1
|
Fu N, Xu Y, Jin L, Xiao TW, Song F, Yan HF, Chen YS, Ge XJ. Testing plastomes and nuclear ribosomal DNA sequences as the next-generation DNA barcodes for species identification and phylogenetic analysis in Acer. BMC PLANT BIOLOGY 2024; 24:445. [PMID: 38778277 PMCID: PMC11112886 DOI: 10.1186/s12870-024-05073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.
Collapse
Affiliation(s)
- Ning Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Xu
- Conghua Middle School, Guangzhou, 510920, China
| | - Lu Jin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - You-Sheng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Wang Y, Jiang Z, Qin A, Wang F, Chang E, Liu Y, Nie W, Tan C, Yuan Y, Dong Y, Huang R, Jia Z, Wang J. Population Structure, Genetic Diversity and Candidate Genes for the Adaptation to Environmental Stress in Picea koraiensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1266. [PMID: 36986954 PMCID: PMC10055018 DOI: 10.3390/plants12061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Picea koraiensis is major silvicultural and timber species in northeast China, and its distribution area is an important transition zone for genus spruce migration. The degree of intraspecific differentiation of P. koraiensis is high, but population structure and differentiation mechanisms are not clear. In this study, 523,761 single nucleotide polymorphisms (SNPs) were identified in 113 individuals from 9 populations of P. koraiensis by genotyping-by-sequencing (GBS). Population genomic analysis showed that P. koraiensis was divided into three geoclimatic regions: Great Khingan Mountains climatic region, Lesser Khingan Mountains climatic region, and Changbai Mountain climatic region. Mengkeshan (MKS) population on the northern edge of the distribution area and Wuyiling (WYL) population located in the mining area are two highly differentiated groups. Selective sweep analysis showed that MKS and WYL populations had 645 and 1126 selected genes, respectively. Genes selected in the MKS population were associated with flowering and photomorphogenesis, cellular response to water deficit, and glycerophospholipid metabolism; genes selected in the WYL population were associated with metal ion transport, biosynthesis of macromolecules, and DNA repair. Climatic factors and heavy metal stress drives divergence in MKS and WYL populations, respectively. Our findings provide insights into adaptive divergence mechanisms in Picea and will contribute to molecular breeding studies.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Aili Qin
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Fude Wang
- Forestry Research Institute in Heilongjiang Province, Harbin 150081, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruizhi Huang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
3
|
Lv SY, Ye XY, Li ZH, Ma PF, Li DZ. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia. PLANT DIVERSITY 2023; 45:147-155. [PMID: 37069924 PMCID: PMC10105076 DOI: 10.1016/j.pld.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 06/17/2023]
Abstract
Fargesia, the largest genus within the temperate bamboo tribe Arundinarieae, has more than 90 species mainly distributed in the mountains of Southwest China. The Fargesia bamboos are important components of the subalpine forest ecosystems that provide food and habitat for many endangered animals, including the giant panda. However, species-level identification of Fargesia is difficult. Moreover, the rapid radiation and slow molecular evolutionary rate of Fargesia pose a significant challenge to using DNA barcoding with standard plant barcodes (rbcL, matK, and ITS) in bamboos. With progress in the sequencing technologies, complete plastid genomes (plastomes) and nuclear ribosomal DNA (nrDNA) sequences have been proposed as organelle barcodes for species identification; however, these have not been tested in bamboos. We collected 196 individuals representing 62 species of Fargesia to comprehensively evaluate the discriminatory power of plastomes and nrDNA sequences compared to standard barcodes. Our analysis indicates that complete plastomes have substantially higher discriminatory power (28.6%) than standard barcodes (5.7%), whereas nrDNA sequences show a moderate improvement (65.4%) compared to ITS (47.2%). We also found that nuclear markers performed better than plastid markers, and ITS alone had higher discriminatory power than complete plastomes. The study also demonstrated that plastomes and nrDNA sequences can contribute to intrageneric phylogenetic resolution in Fargesia. However, neither of these sequences were able to discriminate all the sampled species, and therefore, more nuclear markers need to be identified.
Collapse
Affiliation(s)
- Shi-Yu Lv
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xia-Ying Ye
- Agronomy and Life Science Department, Zhaotong University, Zhaotong, Yunnan, 657000, China
| | - Zhong-Hu Li
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
4
|
Mo ZQ, Fu CN, Zhu MS, Milne RI, Yang JB, Cai J, Qin HT, Zheng W, Hollingsworth PM, Li DZ, Gao LM. Resolution, conflict and rate shifts: insights from a densely sampled plastome phylogeny for Rhododendron (Ericaceae). ANNALS OF BOTANY 2022; 130:687-701. [PMID: 36087101 PMCID: PMC9670778 DOI: 10.1093/aob/mcac114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Rhododendron is a species-rich and taxonomically challenging genus due to recent adaptive radiation and frequent hybridization. A well-resolved phylogenetic tree would help to understand the diverse history of Rhododendron in the Himalaya-Hengduan Mountains where the genus is most diverse. METHODS We reconstructed the phylogeny based on plastid genomes with broad taxon sampling, covering 161 species representing all eight subgenera and all 12 sections, including ~45 % of the Rhododendron species native to the Himalaya-Hengduan Mountains. We compared this phylogeny with nuclear phylogenies to elucidate reticulate evolutionary events and clarify relationships at all levels within the genus. We also estimated the timing and diversification history of Rhododendron, especially the two species-rich subgenera Rhododendron and Hymenanthes that comprise >90 % of Rhododendron species in the Himalaya-Hengduan Mountains. KEY RESULTS The full plastid dataset produced a well-resolved and supported phylogeny of Rhododendron. We identified 13 clades that were almost always monophyletic across all published phylogenies. The conflicts between nuclear and plastid phylogenies suggested strongly that reticulation events may have occurred in the deep lineage history of the genus. Within Rhododendron, subgenus Therorhodion diverged first at 56 Mya, then a burst of diversification occurred from 23.8 to 17.6 Mya, generating ten lineages among the component 12 clades of core Rhododendron. Diversification in subgenus Rhododendron accelerated c. 16.6 Mya and then became fairly continuous. Conversely, Hymenanthes diversification was slow at first, then accelerated very rapidly around 5 Mya. In the Himalaya-Hengduan Mountains, subgenus Rhododendron contained one major clade adapted to high altitudes and another to low altitudes, whereas most clades in Hymenanthes contained both low- and high-altitude species, indicating greater ecological plasticity during its diversification. CONCLUSIONS The 13 clades proposed here may help to identify specific ancient hybridization events. This study will help to establish a stable and reliable taxonomic framework for Rhododendron, and provides insight into what drove its diversification and ecological adaption. Denser sampling of taxa, examining both organelle and nuclear genomes, is needed to better understand the divergence and diversification history of Rhododendron.
Collapse
Affiliation(s)
| | | | - Ming-Shu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
5
|
Yang R, Deng YW, Liu Y, Zhao J, Bao L, Ge JP, Wang HF. Genetic structure and trait variation within a maple hybrid zone underscore North China as an overlooked diversity hotspot. Sci Rep 2022; 12:13949. [PMID: 35977961 PMCID: PMC9385851 DOI: 10.1038/s41598-022-17538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Tertiary relict flora in East Asia can be divided into northern and southern regions. North China is a diversity hotspot because it can be the secondary contact zone of ancient lineages from the two regions. To test the extent of ancient lineages hybridization and distinguish between the putative species pair Acer pictum subsp. mono and Acer truncatum, we conducted genetic and ecological studies within a maple hybrid zone in North China. Our results suggest that the two lineages of Acer coexist in the hybrid zone and that adult and offspring populations show typical bimodal genetic patterns. Hybrid individuals are established at intermediate altitudes between the two parental lineages. Flowering phenology is divergent between lineages, whereas the complex sexual system of Acer may ensure pollination among lineages. Leaf and fruit morphologies are different between the northern and southern origin lineages, corresponding to A. pictum subsp. mono and A. truncatum, respectively. Reduced gene flow between lineages suggests that they should be considered as two species. However, large morphological variations within each species and the existence of hybrids offer low reliability of species identification based solely on morphological traits. Our study underscores North China as an overlooked diversity hotspot that requires further study in the future.
Collapse
Affiliation(s)
- Rui Yang
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ya-Wen Deng
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yan Liu
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jing Zhao
- Daheishan Administrative District, Beipiao City, 122000, Liaoning Province, China
| | - Lei Bao
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian-Ping Ge
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hong-Fang Wang
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China. .,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China. .,College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Fu MJ, Wu HY, Jia DR, Tian B. Evolutionary history of a desert perennial Arnebia szechenyi (Boraginaceae): Intraspecific divergence, regional expansion and asymmetric gene flow. PLANT DIVERSITY 2021; 43:462-471. [PMID: 35024515 PMCID: PMC8720688 DOI: 10.1016/j.pld.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 05/20/2023]
Abstract
The complex interactions of historical, geological and climatic events on plant evolution have been an important research focus for many years. However, the role of desert formation and expansion in shaping the genetic structures and demographic histories of plants occurring in arid areas has not been well explored. In the present study, we investigated the phylogeography of Arnebia szechenyi, a desert herb showing a near-circular distribution surrounding the Tengger Desert in Northwest China. We measured genetic diversity of populations using three maternally inherited chloroplast DNA (cpDNA) fragments and seven bi-paternally inherited nuclear DNA (nDNA) loci that were sequenced from individuals collected from 16 natural populations across its range and modelled current and historical potential habitats of the species. Our data indicated a considerably high level of genetic variation within A. szechenyi and noteworthy asymmetry in historical migration from the east to the west. Moreover, two nuclear genetic groups of populations were revealed, corresponding to the two geographic regions separated by the Tengger Desert. However, analysis of cpDNA data did not show significant geographic structure. The most plausible explanation for the discrepancy between our findings based on cpDNA and nDNA data is that A. szechenyi populations experienced long periods of geographic isolation followed by range expansion, which would have promoted generalized recombination of the nuclear genome. Our findings further highlight the important role that the Tengger Desert, together with the Helan Mountains, has played in the evolution of desert plants and the preservation of biodiversity in arid Northwest China.
