1
|
Yamasaki Y, Singh P, Vimonish R, Ueti M, Bankhead T. Development and Application of an In Vitro Tick Feeding System to Identify Ixodes Tick Environment-Induced Genes of the Lyme Disease Agent, Borrelia burgdorferi. Pathogens 2024; 13:487. [PMID: 38921785 PMCID: PMC11207009 DOI: 10.3390/pathogens13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The bacterial agent of Lyme disease, Borrelia burgdorferi, exists in an enzootic cycle by adapting to dissimilar mammalian and tick environments. The genetic elements necessary for host and vector adaptation are spread across a bacterial genome comprised of a linear chromosome and essential linear and circular plasmids. The promoter trap system, In Vivo Expression Technology (IVET), has been used to identify promoters of B. burgdorferi that are transcriptionally active specifically during infection of a murine host. However, an observed infection bottleneck effect in mice prevented the application of this system to study promoters induced in a tick environment. In this study, we adapted a membrane-based in vitro feeding system as a novel method to infect the Ixodes spp. vector with B. burgdorferi. Once adapted, we performed IVET screens as a proof of principle via an infected bloodmeal on the system. The screen yielded B. burgdorferi promoters that are induced during tick infection and verified relative expression levels using qRT-PCR. The results of our study demonstrate the potential of our developed in vitro tick feeding system and IVET systems to gain insight into the adaptive gene expression of the Lyme disease bacteria to the tick vector.
Collapse
Affiliation(s)
- Youki Yamasaki
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (Y.Y.); (P.S.); (R.V.)
| | - Preeti Singh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (Y.Y.); (P.S.); (R.V.)
| | - Rubikah Vimonish
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (Y.Y.); (P.S.); (R.V.)
| | - Massaro Ueti
- Animal Disease Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA 99164, USA;
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (Y.Y.); (P.S.); (R.V.)
| |
Collapse
|
2
|
Maumela P, Khwathisi A, Madala NE, Serepa-Dlamini MH. In silico biotechnological potential of Bacillus sp. strain MHSD_37 bacterial endophyte. BMC Genomics 2024; 25:399. [PMID: 38658836 PMCID: PMC11040839 DOI: 10.1186/s12864-024-10305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Endophytic bacteria possess a range of unique characteristics that enable them to successfully interact with their host and survive in adverse environments. This study employed in silico analysis to identify genes, from Bacillus sp. strain MHSD_37, with potential biotechnological applications. RESULTS The strain presented several endophytic lifestyle genes which encode for motility, quorum sensing, stress response, desiccation tolerance and root colonisation. The presence of plant growth promoting genes such as those involved in nitrogen fixation, nitrate assimilation, siderophores synthesis, seed germination and promotion of root nodule symbionts, was detected. Strain MHSD_37 also possessed genes involved in insect virulence and evasion of defence system. The genome analysis also identified the presence of genes involved in heavy metal tolerance, xenobiotic resistance, and the synthesis of siderophores involved in heavy metal tolerance. Furthermore, LC-MS analysis of the excretome identified secondary metabolites with biological activities such as anti-cancer, antimicrobial and applications as surfactants. CONCLUSIONS Strain MHSD_37 thereby demonstrated potential biotechnological application in bioremediation, biofertilisation and biocontrol. Moreover, the strain presented genes encoding products with potential novel application in bio-nanotechnology and pharmaceuticals.
Collapse
Affiliation(s)
- Pfariso Maumela
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa
| | - Adivhaho Khwathisi
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, 0950, Thohoyandou, South Africa
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, 0950, Thohoyandou, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa.
| |
Collapse
|
3
|
Hofkens N, Gestels Z, Abdellati S, De Baetselier I, Gabant P, Martin A, Kenyon C, Manoharan-Basil SS. Microbisporicin (NAI-107) protects Galleria mellonella from infection with Neisseria gonorrhoeae. Microbiol Spectr 2023; 11:e0282523. [PMID: 37823634 PMCID: PMC10715042 DOI: 10.1128/spectrum.02825-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE We screened 66 bacteriocins to see if they exhibited anti-gonococcal activity. We found 12 bacteriocins with anti-gonococcal effects, and 4 bacteriocins showed higher anti-gonococcal activity. Three bacteriocins, lacticin Z, lacticin Q, and Garvicin KS (ABC), showed in vitro anti-gonococcal activity but no in vivo inhibitory effects against the Neisseria gonorrhoeae (WHO-P) isolate. On the other hand, NAI-107 showed in vivo anti-gonococcal activity. The findings suggest that NAI-107 is a promising alternative to treat gonorrhea infections.
Collapse
Affiliation(s)
- Nele Hofkens
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Said Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | | | - Christopher Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
4
|
Toukabri H, Lereclus D, Slamti L. A Sporulation-Independent Way of Life for Bacillus thuringiensis in the Late Stages of an Infection. mBio 2023:e0037123. [PMID: 37129506 DOI: 10.1128/mbio.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
The formation of endospores has been considered the unique survival and transmission mode of sporulating Firmicutes due to the exceptional resistance and persistence of this bacterial form. However, nonsporulated bacteria (Spo-) were reported at the early stages following the death of a host infected with Bacillus thuringiensis, an entomopathogenic sporulating bacterium. Here, we investigated the characteristics of the bacterial population in the late stages of an infection in the B. thuringiensis/Galleria mellonella infection model. Using fluorescent reporters and molecular markers coupled to flow cytometry, we demonstrated that the Spo- cells persist and constitute about half of the population 2 weeks post-infection (p.i.). Protein synthesis and growth recovery assays indicated that they are in a metabolically slowed-down state. These bacteria were extremely resistant to the insect cadaver environment, which did not support growth of in vitro-grown vegetative cells and spores. A transcriptomic analysis of this subpopulation at 7 days p.i. revealed a signature profile of this state, and the expression analysis of individual genes at the cell level showed that more bacteria mount an oxidative stress response as their survival time increases, in agreement with the increase of the free radical level in the host cadaver and in the number of reactive oxygen species (ROS)-producing bacteria. Altogether, these data show for the first time that nonsporulated bacteria are able to survive for a prolonged period of time in the context of an infection and indicate that they engage in a profound adaptation process that leads to their persistence in the host cadaver. IMPORTANCE Bacillus thuringiensis is an entomopathogenic bacterium widely used as a biopesticide. It belongs to the Bacillus cereus group, comprising the foodborne pathogen B. cereus sensu stricto and the anthrax agent Bacillus anthracis. Like other Firmicutes when they encounter harsh conditions, these Gram-positive bacteria can form dormant cells called spores. Due to its highly resistant nature, the spore was considered the unique mode of long-term survival, eclipsing any other form of persistence. Breaking this paradigm, we observed that B. thuringiensis was able to persist in its host cadaver in a nonsporulated form for at least 14 days. Our results show that these bacteria survived in the cadaver environment, which proved hostile for actively growing bacteria by engaging in a profound adaptation process. Studying this facet of the life cycle of a sporulating bacterium provides new fundamental knowledge and might lead to the development of strategies to combat sporulating pathogenic species.
