1
|
Ling J, Hryckowian AJ. Re-framing the importance of Group B Streptococcus as a gut-resident pathobiont. Infect Immun 2024; 92:e0047823. [PMID: 38436256 PMCID: PMC11392526 DOI: 10.1128/iai.00478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial species that causes disease in humans across the lifespan. While antibiotics are used to mitigate GBS infections, it is evident that antibiotics disrupt human microbiomes (which can predispose people to other diseases later in life), and antibiotic resistance in GBS is on the rise. Taken together, these unintended negative impacts of antibiotics highlight the need for precision approaches for minimizing GBS disease. One possible approach involves selectively depleting GBS in its commensal niches before it can cause disease at other body sites or be transmitted to at-risk individuals. One understudied commensal niche of GBS is the adult gastrointestinal (GI) tract, which may predispose colonization at other body sites in individuals at risk for GBS disease. However, a better understanding of the host-, microbiome-, and GBS-determined variables that dictate GBS GI carriage is needed before precise GI decolonization approaches can be developed. In this review, we synthesize current knowledge of the diverse body sites occupied by GBS as a pathogen and as a commensal. We summarize key molecular factors GBS utilizes to colonize different host-associated niches to inform future efforts to study GBS in the GI tract. We also discuss other GI commensals that are pathogenic in other body sites to emphasize the broader utility of precise de-colonization approaches for mitigating infections by GBS and other bacterial pathogens. Finally, we highlight how GBS treatments could be improved with a more holistic understanding of GBS enabled by continued GI-focused study.
Collapse
Affiliation(s)
- Joie Ling
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Healthon, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Healthon, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Li H, Cao J, Han Q, Li Z, Zhuang J, Wang C, Wang H, Luo Z, Wang B, Li A. Protease SfpB plays an important role in cell membrane stability and immune system evasion in Streptococcus agalactiae. Microb Pathog 2024; 192:106683. [PMID: 38735447 DOI: 10.1016/j.micpath.2024.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Bacteria possess the ability to develop diverse and ingenious strategies to outwit the host immune system, and proteases are one of the many weapons employed by bacteria. This study sought to identify S. agalactiae additional serine protease and determine its role in virulence. The S. agalactiae THN0901 genome features one S8 family serine peptidase B (SfpB), acting as a secreted and externally exposed entity. A S8 family serine peptidase mutant strain (ΔsfpB) and complement strain (CΔsfpB) were generated through homologous recombination. Compared to the wild-type strain THN0901, the absorption of EtBr dyes was significantly reduced (P < 0.01) in ΔsfpB, implying an altered cell membrane permeability. In addition, the ΔsfpB strain had a significantly lower survival rate in macrophages (P < 0.01) and a 61.85 % lower adhesion ability to the EPC cells (P < 0.01) compared to THN0901. In the in vivo colonization experiment using tilapia as a model, 210 fish were selected and injected with different bacterial strains at a concentration of 3 × 106 CFU/tail. At 6, 12, 24, 48, 72 and 96 h post-injection, three fish were randomly selected from each group and their brain, liver, spleen, and kidney tissues were isolated. Subsequently, it was demonstrated that the ΔsfpB strain exhibited a markedly diminished capacity for colonization in tilapia. Additionally, the cumulative mortality of ΔsfpB in fish after intraperitoneal injection was reduced by 19.92-23.85 %. In conclusion, the findings in this study have demonstrated that the SfpB plays a significant role in S. agalactiae cell membrane stability and immune evasion. The immune evasion is fundamental for the development and transmission of invasive diseases, the serine protease SfpB may be a promising candidate for the development of antimicrobial agents to reduce the transmission of S. agalactiae.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
3
|
Liu Y, Ai H. Current research update on group B streptococcal infection related to obstetrics and gynecology. Front Pharmacol 2024; 15:1395673. [PMID: 38953105 PMCID: PMC11215423 DOI: 10.3389/fphar.2024.1395673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.
Collapse
Affiliation(s)
| | - Hao Ai
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
4
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
5
|
Wang J, Li W, Li N, Wang B. Immunization with Multiple Virulence Factors Provides Maternal and Neonatal Protection against Group B Streptococcus Serotypes. Vaccines (Basel) 2023; 11:1459. [PMID: 37766135 PMCID: PMC10535937 DOI: 10.3390/vaccines11091459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Group B streptococcus (GBS) commonly colonizes the vaginal tract and is a leading cause of life-threatening neonatal infections and adverse pregnancy outcomes. No effective vaccine is clinically available. Conserved bacterial virulence factors, including those of GBS, have been employed as vaccine components. We investigated serotype-independent protection against GBS by intranasal immunization with six conserved GBS virulence factors (GBSV6). GBSV6 induced systemic and vaginal antibodies and T cell responses in mice. The immunity reduced mouse mortality and vaginal colonization by various GBS serotypes and protected newborn mice of immunized dams against GBS challenge. Intranasal GBSV6 immunization also provided long-lasting protective immunity and had advantages over intramuscular GBSV6 immunization regarding restricting vaginal GBS colonization. Our findings indicate that intranasal immunization targeting multiple conserved GBS virulence factors induces serotype-independent immunity, which protects against GBS infection systemically and vaginally in dams and prevents newborn death. The study presents valuable strategies for GBS vaccine development.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Varnotech Biopharm Ltd., Beijing 100176, China
| | - Wenbo Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Varnotech Biopharm Ltd., Beijing 100176, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Molecular Epidemiology of Group B Streptococcus Colonization in Egyptian Women. Microorganisms 2022; 11:microorganisms11010038. [PMID: 36677330 PMCID: PMC9861799 DOI: 10.3390/microorganisms11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Streptococcus agalactiae or Group B Streptococcus (GBS) causes severe neonatal infections with a high burden of disease, especially in Africa. Maternal vaginal colonization and perinatal transmissions represent the common mode of acquiring the infection. Development of an effective maternal vaccine against GBS relies on molecular surveillance of the maternal GBS population to better understand the global distribution of GBS clones and serotypes. (2) Methods: Here, we present genomic data from a collection of colonizing GBS strains from Ismailia, Egypt that were sequenced and characterized within the global JUNO project. (3) Results: A large proportion of serotype VI, ST14 strains was discovered, a serotype which is rarely found in strain collections from the US and Europe and typically not included in the current vaccine formulations. (4) Conclusions: The molecular epidemiology of these strains clearly points to the African origin with the detection of several sequence types (STs) that have only been observed in Africa. Our data underline the importance of continuous molecular surveillance of the GBS population for future vaccine implementations.
Collapse
|
7
|
Keith MF, Gopalakrishna KP, Bhavana VH, Hillebrand GH, Elder JL, Megli CJ, Sadovsky Y, Hooven TA. Nitric Oxide Production and Effects in Group B Streptococcus Chorioamnionitis. Pathogens 2022; 11:1115. [PMID: 36297171 PMCID: PMC9608865 DOI: 10.3390/pathogens11101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine infection, or chorioamnionitis, due to group B Streptococcus (GBS) is a common cause of miscarriage and preterm birth. To cause chorioamnionitis, GBS must bypass maternal-fetal innate immune defenses including nitric oxide (NO), a microbicidal gas produced by nitric oxide synthases (NOS). This study examined placental NO production and its role in host-pathogen interactions in GBS chorioamnionitis. In a murine model of ascending GBS chorioamnionitis, placental NOS isoform expression quantified by RT-qPCR revealed a four-fold expression increase in inducible NOS, no significant change in expression of endothelial NOS, and decreased expression of neuronal NOS. These NOS expression results were recapitulated ex vivo in freshly collected human placental samples that were co-incubated with GBS. Immunohistochemistry of wild type C57BL/6 murine placentas with GBS chorioamnionitis demonstrated diffuse inducible NOS expression with high-expression foci in the junctional zone and areas of abscess. Pregnancy outcomes between wild type and inducible NOS-deficient mice did not differ significantly although wild type dams had a trend toward more frequent preterm delivery. We also identified possible molecular mechanisms that GBS uses to survive in a NO-rich environment. In vitro exposure of GBS to NO resulted in dose-dependent growth inhibition that varied by serovar. RNA-seq on two GBS strains with distinct NO resistance phenotypes revealed that both GBS strains shared several detoxification pathways that were differentially expressed during NO exposure. These results demonstrate that the placental immune response to GBS chorioamnionitis includes induced NO production and indicate that GBS activates conserved stress pathways in response to NO exposure.
