic pressure is a key environmental factor constraining the benthic migration of shallow-water invertebrates. Although many studies have examined the physiological effects of high hydrostatic pressure on shallow-water invertebrates, the molecular response to high pressure is not fully understood. This question has received increasing attention because ocean warming is forcing the bathymetric migrations of shallow-water invertebrates. Here, we applied time-series transcriptomic analysis to high-pressure incubated and atmospheric pressure-recovered shallow-water sea cucumber (Apostichopus japonicus) to address this question. A total of 44 samples from 15 experimental groups were sequenced. Our results showed that most genes responded to pressure stress at the beginning when pressure was changed, but significant differences of gene expression appeared after 4 to 6 h. Transcription was the most sensitive biological process responding to high-pressure exposure, which was enriched among up-regulated genes after 2 h, followed by ubiquitination (4 h), endocytosis (6 h), stress response (6 h), methylation regulation (24 h), and transmembrane transportation (24 h). After high-pressure incubation, all these biological processes remained up-regulated within 4–6 h at atmospheric pressure. Overall, our results revealed the dynamic transcriptional response of A. japonicus to high-pressure exposure. Additionally, few quantitative or functional responses related to A. japonicus on transcriptional level were introduced by hydrostatic pressure changes after 1 h, and main biological responses were introduced after 4 h, suggesting that, when hydrostatic pressure is the mainly changed environmental factor, it will be better to fix sea cucumber samples for transcriptomic analysis within 1 h, but 4 h will be also acceptable.
Collapse
Affiliation(s)
- Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linying Liang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
9
|
Gaither MR, Greaves S, Amirthalingam P. The physiology of rapid ecological specialization: A look at the Midas cichlids. Mol Ecol 2020; 29:1215-1218. [PMID: 32155299 DOI: 10.1111/mec.15408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Understanding the process of speciation is a primary goal of evolutionary biology, yet the question of whether speciation can reach completion in the presence of gene flow remains controversial. For more than 50 years, the cichlids of Africa, and more recently those in South and Central America, have served as model systems for the study of speciation in nature. Cichlids are distinguished by their enormous species richness, their diversity of behavioural and trophic adaptations, and their rapid rate of divergence. In both Africa and South and Central America, the repeated interaction of geology, new founder events and adaptive evolution has created a series of natural experiments with speciation occurring both within and between waterbodies of differing ages. In the "From the Cover" paper in this issue of the Journal of Molecular Ecology, Raffini, Schneider, Franchini, Kautt and Meyer move beyond the question of which mechanisms drive speciation, and instead show that divergent morphologies and physiologies translate into adaptive traits. They investigate differences in physiology and gene expression profiles in a benthic/limnetic species pair of Midas cichlidsin a 24,000-year-old Nicaraguan crater lake. While recently diverged, these two species demonstrate significant ecological, but limited genetic differentiation. The authors find that the distinct morphotypes translate into relevant differences in swimming performance and metabolic rates that correspond to differential gene expression profiles. Hence, the authors take an integrative approach examining the impacts of morphological differences on performance and niche partitioning: an approach that can advance our understanding of the drivers of morphological and physiological divergence during speciation.
Collapse
Affiliation(s)
- Michelle R Gaither
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Samuel Greaves
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Pavithiran Amirthalingam
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Huang Y, Feulner PGD, Eizaguirre C, Lenz TL, Bornberg-Bauer E, Milinski M, Reusch TBH, Chain FJJ. Genome-Wide Genotype-Expression Relationships Reveal Both Copy Number and Single Nucleotide Differentiation Contribute to Differential Gene Expression between Stickleback Ecotypes. Genome Biol Evol 2020; 11:2344-2359. [PMID: 31298693 PMCID: PMC6735750 DOI: 10.1093/gbe/evz148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Repeated and independent emergence of trait divergence that matches habitat differences is a sign of parallel evolution by natural selection. Yet, the molecular underpinnings that are targeted by adaptive evolution often remain elusive. We investigate this question by combining genome-wide analyses of copy number variants (CNVs), single nucleotide polymorphisms (SNPs), and gene expression across four pairs of lake and river populations of the three-spined stickleback (Gasterosteus aculeatus). We tested whether CNVs that span entire genes and SNPs occurring in putative cis-regulatory regions contribute to gene expression differences between sticklebacks from lake and river origins. We found 135 gene CNVs that showed a significant positive association between gene copy number and gene expression, suggesting that CNVs result in dosage effects that can fuel phenotypic variation and serve as substrates for habitat-specific selection. Copy number differentiation between lake and river sticklebacks also contributed to expression differences of two immune-related genes in immune tissues, cathepsin A and GIMAP7. In addition, we identified SNPs in cis-regulatory regions (eSNPs) associated with the expression of 1,865 genes, including one eSNP upstream of a carboxypeptidase gene where both the SNP alleles differentiated and the gene was differentially expressed between lake and river populations. Our study highlights two types of mutations as important sources of genetic variation involved in the evolution of gene expression and in potentially facilitating repeated adaptation to novel environments.
Collapse
Affiliation(s)
- Yun Huang
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, USA
| |
Collapse
|
11
|
Teterina V, Sukhanova L, Smirnov V, Smirnova N, Kirilchik S, Sapozhnikova Y, Glizina O, Yakhnenko V, Tyagun M, Sidorova T. Complete mitochondrial genomes of Baikal endemic coregonids: omul and lacustrine whitefish (Salmonidae: Coregonussp.). Mitochondrial DNA B Resour 2020; 5:414-416. [PMID: 33366582 PMCID: PMC7748752 DOI: 10.1080/23802359.2019.1703565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coregonid fishes are among the most successful groups in the subarctic, boreal, and subalpine fresh waters of the northern hemisphere. Limnetic–benthic sympatric species-pairs from two different evolutionary lineages, the North American lake whitefish (Coregonus clupeaformis species complex), and the European whitefish (Coregonus lavaretus species complex), are becoming the subject of close attention to explore the role of natural selection during the ecological speciation. Baikal endemic coregonids, limnetic omul (Coregonus migratorius), and benthic lacustrine whitefish (Coregonus baicalensis) are the only representatives of another unique lineage that has not left the lake since the divergence from the two above. Due to Pleistocene oscillations sympatric limnetic–benthic divergence has been replicated here many times within the same water body over a long geological period in contrast to both Europe and America where sympatric species-pairs are the results of post-glacial secondary-contacts between glacial isolates during the Late Pleistocene on the territory of each continent. Mitochondrial genomes encode genes that are essential for respiration and metabolism. Data on complete mitogenomes of Baikal endemic coregonids provided here will complement ongoing investigations on energy metabolism as the main biological function involved in the divergence between limnetic and benthic whitefish.