Collapse
Affiliation(s)
- Hasna Toukabri
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Leyla Slamti
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
5
|
Pacheco S, Gómez I, Chiñas M, Sánchez J, Soberón M, Bravo A. Whole Genome Sequencing Analysis of Bacillus thuringiensis GR007 Reveals Multiple Pesticidal Protein Genes. Front Microbiol 2021; 12:758314. [PMID: 34795652 PMCID: PMC8594373 DOI: 10.3389/fmicb.2021.758314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Bacillus thuringiensis (Bt) are soil ubiquitous bacteria. They produce a great variability of insecticidal proteins, where certain of these toxins are used worldwide for pest control. Through their adaptation to diverse ecosystems, certain Bt strains have acquired genetic mobile elements by horizontal transfer, harboring genes that encode for different virulent factors and pesticidal proteins (PP). Genomic characterization of Bt strains provides a valuable source of PP with potential biotechnological applications for pest control. In this work, we have sequenced the complete genome of the bacterium Bt GR007 strain that is toxic to Spodoptera frugiperda and Manduca sexta larvae. Four replicons (one circular chromosome and three megaplasmids) were identified. The two largest megaplasmids (pGR340 and pGR157) contain multiple genes that codify for pesticidal proteins: 10 cry genes (cry1Ab, cry1Bb, cry1Da, cry1Fb, cry1Hb, cry1Id, cry1Ja, cry1Ka, cry1Nb, and cry2Ad), two vip genes (vip3Af and vip3Ag), two binary toxin genes (vpa2Ac and vpb1Ca), five genes that codify for insecticidal toxin components (Tc’s), and a truncated cry1Bd-like gene. In addition, genes that codify for several virulent factors were also found in this strain. Proteomic analysis of the parasporal crystals of GR007 revealed that they are composed of eight Cry proteins. Further cloning of these genes for their individual expression in Bt acrystalliferous strain, by means of their own intrinsic promoter showed expression of seven Cry proteins. These proteins display differential toxicity against M. sexta and S. frugiperda larvae, where Cry1Bb showed to be the most active protein against S. frugiperda larvae and Cry1Ka the most active protein against M. sexta larvae.
Collapse
Affiliation(s)
- Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Isabel Gómez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Marcos Chiñas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jorge Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects. Microbiol Spectr 2021; 9:e0060421. [PMID: 34704785 PMCID: PMC8549738 DOI: 10.1128/spectrum.00604-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spore-forming bacterium Bacillus thuringiensis (Bt) of the Bacillus cereus group uses toxin-opened breaches at the insect midgut epithelium to infest the hemolymph, where it can rapidly propagate despite antimicrobial host defenses and induce host death by acute septicemia. The response of Bt to host hemolymph and the latter's role in bacterial pathogenesis is an area that needs clarification. Here, we report a proteomic analysis of the Bt kurstaki strain HD73 (Btk) hemolymph stimulon showing significant changes in 60 (34 up- and 26 downregulated) differentially accumulated proteins (DAPs). Gene ontology (GO) enrichment analysis revealed that DAPs were mainly related to glutamate metabolism, transketolase activity, and ATP-dependent transmembrane transport. KEGG analysis disclosed that DAPs were highly enriched in the biosynthesis of bacterial secondary metabolites, ansamycins. Interestingly, about 30% of all DAPs were in silico predicted as putative virulence factors. Further characterization of hemolymph effects on Btk showed enhanced autoaggregation in liquid cultures and biofilm formation in microtiter polystyrene plates. Hemolymph-exposed Btk cells were less immunogenic in mice, suggesting epitope masking of selected surface proteins. Bioassays with intrahemocoelically infected Bombyx mori larvae showed that hemolymph preexposure significantly increased Btk toxicity and reproduction within the insect (spore count per cadaver) at low inoculum doses, possibly due to 'virulence priming'. Collectively, our findings suggest that the Btk hemolymph stimulon could be partially responsible for bacterial survival and propagation within the hemolymph of infected insects, contributing to its remarkable success as an entomopathogen. All mass spectrometry data are available via ProteomeXchange with identifier PXD021830. IMPORTANCE After ingestion by a susceptible insect and damaging its midgut epithelium, the bacterium Bacillus thuringiensis (Bt) reaches the insect blood (hemolymph), where it propagates despite the host's antimicrobial defenses and induces insect death by acute septicemia. Although the hemolymph stage of the Bt toxic pathway is determinant for the infested insects' fate, the response of Bt to hemolymph and the latter's role in bacterial pathogenesis has been poorly explored. In this study, we identified the bacterial proteins differentially expressed by Bt after hemolymph exposure. We found that about 30% of hemolymph-regulated Bt proteins were potential virulence factors, including manganese superoxide dismutase, a described inhibitor of hemocyte respiratory burst. Additionally, contact with hemolymph enhanced Bt virulence phenotypes, such as cell aggregation and biofilm formation, altered bacterial immunogenicity, and increased Bt toxicity to intrahemocoelically injected insects.
Collapse
|
7
|
Consentino L, Rejasse A, Crapart N, Bevilacqua C, Nielsen-LeRoux C. Laser capture microdissection to study Bacillus cereus iron homeostasis gene expression during Galleria mellonella in vivo gut colonization. Virulence 2021; 12:2104-2121. [PMID: 34374318 PMCID: PMC8366545 DOI: 10.1080/21505594.2021.1959790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.
Collapse
Affiliation(s)
- Laurent Consentino
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Crapart
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France.,Exilone, Elancourt, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France
| | | |
Collapse
|
8
|
Chen RY, Keddie BA. The Galleria mellonella-Enteropathogenic Escherichia coli Model System: Characterization of Pathogen Virulence and Insect Immune Responses. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6329131. [PMID: 34314494 PMCID: PMC8315237 DOI: 10.1093/jisesa/ieab046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 05/22/2023]
Abstract
The use of Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae), an economical insect model, for the study of enteropathogenic Escherichia coli (Migula) (EPEC), a diarrheagenic human pathogen, has been demonstrated previously but remains poorly understood. The present study characterizes the Galleria-EPEC system extensively for future studies using this system. We found that EPEC causes disease in G. mellonella larvae when injected intrahemocoelically but not orally. Disease manifests as increased mortality, decreased survival time, delayed pupation, decreased pupal mass, increased pupal duration, and hemocytopenia. Disease symptoms are dose-dependent and can be used as metrics for measuring EPEC virulence in future studies. The type III secretion system was only partially responsible for EPEC virulence in G. mellonella while the majority of the virulence remains unknown in origin. EPEC elicits insect anti-bacterial immune responses including melanization, hemolymph coagulation, nodulation, and phagocytosis. The immune responses were unable to control EPEC replication in the early stage of infection (≤3 h post-injection). EPEC clearance from the hemocoel does not guarantee insect survival. Overall, this study provided insights into EPEC virulence and pathogenesis in G. mellonella and identified areas of future research using this system.
Collapse
Affiliation(s)
- Robin Y Chen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Corresponding author, e-mail:
| | - B Andrew Keddie
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
9
|
Smith V, Josefsen M, Lindbäck T, Hegna IK, Finke S, Tourasse NJ, Nielsen-LeRoux C, Økstad OA, Fagerlund A. MogR Is a Ubiquitous Transcriptional Repressor Affecting Motility, Biofilm Formation and Virulence in Bacillus thuringiensis. Front Microbiol 2020; 11:610650. [PMID: 33424814 PMCID: PMC7793685 DOI: 10.3389/fmicb.2020.610650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Flagellar motility is considered an important virulence factor in different pathogenic bacteria. In Listeria monocytogenes the transcriptional repressor MogR regulates motility in a temperature-dependent manner, directly repressing flagellar- and chemotaxis genes. The only other bacteria known to carry a mogR homolog are members of the Bacillus cereus group, which includes motile species such as B. cereus and Bacillus thuringiensis as well as the non-motile species Bacillus anthracis, Bacillus mycoides and Bacillus pseudomycoides. Furthermore, the main motility locus in B. cereus group bacteria, carrying the genes for flagellar synthesis, appears to be more closely related to L. monocytogenes than to Bacillus subtilis, which belongs to a separate phylogenetic group of Bacilli and does not carry a mogR ortholog. Here, we show that in B. thuringiensis, MogR overexpression results in non-motile cells devoid of flagella. Global gene expression profiling showed that 110 genes were differentially regulated by MogR overexpression, including flagellar motility genes, but also genes associated with virulence, stress response and biofilm lifestyle. Accordingly, phenotypic assays showed that MogR also affects cytotoxicity and biofilm formation in B. thuringiensis. Overexpression of a MogR variant mutated in two amino acids within the putative DNA binding domain restored phenotypes to those of an empty vector control. In accordance, introduction of these mutations resulted in complete loss in MogR binding to its candidate flagellar locus target site in vitro. In contrast to L. monocytogenes, MogR appears to be regulated in a growth-phase dependent and temperature-independent manner in B. thuringiensis 407. Interestingly, mogR was found to be conserved also in non-motile B. cereus group species such as B. mycoides and B. pseudomycoides, which both carry major gene deletions in the flagellar motility locus and where in B. pseudomycoides mogR is the only gene retained. Furthermore, mogR is expressed in non-motile B. anthracis. Altogether this provides indications of an expanded set of functions for MogR in B. cereus group species, beyond motility regulation. In conclusion, MogR constitutes a novel B. thuringiensis pleiotropic transcriptional regulator, acting as a repressor of motility genes, and affecting the expression of a variety of additional genes involved in biofilm formation and virulence.
