1
|
Torraca V, White RJ, Sealy IM, Mazon-Moya M, Duggan G, Willis AR, Busch-Nentwich EM, Mostowy S. Transcriptional profiling of zebrafish identifies host factors controlling susceptibility to Shigella flexneri. Dis Model Mech 2024; 17:dmm050431. [PMID: 38131137 PMCID: PMC10846535 DOI: 10.1242/dmm.050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Richard J. White
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Ian M. Sealy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Maria Mazon-Moya
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Gina Duggan
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Alexandra R. Willis
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Elisabeth M. Busch-Nentwich
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
Farid N, Waheed A, Motwani S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023; 9:e17021. [PMID: 37484319 PMCID: PMC10361103 DOI: 10.1016/j.heliyon.2023.e17021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 07/25/2023] Open
Abstract
Food borne pathogens are one of the most common yet concerning cause of illnesses around the globe. These microbes invade the body via food items, through numerous mediums of contamination and it is impossible to completely eradicate these organisms from food. Extensive research has been made regarding their treatment. Unfortunately, the only available treatment currently is by antibiotics. Recent exponential increase in antibiotic resistance and the side effect of synthetic compounds have established a need for alternate therapies that could be utilized either on their own or along with antibiotics to provide protection against food-borne diseases. The aim of this review is to provide information regarding some common food borne diseases, their current and possible natural treatment. It will include details regarding some common foodborne pathogens, the disease they cause, prevalence, manifestations and treatment of the respective disease. Some natural modes of potential treatment will be summarized, which including phytochemicals, derived from plants either as crude extracts or as purified form and Bacteriocins as microbial based treatment, obtained from various types of bacteria. The paper will describe their mechanism of action, classification, susceptible organisms, some antimicrobial compounds and producing organisms, application in food systems and as potential treatment. Along with that, synthetic treatment i.e., antibiotics will be discussed including the first-line treatment of some common food borne infections, prevalence and mechanism of resistance against antibiotics in the pathogens.
Collapse
Affiliation(s)
- Neha Farid
- Corresponding author. Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Pakistan.
| | | | | |
Collapse
|
3
|
CRISPR-Cas-Guided Mutagenesis of Chromosome and Virulence Plasmid in Shigella flexneri by Cytosine Base Editing. mSystems 2023; 8:e0104522. [PMID: 36541764 PMCID: PMC9948704 DOI: 10.1128/msystems.01045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Shigella is a Gram-negative bacterium that invades the human gut epithelium. The resulting infection, shigellosis, is the deadliest bacterial diarrheal disease. Much of the information about the genes dictating the pathophysiology of Shigella, both on the chromosome and the virulence plasmid, was obtained by classical reverse genetics. However, technical limitations of the prevalent mutagenesis techniques restrict the generation of mutants in a single reaction to a small number, preventing large-scale targeted mutagenesis of Shigella and the subsequent assessment of phenotype. We adopted a CRISPR-Cas-dependent approach, where a nickase Cas9 and cytidine deaminase fusion is guided by single guide RNA (sgRNA) to introduce targeted C→T transitions, resulting in internal stop codons and premature termination of translation. In proof-of-principle experiments using an mCherry fluorescent reporter, we were able to generate loss-of-function mutants in both Escherichia coli and Shigella flexneri with up to 100% efficacy. Using a modified fluctuation assay, we determined that under optimized conditions, the frequency of untargeted mutations introduced by the Cas9-deaminase fusion was in the same range as spontaneous mutations, making our method a safe choice for bacterial mutagenesis. Furthermore, we programmed the method to mutate well-characterized chromosomal and plasmid-borne Shigella flexneri genes and found the mutant phenotype to be similar to those of the reported gene deletion mutants, with no apparent polar effects at the phenotype level. This method can be used in a 96-well-plate format to increase the throughput and generate an array of targeted loss-of-function mutants in a few days. IMPORTANCE Loss-of-function mutagenesis is critical in understanding the physiological role of genes. Therefore, high-throughput techniques to generate such mutants are important for facilitating the assessment of gene function at a pace that matches systems biology approaches. However, to our knowledge, no such method was available for generating an array of single gene mutants in an important enteropathogen-Shigella. This pathogen causes high morbidity and mortality in children, and antibiotic-resistant strains are quickly emerging. Therefore, determination of the function of unknown Shigella genes is of the utmost importance to develop effective strategies to control infections. Our present work will bridge this gap by providing a rapid method for generating loss-of-function mutants. The highly effective and specific method has the potential to be programmed to generate multiple mutants in a single, massively parallel reaction. By virtue of plasmid compatibility, this method can be extended to other members of Enterobacteriaceae.
Collapse
|
4
|
Boquet-Pujadas A, Feaugas T, Petracchini A, Grassart A, Mary H, Manich M, Gobaa S, Olivo-Marin JC, Sauvonnet N, Labruyère E. 4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion. SCIENCE ADVANCES 2022; 8:eabo5767. [PMID: 36269830 PMCID: PMC9586479 DOI: 10.1126/sciadv.abo5767] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/02/2022] [Indexed: 05/31/2023]
Abstract
Physical forces are essential to biological function, but their impact at the tissue level is not fully understood. The gut is under continuous mechanical stress because of peristalsis. To assess the influence of mechanical cues on enteropathogen invasion, we combine computational imaging with a mechanically active gut-on-a-chip. After infecting the device with either of two microbes, we image their behavior in real time while mapping the mechanical stress within the tissue. This is achieved by reconstructing three-dimensional videos of the ongoing invasion and leveraging on-manifold inverse problems together with viscoelastic rheology. Our results show that peristalsis accelerates the destruction and invasion of intestinal tissue by Entamoeba histolytica and colonization by Shigella flexneri. Local tension facilitates parasite penetration and activates virulence genes in the bacteria. Overall, our work highlights the fundamental role of physical cues during host-pathogen interactions and introduces a framework that opens the door to study mechanobiology on deformable tissues.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Feaugas
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
| | - Alba Petracchini
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alexandre Grassart
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
- Unit of Bioengineering and Microbiology, Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Maria Manich
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean-Christophe Olivo-Marin
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nathalie Sauvonnet
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
| | - Elisabeth Labruyère
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Time-Resolved Fluorescence Microscopy Screens on Host Protein Subversion During Bacterial Cell Invasion. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2523:113-131. [PMID: 35759194 DOI: 10.1007/978-1-0716-2449-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intracellular bacterial pathogens have evolved a plethora of strategies to invade eukaryotic cells. By manipulating host signaling pathways, in particular vesicular trafficking, these microbes subvert host functions to promote their internalization and to establish an intracellular niche. During these events, host endomembrane compartments are dynamically reorganized. Shigella flexneri, the causative agent of bacillary dysentery, recruits components of the host recycling pathway and the exocyst of non-phagocytic enterocytes in the vicinity of its entry site to facilitate its access to the host cytosol. These factors are either dynamically tethered to in situ formed macropinosomes or to the bacteria-containing vacuole itself. The underlying interactions cannot readily be monitored as individual bacterial infection events take place without synchronicity using cellular infection models. Therefore, time-resolved screens by fluorescence microscopy represent a powerful tool for the study of host subversion. Such screens can be performed with libraries of fluorescently tagged host factors. Using the cytosolic pathogenic agent Shigella flexneri as a model, we provide detailed protocols for such medium-to-high throughput multidimensional imaging screening of the dynamic host-pathogen cross talk. Our workflow is designed to be easily adapted for the study of different host factor libraries and different pathogen models.
Collapse
|
6
|
Triboulet S, N’Gadjaga MD, Niragire B, Köstlbacher S, Horn M, Aimanianda V, Subtil A. CT295 Is Chlamydia trachomatis’ Phosphoglucomutase and a Type 3 Secretion Substrate. Front Cell Infect Microbiol 2022; 12:866729. [PMID: 35795184 PMCID: PMC9251005 DOI: 10.3389/fcimb.2022.866729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The obligate intracellular bacteria Chlamydia trachomatis store glycogen in the lumen of the vacuoles in which they grow. Glycogen catabolism generates glucose-1-phosphate (Glc1P), while the bacteria can take up only glucose-6-phosphate (Glc6P). We tested whether the conversion of Glc1P into Glc6P could be catalyzed by a phosphoglucomutase (PGM) of host or bacterial origin. We found no evidence for the presence of the host PGM in the vacuole. Two C. trachomatis proteins, CT295 and CT815, are potential PGMs. By reconstituting the reaction using purified proteins, and by complementing PGM deficient fibroblasts, we demonstrated that only CT295 displayed robust PGM activity. Intriguingly, we showed that glycogen accumulation in the lumen of the vacuole of a subset of Chlamydia species (C. trachomatis, C. muridarum, C. suis) correlated with the presence, in CT295 orthologs, of a secretion signal recognized by the type three secretion (T3S) machinery of Shigella. C. caviae and C. pneumoniae do not accumulate glycogen, and their CT295 orthologs lack T3S signals. In conclusion, we established that the conversion of Glc1P into Glc6P was accomplished by a bacterial PGM, through the acquisition of a T3S signal in a “housekeeping” protein. Acquisition of this signal likely contributed to shaping glycogen metabolism within Chlamydiaceae.