Collapse
Affiliation(s)
- Veronika Teterina
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Lyubov Sukhanova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Vasiliy Smirnov
- Baikal Museum of Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Listvyanka, Russia
| | - Natalya Smirnova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Sergei Kirilchik
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Yulia Sapozhnikova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Olga Glizina
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Vera Yakhnenko
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Marina Tyagun
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Tuyana Sidorova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
12
|
Sylvain F, Holland A, Audet‐Gilbert É, Luis Val A, Derome N. Amazon fish bacterial communities show structural convergence along widespread hydrochemical gradients. Mol Ecol 2019; 28:3612-3626. [DOI: 10.1111/mec.15184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | - Aleicia Holland
- Department of Ecology, Environment and Evolution School of Life Science La Trobe University Bundoora Vic. Australia
| | - Émie Audet‐Gilbert
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec City QC Canada
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular Instituto Nacional de Pesquisas da Amazônia (INPA) Manaus Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec City QC Canada
| |
Collapse
|
13
|
Nash W, Mohorianu I, Chapman T. Mate choice and gene expression signatures associated with nutritional adaptation in the medfly (Ceratitis capitata). Sci Rep 2019; 9:6704. [PMID: 31040302 PMCID: PMC6491435 DOI: 10.1038/s41598-019-42610-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/25/2019] [Indexed: 11/09/2022] Open
Abstract
Evolutionary responses to nutrition are key to understanding host shifts and the resulting potential for reproductive isolation. Experimental evolution has previously been used to describe the responses of the medfly (Ceratitis capitata) to larval diets with different nutritional properties. Within 30 generations this led to divergence in larval development time, egg to adult survival and adaptation in adult body size. Here we used mRNA-seq to identify differences in gene expression patterns in these same populations, using males from the 60th generation of nutritional selection. We validated differential expression by using qRT-PCR and found that genes linked to metabolism, oxidative phosphorylation and proteolysis were significantly over-represented among the differentially expressed genes. The results provide the first genome-wide survey of the putative mechanisms underpinning evolved responses to nutritional adaptation. In addition, we tested the hypothesis that nutritional adaptation can alter mating patterns. We found evidence for assortative mating by diet at generation 60, but not 90. Hence, the pattern was variable across generations and there was no evidence overall for any isolating mating divergence between the lines. Overall, the results provide insight into the mechanisms underpinning dietary adaptation and extend our knowledge of which traits represent core responses to nutritional selection.
Collapse
Affiliation(s)
- Will Nash
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK. .,School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
14
|
Kitano J, Ishikawa A, Kusakabe M. Parallel transcriptome evolution in stream threespine sticklebacks. Dev Growth Differ 2018; 61:104-113. [DOI: 10.1111/dgd.12576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jun Kitano
- Division of Ecological Genetics; National Institute of Genetics; Mishima, Shizuoka Japan
| | - Asano Ishikawa
- Division of Ecological Genetics; National Institute of Genetics; Mishima, Shizuoka Japan
| | - Makoto Kusakabe
- Department of Biological Science; Faculty of Science; Shizuoka University; Surugaku, Shizuoka Japan
| |
Collapse
|
15
|
Mandic M, Ramon ML, Gerstein AC, Gracey AY, Richards JG. Variable gene transcription underlies phenotypic convergence of hypoxia tolerance in sculpins. BMC Evol Biol 2018; 18:163. [PMID: 30390629 PMCID: PMC6215679 DOI: 10.1186/s12862-018-1275-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/18/2018] [Indexed: 01/03/2023] Open
Abstract
Background The degree by which mechanisms underlying phenotypic convergence are similar among taxa depends on the number of evolutionary paths available for selection to act upon. Likelihood of convergence will be influenced by an interplay of factors such as genetic architecture, phylogenetic history and population demography. To determine if there is convergence or divergence in mechanisms underlying phenotypic similarity, we assessed whether gene transcription patterns differed among species with similar levels of hypoxia tolerance. Results Three species of marine fish from the superfamily Cottoidea (smoothhead sculpin [Artedius lateralis], sailfin sculpin [Nautichthys oculofasciatus] and Pacific staghorn sculpin [Leptocottus armatus]), all of which have previously been shown to share the same level of hypoxia tolerance, were exposed to short-(8 h) and longer-term (72 h) hypoxia and mRNA transcripts were assessed using a custom microarray. We examined hypoxia-induced transcription patterns in metabolic and protein production pathways and found that a high proportion of genes associated with these biological processes showed significant differences among the species. Specifically, the data suggest that the smoothhead sculpin, unlike the sailfin sculpin and the Pacific staghorn sculpin, relied on amino acid degradation rather than glycolysis or fatty acid oxidation to generate ATP during hypoxia exposure. There was also variation across the species in the transcription of genes involved in protein production (e.g. mRNA processing and protein translation), such that it increased in the smoothhead sculpin, decreased in the sailfin sculpin and was variable in the Pacific staghorn sculpin. Conclusions Changes in metabolic and protein production pathways are part of the key responses of fishes to exposures to environmental hypoxia. Yet, species with similar overall hypoxia tolerance exhibited different transcriptional responses in these pathways, indicating flexibility and complexity of interactions in the evolution of the mechanisms underlying the hypoxia tolerance phenotype. The variation in the hypoxia-induced transcription of genes across species with similar hypoxia tolerance suggests that similar whole-animal phenotypes can emerge from divergent evolutionary paths that may affect metabolically important functions. Electronic supplementary material The online version of this article (10.1186/s12862-018-1275-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada. .,Bamfield Marine Sciences Centre, 100 Pachena Dr, Bamfield, BC, V0R 1B0, Canada.
| | - Marina L Ramon
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA
| | - Aleeza C Gerstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street, Minneapolis, MN, 55455, USA
| | - Andrew Y Gracey
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA
| | - Jeffrey G Richards
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Bamfield Marine Sciences Centre, 100 Pachena Dr, Bamfield, BC, V0R 1B0, Canada
| |
Collapse
|
16
|
Bolnick DI, Barrett RD, Oke KB, Rennison DJ, Stuart YE. (Non)Parallel Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062240] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parallel evolution across replicate populations has provided evolutionary biologists with iconic examples of adaptation. When multiple populations colonize seemingly similar habitats, they may evolve similar genes, traits, or functions. Yet, replicated evolution in nature or in the laboratory often yields inconsistent outcomes: Some replicate populations evolve along highly similar trajectories, whereas other replicate populations evolve to different extents or in distinct directions. To understand these heterogeneous outcomes, biologists are increasingly treating parallel evolution not as a binary phenomenon but rather as a quantitative continuum ranging from parallel to nonparallel. By measuring replicate populations’ positions along this (non)parallel continuum, we can test hypotheses about evolutionary and ecological factors that influence the extent of repeatable evolution. We review evidence regarding the manifestation of (non)parallel evolution in the laboratory, in natural populations, and in applied contexts such as cancer. We enumerate the many genetic, ecological, and evolutionary processes that contribute to variation in the extent of parallel evolution.