Collapse
Affiliation(s)
- Veronika Smith
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Malin Josefsen
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ida K Hegna
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Sarah Finke
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Nicolas J Tourasse
- CNRS, INSERM, ARNA, UMR 5320, U1212, University of Bordeaux, Bordeaux, France
| | | | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Annette Fagerlund
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
10
|
Chateau A, Van der Verren SE, Remaut H, Fioravanti A. The Bacillus anthracis Cell Envelope: Composition, Physiological Role, and Clinical Relevance. Microorganisms 2020; 8:E1864. [PMID: 33255913 PMCID: PMC7759979 DOI: 10.3390/microorganisms8121864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
Anthrax is a highly resilient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis. The bacterium presents a complex and dynamic composition of its cell envelope, which changes in response to developmental and environmental conditions and host-dependent signals. Because of their easy to access extracellular locations, B. anthracis cell envelope components represent interesting targets for the identification and development of novel therapeutic and vaccine strategies. This review will focus on the novel insights regarding the composition, physiological role, and clinical relevance of B. anthracis cell envelope components.
Collapse
Affiliation(s)
- Alice Chateau
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France;
| | - Sander E. Van der Verren
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
11
|
Moman R, O'Neill CA, Ledder RG, Cheesapcharoen T, McBain AJ. Mitigation of the Toxic Effects of Periodontal Pathogens by Candidate Probiotics in Oral Keratinocytes, and in an Invertebrate Model. Front Microbiol 2020; 11:999. [PMID: 32612578 PMCID: PMC7308727 DOI: 10.3389/fmicb.2020.00999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
The larvae of the wax moth Galleria mellonella and human oral keratinocytes were used to investigate the protective activity of the candidate oral probiotics Lactobacillus rhamnosus GG (LHR), Lactobacillus reuteri (LR), and Streptococcus salivarius K-12 (SS) against the periodontal pathogens Fusobacterium nucleatum (FN), Porphyromonas gingivalis (PG), and Aggregatibacter actinomycetemcomitans (AA). Probiotics were delivered to the larvae (i) concomitantly with the pathogen in the same larval pro-leg; (ii) concomitantly with the pathogen in different pro-legs, and (iii) before inoculation with the pathogen in different pro-legs. Probiotics were delivered as viable cells, cell lysates or cell supernatants to the oral keratinocytes concomitantly with the pathogen. The periodontal pathogens killed at least 50% of larvae within 24 h although PG and FN were significantly more virulent than AA in the order FN > PG > AA and were also significantly lethal to mammalian cells. The candidate probiotics, however, were not lethal to the larvae or human oral keratinocytes at doses up to 107 cells/larvae. Wax worm survival rates increased up to 60% for some probiotic/pathogen combinations compared with control larvae inoculated with pathogens only. SS was the most effective probiotic against FN challenge and LHR the least, in simultaneous administration and pre-treatment, SS and LR were generally the most protective against all pathogens (up to 60% survival). For P. gingivalis, LR > LHR > SS, and for A. actinomycetemcomitans SS > LHR and LR. Administering the candidate probiotics to human oral keratinocytes significantly decreased the toxic effects of the periodontal pathogens. In summary, the periodontal pathogens were variably lethal to G. mellonella and human oral keratinocytes and the candidate probiotics had measurable protective effects, which were greatest when administrated simultaneously with the periodontal pathogens, suggesting protective effects based on bacterial interaction, and providing a basis for mechanistic studies.
Collapse
Affiliation(s)
- Raja Moman
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tanaporn Cheesapcharoen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Six A, Krajangwong S, Crumlish M, Zadoks RN, Walker D. Galleria mellonella as an infection model for the multi-host pathogen Streptococcus agalactiae reflects hypervirulence of strains associated with human invasive disease. Virulence 2020; 10:600-609. [PMID: 31230520 PMCID: PMC6592362 DOI: 10.1080/21505594.2019.1631660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus agalactiae, or group B Streptococcus (GBS), infects diverse hosts including humans and economically important species such as cattle and fishes. In the context of human health, GBS is a major cause of neonatal infections and an emerging cause of invasive disease in adults and of foodborne disease in Southeast Asia. Here we show that GBS is able to establish a systemic infection in Galleria mellonella larvae that is associated with extensive bacterial replication and dose-dependent larval survival. This infection model is suitable for use with GBS isolates from both homeothermic and poikilothermic hosts. Hypervirulent sequence types (ST) associated with invasive human disease in neonates (ST17) or adults (ST283) show increased virulence in this model, indicating it may be useful in studying GBS virulence determinants, albeit with limitations for some host-specific virulence factors. In addition, we demonstrate that larval survival can be afforded by antibiotic treatment and so the model may also be useful in the development of novel anti-GBS strategies. The use of G. mellonella in GBS research has the potential to provide a low-cost infection model that could reduce the number of vertebrates used in the study of GBS infection.
Collapse
Affiliation(s)
- Anne Six
- a Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| | - Sakranmanee Krajangwong
- a Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| | | | - Ruth N Zadoks
- c Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| | - Daniel Walker
- a Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|
13
|
Kumar M, Puranik N, Varshney A, Tripathi N, Pal V, Goel AK. BA3338, a surface layer homology domain possessing protein augments immune response and protection efficacy of protective antigen against Bacillus anthracis in mouse model. J Appl Microbiol 2020; 129:443-452. [PMID: 32118336 DOI: 10.1111/jam.14624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
AIM Category A classified Bacillus anthracis is highly fatal pathogen that causes anthrax and creates challenges for global security and public health. In this study, development of a safe and ideal next-generation subunit anthrax vaccine has been evaluated in mouse model. METHOD AND RESULTS Protective antigen (PA) and BA3338, a surface layer homology (SLH) domain possessing protein were cloned, expressed in heterologous system and purified by IMAC. Recombinant PA and BA3338 with alum were administered in mouse alone or in combination. The humoral and cell-mediated immune response was measured by ELISA and vaccinated animals were challenged with B. anthracis spores via intraperitoneal route. The circulating IgG antibody titre of anti-PA and anti-BA3338 was found significantly high in the first and second booster sera. A significant enhanced level of IL-4, IFN-γ and IL-12 was observed in antigens stimulated supernatant of splenocytes of PA + BA3338 vaccinated animals. A combination of PA and BA3338 provided 80% protection against 20 LD50 lethal dose of B. anthracis spores. CONCLUSION Both antigens induced admirable humoral and cellular immune response as well as protective efficacy against B. anthracis spores. SIGNIFICANCE AND IMPACT OF THE STUDY This study has been evaluated for the first time using BA3338 as a vaccine candidate alone or in combination with well-known anthrax vaccine candidate PA. The findings of this study demonstrated that BA3338 could be a co-vaccine candidate for development of dual subunit vaccine against anthrax.