Collapse
Affiliation(s)
- Meng-Jiao Fu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Hai-Yang Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Dong-Rui Jia
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
- Corresponding author.
| | - Bin Tian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory for Plant Diversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
- Corresponding author. Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
7
|
Fu CN, Mo ZQ, Yang JB, Cai J, Ye LJ, Zou JY, Qin HT, Zheng W, Hollingsworth PM, Li DZ, Gao LM. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol Ecol Resour 2021; 22:404-414. [PMID: 34310851 DOI: 10.1111/1755-0998.13479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Standard plant DNA barcodes based on 2-3 plastid regions, and nrDNA ITS show variable levels of resolution, and fail to discriminate among species in many plant groups. Genome skimming to recover complete plastid genome sequences and nrDNA arrays has been proposed as a solution to address these resolution limitations. However, few studies have empirically tested what gains are achieved in practice. Of particular interest is whether adding substantially more plastid and nrDNA characters will lead to an increase in discriminatory power, or whether the resolution limitations of standard plant barcodes are fundamentally due to plastid genomes and nrDNA not tracking species boundaries. To address this, we used genome skimming to recover near-complete plastid genomes and nuclear ribosomal DNA from Rhododendron species and compared discrimination success with standard plant barcodes. We sampled 218 individuals representing 145 species of this species-rich and taxonomically difficult genus, focusing on the global biodiversity hotspots of the Himalaya-Hengduan Mountains. Only 33% of species were distinguished using ITS+matK+rbcL+trnH-psbA. In contrast, 55% of species were distinguished using plastid genome and nrDNA sequences. The vast majority of this increase is due to the additional plastid characters. Thus, despite previous studies showing an asymptote in discrimination success beyond 3-4 plastid regions, these results show that a demonstrable increase in discriminatory power is possible with extensive plastid genome data. However, despite these gains, many species remain unresolved, and these results also reinforce the need to access multiple unlinked nuclear loci to obtain transformative gains in species discrimination in plants.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Qiong Mo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin-Jiang Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | | | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Lijiang Forest Ecosystem National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
| |
Collapse
|
8
|
Skalický T, Alves JMP, Morais AC, Režnarová J, Butenko A, Lukeš J, Serrano MG, Buck GA, Teixeira MMG, Camargo EP, Sanders M, Cotton JA, Yurchenko V, Kostygov AY. Endosymbiont Capture, a Repeated Process of Endosymbiont Transfer with Replacement in Trypanosomatids Angomonas spp. Pathogens 2021; 10:pathogens10060702. [PMID: 34200026 PMCID: PMC8229890 DOI: 10.3390/pathogens10060702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatids of the subfamily Strigomonadinae bear permanent intracellular bacterial symbionts acquired by the common ancestor of these flagellates. However, the cospeciation pattern inherent to such relationships was revealed to be broken upon the description of Angomonas ambiguus, which is sister to A. desouzai, but bears an endosymbiont genetically close to that of A. deanei. Based on phylogenetic inferences, it was proposed that the bacterium from A. deanei had been horizontally transferred to A. ambiguus. Here, we sequenced the bacterial genomes from two A. ambiguus isolates, including a new one from Papua New Guinea, and compared them with the published genome of the A. deanei endosymbiont, revealing differences below the interspecific level. Our phylogenetic analyses confirmed that the endosymbionts of A. ambiguus were obtained from A. deanei and, in addition, demonstrated that this occurred more than once. We propose that coinfection of the same blowfly host and the phylogenetic relatedness of the trypanosomatids facilitate such transitions, whereas the drastic difference in the occurrence of the two trypanosomatid species determines the observed direction of this process. This phenomenon is analogous to organelle (mitochondrion/plastid) capture described in multicellular organisms and, thereafter, we name it endosymbiont capture.
Collapse
Affiliation(s)
- Tomáš Skalický
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; (T.S.); (A.B.); (J.L.)
| | - João M. P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (J.M.P.A.); (A.C.M.); (M.M.G.T.); (E.P.C.)
| | - Anderson C. Morais
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (J.M.P.A.); (A.C.M.); (M.M.G.T.); (E.P.C.)
| | - Jana Režnarová
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (J.R.); (V.Y.)
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; (T.S.); (A.B.); (J.L.)
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (J.R.); (V.Y.)
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; (T.S.); (A.B.); (J.L.)
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA; (M.G.S.); (G.A.B.)
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA; (M.G.S.); (G.A.B.)
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (J.M.P.A.); (A.C.M.); (M.M.G.T.); (E.P.C.)
| | - Erney P. Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (J.M.P.A.); (A.C.M.); (M.M.G.T.); (E.P.C.)
| | - Mandy Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; (M.S.); (J.A.C.)
| | - James A. Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; (M.S.); (J.A.C.)
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (J.R.); (V.Y.)
- Martsinovsky Institute of Medical Parasitology, Sechenov University, 119435 Moscow, Russia
| | - Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (J.R.); (V.Y.)
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
9
|
Schulte L, Bernhardt N, Stoof-Leichsenring K, Zimmermann HH, Pestryakova LA, Epp LS, Herzschuh U. Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest. Mol Ecol Resour 2021; 21:801-815. [PMID: 33319428 DOI: 10.1111/1755-0998.13311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023]
Abstract
Siberian larch (Larix Mill.) forests dominate vast areas of northern Russia and contribute important ecosystem services to the world. It is important to understand the past dynamics of larches in order to predict their likely response to a changing climate in the future. Sedimentary ancient DNA extracted from lake sediment cores can serve as archives to study past vegetation. However, the traditional method of studying sedimentary ancient DNA-metabarcoding-focuses on small fragments, which cannot resolve Larix to species level nor allow a detailed study of population dynamics. Here, we use shotgun sequencing and hybridization capture with long-range PCR-generated baits covering the complete Larix chloroplast genome to study Larix populations from a sediment core reaching back to 6700 years from the Taymyr region in northern Siberia. In comparison with shotgun sequencing, hybridization capture results in an increase in taxonomically classified reads by several orders of magnitude and the recovery of complete chloroplast genomes of Larix. Variation in the chloroplast reads corroborates an invasion of Larix gmelinii into the range of Larix sibirica before 6700 years ago. Since then, both species have been present at the site, although larch populations have decreased with only a few trees remaining in what was once a forested area. This study demonstrates for the first time that hybridization capture applied directly to ancient DNA of plants extracted from lake sediments can provide genome-scale information and is a viable tool for studying past genomic changes in populations of single species, irrespective of a preservation as macrofossil.
Collapse
Affiliation(s)
- Luise Schulte
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany.,Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany
| | - Nadine Bernhardt
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany
| | - Kathleen Stoof-Leichsenring
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany
| | - Heike H Zimmermann
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany
| | - Luidmila A Pestryakova
- Institute of Natural Sciences, North-Eastern Federal University of Yakutsk, Yakutsk, Russia
| | - Laura S Epp
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany
| | - Ulrike Herzschuh
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany.,Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany.,Institut für Geowissenschaften, Universität Potsdam, Potsdam, Germany
| |
Collapse
|
10
|
Feng YY, Shen TT, Shao CC, Du H, Ran JH, Wang XQ. Phylotranscriptomics reveals the complex evolutionary and biogeographic history of the genus Tsuga with an East Asian-North American disjunct distribution. Mol Phylogenet Evol 2020; 157:107066. [PMID: 33387645 DOI: 10.1016/j.ympev.2020.107066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022]
Abstract
The disjunct distribution between East Asia and North America is one of the best established biogeographic patterns. A robust phylogeny is fundamental for understanding the biogeographic histories of taxa with this distribution pattern. Tsuga (hemlock) is a genus of Pinaceae with a typical intercontinental disjunct distribution in East Asia and eastern and western North America, and its phylogeny has not been completely reconstructed in previous studies. In this study, we reconstructed a highly resolved phylogeny of Tsuga using 881 nuclear genes, 60 chloroplast genes and 23 mitochondrial genes and explored its biogeographic and reticulate evolutionary history. The results of phylogenetic analysis, molecular dating and ancestral area reconstruction indicate that Tsuga very likely originated from North America in the late Oligocene and dispersed from America to East Asia via the Bering Land Bridge during the middle Miocene. In particular, we found complex reticulate evolutionary pattern among the East Asian hemlock species. T. sieboldii possibly originated from hybridization with the ancestor of T. chinensis from mainland China and T. forrestii as the paternal donor and the ancestor of T. diversifolia and T. ulleungensis as the maternal donor. T. chinensis (Taiwan) could have originated by hybridization together with T. sieboldii and then evolved independently after dispersal to the Taiwan Island, subsequently experiencing mitochondrial DNA introgression with T. chinensis from mainland China. Moreover, our study found that T. chinensis from western China is more closely related to T. forrestii than to T. chinensis from eastern China. The nonmonophyletic T. chinensis needs taxonomic reconsideration.