Collapse
Affiliation(s)
- Daniel I. Bolnick
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
- Current affiliation: Department of Ecology and Evolution, University of Connecticut, Storrs, Connecticut 06268, USA
| | | | - Krista B. Oke
- Redpath Museum, McGill University, Montreal, Quebec H3A 2K6, Canada
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060, USA
| | - Diana J. Rennison
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Yoel E. Stuart
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
17
|
Rivas MJ, Saura M, Pérez-Figueroa A, Panova M, Johansson T, André C, Caballero A, Rolán-Alvarez E, Johannesson K, Quesada H. Population genomics of parallel evolution in gene expression and gene sequence during ecological adaptation. Sci Rep 2018; 8:16147. [PMID: 30385764 PMCID: PMC6212547 DOI: 10.1038/s41598-018-33897-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
Natural selection often produces parallel phenotypic changes in response to a similar adaptive challenge. However, the extent to which parallel gene expression differences and genomic divergence underlie parallel phenotypic traits and whether they are decoupled or not remains largely unexplored. We performed a population genomic study of parallel ecological adaptation among replicate ecotype pairs of the rough periwinkle (Littorina saxatilis) at a regional geographical scale (NW Spain). We show that genomic changes underlying parallel phenotypic divergence followed a complex pattern of both repeatable differences and of differences unique to specific ecotype pairs, in which parallel changes in expression or sequence are restricted to a limited set of genes. Yet, the majority of divergent genes were divergent either for gene expression or coding sequence, but not for both simultaneously. Overall, our findings suggest that divergent selection significantly contributed to the process of parallel molecular differentiation among ecotype pairs, and that changes in expression and gene sequence underlying phenotypic divergence could, at least to a certain extent, be considered decoupled processes.
Collapse
Affiliation(s)
- María José Rivas
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - María Saura
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - Marina Panova
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Tomas Johansson
- Department of Biology, University of Lund, SE-223 62, Lund, Sweden
| | - Carl André
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Armando Caballero
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - Emilio Rolán-Alvarez
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Humberto Quesada
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain.
| |
Collapse
|
18
|
Lavoie C, Courcelle M, Redivo B, Derome N. Structural and compositional mismatch between captive and wild Atlantic salmon ( Salmo salar) parrs' gut microbiota highlights the relevance of integrating molecular ecology for management and conservation methods. Evol Appl 2018; 11:1671-1685. [PMID: 30344635 PMCID: PMC6183451 DOI: 10.1111/eva.12658] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
Stocking methods are used in the Province of Quebec to restore Salmo salar populations. However, Atlantic salmon stocked juveniles show higher mortality rates than wild ones when introduced into nature. Hatchery environment, which greatly differs from the natural environment, is identified as the main driver of the phenotypic mismatch between captive and wild parrs. The latter is also suspected to impact the gut microbiota composition, which can be associated with essential metabolic functions for their host. We hypothesized that hatchery-raised parrs potentially recruit gut microbial communities that are different from those recruited in the wild. This study evaluated the impacts of artificial rearing on gut microbiota composition in 0+ parrs meant for stocking in two distinct Canadian rivers: Rimouski and Malbaie (Quebec, Canada). Striking differences between hatchery and wild-born parrs' gut microbiota suggest that microbiota could be another factor that could impact their survival in the targeted river, because the microbiome is narrowly related to host physiology. For instance, major commensals belonging to Enterobacteriaceae and Clostridiacea from wild parrs' gut microbiota were substituted in captive parrs by lactic acid bacteria from the Lactobacillaceae family. Overall, captive parrs host a generalist bacterial community whereas wild parrs' microbiota is much more specialized. This is the very first study demonstrating extensive impact of captive rearing on intestinal microbiota composition in Atlantic salmon intended for wild population stocking. Our results strongly suggest the need to implement microbial ecology concepts into conservation management of endangered salmon stocks supplemented with hatchery-reared parrs.
Collapse
Affiliation(s)
- Camille Lavoie
- Biology DepartmentLaval UniversityQuebecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Laval UniversityQuebecQCCanada
| | - Maxime Courcelle
- Institut des Sciences de l’Évolution (ISEM)Montpellier UniversityMontpellierFrance
| | | | - Nicolas Derome
- Biology DepartmentLaval UniversityQuebecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Laval UniversityQuebecQCCanada
| |
Collapse
|
19
|
Dalziel AC, Laporte M, Guderley H, Bernatchez L. Do differences in the activities of carbohydrate metabolism enzymes between Lake Whitefish ecotypes match predictions from transcriptomic studies? Comp Biochem Physiol B Biochem Mol Biol 2018; 224:138-149. [DOI: 10.1016/j.cbpb.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
|
20
|
Velando A, Costa MM, Kim SY. Sex-specific phenotypes and metabolism-related gene expression in juvenile sticklebacks. Behav Ecol 2017. [DOI: 10.1093/beheco/arx129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alberto Velando
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| | - María M Costa
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| | - Sin-Yeon Kim
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
21
|
Yan J, Song Z, Xu Q, Kang L, Zhu C, Xing S, Liu W, Greimler J, Züst T, Li J, Sang T. Population transcriptomic characterization of the genetic and expression variation of a candidate progenitor of Miscanthus energy crops. Mol Ecol 2017; 26:5911-5922. [PMID: 28833782 DOI: 10.1111/mec.14338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
The use of transcriptome data in the study of the population genetics of a species can capture faint signals of both genetic variation and expression variation and can provide a broad picture of a species' genomic response to environmental conditions. In this study, we characterized the genetic and expression diversity of Miscanthus lutarioriparius by comparing more than 16,225 transcripts obtained from 78 individuals, belonging to 10 populations distributed across the species' entire geographic range. We only observed a low level of nucleotide diversity (π = 0.000434) among the transcriptome data of these populations, which is consistent with highly conserved sequences of functional elements and protein-coding genes captured with this method. Tests of population divergence using the transcriptome data were consistent with previous microsatellite data but proved to be more sensitive, particularly if gene expression variation was considered as well. For example, the analysis of expression data showed that genes involved in photosynthetic processes and responses to temperature or reactive oxygen species stimuli were significantly enriched in certain populations. This differential gene expression was primarily observed among populations and not within populations. Interestingly, nucleotide diversity was significantly negatively correlated with expression diversity within populations, while this correlation was positive among populations. This suggests that genetic and expression variation play separate roles in adaptation and population persistence. Combining analyses of genetic and gene expression variation represents a promising approach for studying the population genetics of wild species and may uncover both adaptive and nonadaptive processes.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qin Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lifang Kang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Caiyun Zhu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shilai Xing
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Josef Greimler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Tobias Züst
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jianqiang Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Tao Sang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Hanson D, Hu J, Hendry AP, Barrett RDH. Heritable gene expression differences between lake and stream stickleback include both parallel and antiparallel components. Heredity (Edinb) 2017; 119:339-348. [PMID: 28832577 PMCID: PMC5637370 DOI: 10.1038/hdy.2017.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
The repeated phenotypic patterns that characterize populations undergoing parallel evolution provide support for a deterministic role of adaptation by natural selection. Determining the level of parallelism also at the genetic level is thus central to our understanding of how natural selection works. Many studies have looked for repeated genomic patterns in natural populations, but work on gene expression is less common. The studies that have examined gene expression have found some support for parallelism, but those studies almost always used samples collected from the wild that potentially confounds the effects of plasticity with heritable differences. Here we use two independent pairs of lake and stream threespine stickleback (Gasterosteus aculeatus) raised in common garden conditions to assess both parallel and antiparallel (that is, similar versus different directions of lake–stream expression divergence in the two watersheds) heritable gene expression differences as measured by total RNA sequencing. We find that more genes than expected by chance show either parallel (22 genes, 0.18% of expressed genes) or antiparallel (24 genes, 0.20% of expressed genes) lake–stream expression differences. These results correspond well with previous genomic studies in stickleback ecotype pairs that found similar levels of parallelism. We suggest that parallelism might be similarly constrained at the genomic and transcriptomic levels.