Collapse
Affiliation(s)
- Mary Frances Keith
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | - Gideon Hayden Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jordan Lynn Elder
- Manual Hematology and Coagulation Department, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina Joann Megli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Thomas Alexander Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- UPMC Children’s Hospital of Pittsburgh Richard King Mellon Institute for Pediatric Research, Pittsburgh, PA 15224, USA
- UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Rangos Research Building #8128, Pittsburgh, PA 15224, USA
| |
Collapse
|
8
|
Lacasse M, Valentin AS, Corvec S, Bémer P, Jolivet-Gougeon A, Plouzeau C, Tandé D, Mereghetti L, Bernard L, Lartigue MF. Genotypic Characterization and Biofilm Production of Group B Streptococcus Strains Isolated from Bone and Joint Infections. Microbiol Spectr 2022; 10:e0232921. [PMID: 35357222 PMCID: PMC9045227 DOI: 10.1128/spectrum.02329-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Bone and joint infections (BJI) represent the second cause of invasive Group B Streptococcus (GBS) infections. Biofilm formation plays a major role in BJI. This study's aim was to analyze the genetic features and biofilm production of GBS strains. In six French laboratories, 77 GBS strains isolated from BJI and 57 strains from vaginal human colonization (Hcol) were characterized and compared by Multi-Locus Sequence Typing (MLST). PCR was used to search for the adhesins (bsaB, lmb, scpB, fbsA, fbsB, hvgA, bibA, bca, srr-1, and srr-2) and Pilus Islands (PI) related genes (PI-1, PI-2a, PI-2b). Biofilm production was studied by crystal violet assay. Strains were categorized into three groups, based on Specific Biofilm Formation (SBF) values defined as: weak, moderate, or strong producers. Molecular study revealed three major clonal complexes (CC) in BJI strains: CC1 (42%), CC23 (22%) and CC10 (14%). Several associations between CC and adhesin/pili were identified: CC1 with srr2, PI-1 + 2a; CC10 with srr-1, bca, PI-1 + 2a; CC17 with fbsB, hvgA, srr-2, PI-1+PI-2b; CC19 with bibA, srr-1, PI-1 + 2a; CC23 with fbsB, bibA, srr-1, PI-2a. The biofilm production was significantly different according to CC, adhesins and pili gene detection. CC10, CC23 and strains harboring fbsB produce more biofilm than CC1, PI-1 + 2a (independently). Finally, SBF values were significantly stronger for Hcol strains rather than for BJI strains (76% versus 40%). This study revealed that Hcol strains appeared to produce stronger biofilm than BJI strains, though they belonged to similar CCs and had the same adhesin and pili content. IMPORTANCE Bone and joint infections (BJI) are pathologies that can be life-threatening and result in compromised functional prognosis for patients. Relapses are common and often related to biofilm formation. Group B streptococci (GBS) BJI increased since the last decade. However, few data are available on this subject in the literature. Our study aims to highlight genotype and biofilm production of GBS isolates from BJI. Seventy-seven GBS strains isolated from BJI and 57 from asymptomatic human vaginal colonization were characterized by multilocus sequence typing (MLST), adhesins content, nature of the pili and the ability to form biofilm. Our results revealed that vaginal human colonization strains produced stronger biofilm than BJI strains, despite belonging to the same phylogenetic lineage and having the same adhesin and pili content.
Collapse
Affiliation(s)
| | - Anne-Sophie Valentin
- Université de Tours, INRAE, ISP, Tours, France
- Centre Hospitalier Universitaire de Tours, Service de Bactériologie, Virologie et Hygiène Hospitalière, Tours, France
| | - Stéphane Corvec
- University Hospital Center of Nantes, Bacteriology Department, Nantes University, Nantes, France
| | - Pascale Bémer
- University Hospital Center of Nantes, Bacteriology Department, Nantes University, Nantes, France
| | - Anne Jolivet-Gougeon
- University of Rennes, INSERM, University Hospital of Rennes, NUMECAN Institute (Nutrition Metabolisms and Cancer), Rennes, France
| | - Chloé Plouzeau
- Bacteriology-Hospital Hygiene Department, University Hospital of Poitiers, Poitiers University, Poitiers, France
| | - Didier Tandé
- Bacteriology-Hospital Hygiene Department, University Hospital of Brest, Brest University, Brest, France
| | - Laurent Mereghetti
- Université de Tours, INRAE, ISP, Tours, France
- Centre Hospitalier Universitaire de Tours, Service de Bactériologie, Virologie et Hygiène Hospitalière, Tours, France
| | - Louis Bernard
- Centre Hospitalier Universitaire de Tours, Service de Maladies infectieuses, Tours, France
| | - Marie-Frédérique Lartigue
- Université de Tours, INRAE, ISP, Tours, France
- Centre Hospitalier Universitaire de Tours, Service de Bactériologie, Virologie et Hygiène Hospitalière, Tours, France
| |
Collapse
|
9
|
Furuta A, Brokaw A, Manuel G, Dacanay M, Marcell L, Seepersaud R, Rajagopal L, Adams Waldorf K. Bacterial and Host Determinants of Group B Streptococcal Infection of the Neonate and Infant. Front Microbiol 2022; 13:820365. [PMID: 35265059 PMCID: PMC8899651 DOI: 10.3389/fmicb.2022.820365] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Group B streptococci (GBS) are Gram-positive β-hemolytic bacteria that can cause serious and life-threatening infections in neonates manifesting as sepsis, pneumonia, meningitis, osteomyelitis, and/or septic arthritis. Invasive GBS infections in neonates in the first week of life are referred to as early-onset disease (EOD) and thought to be acquired by the fetus through exposure to GBS in utero or to vaginal fluids during birth. Late-onset disease (LOD) refers to invasive GBS infections between 7 and 89 days of life. LOD transmission routes are incompletely understood, but may include breast milk, household contacts, nosocomial, or community sources. Invasive GBS infections and particularly meningitis may result in significant neurodevelopmental injury and long-term disability that persists into childhood and adulthood. Globally, EOD and LOD occur in more than 300,000 neonates and infants annually, resulting in 90,000 infant deaths and leaving more than 10,000 infants with a lifelong disability. In this review, we discuss the clinical impact of invasive GBS neonatal infections and then summarize virulence and host factors that allow the bacteria to exploit the developing neonatal immune system and target organs. Specifically, we consider the mechanisms known to enable GBS invasion into the neonatal lung, blood vessels and brain. Understanding mechanisms of GBS invasion and pathogenesis relevant to infections in the neonate and infant may inform the development of therapeutics to prevent or mitigate injury, as well as improve risk stratification.
Collapse
Affiliation(s)
- Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Gygeria Manuel
- Morehouse School of Medicine, Atlanta, GA, United States
| | - Matthew Dacanay
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Lauren Marcell
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Dobrut A, Brzychczy-Włoch M. Immunogenic Proteins of Group B Streptococcus-Potential Antigens in Immunodiagnostic Assay for GBS Detection. Pathogens 2021; 11:43. [PMID: 35055991 PMCID: PMC8778278 DOI: 10.3390/pathogens11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless, intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB, enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and specificity. We assume that they can be used as an alternative diagnostic method to the presently recommended bacteriological cultivation and MALDI.