Collapse
Affiliation(s)
- Yuan-Yuan Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Cheng-Cheng Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Uckele KA, Adams RP, Schwarzbach AE, Parchman TL. Genome-wide RAD sequencing resolves the evolutionary history of serrate leaf Juniperus and reveals discordance with chloroplast phylogeny. Mol Phylogenet Evol 2020; 156:107022. [PMID: 33242585 DOI: 10.1016/j.ympev.2020.107022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
Juniper (Juniperus) is an ecologically important conifer genus of the Northern Hemisphere, the members of which are often foundational tree species of arid regions. The serrate leaf margin clade is native to topologically variable regions in North America, where hybridization has likely played a prominent role in their diversification. Here we use a reduced-representation sequencing approach (ddRADseq) to generate a phylogenomic data set for 68 accessions representing all 22 species in the serrate leaf margin clade, as well as a number of close and distant relatives, to improve understanding of diversification in this group. Phylogenetic analyses using three methods (SVDquartets, maximum likelihood, and Bayesian) yielded highly congruent and well-resolved topologies. These phylogenies provided improved resolution relative to past analyses based on Sanger sequencing of nuclear and chloroplast DNA, and were largely consistent with taxonomic expectations based on geography and morphology. Calibration of a Bayesian phylogeny with fossil evidence produced divergence time estimates for the clade consistent with a late Oligocene origin in North America, followed by a period of elevated diversification between 12 and 5 Mya. Comparison of the ddRADseq phylogenies with a phylogeny based on Sanger-sequenced chloroplast DNA revealed five instances of pronounced discordance, illustrating the potential for chloroplast introgression, chloroplast transfer, or incomplete lineage sorting to influence organellar phylogeny. Our results improve understanding of the pattern and tempo of diversification in Juniperus, and highlight the utility of reduced-representation sequencing for resolving phylogenetic relationships in non-model organisms with reticulation and recent divergence.
Collapse
Affiliation(s)
- Kathryn A Uckele
- Department of Biology, MS 314, University of Nevada, Reno, Max Fleischmann Agriculture Building, 1664 N Virginia St., Reno, NV 89557, USA.
| | - Robert P Adams
- Baylor University, Utah Lab, 201 N 5500 W, Hurricane, UT 84790, USA.
| | - Andrea E Schwarzbach
- Department of Health and Biomedical Sciences, University of Texas - Rio Grande Valley, 1 W University Drive, Brownsville, TX 78520, USA.
| | - Thomas L Parchman
- Department of Biology, MS 314, University of Nevada, Reno, Max Fleischmann Agriculture Building, 1664 N Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
12
|
Liang H, Zhang Y, Deng J, Gao G, Ding C, Zhang L, Yang R. The Complete Chloroplast Genome Sequences of 14 Curcuma Species: Insights Into Genome Evolution and Phylogenetic Relationships Within Zingiberales. Front Genet 2020; 11:802. [PMID: 32849804 PMCID: PMC7396571 DOI: 10.3389/fgene.2020.00802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Zingiberaceae is taxonomically complex family where species are perennial herb. However, lack of chloroplast genomic information severely hinders our understanding of Zingiberaceae species in the research of evolution and phylogenetic relationships. In this study, the complete chloroplast (cp) genomes of fourteen Curcuma species were assembled and characterized using next-generation sequencing. We compared the genome features, repeat sequences, sequence divergence, and constructed the phylogenetic relationships of the 25 Zingiberaceae species. In each Zingiberaceae species, the 25 complete chloroplast genomes ranging from 155,890 bp (Zingiber spectabile) to 164,101 bp (Lanxangia tsaoko) contained 111 genes consisting of 77 protein coding genes, 4 ribosomal RNAs and 30 transfer RNAs. These chloroplast genomes are similar to most angiosperm that consisted of a four-part circular DNA molecules. Moreover, the characteristics of the long repeats sequences and simple sequence repeats (SSRs) were found. Six divergent hotspots regions (matK-trnk, Rps16-trnQ, petN-psbM, rpl32, ndhA, and ycf1) were identified in the 25 Zingiberaceae chloroplast genomes, which could be potential molecular markers. In addition to Wurfbainia longiligularis, the ψycf1 was discovered among the 25 Zingiberaceae species. The shared protein coding genes from 52 Zingiberales plants and four other family species as out groups were used to construct phylogenetic trees distinguished by maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) and showed that Musaceae was the basal group in Zingiberales, and Curcuma had a close relationship with Stahlianthu. Besides this, Curcuma flaviflora was clustered together with Zingiber. Its distribution area (Southeast Asia) overlaps with the latter. Maybe hybridization occur in related groups within the same region. This may explain why Zingiberaceae species have a complex phylogeny, and more samples and genetic data were necessary to confirm their relationship. This study provide the reliable information and high-quality chloroplast genomes and genome resources for future Zingiberaceae research.
Collapse
Affiliation(s)
- Heng Liang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Yan Zhang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Jiabin Deng
- School of Geography and Tourism, Guizhou Education University, Guiyang, China
| | - Gang Gao
- College of Life Sciences and Food Engineering, Yibin University, Yibin, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
13
|
Estravis-Barcala M, Mattera MG, Soliani C, Bellora N, Opgenoorth L, Heer K, Arana MV. Molecular bases of responses to abiotic stress in trees. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3765-3779. [PMID: 31768543 PMCID: PMC7316969 DOI: 10.1093/jxb/erz532] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 05/05/2023]
Abstract
Trees are constantly exposed to climate fluctuations, which vary with both time and geographic location. Environmental changes that are outside of the physiological favorable range usually negatively affect plant performance and trigger responses to abiotic stress. Long-living trees in particular have evolved a wide spectrum of molecular mechanisms to coordinate growth and development under stressful conditions, thus minimizing fitness costs. The ongoing development of techniques directed at quantifying abiotic stress has significantly increased our knowledge of physiological responses in woody plants. However, it is only within recent years that advances in next-generation sequencing and biochemical approaches have enabled us to begin to understand the complexity of the molecular systems that underlie these responses. Here, we review recent progress in our understanding of the molecular bases of drought and temperature stresses in trees, with a focus on functional, transcriptomic, epigenetic, and population genomic studies. In addition, we highlight topics that will contribute to progress in our understanding of the plastic and adaptive responses of woody plants to drought and temperature in a context of global climate change.
Collapse
Affiliation(s)
- Maximiliano Estravis-Barcala
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, (Consejo Nacional de Investigaciones Científicas y Técnicas- Universidad Nacional del Comahue), San Carlos de Bariloche, Rio Negro, Argentina
| | - María Gabriela Mattera
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| | - Carolina Soliani
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| | - Nicolás Bellora
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, (Consejo Nacional de Investigaciones Científicas y Técnicas- Universidad Nacional del Comahue), San Carlos de Bariloche, Rio Negro, Argentina
| | - Lars Opgenoorth
- Department of Ecology, Philipps University Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, BirmensdorfSwitzerland
| | - Katrin Heer
- Department of Conservation Biology, Philipps University Marburg, Marburg Germany
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
- Correspondence:
| |
Collapse
|
14
|
Unraveling the Chloroplast Genomes of Two Prosopis Species to Identify Its Genomic Information, Comparative Analyses and Phylogenetic Relationship. Int J Mol Sci 2020; 21:ijms21093280. [PMID: 32384622 PMCID: PMC7247323 DOI: 10.3390/ijms21093280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Genus Prosopis (family Fabaceae) are shrubby trees, native to arid and semi-arid regions of Asia, Africa, and America and known for nitrogen fixation. Here, we have sequenced the complete chloroplast (cp) genomes of two Prosopis species (P. juliflora and P. cineraria) and compared them with previously sequenced P. glandulosa, Adenanthera microsperma, and Parkia javanica belonging to the same family. The complete genome sequences of Prosopis species and related species ranged from 159,389 bp (A. microsperma) to 163,677 bp (P. cineraria). The overall GC contents of the genomes were almost the similar (35.9–36.6%). The P. juliflora and P. cineraria genomes encoded 132 and 131 genes, respectively, whereas both the species comprised of 85 protein-coding genes higher than other compared species. About 140, 134, and 129 repeats were identified in P. juliflora, P. cineraria and P. glandulosa cp genomes, respectively. Similarly, the maximum number of simple sequence repeats were determined in P. juliflora (88), P. cineraria (84), and P. glandulosa (78). Moreover, complete cp genome comparison determined a high degree of sequence similarity among P. juliflora, P. cineraria, and P. glandulosa, however some divergence in the intergenic spacers of A. microsperma and Parkia javanica were observed. The phylogenetic analysis showed that P. juliflora is closer to P. cineraria than P. glandulosa.
Collapse
|
15
|
Godbout J, Gros-Louis M, Lamothe M, Isabel N. Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species Populus deltoides. Evol Appl 2020; 13:176-194. [PMID: 31892951 PMCID: PMC6935597 DOI: 10.1111/eva.12854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American Populus deltoides W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of P. deltoides genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for P. deltoides were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.