Collapse
Affiliation(s)
- D Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - A P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
de la Harpe M, Paris M, Karger DN, Rolland J, Kessler M, Salamin N, Lexer C. Molecular ecology studies of species radiations: current research gaps, opportunities and challenges. Mol Ecol 2017; 26:2608-2622. [PMID: 28316112 DOI: 10.1111/mec.14110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/11/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Understanding the drivers and limits of species radiations is a crucial goal of evolutionary genetics and molecular ecology, yet research on this topic has been hampered by the notorious difficulty of connecting micro- and macroevolutionary approaches to studying the drivers of diversification. To chart the current research gaps, opportunities and challenges of molecular ecology approaches to studying radiations, we examine the literature in the journal Molecular Ecology and revisit recent high-profile examples of evolutionary genomic research on radiations. We find that available studies of radiations are highly unevenly distributed among taxa, with many ecologically important and species-rich organismal groups remaining severely understudied, including arthropods, plants and fungi. Most studies employed molecular methods suitable over either short or long evolutionary time scales, such as microsatellites or restriction site-associated DNA sequencing (RAD-seq) in the former case and conventional amplicon sequencing of organellar DNA in the latter. The potential of molecular ecology studies to address and resolve patterns and processes around the species level in radiating groups of taxa is currently limited primarily by sample size and a dearth of information on radiating nuclear genomes as opposed to organellar ones. Based on our literature survey and personal experience, we suggest possible ways forward in the coming years. We touch on the potential and current limitations of whole-genome sequencing (WGS) in studies of radiations. We suggest that WGS and targeted ('capture') resequencing emerge as the methods of choice for scaling up the sampling of populations, species and genomes, including currently understudied organismal groups and the genes or regulatory elements expected to matter most to species radiations.
Collapse
Affiliation(s)
- Marylaure de la Harpe
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, A-1030, Austria
| | - Margot Paris
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
| | - Dirk N Karger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zürich, CH-8008, Switzerland
| | - Jonathan Rolland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne, CH-1015, Switzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zürich, CH-8008, Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne, CH-1015, Switzerland
| | - Christian Lexer
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, A-1030, Austria
| |
Collapse
|
24
|
Dattolo E, Marín-Guirao L, Ruiz JM, Procaccini G. Long-term acclimation to reciprocal light conditions suggests depth-related selection in the marine foundation species Posidonia oceanica. Ecol Evol 2017; 7:1148-1164. [PMID: 28303185 PMCID: PMC5306012 DOI: 10.1002/ece3.2731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/24/2016] [Accepted: 12/18/2016] [Indexed: 01/09/2023] Open
Abstract
Phenotypic differences among populations of the same species reflect selective responses to ecological gradients produced by variations in abiotic and biotic factors. Moreover, they can also originate from genetic differences among populations, due to a reduced gene flow. In this study, we examined the extent of differences in photo‐acclimative traits of Posidonia oceanica (L.) Delile clones collected above and below the summer thermocline (i.e., −5 and −25 m) in a continuous population extending along the water depth gradient. During a reciprocal light exposure and subsequent recovery in mesocosms, we assessed degree of phenotypic plasticity and local adaptation of plants collected at different depths, by measuring changes in several traits, such as gene expression of target genes, photo‐physiological features, and other fitness‐related traits (i.e., plant morphology, growth, and mortality rates). Samples were also genotyped, using microsatellite markers, in order to evaluate the genetic divergence among plants of the two depths. Measures collected during the study have shown a various degree of phenotypic changes among traits and experimental groups, the amount of phenotypic changes observed was also dependent on the type of light environments considered. Overall plants collected at different depths seem to be able to acclimate to reciprocal light conditions in the experimental time frame, through morphological changes and phenotypic buffering, supported by the plastic regulation of a reduced number of genes. Multivariate analyses indicated that plants cluster better on the base of their depth origin rather than the experimental light conditions applied. The two groups were genetically distinct, but the patterns of phenotypic divergence observed during the experiment support the hypothesis that ecological selection can play a role in the adaptive divergence of P. oceanica clones along the depth gradient.
Collapse
Affiliation(s)
| | | | - Juan M Ruiz
- Instituto Español de Oceanografía (IEO) San Pedro del Pinatar Murcia Spain
| | | |
Collapse
|
25
|
Dalziel AC, Laporte M, Rougeux C, Guderley H, Bernatchez L. Convergence in organ size but not energy metabolism enzyme activities among wild Lake Whitefish (Coregonus clupeaformis) species pairs. Mol Ecol 2016; 26:225-244. [DOI: 10.1111/mec.13847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Anne C. Dalziel
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
- Department of Biology; Saint Mary's University; 923 Robie Street Halifax Nova Scotia Canada B3H 3C3
| | - Martin Laporte
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
| | - Clément Rougeux
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
| | - Helga Guderley
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
| | - Louis Bernatchez
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
| |
Collapse
|
26
|
Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi). Genetica 2016; 144:445-55. [PMID: 27393605 DOI: 10.1007/s10709-016-9913-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Body size is an obvious and important characteristic of fish. Mandarin fish Siniperca chuatsi (Basilewsky) is one of the most valuable perciform species widely cultured in China. Individual differences in body size are common in mandarin fish and significantly influence the aquaculture production. However, little is currently known about its genetic control. In this study, digital gene expression profiling and transcriptome sequencing were performed in mandarin fish with differential body size at 30 and 180 days post-hatch (dph), respectively. Body weight, total length and body length of fish with big-size were significantly higher than those with small-size at both 30 and 180 dph (P < 0.05). 2171 and 2014 differentially expressed genes were identified between small-size and big-size fish at 30 and 180 dph, respectively. RT quantitative PCR (qPCR) analysis showed that the differential expression of 10 selected genes in mandarin fish that went through the same training procedure. The genes were involved in the growth hormone-insulin-like growth factor axis, cell proliferation and differentiation, appetite control, glucose metabolism, reproduction and sexual size dimorphism pathways. This study will help toward a comprehensive understanding of the complexity of regulation of body size in mandarin fish individuals and provide valuable information for future research.