Collapse
Affiliation(s)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, 31-121 Krakow, Poland;
| |
Collapse
|
11
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
12
|
Brokaw A, Furuta A, Dacanay M, Rajagopal L, Adams Waldorf KM. Bacterial and Host Determinants of Group B Streptococcal Vaginal Colonization and Ascending Infection in Pregnancy. Front Cell Infect Microbiol 2021; 11:720789. [PMID: 34540718 PMCID: PMC8446444 DOI: 10.3389/fcimb.2021.720789] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a gram-positive bacteria that asymptomatically colonizes the vaginal tract. However, during pregnancy maternal GBS colonization greatly predisposes the mother and baby to a wide range of adverse outcomes, including preterm birth (PTB), stillbirth, and neonatal infection. Although many mechanisms involved in GBS pathogenesis are partially elucidated, there is currently no approved GBS vaccine. The development of a safe and effective vaccine that can be administered during or prior to pregnancy remains a principal objective in the field, because current antibiotic-based therapeutic strategies do not eliminate all cases of invasive GBS infections. Herein, we review our understanding of GBS disease pathogenesis at the maternal-fetal interface with a focus on the bacterial virulence factors and host defenses that modulate the outcome of infection. We follow GBS along its path from an asymptomatic colonizer of the vagina to an invasive pathogen at the maternal-fetal interface, noting factors critical for vaginal colonization, ascending infection, and vertical transmission to the fetus. Finally, at each stage of infection we emphasize important host-pathogen interactions, which, if targeted therapeutically, may help to reduce the global burden of GBS.
Collapse
Affiliation(s)
- Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Matthew Dacanay
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States.,Department of Obstetrics and Gynecology, University of Washington and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
van Sorge NM, Bonsor DA, Deng L, Lindahl E, Schmitt V, Lyndin M, Schmidt A, Nilsson OR, Brizuela J, Boero E, Sundberg EJ, van Strijp JAG, Doran KS, Singer BB, Lindahl G, McCarthy AJ. Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors. EMBO J 2021; 40:e106103. [PMID: 33522633 PMCID: PMC8013792 DOI: 10.15252/embj.2020106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/19/2023] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed β protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in β represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.
Collapse
Affiliation(s)
- Nina M van Sorge
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical Microbiology,Infection Prevention and Netherlands Reference Laboratory for Bacterial MeningitisAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Daniel A Bonsor
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
| | - Liwen Deng
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Erik Lindahl
- Department of Biochemistry and BiophysicsScience for Life LaboratoryStockholm UniversityStockholmSweden
| | - Verena Schmitt
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Mykola Lyndin
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
- Department of PathologySumy State UniversitySumyUkraine
| | - Alexej Schmidt
- Department of Medical BiosciencesUmeå UniversityPathology, UmeåSweden
| | - Olof R Nilsson
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
| | - Jaime Brizuela
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Elena Boero
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Eric J Sundberg
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
- Department of BiochemistryEmory University School of MedicineAtlantaGAUSA
| | - Jos A G van Strijp
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Kelly S Doran
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Bernhard B Singer
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Gunnar Lindahl
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
- Department of ChemistryDivision of Applied MicrobiologyLund UniversityLundSweden
| | - Alex J McCarthy
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| |
Collapse
|
14
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Genetic Basis Underlying the Hyperhemolytic Phenotype of Streptococcus agalactiae Strain CNCTC10/84. J Bacteriol 2020; 202:JB.00504-20. [PMID: 32958630 DOI: 10.1128/jb.00504-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/30/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) is a major cause of infections in newborns, pregnant women, and immunocompromised patients. GBS strain CNCTC10/84 is a clinical isolate that has high virulence in animal models of infection and has been used extensively to study GBS pathogenesis. Two unusual features of this strain are hyperhemolytic activity and hypo-CAMP factor activity. These two phenotypes are typical of GBS strains that are functionally deficient in the CovR-CovS two-component regulatory system. A previous whole-genome sequencing study found that strain CNCTC10/84 has intact covR and covS regulatory genes. We investigated CovR-CovS regulation in CNCTC10/84 and discovered that a single-nucleotide insertion in a homopolymeric tract in the covR promoter region underlies the strong hemolytic activity and weak CAMP activity of this strain. Using isogenic mutant strains, we demonstrate that this single-nucleotide insertion confers significantly decreased expression of covR and covS and altered expression of CovR-CovS-regulated genes, including that of genes encoding β-hemolysin and CAMP factor. This single-nucleotide insertion also confers significantly increased GBS survival in human whole blood ex vivo IMPORTANCE Group B streptococcus (GBS) is the leading cause of neonatal sepsis, pneumonia, and meningitis. GBS strain CNCTC10/84 is a highly virulent blood isolate that has been used extensively to study GBS pathogenesis for over 20 years. Strain CNCTC10/84 has an unusually strong hemolytic activity, but the genetic basis is unknown. In this study, we discovered that a single-nucleotide insertion in an intergenic homopolymeric tract is responsible for the elevated hemolytic activity of CNCTC10/84.
Collapse
|
16
|
Manne K, Chattopadhyay D, Agarwal V, Blom AM, Khare B, Chakravarthy S, Chang C, Ton-That H, Narayana SVL. Novel structure of the N-terminal helical domain of BibA, a group B streptococcus immunogenic bacterial adhesin. Acta Crystallogr D Struct Biol 2020; 76:759-770. [PMID: 32744258 PMCID: PMC7397492 DOI: 10.1107/s2059798320008116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BibA, a group B streptococcus (GBS) surface protein, has been shown to protect the pathogen from phagocytic killing by sequestering a complement inhibitor: C4b-binding protein (C4BP). Here, the X-ray crystallographic structure of a GBS BibA fragment (BibA126-398) and a low-resolution small-angle X-ray scattering (SAXS) structure of the full-length N-terminal domain (BibA34-400) are described. The BibA126-398 fragment crystal structure displayed a novel and predominantly helical structure. The tertiary arrangement of helices forms four antiparallel three-helix-bundle-motif repeats, with one long helix from a bundle extending into the next. Multiple mutations on recombinant BibA34-400 delayed the degradation of the protein, and circular dichroism spectroscopy of BibA34-400 suggested a similar secondary-structure composition to that observed in the crystallized BibA126-398 fragment. A model was generated for the 92 N-terminal residues (BibA34-125) using structural similarity prediction programs, and a BibA34-400 model was generated by combining the coordinates of BibA34-126 and BibA126-398. The X-ray structure of BibA126-398 and the model of BibA34-400 fitted well into the calculated SAXS envelope. One possible binding site for the BibA N-terminal domain was localized to the N-terminal CCP (complement-control protein) domains of the C4BP α-chain, as indicated by the decreased binding of BibA to a ΔCCP1 C4BP α-chain mutant. In summary, it is suggested that the GBS surface protein BibA, which consists of three antiparallel α-helical-bundle motifs, is unique and belongs to a new class of Gram-positive surface adhesins.
