1
|
Li H, Huang X, Zhan A. Context-dependent antioxidant defense system (ADS)-based stress memory in response to recurrent environmental challenges in congeneric invasive species. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:315-330. [PMID: 38827126 PMCID: PMC11136907 DOI: 10.1007/s42995-024-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/01/2024] [Indexed: 06/04/2024]
Abstract
Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities, imposing pressures on marine species. To withstand recurring environmental challenges, marine organisms, especially benthic species lacking behavioral choices to select optimal habitats, have to utilize well-established strategies such as the antioxidant defense system (ADS) to ensure their survival. Therefore, understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges. Here we conducted a comparative analysis of the physiological and transcriptional responses based on the ADS during two rounds of 'hypersalinity-recovery' challenges in two model congeneric invasive ascidians, Ciona robusta and C. savignyi. Our results demonstrated that C. savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level, while C. robusta demonstrated heightened responses at the transcriptional level. We observed distinct transcriptional responses, particularly in the utilization of two superoxide dismutase (SOD) isoforms. Both Ciona species developed physiological stress memory with elevated total SOD (T-SOD) and glutathione (GSH) responses, while only C. robusta demonstrated transcriptional stress memory. The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species. These findings support the 'context-dependent stress memory hypothesis', emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges. Our results enhance our understanding of the mechanisms of environmental challenge management in marine species, particularly those related to the ADS. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00228-y.
Collapse
Affiliation(s)
- Hanxi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
2
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
3
|
Chen Y, Ni P, Fu R, Murphy KJ, Wyeth RC, Bishop CD, Huang X, Li S, Zhan A. (Epi)genomic adaptation driven by fine geographical scale environmental heterogeneity after recent biological invasions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2772. [PMID: 36316814 DOI: 10.1002/eap.2772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Elucidating processes and mechanisms involved in rapid local adaptation to varied environments is a poorly understood but crucial component in management of invasive species. Recent studies have proposed that genetic and epigenetic variation could both contribute to ecological adaptation, yet it remains unclear on the interplay between these two components underpinning rapid adaptation in wild animal populations. To assess their respective contributions to local adaptation, we explored epigenomic and genomic responses to environmental heterogeneity in eight recently colonized ascidian (Ciona intestinalis) populations at a relatively fine geographical scale. Based on MethylRADseq data, we detected strong patterns of local environment-driven DNA methylation divergence among populations, significant epigenetic isolation by environment (IBE), and a large number of local environment-associated epigenetic loci. Meanwhile, multiple genetic analyses based on single nucleotide polymorphisms (SNPs) showed genomic footprints of divergent selection. In addition, for five genetically similar populations, we detected significant methylation divergence and local environment-driven methylation patterns, indicating the strong effects of local environments on epigenetic variation. From a functional perspective, a majority of functional genes, Gene Ontology (GO) terms, and biological pathways were largely specific to one of these two types of variation, suggesting partial independence between epigenetic and genetic adaptation. The methylation quantitative trait loci (mQTL) analysis showed that the genetic variation explained only 18.67% of methylation variation, further confirming the autonomous relationship between these two types of variation. Altogether, we highlight the complementary interplay of genetic and epigenetic variation involved in local adaptation, which may jointly promote populations' rapid adaptive capacity and successful invasions in different environments. The findings here provide valuable insights into interactions between invaders and local environments to allow invasive species to rapidly spread, thus contributing to better prediction of invasion success and development of management strategies.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kieran J Murphy
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Cory D Bishop
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Huang X, Li H, Shenkar N, Zhan A. Multidimensional plasticity jointly contributes to rapid acclimation to environmental challenges during biological invasions. RNA (NEW YORK, N.Y.) 2023; 29:675-690. [PMID: 36810233 PMCID: PMC10159005 DOI: 10.1261/rna.079319.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/01/2023] [Indexed: 05/06/2023]
Abstract
Rapid plastic response to environmental changes, which involves extremely complex underlying mechanisms, is crucial for organismal survival during many ecological and evolutionary processes such as those in global change and biological invasions. Gene expression is among the most studied molecular plasticity, while co- or posttranscriptional mechanisms are still largely unexplored. Using a model invasive ascidian Ciona savignyi, we studied multidimensional short-term plasticity in response to hyper- and hyposalinity stresses, covering the physiological adjustment, gene expression, alternative splicing (AS), and alternative polyadenylation (APA) regulations. Our results demonstrated that rapid plastic response varied with environmental context, timescales, and molecular regulatory levels. Gene expression, AS, and APA regulations independently acted on different gene sets and corresponding biological functions, highlighting their nonredundant roles in rapid environmental adaptation. Stress-induced gene expression changes illustrated the use of a strategy of accumulating free amino acids under high salinity and losing/reducing them during low salinity to maintain the osmotic homoeostasis. Genes with more exons were inclined to use AS regulations, and isoform switches in functional genes such as SLC2a5 and Cyb5r3 resulted in enhanced transporting activities by up-regulating the isoforms with more transmembrane regions. The extensive 3'-untranslated region (3'UTR) shortening through APA was induced by both salinity stresses, and APA regulation predominated transcriptomic changes at some stages of stress response. The findings here provide evidence for complex plastic mechanisms to environmental changes, and thereby highlight the importance of systemically integrating different levels of regulatory mechanisms in studying initial plasticity in evolutionary trajectories.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing 100085, China
| | - Hanxi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel-Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel-Aviv, Israel
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| |
Collapse
|
5
|
Population genetic structure of a recent insect invasion: a gall midge, Asynapta groverae (Diptera: Cecidomyiidae) in South Korea since the first outbreak in 2008. Sci Rep 2023; 13:2812. [PMID: 36797385 PMCID: PMC9935521 DOI: 10.1038/s41598-023-29782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Outbreaks of Asynapta groverae, an invasive mycophagous gall midge, in South Korea have been repeatedly reported since the first occurrence in 2008. This species is a nuisance to residents owing to its mass emergence from newly built and furnished apartments. Here, the levels of genetic diversity, divergence, and structure of invasive A. groverae populations were investigated to understand their ability to survive in novel locations. Population genetic analyses were performed on seven invasive populations, including the first outbreak, sporadically emerged, and two laboratory-isolated (quarantined) populations, using the mitochondrial COI sequences and the ten novel microsatellite markers developed in this study. Non-indigenous A. groverae managed to maintain their populations for 12 years despite decreased genetic polymorphisms resulting from multiple incidences of founder effects by a small number of colonists. Additionally, the advantageous sustainability of A. groverae in the particle boards from which they emerge suggests that human-mediated dispersal is plausible, which may allow for the successful spread or invasion of A. groverae to new locations. This study is one of the few examples to demonstrate that an insect species successfully invaded new regions despite exhibiting decreased genetic diversity that was maintained for a decade. These findings indicate that the high genetic diversity of the initial founding population and asexual reproduction would contribute to the successful invasion of A. groverae in novel environments.
Collapse
|
6
|
Chen Z, Huang X, Fu R, Zhan A. Neighbours matter: Effects of genomic organization on gene expression plasticity in response to environmental stresses during biological invasions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100992. [PMID: 35504120 DOI: 10.1016/j.cbd.2022.100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Gene expression regulation has been widely recognized as an important molecular mechanism underlying phenotypic plasticity in environmental adaptation. However, it remains largely unexplored on the effects of genomic organization on gene expression plasticity under environmental stresses during biological invasions. Here, we use an invasive model ascidian, Ciona robusta, to investigate how genomic organization affects gene expression in response to salinity stresses during range expansions. Our study showed that neighboring genes were co-expressed and approximately 30% of stress responsive genes were physically clustered on chromosomes. Such coordinated expression was substantially affected by the physical distance and orientation of genes. Interestingly, the overall expression correlation of neighboring genes was significantly decreased under high salinity stresses, illustrating that the co-expression regulation could be disrupted by salinity challenges. Furthermore, the clustering of genes was associated with their function constraints and expression patterns - operon genes enriched in gene expression machinery had the highest transcriptional activity and expression stability. Notably, our analyses showed that the tail-to-tail genes, mainly involved in biological functions related to phosphorylation, homeostatic process, and ion transport, exhibited higher intrinsic expression variability and greater response to salinity challenges. Altogether, the results obtained here provide new insights into the effects of gene organization on gene expression plasticity under environmental challenges, hence improving our knowledge on mechanisms of rapid environmental adaptation during biological invasions.