Collapse
|
27
|
Huang Y, Chain FJJ, Panchal M, Eizaguirre C, Kalbe M, Lenz TL, Samonte IE, Stoll M, Bornberg-Bauer E, Reusch TBH, Milinski M, Feulner PGD. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks. Mol Ecol 2016; 25:943-58. [PMID: 26749022 PMCID: PMC4790908 DOI: 10.1111/mec.13520] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022]
Abstract
The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats.
Collapse
Affiliation(s)
- Yun Huang
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Frédéric J J Chain
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1
| | - Mahesh Panchal
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Bioinformatics Infrastructures for Life Sciences (BILS), Uppsala Biomedicinska Centrum (BMC), Husargatan 3, 751 23, Uppsala, Sweden.,Institute of Medical Biochemistry and Microbiology, Uppsala Biomedicinska Centrum (BMC), Husargatan 3, 751 23, Uppsala, Sweden
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, London, UK
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Irene E Samonte
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, Westfälische Wilhelms University, 48149, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Evolutionary Bioinformatics, Westfälische Wilhelms University, 48149, Münster, Germany
| | - Thorsten B H Reusch
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105, Kiel, Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Philine G D Feulner
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047, Kastanienbaum, Switzerland
| |
Collapse
|
28
|
Jacobsen MW, da Fonseca RR, Bernatchez L, Hansen MM. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.). Mol Phylogenet Evol 2015; 95:161-70. [PMID: 26654959 DOI: 10.1016/j.ympev.2015.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
Several studies have recently reported evidence for positive selection acting on the mitochondrial genome (mitogenome), emphasizing its potential role in adaptive divergence and speciation. In this study we searched 107 full mitogenomes of recently diverged species and lineages of whitefish (Coregonus ssp.) for signals of positive selection. These salmonids show several distinct morphological and ecological differences that may be associated with energetics and therefore potentially positive selection at the mitogenome level. We found that purifying selection and genetic drift were the predominant evolutionary forces acting on the analyzed mitogenomes. However, the NADH dehydrogenase 2 gene (ND2) showed a highly elevated dN/dS ratio compared to the other mitochondrial genes, which was significantly higher in whitefish compared to other salmonids. We therefore further examined nonsynonymous evolution in ND2 by (i) mapping amino acid changes to a protein model structure which showed that they were located away from key functional residues of the protein, (ii) locating them in the sequences of other species of fish (Salmonidae, Anguillidae, Scombridae and Percidae) only to find pronounced overlap of nonsynonymous regions. We thus conclude that relaxed purifying selection is driving the evolution of ND2 by affecting mostly regions that have lower functional relevance.
Collapse
Affiliation(s)
- Magnus W Jacobsen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark.
| | - Rute R da Fonseca
- Department of Bioinformatics and RNA Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 København N, Denmark
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Michael M Hansen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| |
Collapse
|
29
|
Dalziel AC, Martin N, Laporte M, Guderley H, Bernatchez L. Adaptation and acclimation of aerobic exercise physiology in Lake Whitefish ecotypes (Coregonus clupeaformis). Evolution 2015; 69:2167-86. [PMID: 26177840 DOI: 10.1111/evo.12727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022]
Abstract
The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size-matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnetic, more actively swimming "dwarf" ecotypes. We acclimated fish to constant swimming (emulating limnetic foraging) and control conditions (emulating normal activity levels) to simultaneously study phenotypic plasticity. We found extensive divergence between ecotypes: dwarf fish generally had constitutively higher values of traits related to oxygen transport (ventricle size) and use by skeletal muscle (percent oxidative muscle, mitochondrial content), and also evolved differential plasticity of mitochondrial function (Complex I activity and flux through Complexes I-IV and IV). The effects of swim training were less pronounced than differences among ecotypes and the traits which had a significant training effect (ventricle protein content, ventricle malate dehydrogenase activity, and muscle Complex V activity) did not differ among ecotypes. Only one trait, ventricle mass, varied in a similar manner with acclimation and adaptation and followed a pattern consistent with genetic accommodation. Overall, the physiological and biochemical mechanisms underlying acclimation and adaptation to swimming activity in Lake Whitefish differ.
Collapse
Affiliation(s)
- Anne C Dalziel
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.
| | - Nicolas Martin
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.,School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Martin Laporte
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Helga Guderley
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.,Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street PO BOX 15000, Halifax, NS, Canada, B3H 4R2
| | - Louis Bernatchez
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6
| |
Collapse
|
30
|
I. A. Z. APPLYING OF DNA- MICROARRAYS IN A MODERN FISH-FARMING. BIOTECHNOLOGIA ACTA 2015. [DOI: 10.15407/biotech8.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Czypionka T, Krugman T, Altmüller J, Blaustein L, Steinfartz S, Templeton AR, Nolte AW. Ecological transcriptomics – a non‐lethal sampling approach for endangered fire salamanders. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Till Czypionka
- Department of Evolutionary Genetics Max Planck Institute for Evolutionary Biology 24306 Plön Germany
| | - Tamar Krugman
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Janine Altmüller
- Cologne Centre for Genomics University of Cologne Weyertal 115b 50931 Köln Germany
| | - Leon Blaustein
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Sebastian Steinfartz
- Department of Evolutionary Biology Unit Molecular Ecology Technische Universität Braunschweig 38106 Braunschweig Germany
| | - Alan R. Templeton
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Arne W. Nolte
- Department of Evolutionary Genetics Max Planck Institute for Evolutionary Biology 24306 Plön Germany
| |
Collapse
|
32
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charrSalvelinus alpinuspopulations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr.The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, includinglysozymeandnatterin-likewhich was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr.The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
|
33
|
Mee JA, Bernatchez L, Reist JD, Rogers SM, Taylor EB. Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.). Evol Appl 2015; 8:423-41. [PMID: 26029257 PMCID: PMC4430767 DOI: 10.1111/eva.12247] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 01/05/2015] [Indexed: 01/19/2023] Open
Abstract
The concept of the designatable unit (DU) affords a practical approach to identifying diversity below the species level for conservation prioritization. However, its suitability for defining conservation units in ecologically diverse, geographically widespread and taxonomically challenging species complexes has not been broadly evaluated. The lake whitefish species complex (Coregonus spp.) is geographically widespread in the Northern Hemisphere, and it contains a great deal of variability in ecology and evolutionary legacy within and among populations, as well as a great deal of taxonomic ambiguity. Here, we employ a set of hierarchical criteria to identify DUs within the Canadian distribution of the lake whitefish species complex. We identified 36 DUs based on (i) reproductive isolation, (ii) phylogeographic groupings, (iii) local adaptation and (iv) biogeographic regions. The identification of DUs is required for clear discussion regarding the conservation prioritization of lake whitefish populations. We suggest conservation priorities among lake whitefish DUs based on biological consequences of extinction, risk of extinction and distinctiveness. Our results exemplify the need for extensive genetic and biogeographic analyses for any species with broad geographic distributions and the need for detailed evaluation of evolutionary history and adaptive ecological divergence when defining intraspecific conservation units.