Collapse
Affiliation(s)
- Kartik Manne
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birningham, AL 35294, USA
| | | | - Vaibhav Agarwal
- Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Sthanam V. L. Narayana
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birningham, AL 35294, USA
| |
Collapse
|
17
|
Dos Santos NFB, da Silva LR, Costa FJMD, de Mattos DM, de Carvalho E, Ferreira LCDS, Ferreira RDCC. Immunization with a recombinant BibA surface protein confers immunity and protects mice against group B Streptococcus (GBS) vaginal colonization. Vaccine 2020; 38:5286-5296. [PMID: 32571719 DOI: 10.1016/j.vaccine.2020.05.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
Streptococcus agalactiae or group B Streptococcus (GBS) is a Gram-positive bacterium divided into ten distinct serotypes that colonizes the vaginal and rectal tracts of approximately 30% of women worldwide. GBS is the leading cause of invasive infection in newborns, causing sepsis, pneumoniae and meningitis. The main strategy to prevent GSB infection in newborns includes the use of intrapartum antibiotic therapy, which does not prevent late-onset diseases and may select resistant bacterial strains. We still do not have a vaccine formulation specific for this pathogen approved for human use. Conserved surface proteins are potential antigens that could be targets for recognition by antibodies and activation of cell opsonization. We used a serotype V GBS (GBS-V)-derived recombinant surface protein, rBibA, and evaluated the potential protective role of the induced antigen-specific antibodies after parenteral or mucosal immunizations in C57BL/6 mice. In vitro and in vivo assays demonstrated that vaccine formulations containing BibA combined with different adjuvants induced serum IgG and/or secreted IgA antibodies, leading to enhanced opsonophagocytosis of GBS-V cells and reduced invasion of epithelial cells. One BibA-based vaccine formulation adjuvanted with a nontoxic derivative of the heat-labile toxin produced by enterotoxigenic Escherichia coli (ETEC) strains was capable of inducing protection against vaginal colonization and lethal parenteral challenge with GBS-V. Serum collected from vaccinated mice conferred passive protection against vaginal colonization in naïve mice challenged with GBS-V. Taken together, the present data demonstrate that the BibA protein is a promising antigen for development of a vaccine to protect against GBS infection.
Collapse
Affiliation(s)
- Nayara Fernanda Barros Dos Santos
- Laboratory of Vaccine Development, Department of Microbiology, Biomedical Science Institute, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| | - Lukas Raposo da Silva
- Laboratory of Vaccine Development, Department of Microbiology, Biomedical Science Institute, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| | - Fagner James Martins Dantas Costa
- Laboratory of Vaccine Development, Department of Microbiology, Biomedical Science Institute, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| | - Daniely Maranhão de Mattos
- Laboratory of Vaccine Development, Department of Microbiology, Biomedical Science Institute, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| | - Enéas de Carvalho
- Laboratory of Molecular Biotechnology I, Biotechnology Center, Butantan Institute, 1500 Vital Brasil Avenue, São Paulo, SP 03178-200, Brazil.
| | - Luís Carlos de Souza Ferreira
- Laboratory of Vaccine Development, Department of Microbiology, Biomedical Science Institute, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| | - Rita de Cássia Café Ferreira
- Laboratory of Vaccine Development, Department of Microbiology, Biomedical Science Institute, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
18
|
Kardos S, Tóthpál A, Laub K, Kristóf K, Ostorházi E, Rozgonyi F, Dobay O. High prevalence of group B streptococcus ST17 hypervirulent clone among non-pregnant patients from a Hungarian venereology clinic. BMC Infect Dis 2019; 19:1009. [PMID: 31779587 PMCID: PMC6883650 DOI: 10.1186/s12879-019-4626-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/11/2019] [Indexed: 11/08/2022] Open
Abstract
Background Although Streptococcus agalactiae is the leading causative agent of neonatal sepsis and meningitis, recently it is increasingly isolated from non-pregnant adults. The relation between its presence in the genitourinary tract and manifested clinical symptoms of STD patients remains an open question. In this study, a complex epidemiological investigation of GBS isolates from a venerology clinic was performed. Methods Ninety-six GBS isolates were serotyped and their genetic relatedness determined by PFGE. MLST was also performed for a subset of 20 isolates. The antibiotic susceptibility was tested with agar dilution. Surface proteins and the ST-17 hypervirulent clone was detected by PCR. Results The serotype prevalence was the following: V (29.2%), III (27.1%), Ia (22.9%), IV (10.4%), II (5.2%) and Ib (4.2%). A strong association was demonstrated between surface protein genes and serotypes. All isolates were fully susceptible to penicillin, but erythromycin and clindamycin resistance was high (41.7 and 35.4%, respectively), and 8 phenotypically macrolide sensitive isolates carried the ermB gene. 21.9% of all strains belonged to the hypervirulent ST17 clone, most being of serotype III and all were rib +. We found a few serotype IV isolates belonging to several STs and one serotype V/ST110 strain, containing a 44-bp deletion in the atr allele. Conclusions The presence of silent ermB genes is of worry, as their expression upon macrolide exposure could lead to unforeseen therapeutic failure, while clindamycin is used for intrapartum antibiotic prophylaxis, in case of penicillin allergy. The other alarming result is the high prevalence of ST17 among these strains from STD patients, who could be sources of further infections. This is the first report from Hungary providing both serotyping and genotyping data of GBS isolates. These results could be helpful for vaccine production as the major vaccine candidates are capsular antigens or surface proteins.
Collapse
Affiliation(s)
- Szilvia Kardos
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Adrienn Tóthpál
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztina Laub
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Department of Dermatology, Dermatooncology and Venerology, Semmelweis University, Budapest, Hungary
| | - Ferenc Rozgonyi
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Department of Dermatology, Dermatooncology and Venerology, Semmelweis University, Budapest, Hungary
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
| |
Collapse
|
19
|
Abstract
The surface of the Gram-positive opportunistic pathogen Streptococcus agalactiae, or group B Streptococcus (GBS), harbors several carbohydrate and protein antigens with the potential to be effective vaccines. Capsular polysaccharides of all clinically-relevant GBS serotypes coupled to immunogenic proteins of both GBS and non-GBS origin have undergone extensive testing in animals that led to advanced clinical trials in healthy adult women. In addition, GBS proteins either alone or in combination have been tested in animals; a fusion protein construct has recently advanced to human clinical studies. Given our current understanding of the antigenicity and immunogenicity of the wide array of GBS surface antigens, formulations now exist for the generation of viable vaccines against diseases caused by GBS.
Collapse
|
20
|
Sutton JA, Rogers LM, Dixon B, Kirk L, Doster R, Algood HM, Gaddy JA, Flaherty R, Manning SD, Aronoff DM. Protein kinase D mediates inflammatory responses of human placental macrophages to Group B Streptococcus. Am J Reprod Immunol 2019; 81:e13075. [PMID: 30582878 PMCID: PMC6459189 DOI: 10.1111/aji.13075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 01/22/2023] Open
Abstract
PROBLEM During pregnancy, Group B Streptococcus (GBS) can infect fetal membranes to cause chorioamnionitis, resulting in adverse pregnancy outcomes. Macrophages are the primary resident phagocyte in extraplacental membranes. Protein kinase D (PKD) was recently implicated in mediating pro-inflammatory macrophage responses to GBS outside of the reproductive system. This work aimed to characterize the human placental macrophage inflammatory response to GBS and address the extent to which PKD mediates such effects. METHOD Primary human placental macrophages were infected with GBS in the presence or absence of a specific, small molecule PKD inhibitor, CRT 0066101. Macrophage phenotypes were characterized by evaluating gene expression, cytokine release, assembly of the NLRP3 inflammasome, and NFκB activation. RESULTS GBS evoked a strong inflammatory phenotype characterized by the release of inflammatory cytokines (TNFα, IL-1β, IL-6 (P ≤ 0.05), NLRP3 inflammasome assembly (P ≤ 0.0005), and NFκB activation (P ≤ 0.05). Pharmacological inhibition of PKD suppressed these responses, newly implicating a role for PKD in mediating immune responses of primary human placental macrophages to GBS. CONCLUSION PKD plays a critical role in mediating placental macrophage inflammatory activation in response to GBS infection.