Collapse
Affiliation(s)
- Sébastien Triboulet
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Unité de Biologie Cellulaire de l’Infection Microbienne, Paris, France
| | - Maimouna D. N’Gadjaga
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Unité de Biologie Cellulaire de l’Infection Microbienne, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Béatrice Niragire
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Unité de Biologie Cellulaire de l’Infection Microbienne, Paris, France
| | - Stephan Köstlbacher
- Centre for Microbiology and Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité de Mycologie Moléculaire, Paris, France
| | - Agathe Subtil
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Unité de Biologie Cellulaire de l’Infection Microbienne, Paris, France
- *Correspondence: Agathe Subtil,
| |
Collapse
|
7
|
icaR
and
icaT
Are Ancient Chromosome Genes Encoding Substrates of the Type III Secretion Apparatus in Shigella flexneri. mSphere 2022; 7:e0011522. [PMID: 35582904 PMCID: PMC9241512 DOI: 10.1128/msphere.00115-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella is an Escherichia coli pathovar that colonizes the cytosol of mucosal cells in the human large intestine. To do this, Shigella uses a Type III Secretion Apparatus (T3SA) to translocate several proteins into host cells. The T3SA and its substrates are encoded by genes of the virulence plasmid pINV or by chromosomal genes derived thereof. We recently discovered two chromosomal genes, which seem unrelated to pINV, although they are activated by MxiE and IpgC similarly to some of the canonical substrates of the T3SA. Here, we showed that the production of the corresponding proteins depended on the conservation of a MxiE box in their cognate promoters. Furthermore, both proteins were secreted by the T3SA in a chaperone-independent manner through the recognition of their respective amino-terminal secretion signal. Based on these observations, we named these new genes icaR and icaT, which stand for invasion chromosome antigen with homology for a transcriptional regulator and a transposase, respectively. icaR and icaT have orthologs in commensal and pathogenic E. coli strains belonging mainly to phylogroups A, B1, D and E. Finally, we demonstrated that icaR and icaT orthologs could be activated by the coproduction of IpgC and MxiE in strains MG1655 K-12 (phylogroup A) and O157:H7 ATCC 43888 (phylogroup E). In contrast, the coproduction of EivF and YgeG, which are homologs of MxiE and IpgC in the E. coli T3SS 2 (ETT2), failed to activate icaR and icaT. IMPORTANCEicaR and icaT are the latest members of the MxiE regulon discovered in the chromosome. The proteins IcaR and IcaT, albeit produced in small amounts, are nonetheless secreted by the T3SA comparably to canonical substrates. The high occurrence of icaR and icaT in phylogroups A, B1, D, and E coupled with their widespread absence in their B2 counterparts agree with the consensus E. coli phylogeny. The widespread conservation of the MxiE box among icaR and icaT orthologs supports the notion that both genes had already undergone coevolution with transcriptional activators ipgC and mxiE- harbored in pINV or a relative- in the last common ancestor of Shigella and of E. coli from phylogroups A, B1, D, and E. The possibility that icaR and icaT may contribute to Shigella pathogenesis cannot be excluded, although some of their characteristics suggest they are fossil genes.
Collapse
|
8
|
Shigella Outer Membrane Vesicles as Promising Targets for Vaccination. Int J Mol Sci 2022; 23:ijms23020994. [PMID: 35055181 PMCID: PMC8781765 DOI: 10.3390/ijms23020994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
The clinical symptoms of shigellosis, a gastrointestinal infection caused by Shigella spp. range from watery diarrhea to fulminant dysentery. Endemic infections, particularly among children in developing countries, represent the majority of clinical cases. The situation is aggravated due to the high mortality rate of shigellosis, the rapid dissemination of multi-resistant Shigella strains and the induction of only serotype-specific immunity. Thus, infection prevention due to vaccination, encompassing as many of the circulating serotypes as possible, has become a topic of interest. However, vaccines have turned out to be ineffective so far. Outer membrane vesicles (OMVs) are promising novel targets for vaccination. OMVs are constitutively secreted by Gram-negative bacteria including Shigella during growth. They are composed of soluble luminal portions and an insoluble membrane and can contain toxins, bioactive periplasmic and cytoplasmic (lipo-) proteins, (phospho-) lipids, nucleic acids and/or lipopolysaccharides. Thus, OMVs play an important role in bacterial cell–cell communication, growth, survival and pathogenesis. Furthermore, they modulate the secretion and transport of biomolecules, the stress response, antibiotic resistance and immune responses of the host. Thus, OMVs serve as novel secretion machinery. Here, we discuss the current literature and highlight the properties of OMVs as potent vaccine candidates because of their immunomodulatory, antigenic and adjuvant properties.
Collapse
|
9
|
Lobato-Márquez D, Xu J, Güler GÖ, Ojiakor A, Pilhofer M, Mostowy S. Mechanistic insight into bacterial entrapment by septin cage reconstitution. Nat Commun 2021; 12:4511. [PMID: 34301939 PMCID: PMC8302635 DOI: 10.1038/s41467-021-24721-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Septins are cytoskeletal proteins that assemble into hetero-oligomeric complexes and sense micron-scale membrane curvature. During infection with Shigella flexneri, an invasive enteropathogen, septins restrict actin tail formation by entrapping bacteria in cage-like structures. Here, we reconstitute septin cages in vitro using purified recombinant septin complexes (SEPT2-SEPT6-SEPT7), and study how these recognize bacterial cells and assemble on their surface. We show that septin complexes recognize the pole of growing Shigella cells. An amphipathic helix domain in human SEPT6 enables septins to sense positively curved membranes and entrap bacterial cells. Shigella strains lacking lipopolysaccharide components are more efficiently entrapped in septin cages. Finally, cryo-electron tomography of in vitro cages reveals how septins assemble as filaments on the bacterial cell surface. Septins are cytoskeletal proteins that assemble into complexes and contribute to immunity by entrapping intracellular bacteria in cage-like structures. Here, Lobato-Márquez et al. reconstitute septin cages in vitro using purified recombinant complexes, and study how these recognize bacterial cells and assemble as filaments on their surface.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Jingwei Xu
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Gizem Özbaykal Güler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Adaobi Ojiakor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
10
|
Hansen JM, de Jong MF, Wu Q, Zhang LS, Heisler DB, Alto LT, Alto NM. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 2021; 184:3178-3191.e18. [PMID: 34022140 PMCID: PMC8221529 DOI: 10.1016/j.cell.2021.04.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/09/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Gasdermin B (GSDMB) belongs to a large family of pore-forming cytolysins that execute inflammatory cell death programs. While genetic studies have linked GSDMB polymorphisms to human disease, its function in the immunological response to pathogens remains poorly understood. Here, we report a dynamic host-pathogen conflict between GSDMB and the IpaH7.8 effector protein secreted by enteroinvasive Shigella flexneri. We show that IpaH7.8 ubiquitinates and targets GSDMB for 26S proteasome destruction. This virulence strategy protects Shigella from the bacteriocidic activity of natural killer cells by suppressing granzyme-A-mediated activation of GSDMB. In contrast to the canonical function of most gasdermin family members, GSDMB does not inhibit Shigella by lysing host cells. Rather, it exhibits direct microbiocidal activity through recognition of phospholipids found on Gram-negative bacterial membranes. These findings place GSDMB as a central executioner of intracellular bacterial killing and reveal a mechanism employed by pathogens to counteract this host defense system.
Collapse
Affiliation(s)
- Justin M Hansen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maarten F de Jong
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qi Wu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li-Shu Zhang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David B Heisler
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura T Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Inactivation of the sfgtr4 Gene of Shigella flexneri Induces Biofilm Formation and Affects Bacterial Pathogenicity. Microorganisms 2020; 8:microorganisms8060841. [PMID: 32512756 PMCID: PMC7355660 DOI: 10.3390/microorganisms8060841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Biofilm formation is a significant cause for the environmental persistence of foodborne pathogens. This phenomenon remains misunderstood in Shigellaflexneri whose pathogenicity is mainly associated with the virulence plasmid pWR100. Sequence analysis of the latter predicts a putative lipopolysaccharides (LPS) glycosyltransferase (Gtr) encoded by Sfgtr4, which is the second gene of the SfpgdA-orf186-virK-msbB2 locus. We demonstrated here that purified SfGtr4 exhibited a Gtr activity in vitro by transferring glucose to lipid A. To establish the role of SfGtr4 in virulence, we generated a Sfgtr4 mutant and assessed its phenotype in vitro. Sfgtr4 mutant significantly reduced HeLa cells invasion without impairing type III effectors secretion, increased susceptibility to lysozyme degradation, and enhanced bacterial killing by polymorphonuclear neutrophils (PMNs). SfGtr4 is related to proteins required in biofilm formation. We established conditions whereby wild-type Shigella formed biofilm and revealed that its appearance was accelerated by the Sfgtr4 mutant. Additional phenotypical analysis revealed that single SfpdgA and double SfpgdA-Sfgtr4 mutants behaved similarly to Sfgtr4 mutant. Furthermore, a molecular interaction between SfGtr4 and SfPgdA was identified. In summary, the dual contribution of SfGtr4 and SfPgdA to the pathogenicity and the regulation biofilm formation by S. flexneri was demonstrated here.