Collapse
Affiliation(s)
- Zaohuang Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
7
|
Sato A, Oba GM, Aubert-Kato N, Yura K, Bishop J. Co-expression network analysis of environmental canalization in the ascidian Ciona. BMC Ecol Evol 2022; 22:53. [PMID: 35484499 PMCID: PMC9052645 DOI: 10.1186/s12862-022-02006-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canalization, or buffering, is defined as developmental stability in the face of genetic and/or environmental perturbations. Understanding how canalization works is important in predicting how species survive environmental change, as well as deciphering how development can be altered in the evolutionary process. However, how developmental gene expression is linked to buffering remains unclear. We addressed this by co-expression network analysis, comparing gene expression changes caused by heat stress during development at a whole-embryonic scale in reciprocal hybrid crosses of sibling species of the ascidian Ciona that are adapted to different thermal environments. RESULTS Since our previous work showed that developmental buffering in this group is maternally inherited, we first identified maternal developmental buffering genes (MDBGs) in which the expression level in embryos is both correlated to the level of environmental canalization and also differentially expressed depending on the species' gender roles in hybrid crosses. We found only 15 MDBGs, all of which showed high correlation coefficient values for expression with a large number of other genes, and 14 of these belonged to a single co-expression module. We then calculated correlation coefficients of expression between MDBGs and transcription factors in the central nervous system (CNS) developmental gene network that had previously been identified experimentally. We found that, compared to the correlation coefficients between MDBGs, which had an average of 0.96, the MDBGs are loosely linked to the CNS developmental genes (average correlation coefficient 0.45). Further, we investigated the correlation of each developmental to MDBGs, showing that only four out of 62 CNS developmental genes showed correlation coefficient > 0.9, comparable to the values between MDBGs, and three of these four genes were signaling molecules: BMP2/4, Wnt7, and Delta-like. CONCLUSIONS We show that the developmental pathway is not centrally located within the buffering network. We found that out of 62 genes in the developmental gene network, only four genes showed correlation coefficients as high as between MDBGs. We propose that loose links to MDBGs stabilize spatiotemporally dynamic development.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan.
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK.
- Human Life Innovation Center, Ochanomizu University, Tokyo, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Gina M Oba
- Department of Biology, Ochanomizu University, Tokyo, Japan
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK
| | - Nathanael Aubert-Kato
- Department of Information Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Kei Yura
- Department of Biology, Ochanomizu University, Tokyo, Japan
- Department of Life Science & Medical Bioscience, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
- Human Life Innovation Center, Ochanomizu University, Tokyo, Japan
| | - John Bishop
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK
| |
Collapse
|
8
|
Wilson ER, Murphy KJ, Wyeth RC. Ecological Review of the Ciona Species Complex. THE BIOLOGICAL BULLETIN 2022; 242:153-171. [PMID: 35580029 DOI: 10.1086/719476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractThe set of four closely related solitary ascidians Ciona spp. were once considered a single cosmopolitan species, Ciona intestinalis, but are now recognized as genetically and morphologically distinct species. The possibility of ecological differences between the species was not widely considered in studies preceding the schism of Ciona spp. Consequently, there may be an over-generalization of the ecology of Ciona spp., with potential implications for the broad range of studies targeting these species, encompassing the evolution, development, genomics, and invasion biology of Ciona spp. We completed a comprehensive review of the ecology of Ciona spp. to establish the similarities and differences between the widely distributed Ciona robusta and C. intestinalis (and what little is known of the two other species, Ciona sp. C and Ciona sp. D). When necessary, we used study locations and the species' geographic ranges to infer the species in each study in the review. As expected, ecological similarities are the norm between the two species, spanning both abiotic and biotic interactions. However, there are also important differences that have potential implications for other aspects of the biology of Ciona spp. For example, differences in temperature and salinity tolerances likely correspond with the disparities in the geographic distribution of the species. Asymmetries in topics studied in each species diminish our ability to fully compare several aspects of the ecology of Ciona spp. and are priority areas for future research. We anticipate that our clarification of common and unique aspects of each species' ecology will help to provide context for future research in many aspects of the biology of Ciona spp.
Collapse
|
9
|
Hudson J, Bourne SD, Seebens H, Chapman MA, Rius M. The reconstruction of invasion histories with genomic data in light of differing levels of anthropogenic transport. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210023. [PMID: 35067090 PMCID: PMC8784929 DOI: 10.1098/rstb.2021.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unravelling the history of range shifts is key for understanding past, current and future species distributions. Anthropogenic transport of species alters natural dispersal patterns and directly affects population connectivity. Studies have suggested that high levels of anthropogenic transport homogenize patterns of genetic differentiation and blur colonization pathways. However, empirical evidence of these effects remains elusive. We compared two range-shifting species (Microcosmus squamiger and Ciona robusta) to examine how anthropogenic transport affects our ability to reconstruct colonization pathways using genomic data. We first investigated shipping networks from the 18th century onwards, cross-referencing these with regions where the species have records to infer how each species has potentially been affected by different levels of anthropogenic transport. We then genotyped thousands of single-nucleotide polymorphisms from 280 M. squamiger and 190 C. robusta individuals collected across their extensive species' ranges and reconstructed colonization pathways. Differing levels of anthropogenic transport did not preclude the elucidation of population structure, though specific inferences of colonization pathways were difficult to discern in some of the considered scenario sets. We conclude that genomic data in combination with information of underlying introduction drivers provide key insights into the historic spread of range-shifting species. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.
Collapse
Affiliation(s)
- J Hudson
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - S D Bourne
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - H Seebens
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - M A Chapman
- Department of Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - M Rius
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.,Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park 2006, South Africa.,Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc 14, Blanes 17300, Spain
| |
Collapse
|
10
|
Rocha RM, Teixeira JA, Barros RCD. Genetic diversity in the Diplosoma listerianum complex (Ascidiacea: Didemnidae) from the Western Atlantic. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1988003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rosana M. Rocha
- Zoology Department, Universidade Federal do Paraná, CP 19020, Curitiba 81531-980, Brazil
| | - Joyce Ana Teixeira
- Zoology Department, Universidade Federal do Paraná, CP 19020, Curitiba 81531-980, Brazil
| | - Rodolfo Corrêa de Barros
- Parasitology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Rua Padre Camargo, 280, Curitiba 80060-240, Brazil
| |
Collapse
|
11
|
Changes in selection pressure can facilitate hybridization during biological invasion in a Cuban lizard. Proc Natl Acad Sci U S A 2021; 118:2108638118. [PMID: 34654747 DOI: 10.1073/pnas.2108638118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Abstract
Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.
Collapse
|
12
|
Le Moan A, Roby C, Fraïsse C, Daguin-Thiébaut C, Bierne N, Viard F. An introgression breakthrough left by an anthropogenic contact between two ascidians. Mol Ecol 2021; 30:6718-6732. [PMID: 34547149 DOI: 10.1111/mec.16189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 01/28/2023]
Abstract
Human-driven translocations of species have diverse evolutionary consequences such as promoting hybridization between previously geographically isolated taxa. This is well illustrated by the solitary tunicate, Ciona robusta, native to the North East Pacific and introduced in the North East Atlantic. It is now co-occurring with its congener Ciona intestinalis in the English Channel, and C. roulei in the Mediterranean Sea. Despite their long allopatric divergence, first and second generation crosses showed a high hybridization success between the introduced and native taxa in the laboratory. However, previous genetic studies failed to provide evidence of recent hybridization between C. robusta and C. intestinalis in the wild. Using SNPs obtained from ddRAD-sequencing of 397 individuals from 26 populations, we further explored the genome-wide population structure of the native Ciona taxa. We first confirmed results documented in previous studies, notably (i) a chaotic genetic structure at regional scale, and (ii) a high genetic similarity between C. roulei and C. intestinalis, which is calling for further taxonomic investigation. More importantly, and unexpectedly, we also observed a genomic hotspot of long introgressed C. robusta tracts into C. intestinalis genomes at several locations of their contact zone. Both the genomic architecture of introgression, restricted to a 1.5 Mb region of chromosome 5, and its absence in allopatric populations suggest introgression is recent and occurred after the introduction of the non-native species. Overall, our study shows that anthropogenic hybridization can be effective in promoting introgression breakthroughs between species at a late stage of the speciation continuum.
Collapse
Affiliation(s)
- Alan Le Moan
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France.,Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Charlotte Roby
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | | | | | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France.,ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
13
|
Chen Y, Gao Y, Huang X, Li S, Zhan A. Local environment-driven adaptive evolution in a marine invasive ascidian ( Molgula manhattensis). Ecol Evol 2021; 11:4252-4266. [PMID: 33976808 PMCID: PMC8093682 DOI: 10.1002/ece3.7322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/04/2022] Open
Abstract
Elucidating molecular mechanisms of environment-driven adaptive evolution in marine invaders is crucial for understanding invasion success and further predicting their future invasions. Although increasing evidence suggests that adaptive evolution could contribute to organisms' adaptation to varied environments, there remain knowledge gaps regarding how environments influence genomic variation in invaded habitats and genetic bases underlying local adaptation for most marine invaders. Here, we performed restriction-site-associated DNA sequencing (RADseq) to assess population genetic diversity and further investigate genomic signatures of local adaptation in the marine invasive ascidian, Molgula manhattensis. We revealed that most invasive populations exhibited significant genetic differentiation, low recent gene flow, and no signal of significant population bottleneck. Based on three genome scan approaches, we identified 109 candidate loci potentially under environmental selection. Redundancy analysis and variance partitioning analysis suggest that local environmental factors, particularly the salinity-related variables, represent crucial evolutionary forces in driving adaptive divergence. Using the newly developed transcriptome as a reference, 14 functional genes were finally obtained with potential roles in salinity adaptation, including SLC5A1 and SLC9C1 genes from the solute carrier gene (SLC) superfamily. Our findings confirm that differed local environments could rapidly drive adaptive divergence among invasive populations and leave detectable genomic signatures in marine invaders.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| | - Yangchun Gao
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationInstitute of ZoologyGuangdong Academy of SciencesHaizhu DistrictGuangzhouChina
| | - Xuena Huang
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
| | - Shiguo Li
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| | - Aibin Zhan
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| |
Collapse
|
14
|
Clutton EA, Alurralde G, Repolho T. Early developmental stages of native populations of Ciona intestinalis under increased temperature are affected by local habitat history. J Exp Biol 2021; 224:jeb233403. [PMID: 33472872 PMCID: PMC7938807 DOI: 10.1242/jeb.233403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
Temperature modulates marine ectotherm physiology, influencing survival, abundance and species distribution. While native species could be susceptible to ocean warming, thermal tolerance might favour the spread of non-native species. Determining the success of invasive species in response to climate change is confounded by the cumulative, synergistic or antagonistic effects of environmental drivers, which vary at a geographical and temporal scale. Thus, an organism's acclimation or adaptive potential could play an important evolutionary role by enabling or conditioning species tolerance to stressful environmental conditions. We investigated developmental performance of early life stages of the ascidian Ciona intestinalis (derived from populations of anthropogenically impacted and control sites) to an extreme weather event (i.e. marine heatwave). Fertilization rate, embryo and larval development, settlement, metamorphosis success and juvenile heart rate were assessed as experimental endpoints. With the exception of fertilization and heart rates, temperature influenced all analysed endpoints. C. intestinalis derived from control sites were the most negatively affected by increased temperature conditions. By contrast, C. intestinalis from anthropogenically impacted sites showed a positive response to thermal stress, with a higher proportion of larvae development, settlement and metamorphosis success being observed under increased temperature conditions. No differences were observed for heart rates between sampled populations and experimental temperature conditions. Moreover, interaction between temperature and populations was statistically significant for embryo and larvae development, and metamorphosis. We hypothesize that selection resulting from anthropogenic forcing could shape stress resilience of species in their native range and subsequently confer advantageous traits underlying their invasive potential.