Collapse
Affiliation(s)
- Jessica A. Sutton
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, 37208, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisa M. Rogers
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Beverly Dixon
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leslie Kirk
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan Doster
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Holly M. Algood
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, U.S.A
| | - Jennifer A. Gaddy
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, U.S.A
| | - Rebecca Flaherty
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - David M. Aronoff
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, 37208, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
21
|
Armistead B, Oler E, Adams Waldorf K, Rajagopal L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. J Mol Biol 2019; 431:2914-2931. [PMID: 30711542 DOI: 10.1016/j.jmb.2019.01.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Group B streptococcus (GBS) is a β-hemolytic gram-positive bacterium that colonizes the lower genital tract of approximately 18% of women globally as an asymptomatic member of the gastrointestinal and/or vaginal flora. If established in other host niches, however, GBS is highly pathogenic. During pregnancy, ascending GBS infection from the vagina to the intrauterine space is associated with preterm birth, stillbirth, and fetal injury. In addition, vertical transmission of GBS during or after birth results in life-threatening neonatal infections, including pneumonia, sepsis, and meningitis. Although the mechanisms by which GBS traffics from the lower genital tract to vulnerable host niches are not well understood, recent advances have revealed that many of the same bacterial factors that promote asymptomatic vaginal carriage also facilitate dissemination and virulence. Furthermore, highly pathogenic GBS strains have acquired unique factors that enhance survival in invasive niches. Several host factors also exist that either subdue GBS upon vaginal colonization or alternatively permit invasive infection. This review summarizes the GBS and host factors involved in GBS's state as both an asymptomatic colonizer and an invasive pathogen. Gaining a better understanding of these mechanisms is key to overcoming the challenges associated with vaccine development and identification of novel strategies to mitigate GBS virulence.
Collapse
Affiliation(s)
- Blair Armistead
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA
| | - Elizabeth Oler
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle 98109, WA, USA; Sahlgrenska Academy, Gothenburg University, Gothenburg 413 90, Sweden
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle 98195, WA, USA.
| |
Collapse
|
22
|
Tavares GC, Pereira FL, Barony GM, Rezende CP, da Silva WM, de Souza GHMF, Verano-Braga T, de Carvalho Azevedo VA, Leal CAG, Figueiredo HCP. Delineation of the pan-proteome of fish-pathogenic Streptococcus agalactiae strains using a label-free shotgun approach. BMC Genomics 2019; 20:11. [PMID: 30616502 PMCID: PMC6323687 DOI: 10.1186/s12864-018-5423-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae (GBS) is a major pathogen of Nile tilapia, a global commodity of the aquaculture sector. The aims of this study were to evaluate protein expression in the main genotypes of GBS isolated from diseased fishes in Brazil using a label-free shotgun nano-liquid chromatography-ultra definition mass spectrometry (nanoLC-UDMSE) approach and to compare the differential abundance of proteins identified in strains isolated from GBS-infected fishes and humans. RESULTS A total of 1070 protein clusters were identified by nanoLC-UDMSE in 5 fish-adapted GBS strains belonging to sequence types ST-260 and ST-927 and the non-typeable (NT) lineage and 1 human GBS strain (ST-23). A total of 1065 protein clusters corresponded to the pan-proteome of fish-adapted GBS strains; 989 of these were identified in all fish-adapted GBS strains (core proteome), and 62 were shared by at least two strains (accessory proteome). Proteins involved in the stress response and in the regulation of gene expression, metabolism and virulence were detected, reflecting the adaptive ability of fish-adapted GBS strains in response to stressor factors that affect bacterial survival in the aquatic environment and bacterial survival and multiplication inside the host cell. Measurement of protein abundance among different hosts showed that 5 and 26 proteins were exclusively found in the human- and fish-adapted GBS strains, respectively; the proteins exclusively identified in fish isolates were mainly related to virulence factors. Furthermore, 215 and 269 proteins were up- and down-regulated, respectively, in the fish-adapted GBS strains in comparison to the human isolate. CONCLUSIONS Our study showed that the core proteome of fish-adapted GBS strains is conserved and demonstrated high similarity of the proteins expressed by fish-adapted strains to the proteome of the human GBS strain. This high degree of proteome conservation of different STs suggests that, a monovalent vaccine may be effective against these variants.
Collapse
Affiliation(s)
- Guilherme Campos Tavares
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Luiz Pereira
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Morais Barony
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiana Perdigão Rezende
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wanderson Marques da Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Augusto Gomes Leal
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique César Pereira Figueiredo
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,School of Veterinary, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| |
Collapse
|
23
|
Giussani S, Pietrocola G, Donnarumma D, Norais N, Speziale P, Fabbrini M, Margarit I. The Streptococcus agalactiae complement interfering protein combines multiple complement-inhibitory mechanisms by interacting with both C4 and C3 ligands. FASEB J 2018; 33:4448-4457. [PMID: 30566365 PMCID: PMC6404586 DOI: 10.1096/fj.201801991r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Group B Streptococcus (GBS) colonizes the human lower intestinal and genital tracts and constitutes a major threat to neonates from pregnant carrier mothers and to adults with underlying morbidity. The pathogen expresses cell-surface virulence factors that enable cell adhesion and penetration and that counteract innate and adaptive immune responses. Among these, the complement interfering protein (CIP) was recently described for its capacity to interact with the human C4b ligand and to interfere with the classical- and lectin-complement pathways. In the present study, we provide evidence that CIP can also interact with C3, C3b, and C3d. Immunoassay-based competition experiments showed that binding of CIP to C3d interferes with the interaction between C3d and the complement receptor 2/cluster of differentiation 21 (CR2/CD21) receptor on B cells. By B-cell intracellular signaling assays, CIP was confirmed to down-regulate CR2/CD21-dependent B-cell activation. The CIP domain involved in C3d binding was mapped via hydrogen deuterium exchange–mass spectrometry. The data obtained reveal a new role for this GBS polypeptide at the interface between the innate and adaptive immune responses, adding a new member to the growing list of virulence factors secreted by gram-positive pathogens that incorporate multiple immunomodulatory functions.—Giussani, S., Pietrocola, G., Donnarumma, D., Norais, N., Speziale, P., Fabbrini, M., Margarit, I. The Streptococcus agalactiae complement interfering protein combines multiple complement-inhibitory mechanisms by interacting with both C4 and C3 ligands.
Collapse
Affiliation(s)
- Stefania Giussani
- GlaxoSmithKline (GSK), Siena, Italy; and.,Unit of Biochemistry, Molecular Medicine Department, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Unit of Biochemistry, Molecular Medicine Department, University of Pavia, Pavia, Italy
| | | | | | - Pietro Speziale
- Unit of Biochemistry, Molecular Medicine Department, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
24
|
Crystal structure of GAPDH of Streptococcus agalactiae and characterization of its interaction with extracellular matrix molecules. Microb Pathog 2018; 127:359-367. [PMID: 30553015 DOI: 10.1016/j.micpath.2018.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Indexed: 11/21/2022]
Abstract
GAPDH being a key enzyme in the glycolytic pathway is one of the surface adhesins of many Gram-positive bacteria including Streptococcus agalactiae. This anchorless adhesin is known to bind to host plasminogen (PLG) and fibrinogen (Fg), which enhances the virulence and modulates the host immune system. The crystal structure of the recombinant GAPDH from S. agalactiae (SagGAPDH) was determined at 2.6 Å resolution by molecular replacement. The structure was found to be highly conserved with a typical NAD binding domain and a catalytic domain. In this paper, using biolayer interferometry studies, we report that the multifunctional SagGAPDH enzyme binds to a variety of host molecules such as PLG, Fg, laminin, transferrin and mucin with a KD value of 4.4 × 10-7 M, 9.8 × 10-7 M, 1 × 10-5 M, 9.7 × 10-12 M and 1.4 × 10-7 M respectively. The ligand affinity blots reveal that SagGAPDH binds specifically to α and β subunits of Fg and the competitive binding ELISA assay reveals that the Fg and PLG binding sites on GAPDH does not overlap each other. The PLG binding motif of GAPDH varies with organisms, however positively charged residues in the hydrophobic surroundings is essential for PLG binding. The lysine analogue competitive binding assay and lysine succinylation experiments deciphered the role of SagGAPDH lysines in PLG binding. On structural comparison with S. pneumoniae GAPDH, K171 of SagGAPDH is being predicted to be involved in PLG binding. Further SagGAPDH exhibited enzymatic activity in the presence of Fg, PLG and transferrin. This suggests that these host molecules does not mask the active site and bind at some other region of GAPDH.