Collapse
|
12
|
Rey C, Chang YY, Latour-Lambert P, Varet H, Proux C, Legendre R, Coppée JY, Enninga J. Transcytosis subversion by M cell-to-enterocyte spread promotes Shigella flexneri and Listeria monocytogenes intracellular bacterial dissemination. PLoS Pathog 2020; 16:e1008446. [PMID: 32282860 PMCID: PMC7179946 DOI: 10.1371/journal.ppat.1008446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/23/2020] [Accepted: 02/29/2020] [Indexed: 11/19/2022] Open
Abstract
Microfold (M) cell host-pathogen interaction studies would benefit from the visual analysis of dynamic cellular and microbial interplays. We adapted a human in vitro M cell model to physiological bacterial infections, expression of fluorescent localization reporters and long-term three-dimensional time-lapse microscopy. This approach allows following key steps of M cell infection dynamics at subcellular resolution, from the apical onset to basolateral epithelial dissemination. We focused on the intracellular pathogen Shigella flexneri, classically reported to transcytose through M cells to initiate bacillary dysentery in humans, while eliciting poorly protective immune responses. Our workflow was critical to reveal that S. flexneri develops a bimodal lifestyle within M cells leading to rapid transcytosis or delayed vacuolar rupture, followed by direct actin motility-based propagation to neighboring enterocytes. Moreover, we show that Listeria monocytogenes, another intracellular pathogen sharing a tropism for M cells, disseminates in a similar manner and evades M cell transcytosis completely. We established that actin-based M cell-to-enterocyte spread is the major dissemination pathway for both pathogens and avoids their exposure to basolateral compartments in our system. Our results challenge the notion that intracellular pathogens are readily transcytosed by M cells to inductive immune compartments in vivo, providing a potential mechanism for their ability to evade adaptive immunity. Microfold (M) epithelial cells are important for the onset of infections and induction of immune responses in many mucosal diseases. We extended a human in vitro M cell model to apical infections, expression of fluorescent host and microbial reporters and real-time fluorescence microscopy. Focusing on the human intracellular pathogen S. flexneri, responsible for bacillary dysentery, this workflow allowed us to uncover that the bacterium can subvert the immunological sampling function of M cells by promoting a cytosolic lifestyle and spreading directly to neighboring enterocytes. This mechanism was shared with the etiologic agent of listeriosis, the intracellular pathogen L. monocytogenes and allowed both pathogens to avoid exposure to underlying immune compartments. These results may provide a mechanism for the ability of intracellular pathogens to evade adaptive immunity in vivo, emphasizing the importance of advanced studies of M cell host-pathogen interactions to understand early steps of mucosal invasion and their consequences on immunity.
Collapse
Affiliation(s)
- Camille Rey
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, Paris, France, and Centre National de le la Recherche Scientifique (CNRS) UMR3691, Paris, France
| | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, Paris, France, and Centre National de le la Recherche Scientifique (CNRS) UMR3691, Paris, France
| | - Patricia Latour-Lambert
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, Paris, France, and Centre National de le la Recherche Scientifique (CNRS) UMR3691, Paris, France
| | - Hugo Varet
- Institut Pasteur, Transcriptome and Epigenome Platform, Paris, France
- Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR 3756 IP CNRS), Paris, France
| | - Caroline Proux
- Institut Pasteur, Transcriptome and Epigenome Platform, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Transcriptome and Epigenome Platform, Paris, France
- Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR 3756 IP CNRS), Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome and Epigenome Platform, Paris, France
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, Paris, France, and Centre National de le la Recherche Scientifique (CNRS) UMR3691, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Chlamydia-induced curvature of the host-cell plasma membrane is required for infection. Proc Natl Acad Sci U S A 2020; 117:2634-2644. [PMID: 31964834 PMCID: PMC7007526 DOI: 10.1073/pnas.1911528117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During invasion of host cells, Chlamydia pneumoniae secretes the effector protein CPn0678, which facilitates internalization of the pathogen by remodeling the target cell's plasma membrane and recruiting sorting nexin 9 (SNX9), a central multifunctional endocytic scaffold protein. We show here that the strongly amphipathic N-terminal helix of CPn0678 mediates binding to phospholipids in both the plasma membrane and synthetic membranes, and is sufficient to induce extensive membrane tubulations. CPn0678 interacts via its conserved C-terminal polyproline sequence with the Src homology 3 domain of SNX9. Thus, SNX9 is found at bacterial entry sites, where C. pneumoniae is internalized via EGFR-mediated endocytosis. Moreover, depletion of human SNX9 significantly reduces internalization, whereas ectopic overexpression of CPn0678-GFP results in a dominant-negative effect on endocytotic processes in general, leading to the uptake of fewer chlamydial elementary bodies and diminished turnover of EGFR. Thus, CPn0678 is an early effector involved in regulating the endocytosis of C. pneumoniae in an EGFR- and SNX9-dependent manner.
Collapse
|
14
|
Kadari M, Lakhloufi D, Delforge V, Imbault V, Communi D, Smeesters P, Botteaux A. Multiple proteins arising from a single gene: The role of the Spa33 variants in Shigella T3SS regulation. Microbiologyopen 2019; 8:e932. [PMID: 31517452 PMCID: PMC6925163 DOI: 10.1002/mbo3.932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Shigella invasion and dissemination in intestinal epithelial cells relies on a type 3 secretion system (T3SS), which mediates translocation of virulence proteins into host cells. T3SSs are composed of three major parts: an extracellular needle, a basal body, and a cytoplasmic complex. Three categories of proteins are hierarchically secreted: (a) the needle components, (b) the translocator proteins which form a pore (translocon) inside the host cell membrane and (c) the effectors interfering with the host cell signaling pathways. In the absence of host cell contact, the T3SS is maintained in an “off” state by the presence of a tip complex. Secretion is activated by host cell contact which allows the release of a gatekeeper protein called MxiC. In this work, we have investigated the role of Spa33, a component of the cytoplasmic complex, in the regulation of secretion. The spa33 gene encodes a 33‐kDa protein and a smaller fragment of 12 kDa (Spa33C) which are both essential components of the cytoplasmic complex. We have shown that the spa33 gene gives rise to 5 fragments of various sizes. Among them, three are necessary for T3SS. Interestingly, we have shown that Spa33 is implicated in the regulation of secretion. Indeed, the mutation of a single residue in Spa33 induces an effector mutant phenotype, in which MxiC is sequestered. Moreover, we have shown a direct interaction between Spa33 and MxiC.
Collapse
Affiliation(s)
- Mahendar Kadari
- Laboratory of Molecular Bacteriology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Dalila Lakhloufi
- Laboratory of Molecular Bacteriology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Valérie Delforge
- Laboratory of Molecular Bacteriology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Virginie Imbault
- Mass Spectrometry and Proteomics Facility, IRIBHM, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - David Communi
- Mass Spectrometry and Proteomics Facility, IRIBHM, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Pierre Smeesters
- Laboratory of Molecular Bacteriology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium.,Tropical disease Group, Murdoch Children's, Research Institute, Melbourne, Vic., Australia.,Center for International Child Health, University of Melbourne, Melbourne, Vic., Australia
| | - Anne Botteaux
- Laboratory of Molecular Bacteriology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| |
Collapse
|
15
|
Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection. Cell Host Microbe 2019; 26:435-444.e4. [PMID: 31492657 DOI: 10.1016/j.chom.2019.08.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/11/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Intestinal epithelial cells are constantly exposed to pathogens and mechanical forces. However, the impact of mechanical forces on infections leading to diarrheal diseases remains largely unknown. Here, we addressed whether flow and peristalsis impact the infectivity of the human pathogen Shigella within a 3D colonic epithelium using Intestine-Chip technology. Strikingly, infection is significantly increased and minimal bacterial loads are sufficient to invade enterocytes from the apical side and trigger loss of barrier integrity, thereby shifting the paradigm about early stage Shigella invasion. Shigella quickly colonizes epithelial crypt-like invaginations and demonstrates the essential role of the microenvironment. Furthermore, by modulating the mechanical forces of the microenvironment, we find that peristalsis impacts Shigella invasion. Collectively, our results reveal that Shigella leverages the intestinal microenvironment by taking advantage of the microarchitecture and mechanical forces to efficiently invade the intestine. This approach will enable molecular and mechanistic interrogation of human-restricted enteric pathogens.
Collapse
|
16
|
Sharma A, Puhar A. Plaque Assay to Determine Invasion and Intercellular Dissemination of Shigella flexneri in TC7 Human Intestinal Epithelial Cells. Bio Protoc 2019; 9:e3293. [PMID: 33654806 DOI: 10.21769/bioprotoc.3293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 11/02/2022] Open
Abstract
Shigella flexneri invades the epithelial cells lining the gut lumen and replicates intracellularly. The specialized Type III Secretion System (T3SS) and its effector proteins, encoded on a large virulence plasmid, assist the bacterium to gain access to the cytosol. Thereafter Shigella disseminates to neighboring cells in an epithelial layer without further extracellular steps. Host cell lysis occurs when these bacteria have extensively replicated in the target cell cytosol. Here we describe a simple method to qualitatively as well as quantitatively study the capacity of Shigella to invade and disseminate within an epithelium by assessing the number and size of plaques representing the dead cells in a monolayer of TC7 cells. This classical protocol follows a simple approach of infecting the monolayers of epithelial cell lines with Shigella and visualizing the dead cells as plaques formed against a stained background.