Collapse
Affiliation(s)
- M Kumar
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - N Puranik
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - A Varshney
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - N Tripathi
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - V Pal
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - A K Goel
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
14
|
Zhao Y, Chen C, Gu HJ, Zhang J, Sun L. Characterization of the Genome Feature and Toxic Capacity of a Bacillus wiedmannii Isolate From the Hydrothermal Field in Okinawa Trough. Front Cell Infect Microbiol 2019; 9:370. [PMID: 31750261 PMCID: PMC6842932 DOI: 10.3389/fcimb.2019.00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The Bacillus cereus group is frequently isolated from soil, plants, food, and other environments. In this study, we report the first isolation and characterization of a B. cereus group member, Bacillus wiedmannii SR52, from the hydrothermal field in the Iheya Ridge of Okinawa Trough. SR52 was isolated from the gills of shrimp Alvinocaris longirostris, an invertebrate species found abundantly in the ecosystems of the hydrothermal vents, and is most closely related to B. wiedmannii FSL W8-0169. SR52 is aerobic, motile, and able to form endospores. SR52 can grow in NaCl concentrations up to 9%. SR52 has a circular chromosome of 5,448,361 bp and a plasmid of 137,592 bp, encoding 5,709 and 189 genes, respectively. The chromosome contains 297 putative virulence genes, including those encoding enterotoxins and hemolysins. Fourteen rRNA operons, 107 tRNAs, and 5 sRNAs are present in the chromosome, and 7 tRNAs are present in the plasmid. SR52 possesses 13 genomic islands (GIs), all on the chromosome. Comparing to FSL W8-0169, SR52 exhibits several streaking features in its genome, notably an exceedingly large number of non-coding RNAs and GIs. In vivo studies showed that following intramuscular injection into fish, SR52 was able to disseminate in tissues and cause mortality; when inoculated into mice, SR52 induced acute mortality and disseminated transiently in tissues. In vitro studies showed that SR52 possessed hemolytic activity, and the extracellular product of SR52 exhibited a strong cytotoxic effect. These results provided the first insight into the cytotoxicity and genomic feature of B. wiedmannii from the deep-sea hydrothermal environment.
Collapse
Affiliation(s)
- Yan Zhao
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Jie Gu
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
15
|
Finke S, Fagerlund A, Smith V, Krogstad V, Zhang MJ, Saragliadis A, Linke D, Nielsen-LeRoux C, Økstad OA. Bacillus thuringiensis CbpA is a collagen binding cell surface protein under c-di-GMP control. ACTA ACUST UNITED AC 2019; 5:100032. [PMID: 32803021 PMCID: PMC7423583 DOI: 10.1016/j.tcsw.2019.100032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
Cyclic diguanylate (c-di-GMP) signalling affects several cellular processes in Bacillus cereus group bacteria including biofilm formation and motility, and CdgF was previously identified as a diguanylate cyclase promoting biofilm formation in B. thuringiensis. C-di-GMP can exert its function as a second messenger via riboswitch binding, and a functional c-di-GMP-responsive riboswitch has been found upstream of cbpA in various B. cereus group strains. Protein signature recognition predicted CbpA to be a cell wall-anchored surface protein with a fibrinogen or collagen binding domain. The aim of this study was to identify the binding ligand of CbpA and the function of CbpA in cellular processes that are part of the B. cereus group c-di-GMP regulatory network. By global gene expression profiling cbpA was found to be down-regulated in a cdgF deletion mutant, and cbpA exhibited maximum expression in early exponential growth. Contrary to the wild type, a ΔcbpA deletion mutant showed no binding to collagen in a cell adhesion assay, while a CbpA overexpression strain exhibited slightly increased collagen binding compared to the control. For both fibrinogen and fibronectin there was however no change in binding activity compared to controls, and CbpA did not appear to contribute to binding to abiotic surfaces (polystyrene, glass, steel). Also, the CbpA overexpression strain appeared to be less motile and showed a decrease in biofilm formation compared to the control. This study provides the first experimental proof that the binding ligand of the c-di-GMP regulated adhesin CbpA is collagen.
Collapse
Affiliation(s)
- Sarah Finke
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Annette Fagerlund
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Veronika Smith
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Veronica Krogstad
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Mimmi Jingxi Zhang
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | | | - Dirk Linke
- Department of Biosciences, University of Oslo, Norway
| | | | - Ole Andreas Økstad
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Corresponding author at: Department of Pharmacy, University of Oslo, PB 1068 Blindern, 0371 Blindern, Norway.
| |
Collapse
|
16
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
17
|
Kamal F, Peters DL, McCutcheon JG, Dunphy GB, Dennis JJ. Use of Greater Wax Moth Larvae (Galleria mellonella) as an Alternative Animal Infection Model for Analysis of Bacterial Pathogenesis. Methods Mol Biol 2019; 1898:163-171. [PMID: 30570731 DOI: 10.1007/978-1-4939-8940-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alternative infection models of bacterial pathogenesis are useful because they reproduce some of the disease characteristics observed in higher animals. Insect models are especially useful for modeling bacterial infections, as they are inexpensive, generally less labor-intensive, and more ethically acceptable than experimentation on higher organisms. Similar to animals, insects have been shown to possess innate immune systems that respond to pathogenic bacteria.
Collapse
Affiliation(s)
- Fatima Kamal
- Faculty of Science, Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Danielle L Peters
- Faculty of Science, Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jaclyn G McCutcheon
- Faculty of Science, Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary B Dunphy
- Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Jonathan J Dennis
- Faculty of Science, Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Ben Rejeb S, Lereclus D, Slamti L. Analysis of abrB Expression during the Infectious Cycle of Bacillus thuringiensis Reveals Population Heterogeneity. Front Microbiol 2017; 8:2471. [PMID: 29312181 PMCID: PMC5732988 DOI: 10.3389/fmicb.2017.02471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
Using the model host/pathogen pair Galleria mellonella/Bacillus thuringiensis, we have shown that these bacteria could kill their insect host, survive in its cadaver and form spores by sequentially activating virulence, necrotrophism and sporulation genes. However, the population isolated from the cadavers was heterogeneous, including non-sporulating cells in an unknown physiological state. To characterize these bacteria, we used a transcriptional fusion between the promoter of a gene expressed during early exponential growth (abrB) and a reporter gene encoding a destabilized version of GFP, in combination with a fluorescent reporter of the necrotrophic state. The composition of the bacterial population during infection was then analyzed by flow cytometry. We showed that the PabrB promoter was activated in the population that had turned on the necrotrophic reporter, suggesting a re-entry into vegetative growth. Strikingly, the cells that did not go through the necrotrophic state did not activate the PabrB promoter and appear as a dormant subpopulation. We propose a new model describing the B. thuringiensis cell types during infection.