Collapse
Affiliation(s)
- Julie Godbout
- Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestièreQuébecQCCanada
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | | | - Manuel Lamothe
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | - Nathalie Isabel
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| |
Collapse
|
16
|
Shen TT, Ran JH, Wang XQ. Phylogenomics disentangles the evolutionary history of spruces (Picea) in the Qinghai-Tibetan Plateau: Implications for the design of population genetic studies and species delimitation of conifers. Mol Phylogenet Evol 2019; 141:106612. [DOI: 10.1016/j.ympev.2019.106612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
|
17
|
Shao CC, Shen TT, Jin WT, Mao HJ, Ran JH, Wang XQ. Phylotranscriptomics resolves interspecific relationships and indicates multiple historical out-of-North America dispersals through the Bering Land Bridge for the genus Picea (Pinaceae). Mol Phylogenet Evol 2019; 141:106610. [DOI: 10.1016/j.ympev.2019.106610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/21/2023]
|
18
|
Wang J, Li Y, Li C, Yan C, Zhao X, Yuan C, Sun Q, Shi C, Shan S. Twelve complete chloroplast genomes of wild peanuts: great genetic resources and a better understanding of Arachis phylogeny. BMC PLANT BIOLOGY 2019; 19:504. [PMID: 31744457 PMCID: PMC6862822 DOI: 10.1186/s12870-019-2121-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 11/05/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND The cultivated peanut (Arachis hypogaea) is one of the most important oilseed crops worldwide, however, its improvement is restricted by its narrow genetic base. The highly variable wild peanut species, especially within Sect. Arachis, may serve as a rich genetic source of favorable alleles to peanut improvement; Sect. Arachis is the biggest taxonomic section within genus Arachis and its members also include the cultivated peanut. In order to make good use of these wild resources, the genetic bases and the relationships of the Arachis species need first to be better understood. RESULTS Here, in this study, we have sequenced and/or assembled twelve Arachis complete chloroplast (cp) genomes (eleven from Sect. Arachis). These cp genome sequences enriched the published Arachis cp genome data. From the twelve acquired cp genomes, substantial genetic variation (1368 SNDs, 311 indels) has been identified, which, together with 69 SSR loci that have been identified from the same data set, will provide powerful tools for future explorations. Phylogenetic analyses in our study have grouped the Sect. Arachis species into two major lineages (I & II), this result together with reports from many earlier studies show that lineage II is dominated by AA genome species that are mostly perennial, while lineage I includes species that have more diverse genome types and are mostly annual/biennial. Moreover, the cultivated peanuts and A. monticola that are the only tetraploid (AABB) species within Arachis are nested within the AA genome species-dominated lineage, this result together with the maternal inheritance of chloroplast indicate a maternal origin of the two tetraploid species from an AA genome species. CONCLUSION In summary, we have acquired sequences of twelve complete Arachis cp genomes, which have not only helped us better understand how the cultivated peanut and its close wild relatives are related, but also provided us with rich genetic resources that may hold great potentials for future peanut breeding.
Collapse
Affiliation(s)
- Juan Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Yuan Li
- Computational Biology and Biological Physics, Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, China
| | - Chengren Shi
- Shandong Peanut Research Institute, Qingdao, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
19
|
Ouyang F, Hu J, Wang J, Ling J, Wang Z, Wang N, Ma J, Zhang H, Mao JF, Wang J. Complete plastome sequences of Picea asperata and P. crassifolia and comparative analyses with P. abies and P. morrisonicola. Genome 2019; 62:317-328. [PMID: 30998854 DOI: 10.1139/gen-2018-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Picea asperata and P. crassifolia have sympatric ranges and are closely related, but the differences between these species at the plastome level are unknown. To better understand the patterns of variation among Picea plastomes, the complete plastomes of P. asperata and P. crassifolia were sequenced. Then, the plastomes were compared with the complete plastomes of P. abies and P. morrisonicola, which are closely and distantly related to the focal species, respectively. We also used these sequences to construct phylogenetic trees to determine the relationships among and between the four species as well as additional taxa from Pinaceae and other gymnosperms. Analysis of our sequencing data allowed us to identify 438 single nucleotide polymorphism (SNPs) point mutation events, 95 indel events, four inversion events, and seven highly variable regions, including six gene spacer regions (psbJ-petA, trnT-psaM, trnS-trnD, trnL-rps4, psaC-ccsA, and rps7-trnL) and one gene (ycf1). The highly variable regions are appropriate targets for future use in the phylogenetic reconstructions of closely related, sympatric species of Picea as well as Pinaceae in general.
Collapse
Affiliation(s)
- Fangqun Ouyang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jiwen Hu
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Junchen Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China.,b Northwest Agriculture & Forestry University, Xi'an, P.R. China
| | - Juanjuan Ling
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Zhi Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Nan Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jianwei Ma
- c Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Gansu, P.R. China
| | - Hanguo Zhang
- d State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, P.R. China
| | - Jian-Feng Mao
- e National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Junhui Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| |
Collapse
|
20
|
Alwadani KG, Janes JK, Andrew RL. Chloroplast genome analysis of box-ironbark Eucalyptus. Mol Phylogenet Evol 2019; 136:76-86. [PMID: 30954587 DOI: 10.1016/j.ympev.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
Eucalyptus L'Hérit. (Myrtaceae) is a taxonomically complex and highly speciose genus that dominates much of Australia's woody vegetation. However, very little information is available about the molecular biology and chloroplast diversity of certain groups, such as Eucalyptus section Adnataria, which is found in many woodland habitats of eastern Australia. We report four new complete chloroplast genomes of Eucalyptus, including three genomes from species previously lacking any chloroplast reference sequences. Plastomes of E. albens, E. conica, E. crebra and E. melliodora assembled using a de novo approach were shown to be largely identical to each other, and similar in size and structure to previously published chloroplast genomes from Eucalyptus. A total of 132 genes (114 single-copy genes and 18 duplicated genes in the IR regions) were identified, and shown to be highly conserved in terms of gene order, content and organization. Slightly higher divergence in the intergenic spacers was identified through comparative genomic analyses. Chloroplast sequences of 35 additional individuals representing 12 species were assembled using a reference guided approach. Rates of nucleotide substitution varied among the protein coding genes, with 17 genes under possible positive selection, and 29 invariant genes. Phylogenetic analysis of either the whole reconstructed plastome sequences or the individual genes revealed extreme discordance with expected species boundaries or higher-level relationships. Plastome relationships were better predicted by geography than by nuclear DNA or taxonomic relationships, suggesting a substantial influence of gene flow over and above the effects of incomplete lineage sorting. These results provide resources for future research and valuable insights into the prevalence of interspecific gene flow among Eucalyptus species.
Collapse
Affiliation(s)
- Khawla G Alwadani
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Biology Department, Faculty of Science, Jazan University, Saudi Arabia
| | - Jasmine K Janes
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Biology Department, Faculty of Science and Technology, Vancouver Island University, British Columbia, Canada
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
21
|
Feng S, Ru D, Sun Y, Mao K, Milne R, Liu J. Trans-lineage polymorphism and nonbifurcating diversification of the genus Picea. THE NEW PHYTOLOGIST 2019; 222:576-587. [PMID: 30415488 DOI: 10.1111/nph.15590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Nonbifurcating divergence caused by introgressive hybridization is continuously reported for groups of closely related species. In this study, we aimed to reconstruct the genome-scale classification of deep lineages of the conifer genus Picea, establish their phylogenetic relationships and test the bifurcating hypothesis between deeply branching lineages based on genomic data. We sequenced the transcriptomes of 35 individuals of 27 taxa covering all main lineages of the genus. Four major lineages, comprising three to 12 taxa each, largely consistent with morphological evidence, were recovered across the coalescent and integrated nuclear phylogeny. However, many of the individual gene trees recovered contradict one another. Moreover, the well-supported coalescent tree inferred here differs from previous studies based on various DNA markers, with respect to topology and inter-lineage relationships. We identified the shared polymorphisms between four major lineages. ABBA-BABA tests confirmed the inter-lineage gene flow and thus violated the bifurcating divergence model. Gene flow occurred more frequently between lineages distributed in the same continent than those disjunct between continents. Our results indicate that introgression and nonbifurcating diversification apply, even between deeply branching lineages of the conifer genus Picea.
Collapse
Affiliation(s)
- Shuo Feng
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yongshuai Sun
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Kangshan Mao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JH, UK
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
22
|
Caron H, Molino J, Sabatier D, Léger P, Chaumeil P, Scotti‐Saintagne C, Frigério J, Scotti I, Franc A, Petit RJ. Chloroplast DNA variation in a hyperdiverse tropical tree community. Ecol Evol 2019; 9:4897-4905. [PMID: 31031952 PMCID: PMC6476754 DOI: 10.1002/ece3.5096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression.We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment.Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%).Despite large heterogeneities caused by genus-specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species-rich tropical forests.