Collapse
Affiliation(s)
- Atin Sharma
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Cossé MM, Barta ML, Fisher DJ, Oesterlin LK, Niragire B, Perrinet S, Millot GA, Hefty PS, Subtil A. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth. Front Cell Infect Microbiol 2018; 8:145. [PMID: 29868501 PMCID: PMC5962693 DOI: 10.3389/fcimb.2018.00145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Invasion of epithelial cells by the obligate intracellular bacterium Chlamydia trachomatis results in its enclosure inside a membrane-bound compartment termed an inclusion. The bacterium quickly begins manipulating interactions between host intracellular trafficking and the inclusion interface, diverging from the endocytic pathway and escaping lysosomal fusion. We have identified a previously uncharacterized protein, CT622, unique to the Chlamydiaceae, in the absence of which most bacteria failed to establish a successful infection. CT622 is abundant in the infectious form of the bacteria, in which it associates with CT635, a putative novel chaperone protein. We show that CT622 is translocated into the host cytoplasm via type three secretion throughout the developmental cycle of the bacteria. Two separate domains of roughly equal size have been identified within CT622 and a 1.9 Å crystal structure of the C-terminal domain has been determined. Genetic disruption of ct622 expression resulted in a strong bacterial growth defect, which was due to deficiencies in proliferation and in the generation of infectious bacteria. Our results converge to identify CT622 as a secreted protein that plays multiple and crucial roles in the initiation and support of the C. trachomatis growth cycle. They reveal that genetic disruption of a single effector can deeply affect bacterial fitness.
Collapse
Affiliation(s)
- Mathilde M Cossé
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Michael L Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, IL, United States
| | - Lena K Oesterlin
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR 144, Molecular Mechanisms of Intracellular Transport, Paris, France
| | - Béatrice Niragire
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| | - Stéphanie Perrinet
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| | - Gaël A Millot
- Institut Pasteur-Bioinformatics and Biostatistics Hub-C3BI, USR3756 IP Centre National de la Recherche Scientifique, Paris, France
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| |
Collapse
|
18
|
Pinaud L, Ferrari ML, Friedman R, Jehmlich N, von Bergen M, Phalipon A, Sansonetti PJ, Campbell-Valois FX. Identification of novel substrates of Shigella T3SA through analysis of its virulence plasmid-encoded secretome. PLoS One 2017; 12:e0186920. [PMID: 29073283 PMCID: PMC5658099 DOI: 10.1371/journal.pone.0186920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed.
Collapse
Affiliation(s)
- Laurie Pinaud
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
| | - Mariana L. Ferrari
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
| | - Robin Friedman
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
- Laboratoire de Biologie Systémique & Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur, Paris, France
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biochemistry, University of Leipzig, Faculty of Biosciences, Pharmacy and Psychology, Leipzig, Germany
| | - Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Draft Genome Sequences of Salmonella Lysozyme Gene Knockout Mutants. GENOME ANNOUNCEMENTS 2017; 5:5/23/e00519-17. [PMID: 28596411 PMCID: PMC5465630 DOI: 10.1128/genomea.00519-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lysozyme enzymes hydrolyze the β-1,4-glycosidic bond in oligosaccharides. These enzymes are part of a broad group of glucoside hydrolases that are poorly characterized; however, they are important for growth and are being recognized as emerging virulence factors. This is the release of four lysozyme-encoding-gene-deletion mutants in Salmonella enterica serovar Typhimurium LT2.
Collapse
|
20
|
Gehre L, Gorgette O, Perrinet S, Prevost MC, Ducatez M, Giebel AM, Nelson DE, Ball SG, Subtil A. Sequestration of host metabolism by an intracellular pathogen. eLife 2016; 5:e12552. [PMID: 26981769 PMCID: PMC4829429 DOI: 10.7554/elife.12552] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/15/2016] [Indexed: 01/22/2023] Open
Abstract
For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.
Collapse
Affiliation(s)
- Lena Gehre
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | - Olivier Gorgette
- Plate-forme de Microscopie Ultrastructurale, Imagopole, Institut Pasteur, Paris, France
| | - Stéphanie Perrinet
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | | | - Mathieu Ducatez
- Unité de Glycobiologie Structurale et Fonctionnelle - CNRS UMR8576, Université de Lille, Lille, France
| | - Amanda M Giebel
- Department of Biology, Indiana University Bloomington, Bloomington, United States
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle - CNRS UMR8576, Université de Lille, Lille, France
| | - Agathe Subtil
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| |
Collapse
|
21
|
Ye Y, Gao J, Jiao R, Li H, Wu Q, Zhang J, Zhong X. The Membrane Proteins Involved in Virulence of Cronobacter sakazakii Virulent G362 and Attenuated L3101 Isolates. Front Microbiol 2015; 6:1238. [PMID: 26617581 PMCID: PMC4637405 DOI: 10.3389/fmicb.2015.01238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic foodborne pathogen and the virulence differences were previously documented. However, information about membranous proteins involved in virulence differences was not available. In this study, virulent characterization such as biofilm formation and flagella motility between virulent C. sakazakii isolate G362 and attenuated L3101 were determined. Then, two-dimensional gel electrophoresis (2-DE) technology was used to preliminarily reveal differential expression of membranous proteins between G362 and L3101. On the mass spectrometry (MS) analysis and MASCOT research results, fourteen proteins with differential expression were successfully identified. At the threshold of twofold changes, five out of eight membranous proteins were up-regulated in G362. Using RT-PCR, the expression abundance of the protein (enzV, ompX, lptE, pstB, and OsmY) genes at mRNA levels was consistent with the results by 2-DE method. The findings presented here provided novel information and valuable knowledge for revealing pathogenic mechanism of C. sakazakii.
Collapse
Affiliation(s)
- YingWang Ye
- School of Biotechnology and Food Engineering, Hefei University of Technology Hefei, China ; State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| | - Jina Gao
- School of Biotechnology and Food Engineering, Hefei University of Technology Hefei, China
| | - Rui Jiao
- School of Biotechnology and Food Engineering, Hefei University of Technology Hefei, China
| | - Hui Li
- School of Biotechnology and Food Engineering, Hefei University of Technology Hefei, China ; State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| | - Xian Zhong
- State Key Laboratory of Applied Microbiology Southern China Guangzhou, China ; Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangzhou, China ; Guangdong Institute of Microbiology Guangzhou, China
| |
Collapse
|
22
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
23
|
Bacterial Internalization, Localization, and Effectors Shape the Epithelial Immune Response during Shigella flexneri Infection. Infect Immun 2015; 83:3624-37. [PMID: 26123804 DOI: 10.1128/iai.00574-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 01/28/2023] Open
Abstract
Intracellular pathogens are differentially sensed by the compartmentalized host immune system. Nevertheless, gene expression studies of infected cells commonly average the immune responses, neglecting the precise pathogen localization. To overcome this limitation, we dissected the transcriptional immune response to Shigella flexneri across different infection stages in bulk and single cells. This identified six distinct transcriptional profiles characterizing the dynamic, multilayered host response in both bystander and infected cells. These profiles were regulated by external and internal danger signals, as well as whether bacteria were membrane bound or cytosolic. We found that bacterial internalization triggers a complex, effector-independent response in bystander cells, possibly to compensate for the undermined host gene expression in infected cells caused by bacterial effectors, particularly OspF. Single-cell analysis revealed an important bacterial strategy to subvert host responses in infected cells, demonstrating that OspF disrupts concomitant gene expression of proinflammatory, apoptosis, and stress pathways within cells. This study points to novel mechanisms through which bacterial internalization, localization, and injected effectors orchestrate immune response transcriptional signatures.
Collapse
|
24
|
Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc Natl Acad Sci U S A 2015; 112:E3282-90. [PMID: 26056271 DOI: 10.1073/pnas.1509091112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Few studies within the pathogenic field have used advanced imaging and analytical tools to quantitatively measure pathogenicity in vivo. In this work, we present a novel approach for the investigation of host-pathogen processes based on medium-throughput 3D fluorescence imaging. The guinea pig model for Shigella flexneri invasion of the colonic mucosa was used to monitor the infectious process over time with GFP-expressing S. flexneri. A precise quantitative imaging protocol was devised to follow individual S. flexneri in a large tissue volume. An extensive dataset of confocal images was obtained and processed to extract specific quantitative information regarding the progression of S. flexneri infection in an unbiased and exhaustive manner. Specific parameters included the analysis of S. flexneri positions relative to the epithelial surface, S. flexneri density within the tissue, and volume of tissue destruction. In particular, at early time points, there was a clear association of S. flexneri with crypts, key morphological features of the colonic mucosa. Numerical simulations based on random bacterial entry confirmed the bias of experimentally measured S. flexneri for early crypt targeting. The application of a correlative light and electron microscopy technique adapted for thick tissue samples further confirmed the location of S. flexneri within colonocytes at the mouth of crypts. This quantitative imaging approach is a novel means to examine host-pathogen systems in a tailored and robust manner, inclusive of the infectious agent.