Collapse
Affiliation(s)
- Elizabeth A Clutton
- Institute of Marine Sciences, Faculty of Science and Health, University of Portsmouth, Eastney, Portsmouth PO4 9LY, UK
| | - Gaston Alurralde
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento Diversidad Biológica y Ecología, Ecología Marina, Av. Velez Sarsfield 299 (X5000JJC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecologıa Animal (IDEA), Av. Velez Sarsfield 299 (X5000JJC), Córdoba, Argentina
| | - Tiago Repolho
- MARE - Centro de Ciências do Mar e do Ambiente (MARE), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
15
|
Corrêa de Barros R, Moreira da Rocha R. Genetic analyses reveal cryptic diversity in the widely distributed Styela canopus (Ascidiacea:Styelidae). INVERTEBR SYST 2021. [DOI: 10.1071/is20058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The routine use of DNA sequencing techniques and phylogenetic analysis has resulted in the discovery of many cryptic species, especially in the oceans. The common, globally introduced species Styela canopus is suspected to be a complex of cryptic species because of its widespread distribution and variable external morphology. We tested this possibility using COI and ANT marker sequences to uncover the phylogenetic relationship among 19 populations, and to examine genetic variability as well as gene flow. We obtained 271 COI and 67 ANT sequences and found surprising diversity among the 19 populations (COI: π = 0.18, hd = 0.99; ANT: π = 0.13, hd = 0.95). Corresponding topologies were found using Bayesian inference and maximum likelihood for both simple locus (COI) and multilocus (COI + ANT) analyses and so the clades received strong support. We used simple (ABGD, bPTP, GMYC) and multiple (BSD) locus methods to delimit species. The simple locus methods indicated that the current Styela canopus comprises at least 15 species. The BSD method for concatenated data supported 7 of the 15 species. We suggest that S. canopus should be treated as the Styela canopus complex. The large number of cryptic species found, often with more than one clade found in sympatry, creates opportunities for better understanding reproductive isolation, hybridisation or speciation. As several lineages have already been introduced widely around the world, we must quickly understand their diversity and invasive abilities.
Collapse
|
16
|
Utermann C, Blümel M, Busch K, Buedenbender L, Lin Y, Haltli BA, Kerr RG, Briski E, Hentschel U, Tasdemir D. Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats. Microorganisms 2020; 8:microorganisms8122022. [PMID: 33348696 PMCID: PMC7767289 DOI: 10.3390/microorganisms8122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Massive fouling by the invasive ascidian Ciona intestinalis in Prince Edward Island (PEI, Canada) has been causing devastating losses to the local blue mussel farms. In order to gain first insights into so far unexplored factors that may contribute to the invasiveness of C. intestinalis in PEI, we undertook comparative microbiome and metabolome studies on specific tissues from C. intestinalis populations collected in invaded (PEI) and native regions (Helgoland and Kiel, Germany). Microbial community analyses and untargeted metabolomics revealed clear location- and tissue-specific patterns showing that biogeography and the sampled tissue shape the microbiome and metabolome of C. intestinalis. Moreover, we observed higher microbial and chemical diversity in C. intestinalis from PEI than in the native populations. Bacterial OTUs specific to C. intestinalis from PEI included Cyanobacteria (e.g., Leptolyngbya sp.) and Rhodobacteraceae (e.g., Roseobacter sp.), while populations from native sampling sites showed higher abundances of e.g., Firmicutes (Helgoland) and Epsilonproteobacteria (Kiel). Altogether 121 abundant metabolites were putatively annotated in the global ascidian metabolome, of which 18 were only detected in the invasive PEI population (e.g., polyketides and terpenoids), while six (e.g., sphingolipids) or none were exclusive to the native specimens from Helgoland and Kiel, respectively. Some identified bacteria and metabolites reportedly possess bioactive properties (e.g., antifouling and antibiotic) that may contribute to the overall fitness of C. intestinalis. Hence, this first study provides a basis for future studies on factors underlying the global invasiveness of Ciona species.
Collapse
Affiliation(s)
- Caroline Utermann
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Kathrin Busch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (K.B.); (U.H.)
| | - Larissa Buedenbender
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Yaping Lin
- Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (Y.L.); (E.B.)
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd., Haidian District, Beijing 100085, China
| | - Bradley A. Haltli
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (B.A.H.); (R.G.K.)
| | - Russell G. Kerr
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (B.A.H.); (R.G.K.)
| | - Elizabeta Briski
- Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (Y.L.); (E.B.)
| | - Ute Hentschel
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (K.B.); (U.H.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-6004430
| |
Collapse
|
17
|
Fu R, Huang X, Zhan A. Identification of DNA (de)methylation-related genes and their transcriptional response to environmental challenges in an invasive model ascidian. Gene 2020; 768:145331. [PMID: 33278554 DOI: 10.1016/j.gene.2020.145331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/26/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023]
Abstract
Marine invasive species are constantly challenged by acute or recurring environmental stresses during their range expansions. DNA methylation-mediated stress memory has been proposed to effectively affect species' response and enhance their overall performance in recurring environmental challenges. In order to further test this proposal in marine invasive species, we identified genes in the DNA methylation and demethylation processes in the highly invasive model species, Ciona robusta, and subsequently investigated the expression patterns of these genes under recurring salinity stresses. After a genome-wide comprehensive survey, we found a total of six genes, including two genes of DNA methyltransferase 3a (DNMT3a1 and DNMT3a2), and one gene of DNA methyltransferase 1 (DNMT1), methyl-CpG-binding domain protein 2 (MBD2), methyl-CpG-binding domain protein 4 (MBD4) and ten-eleven-translocation protein 1 (TET1). Phylogenetic reconstruction and domain arrangement analyses showed that the deduced proteins of the identified genes were evolutionarily conserved and functionally similar with their orthologs. All genes were constitutively expressed in all four tested tissues. Interestingly, we found time-dependent and stress-specific gene expression patterns under high and low salinity stresses. Under the recurring high salinity stresses, DNMT3a1 and TET1 conformed to the definition of memory genes, while under the recurring low salinity stresses, two DNMT3a paralogues were identified as the memory genes. Altogether, our results clearly showed that the transcriptional patterns of (de)methylation-related genes were significantly influenced by environmental stresses, and the transcriptional memory of some (de)methylation-related genes should play crucial roles in DNA methylation-mediated stress memory during the process of biological invasions.
Collapse
Affiliation(s)
- Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Asymmetric Fitness of Second-Generation Interspecific Hybrids Between Ciona robusta and Ciona intestinalis. G3-GENES GENOMES GENETICS 2020; 10:2697-2711. [PMID: 32518083 PMCID: PMC7407461 DOI: 10.1534/g3.120.401427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reproductive isolation is central to speciation, but interspecific crosses between two closely related species can produce viable and fertile hybrids. Two different species of tunicates in the same ascidian genus, Ciona robusta and Ciona intestinalis, can produce hybrids. However, wild sympatric populations display limited gene flow, suggesting the existence of obstacles to interspecific reproduction that remain unknown. Here, we took advantage of a closed culture system to cross C. robusta with C. intestinalis and established F1 and F2 hybrids. We monitored post-embryonic development, survival, and sexual maturation to characterize the genetic basis of simple traits, and further probe the physiological mechanisms underlying reproductive isolation. Partial viability of first and second generation hybrids suggested that both pre- and postzygotic mechanisms contributed to genomic incompatibilities in hybrids. We observed asymmetric fitness, whereby the C. intestinalis maternal lines fared more poorly in our system, pointing to maternal origins of species-specific sensitivity. We discuss the possibility that asymmetrical second generation inviability and infertility emerge from interspecific incompatibilities between the nuclear and mitochondrial genomes, or other maternal effect genes. This work paves the way to quantitative genetic approaches to study the mechanisms underlying genomic incompatibilities and other complex traits in the genome-enabled Ciona model.