Collapse
Affiliation(s)
- Henri Caron
- BIOGECOINRA, Univ. BordeauxCestasFrance
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
| | | | - Daniel Sabatier
- AMAP, IRD, Cirad, CNRS, INRAUniversité de MontpellierMontpellierFrance
| | | | | | - Caroline Scotti‐Saintagne
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
- INRA, UR629 Ecologie des Forêts MéditerranéennesURFMAvignonFrance
| | | | - Ivan Scotti
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
- INRA, UR629 Ecologie des Forêts MéditerranéennesURFMAvignonFrance
| | | | | |
Collapse
|
23
|
Jiang Y, Yang Y, Lu Z, Wan D, Ren G. Interspecific delimitation and relationships among four Ostrya species based on plastomes. BMC Genet 2019; 20:33. [PMID: 30866795 PMCID: PMC6417023 DOI: 10.1186/s12863-019-0733-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Ostrya (Betulaceae) contains eight species and four of them are distributed in China. However, studies based on limited informative sites of several chloroplast markers failed to resolve interspecific delimitation and relationships among the four Chinese species. In this study, we aimed to use the whole chloroplast genomes to address these two issues. RESULTS We assembled and annotated 33 complete chloroplast genomes (plastomes) of the four Chinese species, representing 17 populations across most of their geographical distributions. Each species contained samples of several individuals that cover most of geographic distributions of the species. All plastomes are highly conserved in genome structure and gene order, with a total length of 158-159 kb and 122 genes. Phylogenetic analyses of whole plastomes, non-coding regions and protein-coding genes produced almost the same topological relationships. In contrast to the well-delimitated species boundary inferred from the nuclear ITS sequence variations, three of the four species are non-monophyletic in the plastome trees, which is consistent with previous studies based on a few chloroplast markers. CONCLUSIONS The high incongruence between the ITS and plastome trees may suggest the widespread occurrences of hybrid introgression and incomplete lineage sorting during the divergence of these species. In addition, the plastomes with more informative sites compared with a few chloroplast markers still failed to resolve the phylogenetic relationships of the four species, and further studies involving population genomic data may be needed to better understand their evolutionary histories.
Collapse
Affiliation(s)
- Yanyou Jiang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhiqiang Lu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
24
|
Yang J, Feng L, Yue M, He YL, Zhao GF, Li ZH. Species delimitation and interspecific relationships of the endangered herb genus Notopterygium inferred from multilocus variations. Mol Phylogenet Evol 2019; 133:142-151. [PMID: 30639766 DOI: 10.1016/j.ympev.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 01/29/2023]
Abstract
Species identification and discrimination is the basis of biodiversity research. In general, it is considered that numerous nucleotide variations (e.g., whole chloroplast genomes) can identify species with higher resolution than a few loci, e.g., partial chloroplast or nuclear gene fragments. In this study, we tested this hypothesis by sampling population genetics samples of the endangered herb genus Notopterygium. We sequenced the complete plastomes, five nuclear gene regions, three chloroplast DNA fragments, and a nuclear internal transcribed spacer (nrITS) region for 18 populations sampled throughout most of the geographic ranges of all six Notopterygium species. Species identification analysis showed that four DNA barcodes (matK, rbcL, trnS-trnG, and nrITS) and/or combinations of these markers achieved Notopterygium species discrimination at higher resolution than the general plastomes and nuclear gene sequences. In particular, nrITS had the highest discriminatory power among all of the individual markers. Molecular data sets and morphological evidence indicated that all six Notopterygium species could be reclassified unambiguously to four putative species clades. N. oviforme and N. franchetii had the closest relationship. Molecular dating showed that the origin and divergence of Notopterygium species was significantly associated with geological and climatic fluctuations during the middle of the Pliocene. In conclusion, our results suggest that a few nucleotide variations can achieve species discrimination with higher resolution than numerous plastomes and general nuclear gene fragments when discerning related Notopterygium species.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yan-Ling He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Gui-Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
25
|
Epp LS, Kruse S, Kath NJ, Stoof-Leichsenring KR, Tiedemann R, Pestryakova LA, Herzschuh U. Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling. Sci Rep 2018; 8:17436. [PMID: 30498238 PMCID: PMC6265258 DOI: 10.1038/s41598-018-35550-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/01/2018] [Indexed: 12/01/2022] Open
Abstract
Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.
Collapse
Affiliation(s)
- Laura S Epp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany.
| | - Stefan Kruse
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany
| | - Nadja J Kath
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476, Potsdam, Germany
| | - Kathleen R Stoof-Leichsenring
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany
| | - Ralph Tiedemann
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476, Potsdam, Germany
| | - Luidmila A Pestryakova
- Department for Geography and Biology, North-Eastern Federal University of Yakutsk, Belinskogo 58, 67700, Yakutsk, Russia
| | - Ulrike Herzschuh
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476, Potsdam, Germany
- Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476, Potsdam, Germany
| |
Collapse
|
26
|
Su J, Yan Y, Song J, Li J, Mao J, Wang N, Wang W, Du FK. Recent Fragmentation May Not Alter Genetic Patterns in Endangered Long-Lived Species: Evidence From Taxus cuspidata. FRONTIERS IN PLANT SCIENCE 2018; 9:1571. [PMID: 30429863 PMCID: PMC6220038 DOI: 10.3389/fpls.2018.01571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Forestland fragmentation caused by overexploitation of forest resources can in principle reduce genetic diversity, limit gene flow and eventually lead to species developing strong genetic structure. However, the genetic consequences of recent anthropogenic fragmentation of tree species remain unclear. Taxus cuspidata, which has extremely small populations distributed mainly in Changbai Mt. in Northeast (NE) China, has recently endured severe habitat fragmentation. Here, we investigate the pattern of genetic diversity and structure, identify risk factors, predict the future distribution and finally provide guidelines for the conservation and management of this species. We used three chloroplast and two mitochondrial DNA fragments, which are both paternally inherited in yews but differ in mutation rates, to genotype a total of 265 individuals from 26 populations covering the distribution of the species in China. Both chloroplast and mitochondrial data showed high degrees of genetic diversity, extensive gene flow over the entire geographical range and historical stability of both effective population size and distribution of the species. However, ecological niche modeling suggests a decrease in suitable areas for this species by the years 2050 and 2070. The maintenance of high genetic diversity and the existence of sufficient gene flow suggest that recent fragmentation has not affected the genetic composition of the long-lived tree T. cuspidata. However, severe impacts of anthropogenic activities are already threatening the species. Conservation and management strategies should be implemented in order to protect the remnant populations.
Collapse
Affiliation(s)
- Jinyuan Su
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yu Yan
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Jia Song
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Junqing Li
- The College of Forestry, Beijing Forestry University, Beijing, China
| | - Jianfeng Mao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Nian Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Wenting Wang
- School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou, China
| | - Fang K. Du
- The College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Jia Y, Zhu J, Wu Y, Fan WB, Zhao GF, Li ZH. Effects of Geological and Environmental Events on the Diversity and Genetic Divergence of Four Closely Related Pines: Pinus koraiensis, P. armandii, P. griffithii, and P. pumila. FRONTIERS IN PLANT SCIENCE 2018; 9:1264. [PMID: 30210523 PMCID: PMC6121107 DOI: 10.3389/fpls.2018.01264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
The effects of mountain uplift and environmental oscillations on nucleotide variability and species divergence remain largely unknown in East Asia. In this study, based on multiple nuclear DNA markers, we investigated the levels and patterns of nucleotide diversity and interspecific divergence in four closely related pines in China, i.e., Pinus koraiensis, P. armandii, P. griffithii, and P. pumila. The four pine taxa shared low levels of nucleotide polymorphisms at the species level. P. pumila had the highest silent nucleotide diversity (πsil = 0.00661) whereas P. griffithii had the lowest (πsil = 0.00175), while the levels of genetic polymorphism in P. armandii (πsil = 0.00508) and P. koraiensis (πsil = 0.00652) were intermediate between the other two species. Population genetic structure analysis showed that variations primarily existed within populations of the four pine species, presumably due to habitat fragmentation or the island-like distributions of Pinus species. Population divergence (FST) analysis showed that the genetic divergence between P. griffithii and P. koraiensis was much greater than that between P. koraiensis and the other two pines species. Isolation-with-migration analysis suggested that asymmetric gene flow had occurred between any two pairs of pine species. Phylogenetic analyses indicated that the four allied species split into two groups about 1.37 million years ago, where P. armandii and P. pumila were closer and clustered as sister species, whereas P. koraiensis and P. griffithii were clustered on another branch. Our results and those obtained in previous studies suggest that mountain uplift and geological climate oscillations may have led to the patterns of genetic divergence and nucleotide variations in these four pine species.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
28
|
From America to Eurasia: a multigenomes history of the genus Abies. Mol Phylogenet Evol 2018; 125:14-28. [DOI: 10.1016/j.ympev.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022]
|
29
|
Zhang L, Xi Z, Wang M, Guo X, Ma T. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecol Evol 2018; 8:7817-7823. [PMID: 30250665 PMCID: PMC6145263 DOI: 10.1002/ece3.4261] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/27/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022] Open
Abstract
Phylogenetic relationships and lineage diversification of the family Salicaceae sensu lato (s.l.) remain poorly understood. In this study, we examined phylogenetic relationships between 42 species from six genera based on the complete plastomes. Phylogenetic analyses of 77 protein coding genes of the plastomes produced good resolution of the interrelationships among most sampled species and the recovered clades. Of the sampled genera from the family, Flacourtia was identified as the most basal and the successive clades comprised both Itoa and Poliothyrsis, Idesia, two genera of the Salicaceae sensu stricto (s.s.) (Populus and Salix). Five major subclades were recovered within the Populus clade. These subclades and their interrelationships are largely inconsistent with morphological classifications and molecular phylogeny based on nuclear internal transcribed spacer sequence variations. Two major subclades were identified for the Salix clade. Molecular dating suggested that species diversification of the major subclades in the Populus and Salix clades occurred mainly within the recent Pliocene. In addition, we found that the rpl32 gene was lost and the rps7 gene evolved into a pseudogene multiple times in the sampled genera of the Salicaceae s.l. Compared with previous studies, our results provide a well-resolved phylogeny from the perspective of the plastomes.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Zhenxiang Xi
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Mingcheng Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Xinyi Guo
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Tao Ma
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| |
Collapse
|
30
|
Zhang X, Hu Y, Liu M, Lang T. Optimization of Assembly Pipeline may Improve the Sequence of the Chloroplast Genome in Quercus spinosa. Sci Rep 2018; 8:8906. [PMID: 29891987 PMCID: PMC5995970 DOI: 10.1038/s41598-018-27298-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/14/2018] [Indexed: 11/23/2022] Open
Abstract
Obtaining chloroplast (cp) genome sequence is necessary for studying physiological roles in plants. However, it is difficult to use traditional sequencing methods to get cp genome sequences because of the complex procedures of preparing templates. With the advent of next-generation sequencing technology, massive genome sequences can be produced. Thus, a good pipeline to assemble next-generation sequence reads with optimized k-mer length is essential to get whole cp genome sequences. Moreover, adjustment of other parameters is also very important, especially for the assembly of the cp genome. In this study, we developed a pipeline to generate the cp genome for Quercus spinosa. When Quercus rubra was used as a reference, we achieved coverage of 97.75% after optimizing k-mer length as well as other parameters. The efficiency of the pipeline makes it a useful method for cp genome construction in plants. It also provides great perspective on the analysis of cp genome characteristics and evolution.