Collapse
|
25
|
Shigella infection interferes with SUMOylation and increases PML-NB number. PLoS One 2015; 10:e0122585. [PMID: 25848798 PMCID: PMC4388590 DOI: 10.1371/journal.pone.0122585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
Shigellosis is a severe diarrheal disease that affects hundreds of thousands of individuals resulting in significant morbidity and mortality worldwide. Shigellosis is caused by Shigella spp., a gram-negative bacterium that uses a Type 3 Secretion System (T3SS) to deliver effector proteins into the cytosol of infected human cells. Shigella infection triggers multiple signaling programs that result in a robust host transcriptional response that includes the induction of multiple proinflammatory cytokines. PML nuclear bodies (PML-NBs) are dynamic subnuclear structures that coordinate immune signaling programs and have a demonstrated role in controlling viral infection. We show that PML-NB number increases upon Shigella infection. We examined the effects of Shigella infection on SUMOylation and found that upon Shigella infection the localization of SUMOylated proteins is altered and the level of SUMOylated proteins decreases. Although Shigella infection does not alter the abundance of SUMO activating enzymes SAE1 or SAE2, it dramatically decreases the level of the SUMO conjugating enzyme Ubc9. All Shigella-induced alterations to the SUMOylation system are dependent upon a T3SS. Thus, we demonstrate that Shigella uses one or more T3SS effectors to influence both PML-NB number and the SUMOylation machinery in human cells.
Collapse
|
26
|
Abstract
UNLABELLED Type IV pili (T4Ps) are surface appendages used by Gram-negative and Gram-positive pathogens for motility and attachment to epithelial surfaces. In Gram-negative bacteria, such as the important pediatric pathogen enteropathogenic Escherichia coli (EPEC), during extension and retraction, the pilus passes through an outer membrane (OM) pore formed by the multimeric secretin complex. The secretin is common to Gram-negative assemblies, including the related type 2 secretion (T2S) system and the type 3 secretion (T3S) system. The N termini of the secretin monomers are periplasmic and in some systems have been shown to mediate substrate specificity. In this study, we mapped the topology of BfpB, the T4P secretin from EPEC, using a combination of biochemical and biophysical techniques that allowed selective identification of periplasmic and extracellular residues. We applied rules based on solved atomic structures of outer membrane proteins (OMPs) to generate our topology model, combining the experimental results with secondary structure prediction algorithms and direct inspection of the primary sequence. Surprisingly, the C terminus of BfpB is extracellular, a result confirmed by flow cytometry for BfpB and a distantly related T4P secretin, PilQ, from Pseudomonas aeruginosa. Keeping with prior evidence, the C termini of two T2S secretins and one T3S secretin were not detected on the extracellular surface. On the basis of our data and structural constraints, we propose that BfpB forms a beta barrel with 16 transmembrane beta strands. We propose that the T4P secretins have a C-terminal segment that passes through the center of each monomer. IMPORTANCE Secretins are multimeric proteins that allow the passage of secreted toxins and surface structures through the outer membranes (OMs) of Gram-negative bacteria. To date, there have been no atomic structures of the C-terminal region of a secretin, although electron microscopy (EM) structures of the complex are available. This work provides a detailed topology prediction of the membrane-spanning domain of a type IV pilus (T4P) secretin. Our study used innovative techniques to provide new and comprehensive information on secretin topology, highlighting similarities and differences among secretin subfamilies. Additionally, the techniques used in this study may prove useful for the study of other OM proteins.
Collapse
|
27
|
Harouz H, Rachez C, Meijer BM, Marteyn B, Donnadieu F, Cammas F, Muchardt C, Sansonetti P, Arbibe L. Shigella flexneri targets the HP1γ subcode through the phosphothreonine lyase OspF. EMBO J 2014; 33:2606-22. [PMID: 25216677 DOI: 10.15252/embj.201489244] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HP1 proteins are transcriptional regulators that, like histones, are targets for post-translational modifications defining an HP1-mediated subcode. HP1γ has multiple phosphorylation sites, including serine 83 (S83) that marks it to sites of active transcription. In a guinea pig model for Shigella enterocolitis, we observed that the defective type III secretion mxiD Shigella flexneri strain caused more HP1γ phosphorylation in the colon than the wild-type strain. Shigella interferes with HP1 phosphorylation by injecting the phospholyase OspF. This effector interacts with HP1γ and alters its phosphorylation at S83 by inactivating ERK and consequently MSK1, a downstream kinase. MSK1 that here arises as a novel HP1γ kinase, phosphorylates HP1γ at S83 in the context of an MSK1-HP1γ complex, and thereby favors its accumulation on its target genes. Genome-wide transcriptome analysis reveals that this mechanism is linked to up-regulation of proliferative gene and fine-tuning of immune gene expression. Thus, in addition to histones, bacteria control host transcription by modulating the activity of HP1 proteins, with potential implications in transcriptional reprogramming at the mucosal barrier.
Collapse
Affiliation(s)
- Habiba Harouz
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Christophe Rachez
- Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Institut Pasteur, Paris, France URA2578 CNRS, Paris, France
| | - Benoit M Meijer
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Françoise Donnadieu
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Florence Cammas
- Equipe Epigénétique, différenciation cellulaire et cancer IRCM, Montpellier, France
| | - Christian Muchardt
- Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Institut Pasteur, Paris, France URA2578 CNRS, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Laurence Arbibe
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| |
Collapse
|
28
|
Domman D, Collingro A, Lagkouvardos I, Gehre L, Weinmaier T, Rattei T, Subtil A, Horn M. Massive expansion of Ubiquitination-related gene families within the Chlamydiae. Mol Biol Evol 2014; 31:2890-904. [PMID: 25069652 PMCID: PMC4209131 DOI: 10.1093/molbev/msu227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify.
Collapse
Affiliation(s)
- Daryl Domman
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Astrid Collingro
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Ilias Lagkouvardos
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Lena Gehre
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France
| | - Thomas Weinmaier
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Agathe Subtil
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Puhar A, Tronchère H, Payrastre B, Nhieu GTV, Sansonetti PJ. A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity 2014; 39:1121-31. [PMID: 24332032 DOI: 10.1016/j.immuni.2013.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/09/2013] [Indexed: 12/20/2022]
Abstract
Upon infection with Shigella flexneri, epithelial cells release ATP through connexin hemichannels. However, the pathophysiological consequence and the regulation of this process are unclear. Here we showed that in intestinal epithelial cell ATP release was an early alert response to infection with enteric pathogens that eventually promoted inflammation of the gut. Shigella evolved to escape this inflammatory reaction by its type III secretion effector IpgD, which blocked hemichannels via the production of the lipid PtdIns5P. Infection with an ipgD mutant resulted in rapid hemichannel-dependent accumulation of extracellular ATP in vitro and in vivo, which preceded the onset of inflammation. At later stages of infection, ipgD-deficient Shigella caused strong intestinal inflammation owing to extracellular ATP. We therefore describe a new paradigm of host-pathogen interaction based on endogenous danger signaling and identify extracellular ATP as key regulator of mucosal inflammation during infection. Our data provide new angles of attack for the development of anti-inflammatory molecules.
Collapse
Affiliation(s)
- Andrea Puhar
- Inserm U786, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France; Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France.
| | - Hélène Tronchère
- Inserm U1048, I2MC, 31432 Toulouse Cedex 4, France; Université Toulouse 3, I2MC, 31432 Toulouse Cedex 4, France
| | - Bernard Payrastre
- Inserm U1048, I2MC, 31432 Toulouse Cedex 4, France; Université Toulouse 3, I2MC, 31432 Toulouse Cedex 4, France; CHU Toulouse, Laboratoire d'Hématologie, 31432 Toulouse Cedex 4, France
| | - Guy Tran Van Nhieu
- Inserm U1050, Equipe Communication Intercellulaire et Infections Microbiennes, CIRB, 75231 Paris Cedex 5, France; CNRS UMR7241, Equipe Communication Intercellulaire et Infections Microbiennes, CIRB, 75231 Paris Cedex 5, France; Collège de France, Equipe Communication Intercellulaire et Infections Microbiennes, CIRB, 75231 Paris Cedex 5, France
| | - Philippe J Sansonetti
- Inserm U786, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France; Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France.
| |
Collapse
|
30
|
The Vps/VacJ ABC transporter is required for intercellular spread of Shigella flexneri. Infect Immun 2013; 82:660-9. [PMID: 24478081 DOI: 10.1128/iai.01057-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Vps/VacJ ABC transporter system is proposed to function in maintaining the lipid asymmetry of the outer membrane. Mutations in vps or vacJ in Shigella flexneri resulted in increased sensitivity to lysis by the detergent sodium dodecyl sulfate (SDS), and the vpsC mutant showed minor differences in its phospholipid profile compared to the wild type. vpsC mutants were unable to form plaques in cultured epithelial cells, but this was not due to a failure to invade, to replicate intracellularly, or to polymerize actin via IcsA for movement within epithelial cells. The addition of the outer membrane phospholipase gene pldA on a multicopy plasmid in a vpsC or vacJ mutant restored its resistance to SDS, suggesting a restoration of lipid asymmetry to the outer membrane. However, the pldA plasmid did not restore the mutant's ability to form plaques in tissue culture cells. Increased PldA levels also failed to restore the mutant's phospholipid profile to that of the wild type. We propose a dual function of the Vps/VacJ ABC transporter system in S. flexneri in both the maintenance of lipid asymmetry in the outer membrane and the intercellular spread of the bacteria between adjacent epithelial cells.