Collapse
|
19
|
Murugan R, Ananthan G, Arunkumar A. DNA bar coding of Aplousobranchiata and Phlebobranchiata Ascidians (Phylum:Chordata) inferred from mitochondrial cytochrome oxidase subunit I (COI) gene sequence approach in Andaman and Nicobar Islands, India: a first report. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:285-297. [PMID: 32729766 DOI: 10.1080/24701394.2020.1798417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ascidians (Phylum: Chordata) are sessile and filter-feeding marine animal, species identification of ascidians is possible by observing various morphological and anatomical features in various stages of life span. However, this method is labor intensive, time-consuming and very difficult for non-specialists particularly when dealing with field collections. Suborder Aplousobranchiata and Phlebobranchiata is the largest group of tunicates within, morphological and molecular data suggest that Didemnidae and Ascidiidae are monophyletic, but the monophyly of each genus and their phylogenetic relationships are still poorly understood. Therefore, this study was aimed to develop DNA barcodes of ascidians belonging to the orders of Aplousobranchiata and Phlebobranchiata species namely Diplosoma listerianum, Lissoclinum fragile, Didemnum psammatode, Phallusia fumigata and Phallusia ingeria collected from Andaman and Nicobar Islands were sequenced and submitted in Gen Bank. Colony structure, Scanning Electron Microscope (SEM) for spicules of colonial ascidians, larval type and zooids formation were found to be the most useful morphological characters for discriminating the species. Our BLAST results proved D. Listerianum KP842724 (98%) L. fragile KP842726 (100%) D. psammatode KP779902 (99%), P. fumigata KP779904 (99%) and P. ingeria KP842727 (100%) similarity and this is the first report of mitochondrial COI gene of these ascidians from Andaman and Nicobar Islands. We explored the usefulness of CO1 gene sequences for molecular level identification and mtDNA data in assessing a phylogenetic relationship of ascidian species.
Collapse
Affiliation(s)
- Rajaram Murugan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, India
| | - Gnanakkan Ananthan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, India
| | - Anandakumar Arunkumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, India
| |
Collapse
|
20
|
Einfeldt AL, Jesson LK, Addison JA. Historical human activities reshape evolutionary trajectories across both native and introduced ranges. Ecol Evol 2020; 10:6579-6592. [PMID: 32724534 PMCID: PMC7381589 DOI: 10.1002/ece3.6391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/21/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
The same vectors that introduce species to new ranges could move them among native populations, but how human-mediated dispersal impacts native ranges has been difficult to address because human-mediated dispersal and natural dispersal can simultaneously shape patterns of gene flow. Here, we disentangle human-mediated dispersal from natural dispersal by exploiting a system where the primary vector was once extensive but has since ceased. From 10th to 19th Centuries, ships in the North Atlantic exchanged sediments dredged from the intertidal for ballast, which ended when seawater ballast tanks were adopted. We investigate genetic patterns from RADseq-derived SNPs in the amphipod Corophium volutator (n = 121; 4,870 SNPs) and the annelid Hediste diversicolor (n = 78; 3,820 SNPs), which were introduced from Europe to North America, have limited natural dispersal capabilities, are abundant in intertidal sediments, but not commonly found in modern water ballast tanks. We detect similar levels of genetic subdivision among introduced North American populations and among native European populations. Phylogenetic networks and clustering analyses reveal population structure between sites, a high degree of phylogenetic reticulation within ranges, and phylogenetic splits between European and North American populations. These patterns are inconsistent with phylogeographic structure expected to arise from natural dispersal alone, suggesting human activity eroded ancestral phylogeographic structure between native populations, but was insufficient to overcome divergent processes between naturalized populations and their sources. Our results suggest human activity may alter species' evolutionary trajectories on a broad geographic scale via regional homogenization and global diversification, in some cases precluding historical inference from genetic data.
Collapse
Affiliation(s)
- Anthony L. Einfeldt
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
- Department of BiologyDalhousie UniversityHalifaxNSCanada
| | - Linley K. Jesson
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
- New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Jason A. Addison
- Department of BiologyUniversity of New BrunswickFrederictonNBCanada
| |
Collapse
|
21
|
Mastrototaro F, Montesanto F, Salonna M, Viard F, Chimienti G, Trainito E, Gissi C. An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The genus Ciona is an interesting ‘taxonomic case’ because its evolutionary history and taxonomy have not yet been resolved completely. In this study, we present new findings, describing specimens of an unidentified Ciona species collected along the north-eastern coasts of Sardinia (Tyrrhenian Sea, Mediterranean Sea). Applying an integrative taxonomic approach, based on the joint examination of morphological and molecular traits, we identify these specimens as a new species, Ciona intermedia sp. nov. Morphological comparisons and peculiarities of the habitat first revealed that these Ciona specimens have intermediate characters compared with other Ciona species. Molecular characterization (based on three mitochondrial regions: two already used for discriminating Ciona cryptic species and a newly developed one) confirmed that our specimens could not be assigned to any previously molecularly-characterized species. Both molecular phylogenetic reconstructions and morphological data clearly indicate C. intermedia as sister clade of Ciona edwardsi. Our findings add further complexity to the taxonomy of Ciona, underlying the importance of an integrative taxonomic approach for the study of the evolutionary history of this enigmatic genus.
Collapse
Affiliation(s)
- Francesco Mastrototaro
- Dipartimento di Biologia, Università degli Studi di Bari ‘Aldo Moro’, Bari, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Federica Montesanto
- Dipartimento di Biologia, Università degli Studi di Bari ‘Aldo Moro’, Bari, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Marika Salonna
- Dipartimento di Bioscienze, Biotecnologie and Biofarmaceutica, Università degli Studi di Bari ‘Aldo Moro’, Bari, Italy
| | - Frédérique Viard
- Sorbonne Université, CNRS, Laboratory of Adaptation & Diversity in Marine Environment (UMR 7144), Station Biologique, Roscoff, France
| | - Giovanni Chimienti
- Dipartimento di Biologia, Università degli Studi di Bari ‘Aldo Moro’, Bari, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Egidio Trainito
- Villaggio I Fari, Loiri Porto San Paolo, Olbia-Tempio, Italy
| | - Carmela Gissi
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
- Dipartimento di Bioscienze, Biotecnologie and Biofarmaceutica, Università degli Studi di Bari ‘Aldo Moro’, Bari, Italy
- IBIOM, Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, CNR, Bari, Italy
| |
Collapse
|
22
|
Origin and genetic diversity of the invasive mussel Semimytilus algosus in South Africa, relative to source populations in Chile and Namibia. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Hudson J, Johannesson K, McQuaid CD, Rius M. Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate. Evol Appl 2020; 13:600-612. [PMID: 32431738 PMCID: PMC7045719 DOI: 10.1111/eva.12893] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Research on the genetics of invasive species often focuses on patterns of genetic diversity and population structure within the introduced range. However, a growing body of literature is demonstrating the need to study how native genotypes affect both ecological and evolutionary mechanisms within the introduced range. Here, we used genotyping-by-sequencing to study both native and introduced ranges of the amphiatlantic marine invertebrate Ciona intestinalis. A previous study using microsatellites analysed samples collected along the Swedish west coast and showed the presence of genetically distinct lineages in deep and shallow waters. Using 1,653 single nucleotide polymorphisms (SNPs) from newly collected samples (285 individuals), we first confirmed the presence of this depth-defined genomic divergence along the Swedish coast. We then used approximate Bayesian computation to infer the historical relationship among sites from the North Sea, the English Channel and the northwest Atlantic and found evidence of ancestral divergence between individuals from deep waters off Sweden and individuals from the English Channel. This divergence was followed by a secondary contact that led to a genetic admixture between the ancestral populations (i.e., deep Sweden and English Channel), which originated the genotypes found in shallow Sweden. We then revealed that the colonization of C. intestinalis in the northwest Atlantic was as a result of an admixture between shallow Sweden and the English Channel genotypes across the introduced range. Our results showed the presence of both past and recent genetic admixture events that together may have promoted the successful colonizations of C. intestinalis. Our study suggests that secondary contacts potentially reshape the evolutionary trajectories of invasive species through the promotion of intraspecific hybridization and by altering both colonization patterns and their ecological effects in the introduced range.
Collapse
Affiliation(s)
- Jamie Hudson
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Kerstin Johannesson
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Christopher D. McQuaid
- Department of Zoology and EntomologyCoastal Research GroupRhodes UniversityGrahamstownSouth Africa
| | - Marc Rius
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of ZoologyCentre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
24
|
Li H, Huang X, Zhan A. Stress Memory of Recurrent Environmental Challenges in Marine Invasive Species: Ciona robusta as a Case Study. Front Physiol 2020; 11:94. [PMID: 32116797 PMCID: PMC7031352 DOI: 10.3389/fphys.2020.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fluctuating environmental changes impose tremendous stresses on sessile organisms in marine ecosystems, in turn, organisms develop complex response mechanisms to keep adaptive homeostasis for survival. Physiological plasticity is one of the primary lines of defense against environmental challenges, and such defense often relies on the antioxidant defense system (ADS). Hence, it is imperative to understand response mechanisms of ADS to fluctuating environments. Invasive species provide excellent models to study how species cope with environmental stresses, as invasive species encounter sudden, and often recurrent, extensive environmental challenges during the whole invasion process. Here, we studied the roles of ADS on rapid response to recurrent cold challenges in a highly invasive tunicate (Ciona robusta) by simulating cold stresses during its invasion process. We assessed antioxidative indicators, including malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), as well as transcriptional changes of ADS-related genes to reveal the physiological plasticity under recurring cold stresses. Our results demonstrated that physiological homeostasis relied on the resilience of ADS, which further accordingly tuned antioxidant activity and gene expression to changing environments. The initial cold stress remodeled baselines of ADS to promote the development of stress memory, and subsequent stress memory largely decreased the physiological response to recurrent environmental challenges. All results here suggest that C. robusta could develop stress memory to maintain physiological homeostasis in changing or harsh environments. The results obtained in this study provide new insights into the mechanism of rapid physiological adaption during biological invasions.