Collapse
|
25
|
Ganau M, Mankad K, Srirambhatla UR, Tahir Z, D'Arco F. Ring-enhancing lesions in neonatal meningitis: an analysis of neuroradiology pitfalls through exemplificative cases and a review of the literature. Quant Imaging Med Surg 2018; 8:333-341. [PMID: 29774186 DOI: 10.21037/qims.2018.01.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Very often the clinical course of neonatal meningitis (NM) is characterized by sudden worsening, at times associated with cerebrovascular complications and strokes or the formation of cerebral abscesses. The immediate recognition of these pathological patterns is pivotal in providing clinicians with useful information to differentiate between those different pathological entities, which may both present as ring-enhancing lesions on neuroradiology investigations. Understanding their natural history and diagnostic features is of paramount importance to timely adopt the most appropriate medical and surgical management.
Collapse
Affiliation(s)
- Mario Ganau
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK
| | - Kshitij Mankad
- Department of Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Uma Rami Srirambhatla
- Department of Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Zubair Tahir
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK
| | - Felice D'Arco
- Department of Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
26
|
Pietrocola G, Arciola CR, Rindi S, Montanaro L, Speziale P. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates. Front Immunol 2018; 9:602. [PMID: 29686667 PMCID: PMC5900788 DOI: 10.3389/fimmu.2018.00602] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of "old" and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
27
|
Coassociation between Group B Streptococcus and Candida albicans Promotes Interactions with Vaginal Epithelium. Infect Immun 2018; 86:IAI.00669-17. [PMID: 29339458 DOI: 10.1128/iai.00669-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia, and meningitis worldwide. In the majority of cases, GBS is transmitted vertically from mother to neonate, making maternal vaginal colonization a key risk factor for neonatal disease. The fungus Candida albicans is an opportunistic pathogen of the female genitourinary tract and the causative agent of vaginal thrush. Carriage of C. albicans has been shown to be an independent risk factor for vaginal colonization by GBS. However, the nature of interactions between these two microbes is poorly understood. This study provides evidence of a reciprocal, synergistic interplay between GBS and C. albicans that may serve to promote their cocolonization of the vaginal mucosa. GBS strains NEM316 (serotype III) and 515 (serotype Ia) are shown to physically interact with C. albicans, with the bacteria exhibiting tropism for candidal hyphal filaments. This interaction enhances association levels of both microbes with the vaginal epithelial cell line VK2/E6E7. The ability of GBS to coassociate with C. albicans is dependent upon expression of the hypha-specific adhesin Als3. In turn, expression of GBS antigen I/II family adhesins (Bsp polypeptides) facilitates this coassociation and confers upon surrogate Lactococcus lactis the capacity to exhibit enhanced interactions with C. albicans on vaginal epithelium. As genitourinary tract colonization is an essential first step in the pathogenesis of GBS and C. albicans, the coassociation mechanism reported here may have important implications for the risk of disease involving both of these pathogens.
Collapse
|
28
|
Shabayek S, Spellerberg B. Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology. Front Microbiol 2018; 9:437. [PMID: 29593684 PMCID: PMC5861770 DOI: 10.3389/fmicb.2018.00437] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious neonatal infections. GBS is an opportunistic commensal constituting a part of the intestinal and vaginal physiologic flora and maternal colonization is the principal route of GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal carriage state to a major bacterial pathogen causing severe invasive infections. At present, as many as 10 serotypes (Ia, Ib, and II–IX) are recognized. The aim of the current review is to shed new light on the latest epidemiological data and clonal distribution of GBS in addition to discussing the most important colonization determinants at a molecular level. The distribution and predominance of certain serotypes is susceptible to variations and can change over time. With the availability of multilocus sequence typing scheme (MLST) data, it became clear that GBS strains of certain clonal complexes possess a higher potential to cause invasive disease, while other harbor mainly colonizing strains. Colonization and persistence in different host niches is dependent on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent well-known virulence factors with a vital role in persistence and chronic infections. In addition, GBS colonization, persistence, translocation, and invasion of host barriers are largely dependent on their adherence abilities to host cells and extracellular matrix proteins (ECM). Major adhesins mediating GBS interaction with host cells include the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A (SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin (HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial cell and the host, while global virulence regulators play a major role in the transition to invasive infections. This review combines for first time epidemiological data with data on adherence and colonization for GBS. Investigating the epidemiology along with understanding the determinants of mucosal colonization and the development of invasive disease at a molecular level is therefore important for the development of strategies to prevent invasive GBS disease worldwide.
Collapse
Affiliation(s)
- Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
29
|
Patras KA, Nizet V. Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches. Front Pediatr 2018; 6:27. [PMID: 29520354 PMCID: PMC5827363 DOI: 10.3389/fped.2018.00027] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) colonizes the gastrointestinal and vaginal epithelium of a significant percentage of healthy women, with potential for ascending intrauterine infection or transmission during parturition, creating a risk of serious disease in the vulnerable newborn. This review highlights new insights on the bacterial virulence determinants, host immune responses, and microbiome interactions that underpin GBS vaginal colonization, the proximal step in newborn infectious disease pathogenesis. From the pathogen perspective, the function GBS adhesins and biofilms, β-hemolysin/cytolysin toxin, immune resistance factors, sialic acid mimicry, and two-component transcriptional regulatory systems are reviewed. From the host standpoint, pathogen recognition, cytokine responses, and the vaginal mucosal and placental immunity to the pathogen are detailed. Finally, the rationale, efficacy, and potential unintended consequences of current universal recommended intrapartum antibiotic prophylaxis are considered, with updates on new developments toward a GBS vaccine or alternative approaches to reducing vaginal colonization.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
30
|
Intrinsic Maturational Neonatal Immune Deficiencies and Susceptibility to Group B Streptococcus Infection. Clin Microbiol Rev 2017; 30:973-989. [PMID: 28814408 DOI: 10.1128/cmr.00019-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although a normal member of the gastrointestinal and vaginal microbiota, group B Streptococcus (GBS) can also occasionally be the cause of highly invasive neonatal disease and is an emerging pathogen in both elderly and immunocompromised adults. Neonatal GBS infections are typically transmitted from mother to baby either in utero or during passage through the birth canal and can lead to pneumonia, sepsis, and meningitis within the first few months of life. Compared to the adult immune system, the neonatal immune system has a number of deficiencies, making neonates more susceptible to infection. Recognition of GBS by the host immune system triggers an inflammatory response to clear the pathogen. However, GBS has developed several mechanisms to evade the host immune response. A comprehensive understanding of this interplay between GBS and the host immune system will aid in the development of new preventative measures and therapeutics.