Collapse
|
31
|
Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Coré M, Sleurs D, Serriari NE, Treiner E, Hivroz C, Sansonetti P, Gougeon ML, Soudais C, Lantz O. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 2013; 9:e1003681. [PMID: 24130485 PMCID: PMC3795036 DOI: 10.1371/journal.ppat.1003681] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022] Open
Abstract
Mucosal associated invariant T cells (MAIT) are innate T lymphocytes that detect a large variety of bacteria and yeasts. This recognition depends on the detection of microbial compounds presented by the evolutionarily conserved major-histocompatibility-complex (MHC) class I molecule, MR1. Here we show that MAIT cells display cytotoxic activity towards MR1 overexpressing non-hematopoietic cells cocultured with bacteria. The NK receptor, CD161, highly expressed by MAIT cells, modulated the cytokine but not the cytotoxic response triggered by bacteria infected cells. MAIT cells are also activated by and kill epithelial cells expressing endogenous levels of MRI after infection with the invasive bacteria Shigella flexneri. In contrast, MAIT cells were not activated by epithelial cells infected by Salmonella enterica Typhimurium. Finally, MAIT cells are activated in human volunteers receiving an attenuated strain of Shigella dysenteriae-1 tested as a potential vaccine. Thus, in humans, MAIT cells are the most abundant T cell subset able to detect and kill bacteria infected cells. Human Mucosa-Associated Invariant T cells (MAIT) detect microbe-derived compounds presented by the MHC-like molecule, MR1. These foreign antigens are produced by a wide variety of microbes, including commensal and pathogenic bacteria or yeasts. MAIT cells expend shortly after birth and constitute the major antibacterial T cell subset described and, hence, could play important roles in infectious diseases. Here we show that MAIT cells recognize epithelial cells infected by the intestinal pathogen Shigella flexneri in a process requiring endogenous MR1, while the closely related bacterium Salmonella Tyhpimurium is not. Upon recognition, infected epithelial cells are efficiently lysed by MAIT cells. We also show that the triggering of CD161, a natural killer receptor highly expressed by MAIT cells, can modulate the cytokine but not the cytotoxic function of these cells. Finally, we provide evidence that MAIT cells are activated during the course of an experimental enteric infection in humans. Our study provides important insight on the antibacterial function of MAIT cells and their interaction with pathogenic bacterial species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Philippe Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, U786, Paris, France
| | - Marie-Lise Gougeon
- Institut Pasteur, Unité Immunité Antivirale, Biothérapies et Vaccins, Paris, France
| | | | - Olivier Lantz
- Institut curie, Inserm U932, Paris, France
- Center of Clinical Investigations CICBT507 IGR/Curie, Paris, France
- Equipe labellisée de la ligue de lutte contre le cancer, Institut Curie, Paris, France
- * E-mail:
| |
Collapse
|
32
|
Virulent Shigella flexneri affects secretion, expression, and glycosylation of gel-forming mucins in mucus-producing cells. Infect Immun 2013; 81:3632-43. [PMID: 23876800 DOI: 10.1128/iai.00551-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mucin glycoproteins are secreted in large amounts by the intestinal epithelium and constitute an efficient component of innate immune defenses to promote homeostasis and protect against enteric pathogens. In this study, our objective was to investigate how the bacterial enteropathogen Shigella flexneri, which causes bacillary dysentery, copes with the mucin defense barrier. We report that upon in vitro infection of mucin-producing polarized human intestinal epithelial cells, virulent S. flexneri manipulates the secretion of gel-forming mucins. This phenomenon, which is triggered only by virulent strains, results in accumulation of mucins at the cell apical surface, leading to the appearance of a gel-like structure that favors access of bacteria to the cell surface and the subsequent invasion process. We identify MUC5AC, a gel-forming mucin, as a component of this structure. Formation of this gel does not depend on modifications of electrolyte concentrations, induction of trefoil factor expression, endoplasmic reticulum stress, or response to unfolded proteins. In addition, transcriptional and biochemical analyses of infected cells reveal modulations of mucin gene expression and modifications of mucin glycosylation patterns, both of which are induced by virulent bacteria in a type III secretion system-dependent manner. Thus, S. flexneri has developed a dedicated strategy to alter the mucus barrier by targeting key elements of the gel-forming capacity of mucins: gene transcription, protein glycosylation, and secretion.
Collapse
|
33
|
Abstract
The Gram-negative enteroinvasive bacterium Shigella flexneri is responsible for the endemic form of bacillary dysentery, an acute rectocolitis in humans. S. flexneri uses a type III secretion system to inject effector proteins into host cells, thus diverting cellular functions to its own benefit. Protective immunity to reinfection requires several rounds of infection to be elicited and is short-lasting, suggesting that S. flexneri interferes with the priming of specific immunity. Considering the key role played by T-lymphocyte trafficking in priming of adaptive immunity, we investigated the impact of S. flexneri on T-cell dynamics in vivo. By using two-photon microscopy to visualize bacterium-T-cell cross-talks in the lymph nodes, where the adaptive immunity is initiated, we provide evidence that S. flexneri, via its type III secretion system, impairs the migration pattern of CD4(+) T cells independently of cognate recognition of bacterial antigens. We show that bacterial invasion of CD4(+) T lymphocytes occurs in vivo, and results in cell migration arrest. In the absence of invasion, CD4(+) T-cell migration parameters are also dramatically altered. Signals resulting from S. flexneri interactions with subcapsular sinus macrophages and dendritic cells, and recruitment of polymorphonuclear cells are likely to contribute to this phenomenon. These findings indicate that S. flexneri targets T lymphocytes in vivo and highlight the role of type III effector secretion in modulating host adaptive immune responses.
Collapse
|
34
|
VirB-mediated positive feedback control of the virulence gene regulatory cascade of Shigella flexneri. J Bacteriol 2012; 194:5264-73. [PMID: 22821978 DOI: 10.1128/jb.00800-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri is a facultative intracellular pathogen that relies on a type III secretion system and its associated effector proteins to cause bacillary dysentery in humans. The genes that encode this virulence system are located on a 230-kbp plasmid and are transcribed in response to thermal, osmotic, and pH signals that are characteristic of the human lower gut. The virulence genes are organized within a regulatory cascade, and the nucleoid-associated protein H-NS represses each of the key promoters. Transcription derepression depends first on the VirF AraC-like transcription factor, a protein that antagonizes H-NS-mediated repression at the intermediate regulatory gene virB. The VirB protein in turn remodels the H-NS-DNA nucleoprotein complexes at the promoters of the genes encoding the type III secretion system and effector proteins, causing these genes to become derepressed. In this study, we show that the VirB protein also positively regulates the expression of its own gene (virB) via a cis-acting regulatory sequence. In addition, VirB positively regulates the gene coding for the VirF protein. This study reveals two hitherto uncharacterized feedback regulatory loops in the S. flexneri virulence cascade that provide a mechanism for the enhanced expression of the principal virulence regulatory genes.
Collapse
|
35
|
Bongrand C, Sansonetti PJ, Parsot C. Characterization of the promoter, MxiE box and 5' UTR of genes controlled by the activity of the type III secretion apparatus in Shigella flexneri. PLoS One 2012; 7:e32862. [PMID: 22427898 PMCID: PMC3299695 DOI: 10.1371/journal.pone.0032862] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/01/2012] [Indexed: 11/21/2022] Open
Abstract
Activation of the type III secretion apparatus (T3SA) of Shigella flexneri, upon contact of the bacteria with host cells, and its deregulation, as in ipaB mutants, specifically increases transcription of a set of effector-encoding genes controlled by MxiE, an activator of the AraC family, and IpgC, the chaperone of the IpaB and IpaC translocators. Thirteen genes carried by the virulence plasmid (ospB, ospC1, ospD2, ospD3, ospE1, ospE2, ospF, ospG, virA, ipaH1.4, ipaH4.5, ipaH7.8 and ipaH9.8) and five genes carried by the chromosome (ipaHa-e) are regulated by the T3SA activity. A conserved 17-bp MxiE box is present 5' of most of these genes. To characterize the promoter activity of these MxiE box-containing regions, similar ∼67-bp DNA fragments encompassing the MxiE box of 14 MxiE-regulated genes were cloned 5' of lacZ in a promoter probe plasmid; β-galactosidase activity detected in wild-type and ipaB strains harboring these plasmids indicated that most MxiE box-carrying regions contain a promoter regulated by the T3SA activity and that the relative strengths of these promoters cover an eight-fold range. The various MxiE boxes exhibiting up to three differences as compared to the MxiE box consensus sequence were introduced into the ipaH9.8 promoter without affecting its activity, suggesting that they are equally efficient in promoter activation. In contrast, all nucleotides conserved among MxiE boxes were found to be involved in MxiE-dependent promoter activity. In addition, we present evidence that the 5' UTRs of four MxiE-regulated genes enhance expression of the downstream gene, presumably by preventing degradation of the mRNA, and the 5' UTRs of two other genes carry an ancillary promoter.
Collapse
Affiliation(s)
- Clotilde Bongrand
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité (Cellule Pasteur), Paris, France
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Paris, France
| | - Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Paris, France
| |
Collapse
|
36
|
Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, di Bartolo V, Scott-Algara D, Rodrigues C, Sansonetti P, Phalipon A. The Shigella flexneri Type Three Secretion System Effector IpgD Inhibits T Cell Migration by Manipulating Host Phosphoinositide Metabolism. Cell Host Microbe 2011; 9:263-72. [DOI: 10.1016/j.chom.2011.03.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/02/2011] [Accepted: 03/18/2011] [Indexed: 11/24/2022]
|
37
|
Dehoux P, Flores R, Dauga C, Zhong G, Subtil A. Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics 2011; 12:109. [PMID: 21324157 PMCID: PMC3048545 DOI: 10.1186/1471-2164-12-109] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 02/16/2011] [Indexed: 12/13/2022] Open
Abstract
Background Chlamydiae are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species. Results Inc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the C. trachomatis and C. pneumoniae sequences tested, validating the data obtained in silico. We identified a macro domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions. Conclusions The Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.