Collapse
Affiliation(s)
- Hanxi Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xuena Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Casso M, Turon X, Pascual M. Single zooids, multiple loci: independent colonisations revealed by population genomics of a global invader. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02069-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Chen Y, Shenkar N, Ni P, Lin Y, Li S, Zhan A. Rapid microevolution during recent range expansion to harsh environments. BMC Evol Biol 2018; 18:187. [PMID: 30526493 PMCID: PMC6286502 DOI: 10.1186/s12862-018-1311-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/27/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Adaptive evolution is one of the crucial mechanisms for organisms to survive and thrive in new environments. Recent studies suggest that adaptive evolution could rapidly occur in species to respond to novel environments or environmental challenges during range expansion. However, for environmental adaptation, many studies successfully detected phenotypic features associated with local environments, but did not provide ample genetic evidence on microevolutionary dynamics. It is therefore crucial to thoroughly investigate the genetic basis of rapid microevolution in response to environmental changes, in particular on what genes and associated variation are responsible for environmental challenges. Here, we genotyped genome-wide gene-associated microsatellites to detect genetic signatures of rapid microevolution of a marine tunicate invader, Ciona robusta, during recent range expansion to the harsh environment in the Red Sea. RESULTS The Red Sea population was significantly differentiated from the other global populations. The genome-wide scan, as well as multiple analytical methods, successfully identified a set of adaptive genes. Interestingly, the allele frequency largely varied at several adaptive loci in the Red Sea population, and we found significant correlations between allele frequency and local environmental factors at these adaptive loci. Furthermore, a set of genes were annotated to get involved in local temperature and salinity adaptation, and the identified adaptive genes may largely contribute to the invasion success to harsh environments. CONCLUSIONS All the evidence obtained in this study clearly showed that environment-driven selection had left detectable signatures in the genome of Ciona robusta within a few generations. Such a rapid microevolutionary process is largely responsible for the harsh environmental adaptation and therefore contributes to invasion success in different aquatic ecosystems with largely varied environmental factors.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801, Tel-Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel-Aviv, Israel
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yaping Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
27
|
Kordbacheh A, Wallace RL, Walsh EJ. Evidence supporting cryptic species within two sessile microinvertebrates, Limnias melicerta and L. ceratophylli (Rotifera, Gnesiotrocha). PLoS One 2018; 13:e0205203. [PMID: 30379825 PMCID: PMC6209156 DOI: 10.1371/journal.pone.0205203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 11/25/2022] Open
Abstract
Microorganisms, including rotifers, are thought to be capable of long distance dispersal. Therefore, they should show little population genetic structure due to high gene flow. Nevertheless, substantial genetic structure has been reported among populations of many taxa. In rotifers, genetic studies have focused on planktonic taxa leaving sessile groups largely unexplored. Here, we used COI gene and ITS region sequences to study genetic structure and delimit cryptic species in two sessile species (Limnias melicerta [32 populations]; L. ceratophylli [21 populations]). Among populations, ITS region sequences were less variable as compared to those of the COI gene (ITS; L. melicerta: 0-3.1% and L. ceratophylli: 0-4.4%; COI; L. melicerta: 0-22.7% and L. ceratophylli: 0-21.7%). Moreover, L. melicerta and L. ceratophylli were not resolved in phylogenetic analyses based on ITS sequences. Thus, we used COI sequences for species delimitation. Bayesian Species Delimitation detected nine putative cryptic species within L. melicerta and four putative cryptic species for L. ceratophylli. The genetic distance in the COI gene was 0-15.4% within cryptic species of L. melicerta and 0.5-0.6% within cryptic species of L. ceratophylli. Among cryptic species, COI genetic distance ranged 8.1-21.9% for L. melicerta and 15.1-21.2% for L. ceratophylli. The correlation between geographic and genetic distance was weak or lacking; thus geographic isolation cannot be considered a strong driver of genetic variation. In addition, geometric morphometric analyses of trophi did not show significant variation among cryptic species. In this study we used a conservative approach for species delimitation, yet we were able to show that species diversity in these sessile rotifers is underestimated.
Collapse
Affiliation(s)
- Azar Kordbacheh
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Robert L. Wallace
- Department of Biology, Ripon College, Ripon, Wisconsin, United States of America
| | - Elizabeth J. Walsh
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
28
|
Sato A. Chaperones, Canalization, and Evolution of Animal Forms. Int J Mol Sci 2018; 19:E3029. [PMID: 30287767 PMCID: PMC6213012 DOI: 10.3390/ijms19103029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Over half a century ago, British developmental biologist Conrad Hal Waddington proposed the idea of canalization, that is, homeostasis in development. Since the breakthrough that was made by Rutherford and Lindquist (1998), who proposed a role of Hsp90 in developmental buffering, chaperones have gained much attention in the study of canalization. However, recent studies have revealed that a number of other molecules are also potentially involved in canalization. Here, I introduce the emerging role of DnaJ chaperones in canalization. I also discuss how the expression levels of such buffering molecules can be altered, thereby altering organismal development. Since developmental robustness is maternally inherited in various organisms, I propose that dynamic bet hedging, an increase in within-clutch variation in offspring phenotypes that is caused by unpredictable environmental challenges to the mothers, plays a key role in altering the expression levels of buffering molecules. Investigating dynamic bet hedging at the molecular level and how it impacts upon morphological phenotypes will help our understanding of the molecular mechanisms of canalization and evolutionary processes.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan.
- Marine Biological Association of the UK, The Laboratory, Plymouth PL1 2PB, UK.
| |
Collapse
|
29
|
Ni P, Li S, Lin Y, Xiong W, Huang X, Zhan A. Methylation divergence of invasive Ciona ascidians: Significant population structure and local environmental influence. Ecol Evol 2018; 8:10272-10287. [PMID: 30397465 PMCID: PMC6206186 DOI: 10.1002/ece3.4504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
The geographical expansion of invasive species usually leads to temporary and/or permanent changes at multiple levels (genetics, epigenetics, gene expression, etc.) to acclimatize to abiotic and/or biotic stresses in novel environments. Epigenetic variation such as DNA methylation is often involved in response to diverse local environments, thus representing one crucial mechanism to promote invasion success. However, evidence is scant on the potential role of DNA methylation variation in rapid environmental response and invasion success during biological invasions. In particular, DNA methylation patterns and possible contributions of varied environmental factors to methylation differentiation have been largely unknown in many invaders, especially for invasive species in marine systems where extremely complex interactions exist between species and surrounding environments. Using the methylation-sensitive amplification polymorphism (MSAP) technique, here we investigated population methylation structure at the genome level in two highly invasive model ascidians, Ciona robusta and C. intestinalis, collected from habitats with varied environmental factors such as temperature and salinity. We found high intrapopulation methylation diversity and significant population methylation differentiation in both species. Multiple analyses, such as variation partitioning analysis, showed that both genetic variation and environmental factors contributed to the observed DNA methylation variation. Further analyses found that 24 and 20 subepiloci were associated with temperature and/or salinity in C. robusta and C. intestinalis, respectively. All these results clearly showed significant methylation divergence among populations of both invasive ascidians, and varied local environmental factors, as well as genetic variation, were responsible for the observed DNA methylation patterns. The consistent findings in both species here suggest that DNA methylation, coupled with genetic variation, may facilitate local environmental adaptation during biological invasions, and DNA methylation variation molded by local environments may contribute to invasion success.
Collapse
Affiliation(s)
- Ping Ni
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijingChina
| | - Shiguo Li
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Yaping Lin
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Wei Xiong
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijingChina
| | - Xuena Huang
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijingChina
| | - Aibin Zhan
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijingChina
| |
Collapse
|
30
|
Hoxha T, Crookes S, Lejeusne C, Dick JTA, Chang X, Bouchemousse S, Cuthbert RN, MacIsaac HJ. Comparative feeding rates of native and invasive ascidians. MARINE POLLUTION BULLETIN 2018; 135:1067-1071. [PMID: 30301002 DOI: 10.1016/j.marpolbul.2018.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Ascidians have a recent history of species introductions globally, often with strong ecological impacts. Comparisons of per capita effects of invaders and comparable natives are useful to assess such impacts. Here, we explore ingestion rates (IR) and clearance rates (CR) of Ciona intestinalis and Ciona robusta, co-occurring native and non-native ascidians, respectively, from Brittany, France. IR was positively related to food concentration, with the invader responding more strongly to increasing food concentration. CR also differed by species, with the invader demonstrating higher values. C. robusta exhibited a higher functional response (Type I) than did C. intestinalis (Type II). Relative impact measured using seasonal abundance and IR revealed that C. robusta has a much greater impact than C. intestinalis at all food concentrations tested, though the former has a constrained distribution which limits its regional impact. Nevertheless, when abundant, we expect C. robusta to exert a greater impact on algal foods.