Collapse
Affiliation(s)
- Samia Ben Rejeb
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Leyla Slamti
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
19
|
Bierne H, Nielsen-LeRoux C. Is there a transgenerational inheritance of host resistance against pathogens? Lessons from the Galleria mellonella-Bacillus thuringiensis interaction model. Virulence 2017; 8:1471-1474. [PMID: 28758839 PMCID: PMC5810474 DOI: 10.1080/21505594.2017.1356538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hélène Bierne
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | | |
Collapse
|
20
|
Li Z, Hwang S, Bar-Peled M. Discovery of a Unique Extracellular Polysaccharide in Members of the Pathogenic Bacillus That Can Co-form with Spores. J Biol Chem 2016; 291:19051-67. [PMID: 27402849 DOI: 10.1074/jbc.m116.724708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 11/06/2022] Open
Abstract
An exopolysaccharide, produced during the late stage of stationary growth phase, was discovered and purified from the culture medium of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis when strains were grown in a defined nutrient medium that induces biofilm. Two-dimensional NMR structural characterization of the polysaccharide, named pzX, revealed that it is composed of an unusual three amino-sugar sequence repeat of [-3)XylNAc4OAc(α1-3)GlcNAcA4OAc(α1-3)XylNAc(α1-]n The sugar residue XylNAc had never been described previously in any glycan structure. The XNAC operon that contains the genes for the assembly of pzX is also unique and so far has been identified only in members of the Bacillus cereus sensu lato group. Microscopic and biochemical analyses indicate that pzX co-forms during sporulation, so that upon the release of the spore to the extracellular milieu it becomes surrounded by pzX. The relative amounts of pzX produced can be manipulated by specific nutrients in the medium, but rich medium appears to suppress pzX formation. pzX has the following unique characteristics: a surfactant property that lowers surface tension, a cell/spore antiaggregant, and an adherence property that increases spores binding to surfaces. pzX in Bacillus could represent a trait shared by many spore-producing microorganisms. It suggests pzX is an active player in spore physiology and may provide new insights to the successful survival of the B. cereus species in natural environments or in the hosts.
Collapse
Affiliation(s)
- Zi Li
- From the Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Soyoun Hwang
- From the Complex Carbohydrate Research Center and
| | - Maor Bar-Peled
- From the Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
21
|
Warda AK, Siezen RJ, Boekhorst J, Wells-Bennik MHJ, de Jong A, Kuipers OP, Nierop Groot MN, Abee T. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity. PLoS One 2016; 11:e0156796. [PMID: 27272929 PMCID: PMC4896439 DOI: 10.1371/journal.pone.0156796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.
Collapse
Affiliation(s)
- Alicja K. Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Roland J. Siezen
- TI Food and Nutrition, Wageningen, The Netherlands
- Center for Molecular and Biomolecular Informatics, RadboudUMC, Nijmegen, The Netherlands
- Microbial Bioinformatics, Ede, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- Center for Molecular and Biomolecular Informatics, RadboudUMC, Nijmegen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | | | - Anne de Jong
- TI Food and Nutrition, Wageningen, The Netherlands
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, Wageningen, The Netherlands
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
22
|
Upadhyay A, Upadhyaya I, Mooyottu S, Venkitanarayanan K. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella. J Med Microbiol 2016; 65:443-455. [DOI: 10.1099/jmm.0.000251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Indu Upadhyaya
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Shankumar Mooyottu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
23
|
Upadhyay A, Venkitanarayanan K. In vivo efficacy of trans-cinnamaldehyde, carvacrol, and thymol in attenuating Listeria monocytogenes infection in a Galleria mellonella model. J Nat Med 2016; 70:667-72. [DOI: 10.1007/s11418-016-0990-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/25/2016] [Indexed: 11/28/2022]
|
24
|
Prosdocimi EM, Mapelli F, Gonella E, Borin S, Crotti E. Microbial ecology-based methods to characterize the bacterial communities of non-model insects. J Microbiol Methods 2015; 119:110-25. [PMID: 26476138 DOI: 10.1016/j.mimet.2015.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 12/30/2022]
Abstract
Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities.
Collapse
Affiliation(s)
- Erica M Prosdocimi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy.
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
25
|
Abi-Khalil E, Segond D, Terpstra T, André-Leroux G, Kallassy M, Lereclus D, Bou-Abdallah F, Nielsen-Leroux C. Heme interplay between IlsA and IsdC: Two structurally different surface proteins from Bacillus cereus. Biochim Biophys Acta Gen Subj 2015; 1850:1930-41. [PMID: 26093289 DOI: 10.1016/j.bbagen.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Iron is an essential element for bacterial growth and virulence. Because of its limited bioavailability in the host, bacteria have adapted several strategies to acquire iron during infection. In the human opportunistic bacteria Bacillus cereus, a surface protein IlsA is shown to be involved in iron acquisition from both ferritin and hemoproteins. IlsA has a modular structure consisting of a NEAT (Near Iron transporter) domain at the N-terminus, several LRR (Leucine Rich Repeat) motifs and a SLH (Surface Layer Homology) domain likely involved in anchoring the protein to the cell surface. METHODS Isothermal titration calorimetry, UV-Vis spectrophotometry, affinity chromatography and rapid kinetics stopped-flow measurements were employed to probe the binding and transfer of hemin between two different B. cereus surface proteins (IlsA and IsdC). RESULTS IlsA binds hemin via the NEAT domain and is able to extract heme from hemoglobin whereas the LRR domain alone is not involved in these processes. A rapid hemin transfer from hemin-containing IlsA (holo-IlsA) to hemin-free IsdC (apo-IsdC) is demonstrated. CONCLUSIONS For the first time, it is shown that two different B. cereus surface proteins (IlsA and IsdC) can interact and transfer heme suggesting their involvement in B. cereus heme acquisition. GENERAL SIGNIFICANCE An important role for the complete Isd system in heme-associated bacterial growth is demonstrated and new insights into the interplay between an Isd NEAT surface protein and an IlsA-NEAT-LRR protein, both of which appear to be involved in heme-iron acquisition in B. cereus are revealed.
Collapse
Affiliation(s)
- Elise Abi-Khalil
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France; Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon; Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Diego Segond
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France
| | - Tyson Terpstra
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | | - Mireille Kallassy
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Didier Lereclus
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | |
Collapse
|
26
|
Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection. mBio 2015; 6:e00138-15. [PMID: 25922389 PMCID: PMC4436061 DOI: 10.1128/mbio.00138-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host’s death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. Bt is an entomopathogen found ubiquitously in the environment and is a widely used biopesticide. Studies performed at the population level suggest that the infection process of Bt includes three successive steps (virulence, necrotrophism, and sporulation) controlled by different regulators. This study aimed to determine how these phenotypes are activated at the cellular level and if they are switched on in all cells. We used an insect model of infection and biofilms to decipher the cellular differentiation of this bacterium under naturalistic conditions. Our study reveals the connection and lineage existing among virulent, necrotrophic, and sporulating cells. It also shows that the complex conditions encountered in biofilms and during infection generate great heterogeneity inside the population, which might reflect a bet-hedging strategy to ameliorate survival. These data generate new insights into the role of regulatory networks in the adaptation of a pathogen to its host.
Collapse
|
27
|
Brillard J, Dupont CMS, Berge O, Dargaignaratz C, Oriol-Gagnier S, Doussan C, Broussolle V, Gillon M, Clavel T, Bérard A. The Water Cycle, a Potential Source of the Bacterial Pathogen Bacillus cereus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:356928. [PMID: 25918712 PMCID: PMC4395999 DOI: 10.1155/2015/356928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023]
Abstract
The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl) which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater) closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains.