Collapse
Affiliation(s)
- Jonathan A Mee
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébec, QC, Canada
| | | | - Sean M Rogers
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Eric B Taylor
- Department of Zoology, Biodiversity Research Centre and Beaty Biodiversity Museum, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
34
|
Podgorniak T, Milan M, Pujolar JM, Maes GE, Bargelloni L, De Oliveira E, Pierron F, Daverat F. Differences in brain gene transcription profiles advocate for an important role of cognitive function in upstream migration and water obstacles crossing in European eel. BMC Genomics 2015; 16:378. [PMID: 25962588 PMCID: PMC4427925 DOI: 10.1186/s12864-015-1589-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND European eel is a panmictic species, whose decline has been recorded since the last 20 years. Among human-induced environmental factors of decline, the impact of water dams during species migration is questioned. The main issue of this study was to pinpoint phenotypic traits that predisposed glass eels to successful passage by water barriers. The approach of the study was individual-centred and without any a priori hypothesis on traits involved in the putative obstacles selective pressure. We analyzed the transcription level of 14,913 genes. RESULTS Transcriptome analysis of three tissues (brain, liver and muscle) from individuals sampled on three successive forebays separated by water obstacles indicated different gene transcription profiles in brain between the two upstream forebays. No differences in gene transcription levels were observed in liver and muscle samples among segments. A total of 26 genes were differentially transcribed in brain. These genes encode for, among others, keratins, cytokeratins, calcium binding proteins (S100 family), cofilin, calmodulin, claudin and thy-1 membrane glycoprotein. The functional analysis of these genes highlighted a putative role of cytoskeletal dynamics and synaptic plasticity in fish upstream migration. CONCLUSION Synaptic connections in brain are solicited while eels are climbing the obstacles with poorly designed fishways. Successful passage by such barriers can be related to spatial learning and spatial orientation abilities when fish is out of the water.
Collapse
Affiliation(s)
- Tomasz Podgorniak
- Irstea Bordeaux, UR EABX, HYNES (Irstea - EDF R&D), 50 avenue de Verdun, Cestas, 33612, Cedex, France.
| | - Massimo Milan
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy.
| | - Jose Marti Pujolar
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy. .,Department of Bioscience, Aarhus University, Ny Munkegade 114, Aarhus C, DK-8000, Denmark.
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia. .,Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven (KU Leuven), Leuven, B-3000, Belgium.
| | - Luca Bargelloni
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy.
| | - Eric De Oliveira
- EDF R&D LNHE, HYNES (Irstea-EDF R&D), 6, quai Watier, Bat Q, Chatou, 78400, France.
| | - Fabien Pierron
- Univ. Bordeaux, EPOC, UMR 5805, Talence, F-33400, France. .,CNRS, EPOC, UMR 5805, Talence, F-33400, France.
| | - Francoise Daverat
- Irstea Bordeaux, UR EABX, HYNES (Irstea - EDF R&D), 50 avenue de Verdun, Cestas, 33612, Cedex, France.
| |
Collapse
|
35
|
Alvarez M, Schrey AW, Richards CL. Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? Mol Ecol 2015; 24:710-25. [PMID: 25604587 DOI: 10.1111/mec.13055] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Molecular ecology has moved beyond the use of a relatively small number of markers, often noncoding, and it is now possible to use whole-genome measures of gene expression with microarrays and RNAseq (i.e. transcriptomics) to capture molecular response to environmental challenges. While transcriptome studies are shedding light on the mechanistic basis of traits as complex as personality or physiological response to catastrophic events, these approaches are still challenging because of the required technical expertise, difficulties with analysis and cost. Still, we found that in the last 10 years, 575 studies used microarrays or RNAseq in ecology. These studies broadly address three questions that reflect the progression of the field: (i) How much variation in gene expression is there and how is it structured? (ii) How do environmental stimuli affect gene expression? (iii) How does gene expression affect phenotype? We discuss technical aspects of RNAseq and microarray technology, and a framework that leverages the advantages of both. Further, we highlight future directions of research, particularly related to moving beyond correlation and the development of additional annotation resources. Measuring gene expression across an array of taxa in ecological settings promises to enrich our understanding of ecology and genome function.
Collapse
Affiliation(s)
- Mariano Alvarez
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | | | | |
Collapse
|
36
|
Abstract
There is increasing evidence that fishing may cause rapid contemporary evolution in freshwater and marine fish populations. This has led to growing concern about the possible consequences such evolutionary change might have for aquatic ecosystems and the utility of those ecosystems to society. This special issue contains contributions from a symposium on fisheries-induced evolution held at the American Fisheries Society Annual Meeting in August 2008. Contributions include primary studies and reviews of field-based and experimental evidence, and several theoretical modeling studies advancing life-history theory and investigating potential management options. In this introduction we review the state of research in the field, discuss current controversies, and identify contributions made by the papers in this issue to the knowledge of fisheries-induced evolution. We end by suggesting directions for future research.
Collapse
Affiliation(s)
- Erin S Dunlop
- Aquatic Research and Development Section, Ontario Ministry of Natural Resources Peterborough, ON, Canada ; Department of Biology, University of Bergen Bergen, Norway ; Institute of Marine Research Nordnes, Bergen, Norway
| | - Katja Enberg
- Department of Biology, University of Bergen Bergen, Norway
| | | | - Mikko Heino
- Department of Biology, University of Bergen Bergen, Norway ; Institute of Marine Research Nordnes, Bergen, Norway ; International Institute for Applied Systems Analysis Laxenburg, Austria
| |
Collapse
|
37
|
Westram AM, Galindo J, Alm Rosenblad M, Grahame JW, Panova M, Butlin RK. Do the same genes underlie parallel phenotypic divergence in different Littorina saxatilis populations? Mol Ecol 2014; 23:4603-16. [PMID: 25113130 PMCID: PMC4285301 DOI: 10.1111/mec.12883] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 02/03/2023]
Abstract
Parallel patterns of adaptive divergence and speciation are cited as powerful evidence for the role of selection driving these processes. However, it is often not clear whether parallel phenotypic divergence is underlain by parallel genetic changes. Here, we asked about the genetic basis of parallel divergence in the marine snail Littorina saxatilis, which has repeatedly evolved coexisting ecotypes adapted to either crab predation or wave action. We sequenced the transcriptome of snails of both ecotypes from three distant geographical locations (Spain, Sweden and United Kingdom) and mapped the reads to the L. saxatilis reference genome. We identified genomic regions potentially under divergent selection between ecotypes within each country, using an outlier approach based on F(ST) values calculated per locus. In line with previous studies indicating that gene reuse is generally common, we expected to find extensive sharing of outlier loci due to recent shared ancestry and gene flow between at least two of the locations in our study system. Contrary to our expectations, we found that most outliers were country specific, suggesting that much of the genetic basis of divergence is not shared among locations. However, we did find that more outliers were shared than expected by chance and that differentiation of shared outliers is often generated by the same SNPs. We discuss two mechanisms potentially explaining the limited amount of sharing we observed. First, a polygenic basis of divergent traits might allow for multiple distinct molecular mechanisms generating the same phenotypic patterns. Second, additional, location-specific axes of selection that we did not focus on in this study may produce distinct patterns of genetic divergence within each site.