Collapse
|
31
|
Hu WT, Guo WL, Meng AY, Sun Y, Wang SF, Xie ZY, Zhou YC, He C. A metabolomic investigation into the effects of temperature on Streptococcus agalactiae from Nile tilapia (Oreochromis niloticus) based on UPLC-MS/MS. Vet Microbiol 2017; 210:174-182. [PMID: 29103689 DOI: 10.1016/j.vetmic.2017.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Streptococcosis caused by Streptococcus agalactiae is one of the most serious diseases in farmed tilapia, and temperature is one of the most important environmental factors related to its outbreak. To elucidate the influence of temperature variation on the pathogen from a metabolic perspective, the global metabolomics of 2 pathogenic strains of S. agalactiae from sick tilapia were analyzed at 35°C and 25°C using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with pattern recognition approaches and pathway analysis. The result showed that the metabolic status of S. agalactiae was extensively affected by its culture temperature. Based on the results of metabolites contributing to these differences, a large number of nucleotides and their ramifications were markedly elevated at 35°C. Various energy substances, components of the cell wall and substances associated with stress regulation such as glyceraldehyde 3-phosphate, pyroglutamic acid, glutamate, d-Alanyl-d-alanine, glycerophosphocholine, dephospho-CoA, and oxidized glutathione increased when the strains were cultured at 35°C. Additionally, a general decrease in various precursors of capsule, antigen, and virulence protein formation were detected including mannose, maltotriose, N-acetyl-d-glucosamine 6-phosphate, uracil, proline, and citrulline. These metabolic changes indicated that metabolic activity decreased, while adaptive ability to environment and pathogenicity to host increased at high temperature. This study is the first to determine the metabolomic responses of S. agalactiae to temperature, and the results are useful to reveal its pathogenic mechanism and find effective disease control.
Collapse
Affiliation(s)
- Wen-Ting Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China
| | - Wei-Liang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China
| | - Ai-Yun Meng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China
| | - Shi-Feng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China
| | - Yong-Can Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China.
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Rd, Haikou, 570228 PR China.
| |
Collapse
|
32
|
Gallage S, Katagiri T, Endo M, Maita M. Comprehensive evaluation of immunomodulation by moderate hypoxia in S. agalactiae vaccinated Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2017; 66:445-454. [PMID: 28526572 DOI: 10.1016/j.fsi.2017.05.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Streptococcus agalactiae is a major bacterial pathogen in tilapia aquaculture. Vaccines are known to provide protection but S. agalactiae clearance in tilapia can be reduced by marginal environmental conditions. Therefore, the purpose of this study is to examine S. agalactiae clearance in vaccinated Nile tilapia under moderate hypoxic (55± 5% DO) and normoxic (85 ± 5%DO) conditions. Fish were acclimatized to either moderate hypoxia or normoxia and immunized with formalin-inactivated S. agalactiae. Fish were experimentally challenged with S. agalactiae at 30 days post-vaccination. Serum antibody titer was significantly higher in vaccinated fish kept under normoxic condition compared to the moderate hypoxic condition at fifteen and thirty days post-vaccination. The cumulative mortality following challenge was significantly reduced in vaccinated fish kept under normoxic condition compared to those in moderate hypoxic condition reflecting that pre-challenge antibody titer may correlate with survival of fish. Blood and tissue pathogen burden detection of S. agalactiae studies revealed that culturable S. agalactiae cells could not be detected in the blood of normoxic vaccinated fish at all the sampling points. In contrast, fish vaccinated in moderate hypoxic condition had considerable number of culturable S. agalactiae cells in their blood up to 5 days following challenge. Phagocytosis and intracellular reactive oxygen species (ROS) production were lowered by moderate hypoxia in vitro. Furthermore, presence of specific antibodies and higher specific antibody level in the serum increased phagocytosis, ROS production and lowered intracellular survival of S. agalactiae in head kidney leukocytes. Overall this study has highlighted that S. agalactiae clearance in vaccinated Nile tilapia is modulated by moderate hypoxia. One of the possible explanations for this might be less efficient phagocytic activities due to low oxygen availability and lower specific antibody production in vaccinated fish.
Collapse
Affiliation(s)
- Sanchala Gallage
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Takayuki Katagiri
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Masato Endo
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Masashi Maita
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
33
|
Geoghegan IA, Gurr SJ. Investigating chitin deacetylation and chitosan hydrolysis during vegetative growth in Magnaporthe oryzae. Cell Microbiol 2017; 19. [PMID: 28371146 PMCID: PMC5573952 DOI: 10.1111/cmi.12743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
Chitin deacetylation results in the formation of chitosan, a polymer of β1,4-linked glucosamine. Chitosan is known to have important functions in the cell walls of a number of fungal species, but its role during hyphal growth has not yet been investigated. In this study, we have characterized the role of chitin deacetylation during vegetative hyphal growth in the filamentous phytopathogen Magnaporthe oryzae. We found that chitosan localizes to the septa and lateral cell walls of vegetative hyphae and identified 2 chitin deacetylases expressed during vegetative growth-CDA1 and CDA4. Deletion strains and fluorescent protein fusions demonstrated that CDA1 is necessary for chitin deacetylation in the septa and lateral cell walls of mature hyphae in colony interiors, whereas CDA4 deacetylates chitin in the hyphae at colony margins. However, although the Δcda1 strain was more resistant to cell wall hydrolysis, growth and pathogenic development were otherwise unaffected in the deletion strains. The role of chitosan hydrolysis was also investigated. A single gene encoding a putative chitosanase (CSN) was discovered in M. oryzae and found to be expressed during vegetative growth. However, chitosan localization, vegetative growth, and pathogenic development were unaffected in a CSN deletion strain, rendering the role of this enzyme unclear.
Collapse
Affiliation(s)
| | - Sarah J Gurr
- Department of Plant Sciences, University of Oxford, Oxford, UK.,Geoffrey Pope Building, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
34
|
Wang J, Wu J, Yi L, Hou Z, Li W. Pathological analysis, detection of antigens, FasL expression analysis and leucocytes survival analysis in tilapia (Oreochromis niloticus) after infection with green fluorescent protein labeled Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2017; 62:86-95. [PMID: 28063953 DOI: 10.1016/j.fsi.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
The pathogenesis of Streptococcus agalactiae infection in tilapia has not been fully described. To understand this, we investigated the clinic-pathological features of acute experimental septicemia in tilapia (Oreochromis niloticus) after receiving an intra-peritoneal injection with S. agalactiae THN-1901GFP. Immunohistochemistry and sections of pathological tissues were used to estimate the level of damage in the head-kidney, liver, spleen and trunk-kidney. The expression of FasL was analyzed by western blotting in these samples based on their damage levels. Leucocytes were isolated from the head-kidney and incubated with S. agalactiae THN-1901GFP. Then, phagocytosis, programmed cell death and the expression of FasL were analyzed. The infected tissues showed varying degrees of necrosis and histolysis. The serous membrane of the intestine was dissolved by S. agalactiae THN-1901GFP. Antigens of S. agalactiae THN-1901GFP accumulated in different parts of the infected organs. In the head-kidney and spleen, the expression of FasL was up-regulated in parallel with increased tissue damage. After being incubated with S. agalactiae THN-1901GFP, the phagocytic capacity and ability were both very high and the expression of FasL remained high in leucocytes. S. agalactiae THN-1901GFP was able to survive for a long period of time after being engulfed by phagocytic cells. These findings offer insight into the pathogenesis of S. agalactiae infection in tilapia.