Collapse
Affiliation(s)
- Julien Brillard
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- INRA-Université Montpellier II, UMR 1333 DGIMI, 34095 Montpellier, France
| | - Christian M. S. Dupont
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- CNRS, Université Montpellier II, UMR 5235 DIMNP, 34095 Montpellier, France
- EPIM EA 3647, Université de Versailles St-Quentin-en-Yvelines, 78035 Versailles, France
| | - Odile Berge
- INRA, UR 407 Pathologie Végétale, 84140 Montfavet, France
- CNRS, CEA, Université Aix-Marseille, UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Claire Dargaignaratz
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Stéphanie Oriol-Gagnier
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Claude Doussan
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| | - Véronique Broussolle
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Marina Gillon
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| | - Thierry Clavel
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Annette Bérard
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| |
Collapse
|
28
|
Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol 2014; 81:1132-8. [PMID: 25452284 DOI: 10.1128/aem.02850-14] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of at least 18 species of Gram-negative opportunistic pathogens that can cause chronic lung infection in cystic fibrosis (CF) patients. Bcc organisms possess high levels of innate antimicrobial resistance, and alternative therapeutic strategies are urgently needed. One proposed alternative treatment is phage therapy, the therapeutic application of bacterial viruses (or bacteriophages). Recently, some phages have been observed to form larger plaques in the presence of sublethal concentrations of certain antibiotics; this effect has been termed phage-antibiotic synergy (PAS). Those reports suggest that some antibiotics stimulate increased production of phages under certain conditions. The aim of this study is to examine PAS in phages that infect Burkholderia cenocepacia strains C6433 and K56-2. Bcc phages KS12 and KS14 were tested for PAS, using 6 antibiotics representing 4 different drug classes. Of the antibiotics tested, the most pronounced effects were observed for meropenem, ciprofloxacin, and tetracycline. When grown with subinhibitory concentrations of these three antibiotics, cells developed a chain-like arrangement, an elongated morphology, and a clustered arrangement, respectively. When treated with progressively higher antibiotic concentrations, both the sizes of plaques and phage titers increased, up to a maximum. B. cenocepacia K56-2-infected Galleria mellonella larvae treated with phage KS12 and low-dose meropenem demonstrated increased survival over controls treated with KS12 or antibiotic alone. These results suggest that antibiotics can be combined with phages to stimulate increased phage production and/or activity and thus improve the efficacy of bacterial killing.
Collapse
|
29
|
Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS One 2014; 9:e103326. [PMID: 25083861 PMCID: PMC4118872 DOI: 10.1371/journal.pone.0103326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.
Collapse
Affiliation(s)
- Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Leyla Slamti
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
| | - Matthew J. McKay
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Ida K. Hegna
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Didier Lereclus
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
- AgroParistech, UMR Micalis, Jouy-en-Josas, France
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mark P. Molloy
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
30
|
Segond D, Abi Khalil E, Buisson C, Daou N, Kallassy M, Lereclus D, Arosio P, Bou-Abdallah F, Nielsen Le Roux C. Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization. PLoS Pathog 2014; 10:e1003935. [PMID: 24550730 PMCID: PMC3923779 DOI: 10.1371/journal.ppat.1003935] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/08/2014] [Indexed: 01/18/2023] Open
Abstract
In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis. Iron homeostasis is important for all living organisms; too much iron confers cell toxicity, and too little iron results in reduced cell fitness. While crucial for many cellular processes in both man and pathogens, a battle for this essential nutrient erupts during infection between the host and the invading bacteria. Iron is principally stored in ferritin, a large molecule able to bind several thousand iron ions. Although host ferritins represent a mine of iron for pathogens, studies of the mechanisms involved in its acquisition by bacteria are scarce. In the human opportunistic pathogen Bacillus cereus, the surface protein IlsA is able to bind several host iron sources in vitro. In this study, we show that IlsA acts as a ferritin receptor and enhances iron release from the ferritin through direct interaction with each ferritin subunit. Moreover, we demonstrate that the siderophore bacillibactin, a small secreted iron chelator, is essential for ferritin iron acquisition and takes part in B. cereus virulence. We propose a new iron acquisition model that provides new insights into bacterial host adaptation.
Collapse
Affiliation(s)
- Diego Segond
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Elise Abi Khalil
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Christophe Buisson
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Nadine Daou
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Mireille Kallassy
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Didier Lereclus
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York, United States of America
| | - Christina Nielsen Le Roux
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
31
|
|
32
|
Song F, Peng Q, Brillard J, Lereclus D, Nielsen-LeRoux C. An insect gut environment reveals the induction of a new sugar-phosphate sensor system in Bacillus cereus. Gut Microbes 2014; 5:58-63. [PMID: 24256737 PMCID: PMC4049939 DOI: 10.4161/gmic.27092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteria survive under various conditions by sensing stimuli triggering specific adaptive physiological responses, which are often based on membrane-integrated sensors connected to a cytoplasmic regulator. Recent studies reveal that mucus glycans may act as signal molecules for two-component systems involved in intestinal colonization. Bacillus cereus, a human and insect opportunistic pathogen was used to identify bacterial factors expressed in an insect gut infection model. The screen revealed a promoter involved in the expression of a gene with so far unknown functions. A search for gut-related compounds, inducing its transcription, identified glucose-6-phosphate as an activation signal. The gene is part of a five-gene cluster, including a two-component system. Interestingly such five gene loci are conserved in the pathogenic Bacillus group as well as in various Clostridia bacteria and are with analogy to other multi-component sensor systems in enteropathogenic bacteria, such as E. coli. Thus our results provide insights into the function of two-component and auxiliary sensor systems in host-microbe interactions and opens up possible investigations of such systems in other gut associated bacteria.
Collapse
Affiliation(s)
- Fuping Song
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,State Key Laboratory for Biology of Plant Diseases and Insect Pests; CAAS; Beijing, China
| | - Qi Peng
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,State Key Laboratory for Biology of Plant Diseases and Insect Pests; CAAS; Beijing, China
| | - Julien Brillard
- INRA; UMR408 & Université d'Avignon et des Pays de Vaucluse; Avignon, France
| | - Didier Lereclus
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France
| | - Christina Nielsen-LeRoux
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,Correspondence to: Christina Nielsen-LeRoux,
| |
Collapse
|
33
|
Jeßberger N, Dietrich R, Bock S, Didier A, Märtlbauer E. Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon 2013; 77:49-57. [PMID: 24211313 DOI: 10.1016/j.toxicon.2013.10.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/29/2013] [Indexed: 11/17/2022]
Abstract
A comparative analysis on the relevance of the Bacillus cereus enterotoxins Nhe (nonhemolytic enterotoxin), HBL (haemolysin BL) and CytK (cytotoxin K) was accomplished, concerning their toxic activity towards different target cell lines. Overall, among the components secreted by the reference strains for Nhe and HBL, the enterotoxin complexes accounted for over 90% of the total toxicity. Vero and primary endothelial cells (HUVEC) were highly susceptible to Nhe, whereas Hep-G2, Vero and A549 reacted most sensitive to Nhe plus HBL. For CytK the highest toxicity was observed on CaCo-2 cells. As HBL positive strains always produce Nhe in parallel, the specific contribution of both enterotoxin complexes to the overall observed cytotoxic effects was determined by consecutively removing their single components. While in most cell lines Nhe and HBL contributed more or less equally (40-60%) to cytotoxicity, the relative activity of Nhe was approximately 90% in HUVEC, and that of HBL 75% in A549 cells. With U937, a nearly Nhe resistant cell line was identified for the first time. This distinct susceptibility of cell lines was confirmed by investigating a set of 37 B. cereus strains. Interestingly, whereas Nhe is the enterotoxin mainly responsible for cell death as determined by WST-1 bioassays, more rapid pore formation was observed when HBL was present, pointing to a different mode of action of the two enterotoxin complexes. Furthermore, correlation was observed between cytotoxicity of solely Nhe producing strains and NheB. Cytotoxicity of Nhe/HBL producing isolates correlated with the expression of HBL L1, NheB and HBL B. In conclusion, the observed susceptibilities of target cell lines of different histological origin underline that B. cereus enterotoxins represent major virulence factors and that toxicity is not restricted to gastrointestinal infections. The varying contribution of Nhe and HBL to total cytotoxicity strongly indicates that Nhe as well as HBL specific B. cereus enterotoxin receptors exist.
Collapse
Affiliation(s)
- Nadja Jeßberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany.