Collapse
Affiliation(s)
- Pierre Dehoux
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | | | | | | | | |
Collapse
|
38
|
Identification of a family of effectors secreted by the type III secretion system that are conserved in pathogenic Chlamydiae. Infect Immun 2010; 79:571-80. [PMID: 21078856 DOI: 10.1128/iai.00825-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae are Gram-negative, obligate intracellular pathogens that replicate within a membrane-bounded compartment termed an inclusion. Throughout their development, they actively modify the eukaryotic environment. The type III secretion (TTS) system is the main process by which the bacteria translocate effector proteins into the inclusion membrane and the host cell cytoplasm. Here we describe a family of type III secreted effectors that are present in all pathogenic chlamydiae and absent in the environment-related species. It is defined by a common domain of unknown function, DUF582, that is present in four or five proteins in each Chlamydiaceae species. We show that the amino-terminal extremity of DUF582 proteins functions as a TTS signal. DUF582 proteins from C. trachomatis CT620, CT621, and CT711 are expressed at the middle and late phases of the infectious cycle. Immunolocalization further revealed that CT620 and CT621 are secreted into the host cell cytoplasm, as well as within the lumen of the inclusion, where they do not associate with bacterial markers. Finally, we show that DUF582 proteins are present in nuclei of infected cells, suggesting that members of the DUF582 family of effector proteins may target nuclear cell functions. The expansion of this family of proteins in pathogenic chlamydiae and their conservation among the different species suggest that they play important roles in the infectious cycle.
Collapse
|
39
|
Domains of the Shigella flexneri type III secretion system IpaB protein involved in secretion regulation. Infect Immun 2010; 78:4999-5010. [PMID: 20937761 DOI: 10.1128/iai.00470-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type III secretion systems (T3SSs) are key determinants of virulence in many Gram-negative bacterial pathogens. Upon cell contact, they inject effector proteins directly into eukaryotic cells through a needle protruding from the bacterial surface. Host cell sensing occurs through a distal needle "tip complex," but how this occurs is not understood. The tip complex of quiescent needles is composed of IpaD, which is topped by IpaB. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which other virulence effector proteins may be translocated. IpaB is required for regulation of secretion and may be the host cell sensor. It binds needles via its extreme C-terminal coiled coil, thereby likely positioning a large domain containing its hydrophobic regions at the distal tips of needles. In this study, we used short deletion mutants within this domain to search for regions of IpaB involved in secretion regulation. This identified two regions, amino acids 227 to 236 and 297 to 306, the presence of which are required for maintenance of IpaB at the needle tip, secretion regulation, and normal pore formation but not invasion. We therefore propose that removal of either of these regions leads to an inability to block secretion prior to reception of the activation signal and/or a defect in host cell sensing.
Collapse
|
40
|
Pennini ME, Perrinet S, Dautry-Varsat A, Subtil A. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog 2010; 6:e1000995. [PMID: 20657819 PMCID: PMC2904774 DOI: 10.1371/journal.ppat.1000995] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/10/2010] [Indexed: 12/30/2022] Open
Abstract
Sequence analysis of the genome of the strict intracellular pathogen Chlamydia trachomatis revealed the presence of a SET domain containing protein, proteins that primarily function as histone methyltransferases. In these studies, we demonstrated secretion of this protein via a type III secretion mechanism. During infection, the protein is translocated to the host cell nucleus and associates with chromatin. We therefore named the protein nuclear effector (NUE). Expression of NUE in mammalian cells by transfection reconstituted nuclear targeting and chromatin association. In vitro methylation assays confirmed NUE is a histone methyltransferase that targets histones H2B, H3 and H4 and itself (automethylation). Mutants deficient in automethylation demonstrated diminished activity towards histones suggesting automethylation functions to enhance enzymatic activity. Thus, NUE is secreted by Chlamydia, translocates to the host cell nucleus and has enzymatic activity towards eukaryotic substrates. This work is the first description of a bacterial effector that directly targets mammalian histones.
Collapse
Affiliation(s)
- Meghan E. Pennini
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- CNRS URA 2582, Paris, France
| | - Stéphanie Perrinet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- CNRS URA 2582, Paris, France
| | - Alice Dautry-Varsat
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- CNRS URA 2582, Paris, France
| | - Agathe Subtil
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- CNRS URA 2582, Paris, France
- * E-mail:
| |
Collapse
|
41
|
Botteaux A, Kayath CA, Page AL, Jouihri N, Sani M, Boekema E, Biskri L, Parsot C, Allaoui A. The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri. MICROBIOLOGY-SGM 2010; 156:2807-2817. [PMID: 20507885 DOI: 10.1099/mic.0.039651-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The type III secretion apparatus (T3SA) is a central virulence factor of many Gram-negative bacteria. Its overall morphology consists of a cytoplasmic region, inner- and outer-membrane sections and an extracellular needle. In Shigella, the length of the needle is regulated by Spa32. To understand better the role of Spa32 we searched for its interacting partners using a two-hybrid screen in yeast. We found that Spa32 interacts with the 33 C-terminal residues (CC*) of Spa40, a member of the conserved FlhB/YscU family. Using a GST pull-down assay we confirmed this interaction and identified additional interactions between Spa40 and the type III secretion components Spa33, Spa47, MxiK, MxiN and MxiA. Inactivation of spa40 abolished protein secretion and led to needleless structures. Genetic and functional analyses were used to investigate the roles of residues L310 and V320, located within the CC* domain of Spa40, in the assembly of the T3SA. Spa40 cleavage, at the conserved NPTH motif, is required for assembly of the T3SA and for its interaction with Spa32, Spa33 and Spa47. In contrast, unprocessed forms of Spa40 interacted only with MxiA, MxiK and MxiN. Our data suggest that the conformation of the cytoplasmic domain of Spa40 defines the multi-step assembly process of the T3SA.
Collapse
Affiliation(s)
- Anne Botteaux
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Christian A Kayath
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Anne-Laure Page
- INSERM U786, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France.,Laboratoire de Pathogénie Microbienne, Institut Pasteur, 27-28 Rue du Dr Roux, 75725 Paris Cedex 15, France
| | - Nouredine Jouihri
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Musa Sani
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Egbert Boekema
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Latéfa Biskri
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Claude Parsot
- INSERM U786, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France.,Laboratoire de Pathogénie Microbienne, Institut Pasteur, 27-28 Rue du Dr Roux, 75725 Paris Cedex 15, France
| | - Abdelmounaaïm Allaoui
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| |
Collapse
|
42
|
The extreme C terminus of Shigella flexneri IpaB is required for regulation of type III secretion, needle tip composition, and binding. Infect Immun 2010; 78:1682-91. [PMID: 20086081 DOI: 10.1128/iai.00645-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type III secretion systems (T3SSs) are widely distributed virulence determinants of Gram-negative bacteria. They translocate bacterial proteins into host cells to manipulate them during infection. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region, and a hollow needle protruding from the bacterial surface. The distal tip of mature, quiescent needles is composed of IpaD, which is topped by IpaB. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which other virulence effector proteins may be translocated. IpaB is required for regulation of secretion and may be the host cell sensor. However, its mode of needle association is unknown. Here, we show that deletion of 3 or 9 residues at the C terminus of IpaB leads to fast constitutive secretion of late effectors, as observed in a DeltaipaB strain. Like the DeltaipaB mutant, mutants with C-terminal mutations also display hyperadhesion. However, unlike the DeltaipaB mutant, they are still invasive and able to lyse the internalization vacuole with nearly wild-type efficiency. Finally, the mutant proteins show decreased association with needles and increased recruitment of IpaC. Taken together, these data support the notion that the state of the tip complex regulates secretion. We propose a model where the quiescent needle tip has an "off" conformation that turns "on" upon host cell contact. Our mutants may adopt a partially "on" conformation that activates secretion and is capable of recruiting some IpaC to insert pores into host cell membranes and allow invasion.
Collapse
|
43
|
Simpson N, Audry L, Enninga J. Tracking the secretion of fluorescently labeled type III effectors from single bacteria in real time. Methods Mol Biol 2010; 619:241-56. [PMID: 20419414 DOI: 10.1007/978-1-60327-412-8_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large number of Gram negative pathogens use a specialized needle-like molecular machine known as Type III Secretion (T3S) system. This highly sophisticated molecular device consists of a basal body spanning the two bacterial membranes and a protruding needle structure that is connected to a distal translocator complex. The main features of the T3S system are (i) activation after host cellular membrane contact and (ii) the ability to "inject" effectors into host cells through the needle apparatus across three membranous structures--two bacterial and one host cellular--without effector leakage into the exterior space. The effector proteins execute multiple roles upon translocation including re-arranging the host cytoskeleton, manipulating signaling pathways and reprogramming the host immune response. We have established a novel approach to monitor the secretion of fluorescently labeled effectors through the T3S system of single living bacteria in real time. Our approach uses the tetracysteine-FlAsH labeling procedure. Here, we provide a detailed protocol and advice on its potential and experimental pitfalls. Using the entero-invasive pathogen Shigella flexneri for assay development, we have also successfully adapted our approach and developed procedures for T3S effector tracking for other pathogens such as Enteropathogenic Escherichia coli (EPEC).