Collapse
Affiliation(s)
- Tedi Hoxha
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Steve Crookes
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Christophe Lejeusne
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, UK
| | - Xuexiu Chang
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Sarah Bouchemousse
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France; Department of Biology, University of Fribourg, Chemin du musée 10, 1700 Fribourg, Switzerland
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, UK
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
31
|
Ojaveer H, Galil BS, Carlton JT, Alleway H, Goulletquer P, Lehtiniemi M, Marchini A, Miller W, Occhipinti-Ambrogi A, Peharda M, Ruiz GM, Williams SL, Zaiko A. Historical baselines in marine bioinvasions: Implications for policy and management. PLoS One 2018; 13:e0202383. [PMID: 30114232 PMCID: PMC6095587 DOI: 10.1371/journal.pone.0202383] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The human-mediated introduction of marine non-indigenous species is a centuries- if not millennia-old phenomenon, but was only recently acknowledged as a potent driver of change in the sea. We provide a synopsis of key historical milestones for marine bioinvasions, including timelines of (a) discovery and understanding of the invasion process, focusing on transfer mechanisms and outcomes, (b) methodologies used for detection and monitoring, (c) approaches to ecological impacts research, and (d) management and policy responses. Early (until the mid-1900s) marine bioinvasions were given little attention, and in a number of cases actively and routinely facilitated. Beginning in the second half of the 20th century, several conspicuous non-indigenous species outbreaks with strong environmental, economic, and public health impacts raised widespread concerns and initiated shifts in public and scientific perceptions. These high-profile invasions led to policy documents and strategies to reduce the introduction and spread of non-indigenous species, although with significant time lags and limited success and focused on only a subset of transfer mechanisms. Integrated, multi-vector management within an ecosystem-based marine management context is urgently needed to address the complex interactions of natural and human pressures that drive invasions in marine ecosystems.
Collapse
Affiliation(s)
- Henn Ojaveer
- Estonian Marine Institute, University of Tartu, Pärnu, Estonia
| | - Bella S. Galil
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - James T. Carlton
- Maritime Studies Program of Williams College and Mystic Seaport, Mystic, Connecticut, United States of America
| | - Heidi Alleway
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | | | - Maiju Lehtiniemi
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Whitman Miller
- Marine Invasion Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | | | | | - Gregory M. Ruiz
- Marine Invasion Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | - Susan L. Williams
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, California, United States of America
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
| |
Collapse
|
32
|
Huang X, Li S, Gao Y, Zhan A. Genome-Wide Identification, Characterization and Expression Analyses of Heat Shock Protein-Related Genes in a Highly Invasive Ascidian Ciona savignyi. Front Physiol 2018; 9:1043. [PMID: 30108524 PMCID: PMC6079275 DOI: 10.3389/fphys.2018.01043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 12/02/2022] Open
Abstract
Biological response to rapid changing environments is an outstanding research question in ecology and evolution. Biological invasions provide excellent "natural" experiments to study such a complex response process, as invaders often encounter rapidly changing environments during biological invasions. The regulation of heat shock proteins (Hsp) is a common pathway responsible for various environmental stresses; however, the comprehensive study on Hsp system across the whole genome and potential roles in determining invasion success are still largely unexplored. Here, we used a marine invasive model ascidian, Ciona savignyi, to investigate transcriptional response of Hsp-related genes to harsh environments. We identified 32 genes, including three Hsp20, six Hsp40, ten Hsp60, eight Hsp70, three Hsp90, one Hsp100, and one heat shock transcription factor (Hsf), across the whole genome of C. savignyi. We further characterized gene structure and protein motifs, and identified potential heat shock elements (HSEs) in promoters of Hsp genes. The expression analysis showed that most Hsp genes, but not all, were involved in transcriptional response to temperature and salinity challenges in a duration- and stress-specific pattern, and the maximum amplitude of induction occurred in Hsp70-4 after 1-h of high temperature treatment. However, the Hsf gene was scarcely induced and limited interactions were predicted between Hsp and Hsf genes. Our study provide the first systematic genome-wide analysis of Hsp and Hsf family in the marine invasive model ascidian, and our results are expected to dissect Hsp-based molecular mechanisms responsible for extreme environmental adaptation using Ciona as a model system.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Johannesson K, Ring AK, Johannesson KB, Renborg E, Jonsson PR, Havenhand JN. Oceanographic barriers to gene flow promote genetic subdivision of the tunicate Ciona intestinalis in a North Sea archipelago. MARINE BIOLOGY 2018; 165:126. [PMID: 30100627 PMCID: PMC6061499 DOI: 10.1007/s00227-018-3388-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Pelagic larval development has the potential to connect populations over large geographic distances and prevent genetic structuring. The solitary tunicate Ciona intestinalis has pelagic eggs and a swimming larval stage lasting for maximum a few days, with the potential for a homogenizing gene flow over relatively large areas. In the eastern North Sea, it is found in a geomorphologically complex archipelago with a mix of fjords and open costal habitats. Here, the coastal waters are also stratified with a marked pycnocline driven by salinity and temperature differences between shallow and deep waters. We investigated the genetic structure of C. intestinalis in this area and compared it with oceanographic barriers to dispersal that would potentially reduce connectivity among local populations. Genetic data from 240 individuals, sampled in 2 shallow, and 4 deep-water sites, showed varying degrees of differentiation among samples (FST = 0.0-0.11). We found no evidence for genetic isolation by distance, but two distant deep-water sites from the open coast were genetically very similar indicating a potential for long-distance gene flow. However, samples from different depths from the same areas were clearly differentiated, and fjord samples were different from open-coast sites. A biophysical model estimating multi-generation, stepping-stone larval connectivity, and empirical data on fjord water mass retention time showed the presence of oceanographic barriers that explained the genetic structure observed. We conclude that the local pattern of oceanographic connectivity will impact on the genetic structure of C. intestinalis in this region.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Anna-Karin Ring
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Klara B. Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Elin Renborg
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Per R. Jonsson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Jon N. Havenhand
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| |
Collapse
|
34
|
Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri. Genetica 2018; 146:227-234. [PMID: 29476381 DOI: 10.1007/s10709-018-0015-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023]
Abstract
Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.
Collapse
|
35
|
Malfant M, Darras S, Viard F. Coupling molecular data and experimental crosses sheds light about species delineation: a case study with the genus Ciona. Sci Rep 2018; 8:1480. [PMID: 29367599 PMCID: PMC5784138 DOI: 10.1038/s41598-018-19811-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular studies sometimes reveal evolutionary divergence within accepted species. Such findings can initiate taxonomic revision, as exemplified in the formerly recognized species Ciona intestinalis. While an increasing number of studies have examined the ecology, reproductive barriers and genetics of C. intestinalis and C. robusta, there are still much uncertainties regarding other species of this genus. Using experimental crosses and mitochondrial data, we investigated the evolutionary relationships among four native and introduced Ciona spp., found in sympatry in the Mediterranean Sea or English Channel. Outcome of 62 bi-parental reciprocal crosses between C. intestinalis, C. robusta, C. roulei and C. edwardsi showed that C. edwardsi is reproductively isolated from the other taxa, which is in agreement with its distinct location in the phylogenetic tree. Conversely, hybrids are easily obtained in both direction when crossing C. intestinalis and C. roulei, reinforcing the hypothesis of two genetically differentiated lineages but likely being from a same species. Altogether, this study sheds light on the evolutionary relationship in this complex genus. It also calls for further investigation notably based on genome-wide investigation to better describe the evolutionary history within the genus Ciona, a challenging task in a changing world where biological introductions are shuffling species distribution.
Collapse
Affiliation(s)
- Marine Malfant
- Sorbonne Universite, CNRS - UMR 7144 'AD2M' - Station Biologique, Roscoff, 29680, France.
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Frédérique Viard
- Sorbonne Universite, CNRS - UMR 7144 'AD2M' - Station Biologique, Roscoff, 29680, France.
| |
Collapse
|
36
|
Genetic diversity of a hitchhiker and prized food source in the Anthropocene: the Asian green mussel Perna viridis (Mollusca, Mytilidae). Biol Invasions 2018. [DOI: 10.1007/s10530-018-1659-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Darling JA, Carlton JT. A Framework for Understanding Marine Cosmopolitanism in the Anthropocene. FRONTIERS IN MARINE SCIENCE 2018; 5:293. [PMID: 31019910 PMCID: PMC6475922 DOI: 10.3389/fmars.2018.00293] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent years have witnessed growing appreciation for the ways in which human-mediated species introductions have reshaped marine biogeography. Despite this we have yet to grapple fully with the scale and impact of anthropogenic dispersal in both creating and determining contemporary distributions of marine taxa. In particular, the past several decades of research on marine biological invasions have revealed that broad geographic distributions of coastal marine organisms-historically referred to simply as "cosmopolitanism"-may belie complex interplay of both natural and anthropogenic processes. Here we describe a framework for understanding contemporary cosmopolitanism, informed by a synthesis of the marine bioinvasion literature. Our framework defines several novel categories in an attempt to provide a unified terminology for discussing cosmopolitan distributions in the world's oceans. We reserve the term eucosmopolitan to refer to those species for which data exist to support a true, natural, and prehistorically global (or extremely broad) distribution. While in the past this has been the default assumption for species observed to exhibit contemporary cosmopolitan distributions, we argue that given recent advances in marine invasion science this assignment should require positive evidence. In contrast, neocosmopolitan describes those species that have demonstrably achieved extensive geographic ranges only through historical anthropogenic dispersal, often facilitated over centuries of human maritime traffic. We discuss the history and human geography underpinning these neocosmopolitan distributions, and illustrate the extent to which these factors may have altered natural biogeographic patterns. We define the category pseudocosmopolitan to encompass taxa for which a broad distribution is determined (typically after molecular investigation) to reflect multiple, sometimes regionally endemic, lineages with uncertain taxonomic status; such species may remain cosmopolitan only so long as taxonomic uncertainty persists, after which they may splinter into multiple geographically restricted species. We discuss the methods employed to identify such species and to resolve both their taxonomic status and their biogeographic histories. We argue that recognizing these different types of cosmopolitanism, and the important role that invasion science has played in understanding them, is critically important for the future study of both historical and modern marine biogeography, ecology, and biodiversity.