Collapse
Affiliation(s)
- Xiangzhou Zhang
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P.R. China
| | - Yong Hu
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P.R. China
| | - Mei Liu
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P.R. China
| | - Tiange Lang
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P.R. China.
| |
Collapse
|
31
|
Khan G, Zhang F, Gao Q, Fu P, Zhang Y, Chen S. Spiroides shrubs on Qinghai-Tibetan Plateau: Multilocus phylogeography and palaeodistributional reconstruction of Spiraea alpina and S. Mongolica (Rosaceae). Mol Phylogenet Evol 2018; 123:137-148. [PMID: 29462675 DOI: 10.1016/j.ympev.2018.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/31/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Abstract
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification. Using a multilocus approach, here we assessed the influence of Qinghai-Tibetan Plateau (QTP) uplift and fluctuating regional climate on genetic diversity of two sister spiroides shrubs, Spiraea alpina and S. mongolica. Combined with palaeodistributional reconstruction modelling, we investigated the current and past-predicted distribution of these species under different climatic episodes. The study demonstrated that continuous pulses of retreat and expansion during last glacial-interglacial episodes, combined with the uplifting of QTP shaped the current distribution of these species. All the populations showed high level of genetic diversity based on both cpDNA and SSR markers. The average gene diversity within populations based on cpDNA markers was 0.383 ± 0.052 for S. alpina and 0.477 ± 0.048 for S. mongolica. The observed and expected heterozygosities based on SSR for both Spiraea alpina and S. mongolicawere HE(0.72-0.90)/HO(0.35-0.78) and HE(0.77-0.92)/HO(0.47-0.77) respectively. Palaeodistributional reconstruction indicated species' preferences at southeastern edge of the plateau during last glacial maximum, at higher altitude areas of QTP and range expansion to central plateau during the interglacial episodes. Assignment tests in STRUCTURE, discriminant analysis of principal coordinates and Immigrants analysis in GENECLASS based on nuclear SSR markers did not support the hypothesis of gene flow between both the species. However, maximum likelihood approach based on cpDNA showed sharing of haplotypes between both species.
Collapse
Affiliation(s)
- Gulzar Khan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
| | - Qingbo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Pengcheng Fu
- School of Life Sciences, Luoyang Normal University, Luoyang 471022, China.
| | - Yu Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
32
|
Genetic homogenization of the nuclear ITS loci across two morphologically distinct gentians in their overlapping distributions in the Qinghai-Tibet Plateau. Sci Rep 2016; 6:34244. [PMID: 27687878 PMCID: PMC5043236 DOI: 10.1038/srep34244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Interspecific hybridization and introgression can lead to partial genetic homogenization at certain neutral loci between morphologically distinct species and may obscure the species delimitation using nuclear genes. In this study, we investigated this phenomenon through population genetic survey of two alpine plants (Gentiana siphonantha and G. straminea) in the Qinghai-Tibet Plateau, where the distributions of two species are partly overlapped. We identified two clusters of chloroplast DNA haplotypes which correspond to the two species, and three clusters of ITS ribotypes. In addition to clusters specific to each species, the third ITS cluster, which was most likely derived from hybridization between the other two clusters and subsequent recombination and concerted evolution, was widely shared by two species in their adjacent areas. In contrast to the morphological distinctiveness of the two species, interspecific gene flow possibly led to genetic homogenization at their ITS loci. The new ITS lineage recovered for species in adjacent areas is distinctly different from original lineages found in allopatric areas. These findings may have general implications for our understanding of cryptic changes at some genetic loci caused by interspecific gene flow in the history, and they indicate that species delimitation should be based on a combination of both nuclear and chloroplast DNA sequence variations.
Collapse
|
33
|
Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity (Edinb) 2016; 118:211-220. [PMID: 27649619 PMCID: PMC5315522 DOI: 10.1038/hdy.2016.72] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/01/2023] Open
Abstract
Genetic variation shared between closely related species may be due to retention of ancestral polymorphisms because of incomplete lineage sorting (ILS) and/or introgression following secondary contact. It is challenging to distinguish ILS and introgression because they generate similar patterns of shared genetic diversity, but this is nonetheless essential for inferring accurately the history of species with overlapping distributions. To address this issue, we sequenced 33 independent intron loci across the genome of two closely related pine species (Pinus massoniana Lamb. and Pinus hwangshanensis Hisa) from Southeast China. Population structure analyses revealed that the species showed slightly more admixture in parapatric populations than in allopatric populations. Levels of interspecific differentiation were lower in parapatry than in allopatry. Approximate Bayesian computation suggested that the most likely speciation scenario explaining this pattern was a long period of isolation followed by a secondary contact. Ecological niche modeling suggested that a gradual range expansion of P. hwangshanensis during the Pleistocene climatic oscillations could have been the cause of the overlap. Our study therefore suggests that secondary introgression, rather than ILS, explains most of the shared nuclear genomic variation between these two species and demonstrates the complementarity of population genetics and ecological niche modeling in understanding gene flow history. Finally, we discuss the importance of contrasting results from markers with different dynamics of migration, namely nuclear, chloroplast and mitochondrial DNA.
Collapse
|
34
|
Bi H, Yue W, Wang X, Zou J, Li L, Liu J, Sun Y. Late Pleistocene climate change promoted divergence between Picea asperata and P. crassifolia on the Qinghai-Tibet Plateau through recent bottlenecks. Ecol Evol 2016; 6:4435-44. [PMID: 27386086 PMCID: PMC4930991 DOI: 10.1002/ece3.2230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 11/07/2022] Open
Abstract
Divergence during the early stage of speciation can be driven by a population bottleneck via reduced gene flow and enhanced lineage sorting. In this study, we aimed to examine whether such bottlenecks occurred during the initial speciation of two closely related spruce species Picea asperata and P. crassifolia occurring on the Qinghai–Tibet Plateau (QTP). We analyzed sequences of three chloroplast, two mitochondrial DNA fragments and a further 13 nuclear loci from 216 individuals of the two species. Both species showed a low level of genetic diversity in contrast to other congeners occurring in the QTP and adjacent regions. The estimated population sizes of P. asperata and P. crassifolia are less than the ancestral population size before splitting. These results together with multiple statistical tests (Tajima's D, Fu and Li's D* and F*) suggest that these two species underwent recent bottlenecks. Based on approximate Bayesian computation (ABC), we also determined that the period of the population shrinkage was consistent with the interspecific divergence during the late Pleistocene. The reduced population sizes and the divergent selection may together have triggered the initial divergence under high gene flow between these two species. Our results therefore highlight the importance of climatic oscillations during the late Pleistocene in promoting speciation through changing demographic sizes of the ancestral species on the QTP and in adjacent regions.