Collapse
Affiliation(s)
- Nandi Simpson
- Institut Cochin, Universite Paris DescartesU567, CNRS UMR 8104 Inserm, U567, Paris, France
| | | | | |
Collapse
|
44
|
Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat Struct Mol Biol 2009; 16:477-85. [PMID: 19396171 PMCID: PMC2681179 DOI: 10.1038/nsmb.1599] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/03/2009] [Indexed: 01/03/2023]
Abstract
Type III secretion systems (T3SSs) mediate bacterial protein translocation into eukaryotic cells, a process essential for virulence of many Gram-negative pathogens. They are composed of a cytoplasmic secretion machinery and a base that bridges both bacterial membranes, into which a hollow, external needle is embedded. When isolated, the latter two parts are termed the 'needle complex'. An incomplete understanding of the structure of the needle complex has hampered studies of T3SS function. To estimate the stoichiometry of its components, we measured the mass of its subdomains by scanning transmission electron microscopy (STEM). We determined subunit symmetries by analysis of top and side views within negatively stained samples in low-dose transmission electron microscopy (TEM). Application of 12-fold symmetry allowed generation of a 21-25-A resolution, three-dimensional reconstruction of the needle complex base, revealing many new features and permitting tentative docking of the crystal structure of EscJ, an inner membrane component.
Collapse
|
45
|
Yu J, Rossi R, Hale C, Goulding D, Dougan G. Interaction of enteric bacterial pathogens with murine embryonic stem cells. Infect Immun 2009; 77:585-97. [PMID: 19029302 PMCID: PMC2632033 DOI: 10.1128/iai.01003-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 08/31/2008] [Accepted: 11/13/2008] [Indexed: 11/20/2022] Open
Abstract
Embryonic stem (ES) cells are susceptible to genetic manipulation and retain the potential to differentiate into diverse cell types, which are factors that make them potentially attractive cells for studying host-pathogen interactions. Murine ES cells were found to be susceptible to invasion by Salmonella enterica serovar Typhimurium and Shigella flexneri and to the formation of attaching and effacing lesions by enteropathogenic Escherichia coli. S. enterica serovar Typhimurium and S. flexneri cell entry was dependent on the Salmonella pathogenicity island 1 and Shigella mxi/spa type III secretion systems, respectively. Microscopy studies indicated that both S. enterica serovar Typhimurium and S. flexneri were located in intracellular niches in ES cells that were similar to the niches occupied in differentiated cells. ES cells were eventually killed following bacterial invasion, but no evidence of activation of classical caspase-associated apoptotic or innate immune pathways was found. To demonstrate the potential of mutant ES cells, we employed an ES cell line defective in cholesterol synthesis and found that the mutant cells were less susceptible to infection by Salmonella and Shigella than the parental ES cells. Thus, we highlighted the practical use of genetically modified ES cells for studying microbe-host interactions.
Collapse
Affiliation(s)
- Jun Yu
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | |
Collapse
|
46
|
Botteaux A, Sory MP, Biskri L, Parsot C, Allaoui A. MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 2008; 71:449-60. [PMID: 19017268 DOI: 10.1111/j.1365-2958.2008.06537.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many gram-negative pathogenic bacteria use a type III secretion (T3S) system to interact with cells of their hosts. Mechanisms controlling the hierarchical addressing of needle subunits, translocators and effectors to the T3S apparatus (T3SA) are still poorly understood. We investigated the function of MxiC, the member of the YopN/InvE/SepL family in the Shigella flexneri T3S system. Inactivation of mxiC led specifically to a deregulated secretion of effectors (including IpaA, IpgD, IcsB, IpgB2, OspD1 and IpaHs), but not of translocators (IpaB and IpaC) and proteins controlling the T3SA structure or activity (Spa32 and IpaD). Expression of effector-encoding genes controlled by the activity of the T3SA and the transcription activator MxiE was increased in the mxiC mutant, as a consequence of the increased secretion of the MxiE anti-activator OspD1. MxiC is a T3SA substrate and its ability to be secreted is required for its function. By using co-purification assays, we found that MxiC can associate with the Spa47 ATPase, which suggests that MxiC might prevent secretion of effectors by blocking the T3SA from the inside. Although with a 10-fold reduced efficiency compared with the wild-type strain, the mxiC mutant was still able to enter epithelial cells.
Collapse
Affiliation(s)
- Anne Botteaux
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, CP: 614b, 1070, Brussels, Belgium
| | | | | | | | | |
Collapse
|
47
|
Sperandio B, Regnault B, Guo J, Zhang Z, Stanley SL, Sansonetti PJ, Pédron T. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. ACTA ACUST UNITED AC 2008; 205:1121-32. [PMID: 18426984 PMCID: PMC2373844 DOI: 10.1084/jem.20071698] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antimicrobial factors are efficient defense components of the innate immunity, playing a crucial role in the intestinal homeostasis and protection against pathogens. In this study, we report that upon infection of polarized human intestinal cells in vitro, virulent Shigella flexneri suppress transcription of several genes encoding antimicrobial cationic peptides, particularly the human β-defensin hBD-3, which we show to be especially active against S. flexneri. This is an example of targeted survival strategy. We also identify the MxiE bacterial regulator, which controls a regulon encompassing a set of virulence plasmid-encoded effectors injected into host cells and regulating innate signaling, as being responsible for this dedicated regulatory process. In vivo, in a model of human intestinal xenotransplant, we confirm at the transcriptional and translational level, the presence of a dedicated MxiE-dependent system allowing S. flexneri to suppress expression of antimicrobial cationic peptides and promoting its deeper progression toward intestinal crypts. We demonstrate that this system is also able to down-regulate additional innate immunity genes, such as the chemokine CCL20 gene, leading to compromised recruitment of dendritic cells to the lamina propria of infected tissues. Thus, S. flexneri has developed a dedicated strategy to weaken the innate immunity to manage its survival and colonization ability in the intestine.
Collapse
Affiliation(s)
- Brice Sperandio
- Unité de Pathogénie Microbienne Moléculaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
49
|
Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J 2008; 27:447-57. [PMID: 18188151 DOI: 10.1038/sj.emboj.7601976] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/04/2007] [Indexed: 11/09/2022] Open
Abstract
Type III secretion (T3S) systems are largely used by pathogenic gram-negative bacteria to inject multiple effectors into eukaryotic cells. Upon cell contact, these bacterial microinjection devices insert two T3S substrates into host cell membranes, forming a so-called 'translocon' that is required for targeting of type III effectors in the cell cytosol. Here, we show that secretion of the translocon component IpaC of invasive Shigella occurs at the level of one bacterial pole during cell invasion. Using IpaC fusions with green fluorescent protein variants (IpaCi), we show that the IpaC cytoplasmic pool localizes at an old or new bacterial pole, where secretion occurs upon T3S activation. Deletions in ipaC identified domains implicated in polar localization. Only polar IpaCi derivatives inhibited T3S, while IpaCi fusions with diffuse cytoplasmic localization had no detectable effect on T3S. Moreover, the deletions that abolished polar localization led to secretion defects when introduced in ipaC. These results indicate that cytoplasmic polar localization directs secretion of IpaC at the pole of Shigella, and may represent a mandatory step for T3S.
Collapse
|
50
|
Hachani A, Biskri L, Rossi G, Marty A, Ménard R, Sansonetti P, Parsot C, Van Nhieu GT, Bernardini ML, Allaoui A. IpgB1 and IpgB2, two homologous effectors secreted via the Mxi-Spa type III secretion apparatus, cooperate to mediate polarized cell invasion and inflammatory potential of Shigella flexenri. Microbes Infect 2007; 10:260-8. [PMID: 18316224 DOI: 10.1016/j.micinf.2007.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/25/2007] [Accepted: 11/27/2007] [Indexed: 12/20/2022]
Abstract
Type III secretion systems (T3SS) are present in many pathogenic gram-negative bacteria and mediate the translocation of bacterial effector proteins into host cells. Here, we report the phenotypic characterization of S. flexneri ipgB1 and ipgB2 mutants, in which the genes encoding the IpgB1 and IpgB2 effectors have been inactivated, either independently or simultaneously. Like IpgB1, we found that IpgB2 is secreted by the T3SS and its secretion requires the Spa15 chaperone. Upon infection of semi-confluent HeLa cells, the ipgB2 mutant exhibited the same invasive capacity as the wild-type strain and the ipgB1 mutant was 50% less invasive. Upon infection of polarised Caco2-cells, the ipgB2 mutant did not show a significant defect in invasion and the ipgB1 mutant was slightly more invasive than the wild-type strain. Entry of the ipgB1 ipgB2 mutant in polarized cells was reduced by 70% compared to the wild-type strain. Upon infection of the cornea in Guinea pigs, the ipgB2 mutant exhibited a wild-type phenotype, the ipgB1 mutant was hypervirulent and elicited a more pronounced proinflammatory response, while the ipgB1 ipgB2 mutant was highly attenuated. The attenuated phenotype of the ipgB1 ipgB2 mutant was confirmed using a murine pulmonary model of infection and histopathology and immunochemistry studies.
Collapse
Affiliation(s)
- Abderrahman Hachani
- Laboratoire de Bactériologie Moléculaire, Université Libre de Bruxelles (ULB), Faculté de Médecine, Route de Lennik, 808, CP 614 B, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|