Collapse
Affiliation(s)
- John A. Darling
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - James T. Carlton
- Maritime Studies Program, Williams College-Mystic Seaport, Mystic, CT, United States
- Department of Biology, Williams College, Williamstown, MA, United States
| |
Collapse
|
38
|
Huang X, Li S, Ni P, Gao Y, Jiang B, Zhou Z, Zhan A. Rapid response to changing environments during biological invasions: DNA methylation perspectives. Mol Ecol 2017; 26:6621-6633. [PMID: 29057612 DOI: 10.1111/mec.14382] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022]
Abstract
Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
El Ayari T, Trigui El Menif N, Saavedra C, Cordero D, Viard F, Bierne N. Unexpected mosaic distribution of two hybridizing sibling lineages in the teleplanically dispersing snail Stramonita haemastoma suggests unusual postglacial redistribution or cryptic invasion. Ecol Evol 2017; 7:9016-9026. [PMID: 29177037 PMCID: PMC5689492 DOI: 10.1002/ece3.3418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 01/29/2023] Open
Abstract
Molecular approaches have proven efficient to identify cryptic lineages within single taxonomic entities. Sometimes these cryptic lineages maybe previously unreported or unknown invasive taxa. The genetic structure of the marine gastropod Stramonita haemastoma has been examined in the Western Mediterranean and North‐Eastern Atlantic populations with mtDNA COI sequences and three newly developed microsatellite markers. We identified two cryptic lineages, differentially fixed for alternative mtDNA COI haplogroups and significantly differentiated at microsatellite loci. The mosaic distribution of the two lineages is unusual for a warm‐temperate marine invertebrate with a teleplanic larval stage. The Atlantic lineage was unexpectedly observed as a patch enclosed in the north of the Western Mediterranean Sea between eastern Spain and the French Riviera, and the Mediterranean lineage was found in Macronesian Islands. Although cyto‐nuclear disequilibrium is globally maintained, asymmetric introgression occurs in the Spanish region where the two lineages co‐occur in a hybrid zone. A first interpretation of our results is mito‐nuclear discordance in a stable postglacial hybrid zone. Under this hypothesis, though, the location of genetic discontinuities would be unusual among planktonic dispersers. An alternative interpretation is that the Atlantic lineage, also found in Senegal and Venezuela, has been introduced by human activities in the Mediterranean area and is introgressing Mediterranean genes during its propagation, as theoretically expected. This second hypothesis would add an additional example to the growing list of cryptic marine invasions revealed by molecular studies.
Collapse
Affiliation(s)
- Tahani El Ayari
- Université de Montpellier Montpellier Cedex 5 France.,ISEM - CNRS UMR 5554 Station Marine OREME Sète France.,Laboratory of Environment Bio-monitoring Faculty of Sciences of Bizerta University of Carthage Bizerta Tunisia
| | - Najoua Trigui El Menif
- Laboratory of Environment Bio-monitoring Faculty of Sciences of Bizerta University of Carthage Bizerta Tunisia
| | - Carlos Saavedra
- Instituto de Acuicultura Torre de la Sal Consejo Superior de Investigaciones Cientίficas Ribera de Cabanes (Castellόn) Spain
| | - David Cordero
- Instituto de Acuicultura Torre de la Sal Consejo Superior de Investigaciones Cientίficas Ribera de Cabanes (Castellόn) Spain
| | - Frédérique Viard
- UPMC Université Paris 6CNRS UMR 7144 Adaptation et Diversité en Milieu Marin Equipe DIVCO Station Biologique de Roscoff Sorbonne Université Roscoff France
| | - Nicolas Bierne
- Université de Montpellier Montpellier Cedex 5 France.,ISEM - CNRS UMR 5554 Station Marine OREME Sète France
| |
Collapse
|
40
|
Murugan R, Ananthan G, Arunkumar A. Aplousobranchia ascidians in Andaman and Nicobar Islands: a combined morphological and molecular discrimination. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:879-884. [PMID: 28920503 DOI: 10.1080/24701394.2017.1376053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aplousobranchia ascidians from two different families were integrated with morphological characteristics and molecular phylogenetic analysis for the first time. The present study employed morphological descriptions (colony structures, tunic, zooids, spicules stigmata and test) and a molecular approach, using a fragment of the mitochondrial cytochrome oxidase I (COI) gene of four Aplousobranchia colonial ascidians Aplidium conicum (98%), Aplidium elegans (98%), Didemnum fulgens (92%) and Trididemnum cyanophorum (94%) from Andaman and Nicobar Islands. Bar-coded sequences were extracted with BLAST format from NCBI and the heritable diversity of the submitted sequences were compared with associated ascidian species. Study revealed that the evolutionary relationship among the ascidian species exhibited the constant clades, which may help for rapid reassessment of morphological characters of the species distributed worldwide.
Collapse
Affiliation(s)
- Rajaram Murugan
- a Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences , Annamalai University , Parangipettai , India
| | - Gnanakkan Ananthan
- a Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences , Annamalai University , Parangipettai , India
| | - Anandakumar Arunkumar
- a Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences , Annamalai University , Parangipettai , India
| |
Collapse
|
41
|
Pu C, Li H, Zhu A, Chen Y, Zhao Y, Zhan A. Phylogeography in Nassarius mud snails: Complex patterns in congeneric species. PLoS One 2017; 12:e0180728. [PMID: 28704536 PMCID: PMC5507531 DOI: 10.1371/journal.pone.0180728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022] Open
Abstract
One major goal for phylogeographical studies is to elucidate respective roles of multiple evolutionary and ecological forces that shape the current distribution patterns. In marine and coastal ecosystems, it has been generated a common realization that species with enormous population size and pelagic larval stages can disperse across broad geographical scales, leading to weak or even no phylogeographical structure across large geographical scales. However, the violation of such realization has been frequently reported, and it remains largely unexplored on mechanisms responsible for various phylogeographical patterns observed in different species at varied geographical scales. Here, we used a species-rich genus Nassarius to assess and compare phylogeographical patterns in congeneric species, and discuss causes and consequences underlying varied phylogeographical patterns. Interestingly, we observed complex phylogeographical patterns both within single species and across multiple species, and multiple analyses showed varied levels of genetic heterogeneity among sites within and across species. Available evidence suggests that related species with similar biological characteristics may not be necessary to result in consistent phylogeographical patterns. Multiple factors, including larval ecology, interactions between dispersal and natural selection, and human activity-mediated dispersal, can partially explain the complex patterns observed in this study. Deep investigations should be performed on these factors, particularly their respective roles in determining evolutionary/ecological processes to form phylogeographical patterns in species with high dispersal capacities in marine and coastal ecosystems.
Collapse
Affiliation(s)
- Chuanliang Pu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Haitao Li
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, Guangdong, China
| | - Aijia Zhu
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, Guangdong, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Yan Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
- * E-mail:
| |
Collapse
|
42
|
Epigenetic divergence of key genes associated with water temperature and salinity in a highly invasive model ascidian. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Lin Y, Chen Y, Yi C, Fong JJ, Kim W, Rius M, Zhan A. Genetic signatures of natural selection in a model invasive ascidian. Sci Rep 2017; 7:44080. [PMID: 28266616 PMCID: PMC5339779 DOI: 10.1038/srep44080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.