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany
| | - Stefanie Bock
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany
| |
Collapse
|
34
|
Li S, Song J, Huang H, Chen W, Li M, Zhao Y, Cong Y, Zhu J, Rao X, Hu X, Hu F. Identification of in-vivo induced genes of Streptococcus suis serotype 2 specially expressed in infected human. Microb Pathog 2013; 63:8-15. [DOI: 10.1016/j.micpath.2013.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 05/15/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
35
|
Ouattara M, Pennati A, Devlin DJ, Huang YS, Gadda G, Eichenbaum Z. Kinetics of heme transfer by the Shr NEAT domains of Group A Streptococcus. Arch Biochem Biophys 2013; 538:71-9. [PMID: 23993953 DOI: 10.1016/j.abb.2013.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/06/2013] [Accepted: 08/14/2013] [Indexed: 01/07/2023]
Abstract
The hemolytic Group A Streptococcus (GAS) is a notorious human pathogen. Shr protein of GAS participates in iron acquisition by obtaining heme from host hemoglobin and delivering it to the adjacent receptor on the surface, Shp. Heme is then conveyed to the SiaABC proteins for transport across the membrane. Using rapid kinetic studies, we investigated the role of the two heme binding NEAT modules of Shr. Stopped-flow analysis showed that holoNEAT1 quickly delivered heme to apoShp. HoloNEAT2 did not exhibit such activity; only little and slow transfer of heme from NEAT2 to apoShp was seen, suggesting that Shr NEAT domains have distinctive roles in heme transport. HoloNEAT1 also provided heme to apoNEAT2, by a fast and reversible process. To the best of our knowledge this is the first transfer observed between isolated NEAT domains of the same receptor. Sequence alignment revealed that Shr NEAT domains belong to two families of NEAT domains that are conserved in Shr orthologs from several species. Based on the heme transfer kinetics, we propose that Shr proteins modulate heme uptake according to heme availability by a mechanism where NEAT1 facilitates fast heme delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface.
Collapse
Affiliation(s)
- Mahamoudou Ouattara
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|
36
|
Schulte RD, Makus C, Schulenburg H. Host-parasite coevolution favours parasite genetic diversity and horizontal gene transfer. J Evol Biol 2013; 26:1836-40. [PMID: 23865952 DOI: 10.1111/jeb.12174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/04/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Host-parasite coevolution is predicted to favour genetic diversity and the underlying mechanisms (e.g. sexual reproduction and, more generally, genetic exchange), because diversity enhances the antagonists' potential for rapid adaptation. To date, this prediction has mainly been tested and confirmed for the host. It should similarly apply to the parasite. Indeed, our previous work demonstrated that experimental coevolution between the nematode Caenorhabditis elegans and its microparasite Bacillus thuringiensis selects for genetic diversity in both antagonists. For the parasite, the previous analysis was based on plasmid-encoded toxin gene markers. Thus, it was restricted to a very small part of the bacterial genome and did not cover the main chromosome, which harbours a large variety of virulence factors. Here, we present new data for chromosomal gene markers of B. thuringiensis and combine this information with the previous results on plasmid-encoded toxins. Our new results demonstrate that, in comparison with the control treatment, coevolution with a host similarly leads to higher levels of genetic diversity in the bacterial chromosome, thus indicating the relevance of chromosomal genes for coevolution. Furthermore, the frequency of toxin gene gain is significantly elevated during coevolution, highlighting the importance of horizontal gene transfer as a diversity-generating mechanism. In conclusion, our study emphasizes the strong influence of antagonistic coevolution on parasite genetic diversity and gene exchange.
Collapse
Affiliation(s)
- R D Schulte
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany.
| | | | | |
Collapse
|
37
|
Gibreel TM, Upton M. Synthetic epidermicin NI01 can protect Galleria mellonella larvae from infection with Staphylococcus aureus. J Antimicrob Chemother 2013; 68:2269-73. [DOI: 10.1093/jac/dkt195] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Iron regulates Bacillus thuringiensis haemolysin hlyII gene expression during insect infection. J Invertebr Pathol 2013; 113:205-8. [PMID: 23598183 DOI: 10.1016/j.jip.2013.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022]
Abstract
Bacillus thuringiensis (Bt) is a spore-forming entomopathogen broadly used in agriculture crop. The haemolysin HlyII is an important Bt virulence factor responsible for insect death. In this work, we focused on the regulation of the hlyII gene throughout the bacterial growth in vitro and in vivo during insect infection. We show that hlyII regulation depends on the global regulator Fur. This regulation occurs independently of HlyIIR, the other known regulator of hlyII gene expression. Moreover, we show that hlyII is highly expressed when iron is depleted in vivo. As HlyII induces haemocyte and macrophage death, which are involved in the sequestration of iron upon infection, HlyII may induce host cell death to allow bacteria to gain access to iron.
Collapse
|
39
|
Liu X, Wang D, Ren J, Tong C, Feng E, Wang X, Zhu L, Wang H. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. PLoS One 2013; 8:e57959. [PMID: 23516421 PMCID: PMC3596338 DOI: 10.1371/journal.pone.0057959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/29/2013] [Indexed: 01/03/2023] Open
Abstract
Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.
Collapse
Affiliation(s)
- Xiankai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Jingxiao Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Chao Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Erling Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xuefang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
- * E-mail: (LZ); (HW)
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
- * E-mail: (LZ); (HW)
| |
Collapse
|
40
|
Mukherjee K, Hain T, Fischer R, Chakraborty T, Vilcinskas A. Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 2013; 4:324-32. [PMID: 23348912 PMCID: PMC3710335 DOI: 10.4161/viru.23629] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes the causative agent of the foodborne disease listeriosis in humans often involves fatal brainstem infections leading to meningitis and meningoencephalitis. We recently established the larvae of the greater wax moth (Galleria mellonella) as a model host for the investigation of L. monocytogenes pathogenesis and as a source of peptides exhibiting anti-Listeria-activity. Here we show that G. mellonella can be used to study brain infection and its impact on larval development as well as the activation of stress responses and neuronal repair mechanisms. The infection of G. mellonella larvae with L. monocytogenes elicits a cellular immune response involving the formation of melanized cellular aggregates (nodules) containing entrapped bacteria. These form under the integument and in the brain, resembling the symptoms found in human patients. We screened the G. mellonella transcriptome with marker genes representing stress responses and neuronal repair, and identified several modulated genes including those encoding heat shock proteins, growth factors, and regulators of neuronal stress. Remarkably, we discovered that L. monocytogenes infection leads to developmental shift in larvae and also modulates the expression of genes involved in the regulation of endocrine functions. We demonstrated that L. monocytogenes pathogenesis can be prevented by treating G. mellonella larvae with signaling inhibitors such as diclofenac, arachidonic acid, and rapamycin. Our data extend the utility of G. mellonella larvae as an ideal model for the high-throughput in vivo testing of potential compounds against listeriosis.
Collapse
Affiliation(s)
- Krishnendu Mukherjee
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
41
|
Utility of insects for studying human pathogens and evaluating new antimicrobial agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:1-25. [PMID: 23604210 DOI: 10.1007/10_2013_194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.
Collapse
|
42
|
Pustelny C, Brouwer S, Müsken M, Bielecka A, Dötsch A, Nimtz M, Häussler S. The peptide chain release factor methyltransferase PrmC is essential for pathogenicity and environmental adaptation of Pseudomonas aeruginosa PA14. Environ Microbiol 2012; 15:597-609. [PMID: 23278968 DOI: 10.1111/1462-2920.12040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/02/2012] [Indexed: 01/30/2023]
Abstract
Pseudomonas aeruginosa pathogenicity and its capability to adapt to multiple environments are dependent on the production of diverse virulence factors, controlled by the sophisticated quorum sensing (QS) network of P. aeruginosa. To better understand the molecular mechanisms that underlie this adaptation we searched for novel key regulators of virulence factor production by screening a PA14 transposon mutant library for potential candidates acting downstream of the unique 2-alkyl-4-quinolone (AQ) QS system of P. aeruginosa. We focused the work on a protein named HemK with high homology to PrmC of Escherichia coli displaying a similar enzymatic activity (therefore also referred to as PrmC). In this study, we demonstrate that PrmC is an S-adenosyl-l-methionine (AdoMet)-dependent methyltransferase of peptide chain release factors (RFs) essential for the expression of several virulence factors, such as pyocyanin, rhamnolipids and the type III-secreted toxin ExoT. Furthermore, the PA14_prmC mutant strain is unable to grow under anoxic conditions and has a significantly reduced pathogenicity in the infection model Galleria mellonella. Along with transcriptomic and proteomic analyses, the presented data indicate that the methylation of RFs in P. aeruginosa seems to have a global effect on cellular processes related to the virulence of this nosocomial pathogen.