Collapse
Affiliation(s)
- A M Westram
- Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, UK
| | | | | | | | | | | |
Collapse
|
38
|
Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol 2014; 23:3133-57. [DOI: 10.1111/mec.12796] [Citation(s) in RCA: 764] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/18/2022]
Affiliation(s)
| | - Matthew W. Hahn
- Department of Biology; Indiana University; Bloomington IN 47405 USA
- School of Informatics and Computing; Indiana University; Bloomington IN 47405 USA
| |
Collapse
|
39
|
Dion-Côté AM, Renaut S, Normandeau E, Bernatchez L. RNA-seq Reveals Transcriptomic Shock Involving Transposable Elements Reactivation in Hybrids of Young Lake Whitefish Species. Mol Biol Evol 2014; 31:1188-99. [DOI: 10.1093/molbev/msu069] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
40
|
Differences in brain transcriptomes of closely related Baikal coregonid species. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857329. [PMID: 24719892 PMCID: PMC3956407 DOI: 10.1155/2014/857329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/02/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022]
Abstract
The aim of this work was to get deeper insight into genetic factors involved in the adaptive divergence of closely related species, specifically two representatives of Baikal coregonids—Baikal whitefish (Coregonus baicalensis Dybowski) and Baikal omul (Coregonus migratorius Georgi)—that diverged from a common ancestor as recently as 10–20 thousand years ago. Using the Serial Analysis of Gene Expression method, we obtained libraries of short representative cDNA sequences (tags) from the brains of Baikal whitefish and omul. A comparative analysis of the libraries revealed quantitative differences among ~4% tags of the fishes under study. Based on the similarity of these tags with cDNA of known organisms, we identified candidate genes taking part in adaptive divergence. The most important candidate genes related to the adaptation of Baikal whitefish and Baikal omul, identified in this work, belong to the genes of cell metabolism, nervous and immune systems, protein synthesis, and regulatory genes as well as to DTSsa4 Tc1-like transposons which are widespread among fishes.
Collapse
|
41
|
Marden JH. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection. Mol Ecol 2013; 22:5743-64. [PMID: 24106889 DOI: 10.1111/mec.12534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 01/01/2023]
Abstract
Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
42
|
Wellband KW, Heath DD. The relative contribution of drift and selection to transcriptional divergence among Babine Lake tributary populations of juvenile rainbow trout. J Evol Biol 2013; 26:2497-508. [DOI: 10.1111/jeb.12247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 06/20/2013] [Accepted: 08/09/2013] [Indexed: 01/14/2023]
Affiliation(s)
- K. W. Wellband
- Great Lakes Institute for Environmental Research; University of Windsor; Windsor ON Canada
| | - D. D. Heath
- Great Lakes Institute for Environmental Research; University of Windsor; Windsor ON Canada
- Department of Biological Sciences; University of Windsor; Windsor ON Canada
| |
Collapse
|
43
|
Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SM, Slate J, Smith H, Sork VL, Stone GN, Vines TH, Waits L, Widmer A, Rieseberg LH. A road map for molecular ecology. Mol Ecol 2013; 22:2605-26. [DOI: 10.1111/mec.12319] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Louis Bernatchez
- DInstitut de Biologie Intégrative et des Systémes; Département de Biologie; 1030, Avenue de la Médecine Université Laval; Québec QC G1V 0A6 Canada
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine; CNRS UMR 5553 Université Joseph Fourier; BP 53, 38041 Grenoble Cedex 9 France
| | - C. Alex. Buerkle
- Department of Botany; University of Wyoming; 1000 E. University Ave. Laramie WY 82071 USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology; 318 W. 12th Ave. The Ohio State University; Columbus OH 43210 USA
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) C/Astrofísico Francisco Sánchez 3 La Laguna Tenerife; Canary Islands 38206 Spain
| | - Dany Garant
- Département de Biologie; Université de Sherbrooke; Sherbrooke QC J1K 2R1 Canada
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360 Univ. Paris Sud; 91405 Orsay cedex France
| | - Nolan C. Kane
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive N.W., Calgary AB T2N 1N4 Canada
| | - Jon Slate
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Harry Smith
- 79 Melton Road Burton-on-the-Wolds Loughborough LE12 5TQ UK
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; 4139 Terasaki Life Sciences Building, 610 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road, Edinburgh EH9 3JT UK
| | - Timothy H. Vines
- Molecular Ecology Editorial Office; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Lisette Waits
- Department of Fish and Wildlife Sciences; University of Idaho; 875 Perimeter Drive MS 1136 Moscow ID 83844 USA
| | - Alex Widmer
- ETH Zurich; Institute of Integrative Biology; Universitätstrasse 16 Zurich 8092 Switzerland
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
- Department of Biology; Indiana University; 1001 E. 3 St., Bloomington IN 47405 USA
| |
Collapse
|
44
|
Filteau M, Pavey SA, St-Cyr J, Bernatchez L. Gene coexpression networks reveal key drivers of phenotypic divergence in lake whitefish. Mol Biol Evol 2013; 30:1384-96. [PMID: 23519315 DOI: 10.1093/molbev/mst053] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A functional understanding of processes involved in adaptive divergence is one of the awaiting opportunities afforded by high-throughput transcriptomic technologies. Functional analysis of coexpressed genes has succeeded in the biomedical field in identifying key drivers of disease pathways. However, in ecology and evolutionary biology, functional interpretation of transcriptomic data is still limited. Here, we used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify modules of coexpressed genes in muscle and brain tissue of a lake whitefish backcross progeny. Modules were connected to gradients of known adaptive traits involved in the ecological speciation process between benthic and limnetic ecotypes. Key drivers, that is, hub genes of functional modules related to reproduction, growth, and behavior were identified, and module preservation was assessed in natural populations. Using this approach, we identified modules of coexpressed genes involved in phenotypic divergence and their key drivers, and further identified a module part specifically rewired in the backcross progeny. Functional analysis of transcriptomic data can significantly contribute to the understanding of the mechanisms underlying ecological speciation. Our findings point to bone morphogenetic protein and calcium signaling as common pathways involved in coordinated evolution of trophic behavior, trophic morphology (gill rakers), and reproduction. Results also point to pathways implicating hemoglobins and constitutive stress response (HSP70) governing growth in lake whitefish.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
45
|
Wellband KW, Heath DD. Environmental associations with gene transcription in Babine Lake rainbow trout: evidence for local adaptation. Ecol Evol 2013; 3:1194-208. [PMID: 23762507 PMCID: PMC3678475 DOI: 10.1002/ece3.531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 12/27/2022] Open
Abstract
The molecular genetic mechanisms facilitating local adaptation in salmonids continue to be poorly characterized. Gene transcription is a highly regulated step in the expression of a phenotype and it has been shown to respond to selection and thus may be one mechanism that facilitates the development of local adaptation. Advances in molecular genetic tools and an increased understanding of the functional roles of specific genes allow us to test hypotheses concerning the role of variable environments in shaping transcription at known-function candidate loci. To address these hypotheses, wild rainbow trout were collected in their first summer and subjected to metabolic and immune challenges. We assayed gene transcription at candidate loci that play a role in the molecular genetic response to these stresses, and correlated transcription with temperature data from the streams and the abundance and diversity of bacteria as characterized by massively parallel pyrosequencing. Patterns of transcriptional regulation from resting to induced levels varied among populations for both treatments. Co-inertia analysis demonstrated significant associations between resting levels of metabolic gene transcription and thermal regime (R (2) = 0.19, P = 0.013) as well as in response to challenge (R (2) = 0.39, P = 0.001) and resting state and challenged levels of cytokine gene transcription with relative abundances of bacteria (resting: R (2) = 0.25, P = 0.009, challenged: R (2) = 0.65, P = 0.001). These results show that variable environments, even within a small geographic range (<250 km), can drive divergent selection among populations for transcription of genes related to surviving stress.