Collapse
Affiliation(s)
- Hao Bi
- MOE Key Laboratory for Bio-resources and Eco-environment College of Life Sciences Sichuan University Chengdu 610065 China
| | - Wei Yue
- State Key Laboratory of Grassland Agro-ecosystem College of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Xi Wang
- State Key Laboratory of Grassland Agro-ecosystem College of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Jiabin Zou
- State Key Laboratory of Grassland Agro-ecosystem College of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Lili Li
- State Key Laboratory of Grassland Agro-ecosystem College of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Jianquan Liu
- MOE Key Laboratory for Bio-resources and Eco-environment College of Life Sciences Sichuan University Chengdu 610065 China; State Key Laboratory of Grassland Agro-ecosystem College of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Yongshuai Sun
- MOE Key Laboratory for Bio-resources and Eco-environment College of Life Sciences Sichuan University Chengdu 610065 China; Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Mengla 666303 China
| |
Collapse
|
35
|
Tsuda Y, Chen J, Stocks M, Källman T, Sønstebø JH, Parducci L, Semerikov V, Sperisen C, Politov D, Ronkainen T, Väliranta M, Vendramin GG, Tollefsrud MM, Lascoux M. The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): cryptic refugia as stepping stones to the west? Mol Ecol 2016; 25:2773-89. [PMID: 27087633 DOI: 10.1111/mec.13654] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/23/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
Abstract
Boreal species were repeatedly exposed to ice ages and went through cycles of contraction and expansion while sister species alternated periods of contact and isolation. The resulting genetic structure is consequently complex, and demographic inferences are intrinsically challenging. The range of Norway spruce (Picea abies) and Siberian spruce (Picea obovata) covers most of northern Eurasia; yet their geographical limits and histories remain poorly understood. To delineate the hybrid zone between the two species and reconstruct their joint demographic history, we analysed variation at nuclear SSR and mitochondrial DNA in 102 and 88 populations, respectively. The dynamics of the hybrid zone was analysed with approximate Bayesian computation (ABC) followed by posterior predictive structure plot reconstruction and the presence of barriers across the range tested with estimated effective migration surfaces. To estimate the divergence time between the two species, nuclear sequences from two well-separated populations of each species were analysed with ABC. Two main barriers divide the range of the two species: one corresponds to the hybrid zone between them, and the other separates the southern and northern domains of Norway spruce. The hybrid zone is centred on the Urals, but the genetic impact of Siberian spruce extends further west. The joint distribution of mitochondrial and nuclear variation indicates an introgression of mitochondrial DNA from Norway spruce into Siberian spruce. Overall, our data reveal a demographic history where the two species interacted frequently and where migrants originating from the Urals and the West Siberian Plain recolonized northern Russia and Scandinavia using scattered refugial populations of Norway spruce as stepping stones towards the west.
Collapse
Affiliation(s)
- Yoshiaki Tsuda
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.,CNR, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Michael Stocks
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Thomas Källman
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | | | - Laura Parducci
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Vladimir Semerikov
- Urals Division of the Russian Academy of Sciences, Institute of Plant and Animal Ecology, 8 Marta Str., 202, 620144, Ekaterinburg, Russia
| | - Christoph Sperisen
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmendsdorf, Switzerland
| | - Dmitry Politov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin str. 3, 119991, Moscow, Russia
| | - Tiina Ronkainen
- Environmental Change Research Unit (ECRU), Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014, Helsinki, Finland
| | - Minna Väliranta
- Environmental Change Research Unit (ECRU), Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014, Helsinki, Finland
| | - Giovanni Giuseppe Vendramin
- CNR, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
36
|
Feng L, Zheng QJ, Qian ZQ, Yang J, Zhang YP, Li ZH, Zhao GF. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27891142 DOI: 10.3389/fgls.2016.01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides, and Quercus rehderiana) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.
Collapse
Affiliation(s)
- Li Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Qi-Jian Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Zeng-Qiang Qian
- College of Life Sciences, Shaanxi Normal University Xi'an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Yan-Ping Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| | - Gui-Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University Xi'an, China
| |
Collapse
|
37
|
Feng L, Zheng QJ, Qian ZQ, Yang J, Zhang YP, Li ZH, Zhao GF. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions. FRONTIERS IN PLANT SCIENCE 2016; 7:1688. [PMID: 27891142 PMCID: PMC5104984 DOI: 10.3389/fpls.2016.01688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides, and Quercus rehderiana) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.
Collapse
Affiliation(s)
- Li Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Qi-Jian Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Zeng-Qiang Qian
- College of Life Sciences, Shaanxi Normal UniversityXi'an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Yan-Ping Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
| | - Gui-Fang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest UniversityXi'an, China
- *Correspondence: Gui-Fang Zhao
| |
Collapse
|
38
|
Mitochondrial introgression and complex biogeographic history of the genus Picea. Mol Phylogenet Evol 2015; 93:63-76. [DOI: 10.1016/j.ympev.2015.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/18/2015] [Accepted: 07/25/2015] [Indexed: 11/18/2022]
|
39
|
Molecular identification and allopatric divergence of the white pine species in China based on the cytoplasmic DNA variation. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Yang L, Liu ZL, Li J, Dyer RJ. Genetic structure of Pinus henryi and Pinus tabuliformis: Natural landscapes as significant barriers to gene flow among populations. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Zhao YJ, Gong X. Genetic divergence and phylogeographic history of two closely related species (Leucomeris decora and Nouelia insignis) across the 'Tanaka Line' in Southwest China. BMC Evol Biol 2015; 15:134. [PMID: 26153437 PMCID: PMC4495643 DOI: 10.1186/s12862-015-0374-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/06/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Leucomeris decora and Nouelia insignis (Asteraceae) are narrowly and allopatrically distributed species, separated by the important biogeographic boundary Tanaka Line in Southwest China. Previous morphological, cytogenetic and molecular studies suggested that L. decora is sister to N. insignis. However, it is less clear how the two species diverged, whether in full isolation or occurring gene flow across the Tanaka Line. Here, we performed a molecular study at the population level to characterize genetic differentiation and decipher phylogeographic history in two closely related species based on variation examined in plastid and nuclear DNAs using a coalescent-based approach. RESULTS These morphologically distinct species share plastid DNA (cpDNA) haplotypes. In contrast, Bayesian analysis of nuclear DNA (nDNA) uncovered two distinct clusters corresponding to L. decora and N. insignis. Based on the IMa analysis, no strong indication of migration was detected based on both cpDNA and nDNA sequences. The molecular data pointed to a major west-east split in nuclear DNA between the two species corresponding with the Tanaka Line. The coalescent time estimate for all cpDNA haplotypes dated to the Mid-Late Pleistocene. The estimated demographic parameters showed that the population size of L. decora was similar to that of N. insignis and both experienced limited demographic fluctuations recently. CONCLUSIONS The study revealed comprehensive species divergence and phylogeographic histories of N. insignis and L. decora divided by the Tanaka Line. The phylogeographic pattern inferred from cpDNA reflected ancestrally shared polymorphisms without post-divergence gene flow between species. The marked genealogical lineage divergence in nDNA provided some indication of Tanaka Line for its role as a barrier to plant dispersal, and lent support to its importance in promoting strong population structure and allopatric divergence.