Collapse
Affiliation(s)
- Christian Pustelny
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 2012; 15:220-31. [PMID: 22633889 DOI: 10.1016/j.mib.2012.04.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.
Collapse
Affiliation(s)
- Christina Nielsen-LeRoux
- INRA, UMR1319, Micalis, Génétique microbienne et Environnement, La Minière, F-78280 Guyancourt, France.
| | | | | | | | | |
Collapse
|
45
|
Song F, Peng Q, Brillard J, Buisson C, Been M, Abee T, Broussolle V, Huang D, Zhang J, Lereclus D, Nielsen‐LeRoux C. A multicomponent sugar phosphate sensor system specifically induced in
Bacillus cereus
during infection of the insect gut. FASEB J 2012; 26:3336-50. [DOI: 10.1096/fj.11-197681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fuping Song
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Qi Peng
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Julien Brillard
- INRA Avignon France
- Université d'Avignon et des Pays de Vaucluse, UMR408, Sécurité et Qualité des Produits d'Origine Végétale Avignon France
| | - Christophe Buisson
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
| | - Mark Been
- Top Institute (TI) Food and Nutrition and Laboratory of Food Microbiology Wageningen The Netherlands
| | - Tjakko Abee
- Top Institute (TI) Food and Nutrition and Laboratory of Food Microbiology Wageningen The Netherlands
| | - Véronique Broussolle
- INRA Avignon France
- Université d'Avignon et des Pays de Vaucluse, UMR408, Sécurité et Qualité des Produits d'Origine Végétale Avignon France
| | - Dafang Huang
- Biotechnology Research InstituteChinese Academy of Agricultural Sciences (CAAS) Beijing China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Didier Lereclus
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
| | - Christina Nielsen‐LeRoux
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| |
Collapse
|
46
|
Temperature-dependent production of various PlcR-controlled virulence factors in Bacillus weihenstephanensis strain KBAB4. Appl Environ Microbiol 2012; 78:2553-61. [PMID: 22307282 DOI: 10.1128/aem.07446-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus cereus sensu lato complex has recently been divided into several phylogenetic groups with clear differences in growth temperature range. However, only a few studies have investigated the actual pathogenic potential of the psychrotolerant strains of the B. cereus group at low temperature, and little information is available concerning gene expression at low temperature. We found that vegetative cells of the psychrotolerant B. weihenstephanensis strain KBAB4 were pathogenic against the model insect Galleria mellonella at 15°C but not at 30°C. A similar temperature-dependent difference also was observed for the supernatant, which was cytotoxic to Vero epithelial cell lines and to murine macrophage J774 cells at 15°C but not at 30°C. We therefore determined the effect of low temperature on the production of various proteins putatively involved in virulence using two-dimensional protein gel electrophoresis, and we showed that the production of the Hbl enterotoxin and of two proteases, NprB and NprP2, was greater at a growth temperature of 15°C than at 30°C. The quantification of the mRNA levels for these virulence genes by real-time quantitative PCR at both temperatures showed that there was also more mRNA present at 15°C than at 30°C. We also found that at 15°C, hbl mRNA levels were maximal in the mid- to late exponential growth phase. In conclusion, we found that the higher virulence of the B. cereus KBAB4 strain at low temperature was accompanied by higher levels of the production of various known PlcR-controlled virulence factors and by a higher transcriptional activity of the corresponding genes.
Collapse
|
47
|
Leisner J, Hansen M, Larsen M, Hansen L, Ingmer H, Sørensen S. The genome sequence of the lactic acid bacterium, Carnobacterium maltaromaticum ATCC 35586 encodes potential virulence factors. Int J Food Microbiol 2012; 152:107-15. [DOI: 10.1016/j.ijfoodmicro.2011.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 01/25/2023]
|
48
|
Vogel H, Altincicek B, Glöckner G, Vilcinskas A. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 2011; 12:308. [PMID: 21663692 PMCID: PMC3224240 DOI: 10.1186/1471-2164-12-308] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/11/2011] [Indexed: 01/20/2023] Open
Abstract
Background The larvae of the greater wax moth Galleria mellonella are increasingly used (i) as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii) as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii) as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing. Results We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (E ≤ e-03) to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis. Conclusion Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our knowledge about immune and stress-inducible genes in Galleria and providing the complete sequences of genes whose primary structure have only partially been characterized using proteomic methods. The generated data provide for the first time access to the genetic architecture of immunity in this model host, allowing us to elucidate the molecular mechanisms underlying pathogen and parasite response and detailed analyses of both its immune responses against human pathogens, and its coevolution with entomopathogens.
Collapse
Affiliation(s)
- Heiko Vogel
- Institute of Phytopathology and Applied Zoology, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
49
|
Andrejko M, Mizerska-Dudka M. Elastase B of Pseudomonas aeruginosa stimulates the humoral immune response in the greater wax moth, Galleria mellonella. J Invertebr Pathol 2011; 107:16-26. [DOI: 10.1016/j.jip.2010.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/20/2010] [Accepted: 12/31/2010] [Indexed: 11/16/2022]
|
50
|
Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM. Virulence of serotype M3 Group A Streptococcus strains in wax worms (Galleria mellonella larvae). Virulence 2011; 2:111-9. [PMID: 21258213 DOI: 10.4161/viru.2.2.14338] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Group A Streptococcus (GAS) causes human infections that range in severity from pharyngitis ("strep-throat") to necrotizing fasciitis ("flesh-eating disease"). To facilitate investigation of the molecular basis of host-pathogen interactions, infection models capable of rapidly screening for differences in GAS strain virulence are needed. To this end, we developed a Galleria mellonella larvae (wax worm) model of invasive GAS infection and used it to compare the virulence of serotype M3 GAS strains. We found that GAS causes severe tissue damage and kills wax worms in a dose-dependent manner. The virulence of genetically distinct GAS strains was compared by Kaplan-Meier survival analysis and determining 50% lethal doses (LD 50). Host-pathogen interactions were further characterized using quantitative culture, histopathology and TaqMan assays. GAS strains known to be highly pathogenic in mice and monkeys caused significantly lower survival and had significantly lower LD 50s in wax worms than GAS strains associated with attenuated virulence or asymptomatic carriage. Furthermore, isogenic inactivation of proven virulence factors resulted in a significantly increased LD 50 and decreased lesion size compared to the wild-type strain, a finding that also strongly correlates with animal studies. Importantly, survival analysis and LD 50 determination in wax worms supported our hypothesis that a newly emerged GAS subclone that is epidemiologically associated with more human necrotizing fasciitis cases than its progenitor lineage has significantly increased virulence. We conclude that GAS virulence in wax worms strongly correlates with the data obtained in vertebrate models, and thus, the Galleria mellonella larva is a useful host organism to study GAS pathogenesis.
Collapse
Affiliation(s)
- Randall J Olsen
- The Methodist Hospital Research Institute, Houston, TX, USA.
| | | | | | | | | |
Collapse
|