Collapse
Affiliation(s)
- Yaping Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Changho Yi
- Marine Biodiversity Assessment and Management Team, National Marine Biodiversity Institute of Korea, 101-75 Jangsan-ro, Janghang-eup, Seocheon-gun Chungcheongnam-do 33662, Korea
| | - Jonathan J Fong
- Science Unit, Lingnan University, 8 Castle Peak Road, Tuen Mun, New Territories, Hong Kong, China
| | - Won Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Marc Rius
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom.,Department of Zoology, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
44
|
Gissi C, Hastings KEM, Gasparini F, Stach T, Pennati R, Manni L. An unprecedented taxonomic revision of a model organism: the paradigmatic case of Ciona robusta
and Ciona intestinalis. ZOOL SCR 2017. [DOI: 10.1111/zsc.12233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Carmela Gissi
- Dipartimento di Bioscienze; Biotecnologie e Biofarmaceutica; Università degli Studi di Bari “A. Moro”; Bari 70124 Italy
| | - Kenneth E. M. Hastings
- Montreal Neurological Institute and Department of Biology; McGill University; Montréal Québec H3A 2B4 Canada
| | - Fabio Gasparini
- Dipartimento di Biologia; Università degli Studi di Padova; Padova 35131 Italy
| | - Thomas Stach
- Institut für Biologie; Humboldt-Universität zu Berlin; Berlin 10115 Germany
| | - Roberta Pennati
- Dipartimento di Bioscienze; Università degli Studi di Milano; Milano 20133 Italy
| | - Lucia Manni
- Dipartimento di Biologia; Università degli Studi di Padova; Padova 35131 Italy
| |
Collapse
|
45
|
Bouchemousse S, Lévêque L, Viard F. Do settlement dynamics influence competitive interactions between an alien tunicate and its native congener? Ecol Evol 2017; 7:200-213. [PMID: 28070284 PMCID: PMC5213624 DOI: 10.1002/ece3.2655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/16/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023] Open
Abstract
Variation in density of early stages, that is, larvae and juveniles, is a major determinant of the distribution and abundance of the adult population of most marine invertebrates. These early stages thus play a key role in competitive interactions, and, more specifically, in invasion dynamics when biologically similar native and non‐native species (NNS) come into contact in the same habitat. We examined the settlement dynamics and settlement rate of two important members of the fouling community that are common on human‐made infrastructures around the world: Ciona robusta (formerly known as Ciona intestinalis type A) and C. intestinalis (formerly known as C. intestinalis type B). In the western English Channel, the two species live in close syntopy following the recent introduction of C. robusta in the native European range of C. intestinalis. Using settlement panels replaced monthly over 2 years in four marinas (including one studied over 4 years) and species‐diagnostic molecular markers to distinguish between juveniles of both species (N = 1,650), we documented similar settlement dynamics of both species, with two settlement periods within a calendar year. With one exception, settlement times were highly similar in the congeners. Although the NNS showed lower settlement density than that of the native congener, its juvenile recruitment was high during the second settlement period that occurs after the warm season, a pattern also observed in adult populations. Altogether, our results suggest that species’ settlement dynamics do not lead to the dominance of one species over the other through space monopolization. In addition, we showed that changes over time are more pronounced in the NNS than in the native species. This is possibly due to a higher sensitivity of the NNS to changes of environmental factors such as temperature and salinity. Environmental changes may thus eventually modify the strength of competitive interactions between the two species as well as species dominance.
Collapse
Affiliation(s)
- Sarah Bouchemousse
- Sorbonne Universités UPMC Univ Paris 6 Station Biologique de Roscoff 29680 Roscoff France; CNRS UMR 7144 Adaptation et Diversité en Milieu Marin Equipe DIVCO Station Biologique de Roscoff 29680 Roscoff France
| | - Laurent Lévêque
- Sorbonne Universités UPMC Univ Paris 6 Station Biologique de Roscoff 29680 Roscoff France; CNRS FR2424 Station Biologique de Roscoff 29680 Roscoff France
| | - Frédérique Viard
- Sorbonne Universités UPMC Univ Paris 6 Station Biologique de Roscoff 29680 Roscoff France; CNRS UMR 7144 Adaptation et Diversité en Milieu Marin Equipe DIVCO Station Biologique de Roscoff 29680 Roscoff France
| |
Collapse
|
46
|
Robinson T, Havenga B, van der Merwe M, Jackson S. Mind the gap – context dependency in invasive species impacts: a case study of the ascidian Ciona robusta. NEOBIOTA 2017. [DOI: 10.3897/neobiota.32.9373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Nydam ML, Yanckello LM, Bialik SB, Giesbrecht KB, Nation GK, Peak JL. Introgression in two species of broadcast spawning marine invertebrate. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Ma KC, Deibel D, Law KK, Aoki M, McKenzie CH, Palomares ML. Richness and zoogeography of ascidians (Tunicata: Ascidiacea) in eastern Canada. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Managers and policymakers in eastern Canada embrace science-based management of nonindigenous species and may benefit from having comprehensive regional species checklists at subnational jurisdictional levels. In this paper, regional checklists provide an account of the richness of ascidians in eastern Canada. Records of 58 ascidians resulted from reviewing 108 published sources, accessing data from two online databases, and collecting some common indigenous ascidian specimens. Analysis comparing the similarity of species among nine regions indicates that there is greater similarity in species composition between contiguous regions than between noncontiguous regions and suggests that there are four zoogeographic clusters in eastern Canada. Our checklists can inform managers and policymakers of the diversity of the ascidian taxa and can minimize taxonomic uncertainties of established nonindigenous and prospective invading species, for example, by identifying indigenous species that are congeners of nonindigenous species. The maintenance of checklists can be a valuable tool for the management of nonindigenous species as baselines to estimate changes in richness and to document the invasion status of nonindigenous species over time. For example, more importance can be placed on the spread of nonindigenous ascidians from one zoogeographic cluster to another than spread within the same cluster.
Collapse
Affiliation(s)
- Kevin C.K. Ma
- Québec-Océan, Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Don Deibel
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Kenneth K.M. Law
- Environmental Sciences Program, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mai Aoki
- Biology Program, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cynthia H. McKenzie
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, NL A1C 5X1, Canada
| | - Maria L.D. Palomares
- Sea Around Us, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
49
|
Astudillo JC, Leung KMY, Bonebrake TC. Seasonal heterogeneity provides a niche opportunity for ascidian invasion in subtropical marine communities. MARINE ENVIRONMENTAL RESEARCH 2016; 122:1-10. [PMID: 27642109 DOI: 10.1016/j.marenvres.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Implications of changes in environmental conditions caused by seasonality and human alterations on the recruitment of non-native species and their biotic resistance to predation are poorly understood. Here, through the use of experimental recruitment panels and predation exclusion cages, we examined 1) whether a subtropical seasonality (i.e., tropical and temperate conditions) affects the recruitment and abundance of the non-native ascidian Ciona intestinalis, the cryptogenic Styela plicata and Ascidia sydneiensis, and native Hermandia momus in fouling communities in Hong Kong, 2) whether human environmental alterations (i.e., typhoon shelters and sheltered bays with different habitat alteration and seawater quality) affect the abundance of the ascidians, and 3) whether predation reduces the abundance of ascidians under different environmental conditions caused by seasonality and human alteration. Our experimental results indicate that seasonality provides a temporal niche for the recruitment of the ascidians; C. intestinalis and S. plicata recruited mostly in winter, whereas A. sydneiensis and H. momus recruited in summer. Ciona intestinalis was the only ascidian that prospered in anthropogenically altered environments where it monopolized communities. The marked seasonal recruitment of the ascidians obscured the effect of predation between seasons, whereas human alteration did not affect predation. The recruitment of the ascidians in subtropical communities appeared to correspond to their original temperate or tropical distributions, hence Ciona intestinalis, with a temperate native distribution, benefits from a temporal niche opportunity during winter conditions. We argue that seasonality, as an important ecological factor for recruitment and community ecology dynamics, must also be considered in the context of biological invasion.
Collapse
Affiliation(s)
- Juan C Astudillo
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
50
|
Bouchemousse S, Liautard-Haag C, Bierne N, Viard F. Distinguishing contemporary hybridization from past introgression with postgenomic ancestry-informative SNPs in strongly differentiated Ciona species. Mol Ecol 2016; 25:5527-5542. [PMID: 27662427 DOI: 10.1111/mec.13854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Biological introductions bring into contact species that can still hybridize. The evolutionary outcomes of such secondary contacts may be diverse (e.g. adaptive introgression from or into the introduced species) but are not yet well examined in the wild. The recent secondary contact between the non-native sea squirt Ciona robusta (formerly known as C. intestinalis type A) and its native congener C. intestinalis (formerly known as C. intestinalis type B), in the Western English Channel, provides an excellent case study to examine. To examine contemporary hybridization between the two species, we developed a panel of 310 ancestry-informative SNPs from a population transcriptomic study. Hybridization rates were examined on 449 individuals sampled in eight sites from the sympatric range and five sites from allopatric ranges. The results clearly showed an almost complete absence of contemporary hybridization between the two species in syntopic localities, with only one-first-generation hybrid and no other genotype compatible with recent backcrosses. Despite the almost lack of contemporary hybridization, shared polymorphisms were observed in sympatric and allopatric populations of both species. Furthermore, one allopatric population from SE Pacific exhibited a higher rate of shared polymorphisms compared to all other C. robusta populations. Altogether, these results indicate that the observed level of shared polymorphism is more probably the outcome of ancient gene flow spread afterwards at a worldwide scale. They also emphasize efficient reproductive barriers preventing hybridization between introduced and native species, which suggests hybridization should not impede too much the expansion and the establishment of the non-native species in its introduction range.
Collapse
Affiliation(s)
- Sarah Bouchemousse
- UPMC Univ Paris 6, UMR 7144, Equipe DIVCO, Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.,CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Cathy Liautard-Haag
- Station Marine - OSU OREME, Université de Montpellier, 2 Rue des Chantiers, 34200, Sète, France.,CNRS-UM-IRD-EPHE, UMR 5554, Institut des Sciences de l'Evolution, Place Eugène Bataillon, 34095, Montpellier, France
| | - Nicolas Bierne
- Station Marine - OSU OREME, Université de Montpellier, 2 Rue des Chantiers, 34200, Sète, France.,CNRS-UM-IRD-EPHE, UMR 5554, Institut des Sciences de l'Evolution, Place Eugène Bataillon, 34095, Montpellier, France
| | - Frédérique Viard
- UPMC Univ Paris 6, UMR 7144, Equipe DIVCO, Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France. .,CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| |
Collapse
|