Collapse
Affiliation(s)
- Yu-Juan Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
42
|
Wang Z, Ji M, Deng J, Milne RI, Ran J, Zhang Q, Fan Z, Zhang X, Li J, Huang H, Cheng D, Niklas KJ. A theoretical framework for whole-plant carbon assimilation efficiency based on metabolic scaling theory: a test case using Picea seedlings. TREE PHYSIOLOGY 2015; 35:599-607. [PMID: 25939866 DOI: 10.1093/treephys/tpv030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Simultaneous and accurate measurements of whole-plant instantaneous carbon-use efficiency (ICUE) and annual total carbon-use efficiency (TCUE) are difficult to make, especially for trees. One usually estimates ICUE based on the net photosynthetic rate or the assumed proportional relationship between growth efficiency and ICUE. However, thus far, protocols for easily estimating annual TCUE remain problematic. Here, we present a theoretical framework (based on the metabolic scaling theory) to predict whole-plant annual TCUE by directly measuring instantaneous net photosynthetic and respiratory rates. This framework makes four predictions, which were evaluated empirically using seedlings of nine Picea taxa: (i) the flux rates of CO(2) and energy will scale isometrically as a function of plant size, (ii) whole-plant net and gross photosynthetic rates and the net primary productivity will scale isometrically with respect to total leaf mass, (iii) these scaling relationships will be independent of ambient temperature and humidity fluctuations (as measured within an experimental chamber) regardless of the instantaneous net photosynthetic rate or dark respiratory rate, or overall growth rate and (iv) TCUE will scale isometrically with respect to instantaneous efficiency of carbon use (i.e., the latter can be used to predict the former) across diverse species. These predictions were experimentally verified. We also found that the ranking of the nine taxa based on net photosynthetic rates differed from ranking based on either ICUE or TCUE. In addition, the absolute values of ICUE and TCUE significantly differed among the nine taxa, with both ICUE and temperature-corrected ICUE being highest for Picea abies and lowest for Picea schrenkiana. Nevertheless, the data are consistent with the predictions of our general theoretical framework, which can be used to access annual carbon-use efficiency of different species at the level of an individual plant based on simple, direct measurements. Moreover, we believe that our approach provides a way to cope with the complexities of different ecosystems, provided that sufficient measurements are taken to calibrate our approach to that of the system being studied.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Mingfei Ji
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jianming Deng
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Jinzhi Ran
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Qiang Zhang
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Zhexuan Fan
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiaowei Zhang
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jiangtao Li
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Heng Huang
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Dongliang Cheng
- College of Geographical Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Karl J Niklas
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Cinget B, de Lafontaine G, Gérardi S, Bousquet J. Integrating phylogeography and paleoecology to investigate the origin and dynamics of hybrid zones: insights from two widespread North American firs. Mol Ecol 2015; 24:2856-70. [DOI: 10.1111/mec.13194] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Benjamin Cinget
- Canada Research Chair in Forest and Environmental Genomics; Centre for Forest Research and Institute for Systems and Integrative Biology; Université Laval; 1030 Avenue de la Médecine Québec QC Canada G1V0A6
| | - Guillaume de Lafontaine
- Canada Research Chair in Forest and Environmental Genomics; Centre for Forest Research and Institute for Systems and Integrative Biology; Université Laval; 1030 Avenue de la Médecine Québec QC Canada G1V0A6
| | - Sébastien Gérardi
- Canada Research Chair in Forest and Environmental Genomics; Centre for Forest Research and Institute for Systems and Integrative Biology; Université Laval; 1030 Avenue de la Médecine Québec QC Canada G1V0A6
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics; Centre for Forest Research and Institute for Systems and Integrative Biology; Université Laval; 1030 Avenue de la Médecine Québec QC Canada G1V0A6
| |
Collapse
|
44
|
Cinget B, Gérardi S, Beaulieu J, Bousquet J. Less pollen-mediated gene flow for more signatures of glacial lineages: congruent evidence from balsam fir cpDNA and mtDNA for multiple refugia in eastern and central North America. PLoS One 2015; 10:e0122815. [PMID: 25849816 PMCID: PMC4388536 DOI: 10.1371/journal.pone.0122815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
The phylogeographic structure and postglacial history of balsam fir (Abies balsamea), a transcontinental North American boreal conifer, was inferred using mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) markers. Genetic structure among 107 populations (mtDNA data) and 75 populations (cpDNA data) was analyzed using Bayesian and genetic distance approaches. Population differentiation was high for mtDNA (dispersed by seeds only), but also for cpDNA (dispersed by seeds and pollen), indicating that pollen gene flow is more restricted in balsam fir than in other boreal conifers. Low cpDNA gene flow in balsam fir may relate to low pollen production due to the inherent biology of the species and populations being decimated by recurrent spruce budworm epidemics, and/or to low dispersal of pollen grains due to their peculiar structural properties. Accordingly, a phylogeographic structure was detected using both mtDNA and cpDNA markers and population structure analyses supported the existence of at least five genetically distinct glacial lineages in central and eastern North America. Four of these would originate from glacial refugia located south of the Laurentide ice sheet, while the last one would have persisted in the northern Labrador region. As expected due to reduced pollen-mediated gene flow, congruence between the geographic distribution of mtDNA and cpDNA lineages was higher than in other North American conifers. However, concordance was not complete, reflecting that restricted but nonetheless detectable cpDNA gene flow among glacial lineages occurred during the Holocene. As a result, new cpDNA and mtDNA genome combinations indicative of cytoplasmic genome capture were observed.
Collapse
Affiliation(s)
- Benjamin Cinget
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Wood and Forest Sciences, Laval University, Québec, Québec, Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Wood and Forest Sciences, Laval University, Québec, Québec, Canada
| | - Jean Beaulieu
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Wood and Forest Sciences, Laval University, Québec, Québec, Canada
- Natural Resources Canada, Canadian Wood Fibre Centre, Canadian Wood Fibre Centre, Natural Resources Canada, Québec, Québec, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Wood and Forest Sciences, Laval University, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
45
|
Aizawa M, Yoshimaru H, Takahashi M, Kawahara T, Sugita H, Saito H, Sabirov RN. Genetic structure of Sakhalin spruce (Picea glehnii) in northern Japan and adjacent regions revealed by nuclear microsatellites and mitochondrial gene sequences. JOURNAL OF PLANT RESEARCH 2015; 128:91-102. [PMID: 25421922 DOI: 10.1007/s10265-014-0682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/09/2014] [Indexed: 06/04/2023]
Abstract
The genetic structure of Sakhalin spruce (Picea glehnii) was studied across the natural range of the species, including two small isolated populations in south Sakhalin and Hayachine, by using six microsatellite loci and maternally inherited mitochondrial gene sequences. We also analyzed P. jezoensis, a sympatric spruce in the range. Genetic diversity of P. glehnii was higher in central Hokkaido and the lowest in the Hayachine. Bayesian clustering and principal coordinate analysis by using the microsatellites indicated that the Hayachine was clearly distinct from other populations, implying that it had undergone strong genetic drift since the last glacial period. P. glehnii harbored four mitochondrial haplotypes, two of which were shared with P. jezoensis. One of the two was observed without geographical concentration, suggesting its derivation from ancestral polymorphism. Another was observed in south Sakhalin and in P. jezoensis across Sakhalin. The Bayesian clustering--by using four microsatellite loci, including P. jezoensis populations--indicated unambiguous species delimitation, but with possible admixture of P. jezoensis genes into P. glehnii in south Sakhalin, where P. glehnii is abundantly overwhelmed by P. jezoensis; this might explain the occurrence of introgression of the haplotype of P. jezoensis into P. glehnii.
Collapse
Affiliation(s)
- Mineaki Aizawa
- Department of Forest Science, Faculty of Agriculture, Utsunomiya University, 350, Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan,
| | | | | | | | | | | | | |
Collapse
|
46
|
Bai WN, Wang WT, Zhang DY. Contrasts between the phylogeographic patterns of chloroplast and nuclear DNA highlight a role for pollen-mediated gene flow in preventing population divergence in an East Asian temperate tree. Mol Phylogenet Evol 2014; 81:37-48. [DOI: 10.1016/j.ympev.2014.08.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
47
|
Gaudeul M, Gardner MF, Thomas P, Ennos RA, Hollingsworth PM. Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia: nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species. BMC Evol Biol 2014; 14:171. [PMID: 25189104 PMCID: PMC4182765 DOI: 10.1186/s12862-014-0171-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia. RESULTS The species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations. CONCLUSIONS The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives.
Collapse
|
48
|
Wang CB, Wang T, Su YJ. Phylogeography of Cephalotaxus oliveri (Cephalotaxaceae) in relation to habitat heterogeneity, physical barriers and the uplift of the Yungui Plateau. Mol Phylogenet Evol 2014; 80:205-16. [PMID: 25160902 DOI: 10.1016/j.ympev.2014.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
Abstract
Habitat heterogeneity, physical barriers, and the uplift of the Yungui Plateau were found to deeply affect the phylogeographic pattern and evolutionary history of Cephalotaxus oliveri, a perennial conifer endemic to China. In this study, we explored the phylogeography using three chloroplast sequences (trnL-trnF, trnT-trnD and atpB-rbcL) in 22 natural populations of C. oliveri distributed throughout its range. The Yungui Plateau populations of C. oliveri were revealed to origin ca. 9.15Ma by molecular clock estimation, which is consistent with rapid uplift of the Qinghai-Tibetan Plateau (QTP) ca. 8-10Ma. Additionally, geological effects of the Yungui Plateau were suggested to promote the rapid intra-specific differentiation of C. oliveri in the Pliocene and Early Pleistocene. The relatively low level of genetic diversity (h=0.719, θ=1.17×10(-3)) and high population differentiation (NST=0.771 and GST=0.642) implied restricted gene flow among populations, which was confirmed by the Nested Clade Analysis (NCA). Mismatch distribution and haplotypes network provided evidences of recent demographic population expansion. Furthermore, the statistical dispersal-vicariance analysis indicated that the center of origin was in Central China. The comparison of haplotype distribution patterns indicated that the regions of HNHPS and HBLD were the potential refugia during the Pleistocene ice ages. Our results highlighted that habitat heterogeneity and physical barriers presenting in a species range can predict genetic patterns.
Collapse
Affiliation(s)
- C B Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - T Wang
- College of Life Science, South China Agricultural University, Guangzhou 510642, China.
| | - Y J Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China; State Key Laboratory of Biocontrol Shenzhen R&D Center, Shenzhen 518057, China; Institute for Technology Research and Innovation of Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
49
|
Semerikova SA, Semerikov VL. Mitochondrial DNA variation and reticulate evolution of the genus Abies. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414040139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Lu X, Xu H, Li Z, Shang H, Adams RP, Mao K. Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers. Biochem Genet 2013; 52:181-202. [PMID: 24292698 DOI: 10.1007/s10528-013-9638-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/02/2013] [Indexed: 11/27/2022]
Abstract
Understanding the extent and distribution of genetic diversity is crucial for the conservation and management of endangered species. Cupressus chengiana, C. duclouxiana, C. gigantea, and C. funebris are four ecologically and economically important species in China. We investigated their genetic diversity, population structure, and extant effective population size (35 populations, 484 individuals) employing six pairs of nuclear microsatellite markers (selected from 53). Their genetic diversity is moderate among conifers, and genetic differentiation among populations is much lower in C. gigantea than in the other three species; the estimated effective population size was largest for C. chengiana, at 1.70, 2.91, and 3.91 times the estimates for C. duclouxiana, C. funebris, and C. gigantea, respectively. According to Bayesian clustering analysis, the most plausible population subdivision scheme within species is two groups in C. chengiana, three groups in C. duclouxiana, and a single group for both C. funebris and C. gigantea. We propose a conservation strategy for these cypress species.
Collapse
Affiliation(s)
- Xu Lu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | | | | | | | | | | |
Collapse
|