Collapse
Affiliation(s)
- Kyle W Wellband
- Great Lakes Institute for Environmental Research, University of Windsor Windsor, Ontario, Canada
| | | |
Collapse
|
46
|
Gagnaire PA, Pavey SA, Normandeau E, Bernatchez L. THE GENETIC ARCHITECTURE OF REPRODUCTIVE ISOLATION DURING SPECIATION-WITH-GENE-FLOW IN LAKE WHITEFISH SPECIES PAIRS ASSESSED BY RAD SEQUENCING. Evolution 2013; 67:2483-97. [DOI: 10.1111/evo.12075] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/31/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Scott A. Pavey
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugène-Marchand; Québec; Canada; G1V 0A6
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugène-Marchand; Québec; Canada; G1V 0A6
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugène-Marchand; Québec; Canada; G1V 0A6
| |
Collapse
|
47
|
Laplante K, Sébastien B, Derome N. Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation. Evol Appl 2013; 6:643-59. [PMID: 23789031 PMCID: PMC3684745 DOI: 10.1111/eva.12050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/10/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
Heavy metals released by anthropogenic activities such as mining trigger profound changes to bacterial communities. In this study we used 16S SSU rRNA gene high-throughput sequencing to characterize the impact of a polymetallic perturbation and other environmental parameters on taxonomic networks within five lacustrine bacterial communities from sites located near Rouyn-Noranda, Quebec, Canada. The results showed that community equilibrium was disturbed in terms of both diversity and structure. Moreover, heavy metals, especially cadmium combined with water acidity, induced parallel changes among sites via the selection of resistant OTUs (Operational Taxonomic Unit) and taxonomic dominance perturbations favoring the Alphaproteobacteria. Furthermore, under a similar selective pressure, covariation trends between phyla revealed conservation and parallelism within interphylum interactions. Our study sheds light on the importance of analyzing communities not only from a phylogenetic perspective but also including a quantitative approach to provide significant insights into the evolutionary forces that shape the dynamic of the taxonomic interaction networks in bacterial communities.
Collapse
Affiliation(s)
- Karine Laplante
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada
| | | | | |
Collapse
|
48
|
Bougas B, Normandeau E, Audet C, Bernatchez L. Linking transcriptomic and genomic variation to growth in brook charr hybrids (Salvelinus fontinalis, Mitchill). Heredity (Edinb) 2013; 110:492-500. [PMID: 23321707 DOI: 10.1038/hdy.2012.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hybridization can lead to phenotypic differences arising from changes in gene expression patterns or new allele combinations. Variation in gene expression is thought to be controlled by differences in transcription regulation of parental alleles, either through cis- or trans-regulatory elements. A previous study among brook charr hybrids from different populations (Rupert, Laval, and domestic) showing distinct length at age during early life stages also revealed different patterns in transcription regulation inheritance of transcript abundance. In the present study, transcript abundance using RNA-sequencing and quantitative real-time PCR, single-nucleotide polymorphism (SNP) genotypes and allelic imbalance were assessed in order to understand the molecular mechanisms underlying the observed transcriptomic and differences in length at age among domestic × Rupert hybrids and Laval × domestic hybrids. We found 198 differentially expressed genes between the two hybrid crosses, and allelic imbalance could be analyzed for 69 of them. Among these 69 genes, 36 genes exhibited cis-acting regulatory effects in both of the two crosses, thus confirming the prevalent role of cis-acting regulatory elements in the regulation of differentially expressed genes among intraspecific hybrids. In addition, we detected a significant association between SNP genotypes of three genes and length at age. Our study is thus one of the few that have highlighted some of the molecular mechanisms potentially involved in the differential phenotypic expression in intraspecific hybrids for nonmodel species.
Collapse
Affiliation(s)
- B Bougas
- Département de biologie, Institut de Biologie Intégrative et des Systèmes IBIS, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
49
|
Lamaze FC, Garant D, Bernatchez L. Stocking impacts the expression of candidate genes and physiological condition in introgressed brook charr (Salvelinus fontinalis) populations. Evol Appl 2012; 6:393-407. [PMID: 23467764 PMCID: PMC3586627 DOI: 10.1111/eva.12022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/19/2012] [Indexed: 01/09/2023] Open
Abstract
Translocation of plants and animal populations between environments is one of the major forms of anthropogenic perturbation experienced by pristine populations, and consequently, human-mediated hybridization by stocking practices between wild and exogenous conspecifics is of increasing concern. In this study, we compared the expression of seven candidate genes involved in multifactorial traits and regulatory pathways for growth as a function of level of introgressive hybridization between wild and domestic brook charr to test the null hypothesis of no effect of introgression on wild fish. Our analyses revealed that the expression of two of the genes tested, cytochrome c oxidase VIIa and the growth hormone receptor isoform I, was positively correlated with the level of introgression. We also observed a positive relationship between the extent of introgression and physiological status quantified by the Fulton's condition index. The expression of other genes was influenced by other variables, including year of sampling (reflecting different thermal conditions), sampling method and lake of origin. This is the first demonstration in nature that introgression from stocked populations has an impact on the expression of genes playing a role in important biological functions that may be related with fitness in wild introgressed populations.
Collapse
Affiliation(s)
- Fabien C Lamaze
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada
| | | | | |
Collapse
|
50
|
Manousaki T, Hull PM, Kusche H, Machado-Schiaffino G, Franchini P, Harrod C, Elmer KR, Meyer A. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol Ecol 2012; 22:650-69. [DOI: 10.1111/mec.12034] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/11/2012] [Accepted: 07/26/2012] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | - Gonzalo Machado-Schiaffino
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | | | - Kathryn R. Elmer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | | |
Collapse
|