Collapse
Affiliation(s)
- Jingyuan Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinying Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Liyuan Yi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zengxin Hou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
35
|
Efstratiou A, Lamagni T, Turner CE. Streptococci and Enterococci. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Dzanibe S, Adrian PV, Kimaro Mlacha SZ, Madhi SA. Natural acquired group B Streptococcus capsular polysaccharide and surface protein antibodies in HIV-infected and HIV-uninfected children. Vaccine 2016; 34:5217-5224. [PMID: 27663669 DOI: 10.1016/j.vaccine.2016.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/02/2016] [Accepted: 09/14/2016] [Indexed: 01/03/2023]
Abstract
Group B Streptococcus (GBS) is a major cause of invasive disease in young infants and also in older immunocompromised individuals, including HIV-infected persons. We compared naturally acquired antibody titres to GBS polysaccharide and surface protein antigens in HIV-uninfected and HIV-infected children aged 4-7 years. A multiplex Luminex immunoassay was used to measure IgG concentrations against GBS capsular polysaccharides (CPS) for serotypes Ia, Ib, III and V; and also extracellular localizing proteins which included cell-wall anchored proteins: Fibrinogen binding surface Antigen (FbsA), GBS Immunogenic Bacterial Adhesin (BibA), Surface immunogenic protein (Sip), gbs0393, gbs1356, gbs1539, gbs0392; and lipoproteins gbs0233, gbs2106 and Foldase PsrA. HIV-infected children (n=68) had significantly lower IgG GMT compared to HIV-uninfected (n=77) children against CPS of serotype Ib (p=0.012) and V (p=0.0045), and surface proteins Sip (p<0.001) and gbs2106 (p=0.0014). IgG GMT against GBS surface proteins: FbsA, gbs1539, gbs1356, gbs0392, gbs0393 and Foldase PsrA were significantly higher in HIV-infected children (p<0.004). Moreover, amongst HIV infected children, IgG GMT to GBS surface proteins were higher in those with CD4+ lymphocyte counts <500cell/μL compared to those who had CD4+ lymphocyte count ⩾500cell/μL with the exception of Sip. The increased susceptibility to invasive GBS disease in HIV-infected individuals could be due to the lower serotype specific capsular antibody and possibly due to lower antibody to some of the GBS proteins such as Sip and gbs2106.
Collapse
Affiliation(s)
- Sonwabile Dzanibe
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; MRC, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Peter V Adrian
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; MRC, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.
| | - Sheila Z Kimaro Mlacha
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; MRC, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; MRC, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa; National Institutes for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
37
|
Campisi E, Rinaudo CD, Donati C, Barucco M, Torricelli G, Edwards MS, Baker CJ, Margarit I, Rosini R. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages. Sci Rep 2016; 6:29799. [PMID: 27411639 PMCID: PMC4944191 DOI: 10.1038/srep29799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV.
Collapse
Affiliation(s)
- Edmondo Campisi
- GSK Vaccines s.r.l., Siena, Italy.,Sapienza, Università di Roma, Rome, Italy
| | | | - Claudio Donati
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Mara Barucco
- GSK Vaccines s.r.l., Siena, Italy.,Department of physics "Enrico Fermi", University of Pisa, Pisa, Italy
| | | | - Morven S Edwards
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Carol J Baker
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
38
|
The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets. Sci Rep 2015; 5:18255. [PMID: 26675410 PMCID: PMC4682149 DOI: 10.1038/srep18255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.
Collapse
|
39
|
Pietrocola G, Rindi S, Rosini R, Buccato S, Speziale P, Margarit I. The Group B Streptococcus-Secreted Protein CIP Interacts with C4, Preventing C3b Deposition via the Lectin and Classical Complement Pathways. THE JOURNAL OF IMMUNOLOGY 2015; 196:385-94. [PMID: 26608922 DOI: 10.4049/jimmunol.1501954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023]
Abstract
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; and
| | - Simonetta Rindi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; and
| | | | | | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; and
| | | |
Collapse
|
40
|
Whole-Genome Comparison Uncovers Genomic Mutations between Group B Streptococci Sampled from Infected Newborns and Their Mothers. J Bacteriol 2015; 197:3354-66. [PMID: 26283765 DOI: 10.1128/jb.00429-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Streptococcus agalactiae (group B Streptococcus or GBS), a commensal of the human gut and genitourinary tract, is a leading cause of neonatal infections, in which vertical transmission from mother to child remains the most frequent route of contamination. Here, we investigated whether the progression of GBS from carriage to disease is associated with genomic adaptation. Whole-genome comparison of 47 GBS samples from 19 mother-child pairs uncovered 21 single nucleotide polymorphisms (SNPs) and seven insertions/deletions. Of the SNPs detected, 16 appear to have been fixed in the population sampled whereas five mutations were found to be polymorphic. In the infant strains, 14 mutations were detected, including two independently fixed variants affecting the covRS locus, which is known to encode a major regulatory system of virulence. A one-nucleotide insertion was also identified in the promoter region of the highly immunogenic surface protein Rib gene. Gene expression analysis after incubation in human blood showed that these mutations influenced the expression of virulence-associated genes. Additional identification of three mutated strains in the mothers' milk raised the possibility of the newborns also being a source of contamination for their mothers. Overall, our work showed that GBS strains in carriage and disease scenarios might undergo adaptive changes following colonization. The types and locations of the mutations found, together with the experimental results showing their phenotypic impact, suggest that those in a context of infection were positively selected during the transition of GBS from commensal to pathogen, contributing to an increased capacity to cause disease. IMPORTANCE Group B Streptococcus (GBS) is a major pathogen responsible for neonatal infections. Considering that its colonization of healthy adults is mostly asymptomatic, the mechanisms behind its switch from a commensal to an invasive state are largely unknown. In this work, we compared the genomic profile of GBS samples causing infections in newborns with that of the GBS colonizing their mothers. Multiple mutations were detected, namely, within key virulence factors, including the response regulator CovR and surface protein Rib, potentially affecting the pathogenesis of GBS. Their overall impact was supported by differences in the expression of virulence-associated genes in human blood. Our results suggest that during GBS's progression to disease, particular variants are positively selected, contributing to the ability of this bacterium to infect its host.
Collapse
|
41
|
Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes. Proc Natl Acad Sci U S A 2015; 112:6431-6. [PMID: 25941374 DOI: 10.1073/pnas.1504725112] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.
Collapse
|
42
|
Brittan JL, Nobbs AH. Group B Streptococcus pili mediate adherence to salivary glycoproteins. Microbes Infect 2015; 17:360-8. [PMID: 25576026 DOI: 10.1016/j.micinf.2014.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 12/23/2022]
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia and meningitis, and is responsible for a rising number of severe invasive infections in adults. For all disease manifestations, colonisation is a critical first step. GBS has frequently been isolated from the oropharynx of neonates and adults. However, little is understood about the mechanisms of GBS colonisation at this site. In this study it is shown that three GBS strains (COH1, NEM316, 515) have capacity to adhere to human salivary pellicle. Heterologous expression of GBS pilus island (PI) genes in Lactococcus lactis to form surface-expressed pili demonstrated that GBS PI-2a and PI-1 pili bound glycoprotein-340 (gp340), a component of salivary pellicle. By contrast, PI-2b pili did not interact with gp340. The variation was attributable to differences in capacities for backbone and ancillary protein subunits of each pilus to bind gp340. Furthermore, while GBS strains were aggregated by fluid-phase gp340, this mechanism was not mediated by pili, which displayed specificity for immobilised gp340. Thus pili may enable GBS to colonise the soft and hard tissues of the oropharynx, while evading an innate mucosal defence, with implications for risk of progression to severe diseases such as meningitis and sepsis.
Collapse
Affiliation(s)
- Jane L Brittan
- School of Oral & Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Angela H Nobbs
- School of Oral & Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| |
Collapse
|
43
|
Landwehr-Kenzel S, Henneke P. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease. Front Immunol 2014; 5:519. [PMID: 25400631 PMCID: PMC4212683 DOI: 10.3389/fimmu.2014.00519] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/05/2014] [Indexed: 12/18/2022] Open
Abstract
Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood–brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just emerging.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin , Germany ; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin , Berlin , Germany ; Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin , Berlin , Germany
| | - Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg , Freiburg , Germany ; Center for Chronic Immunodeficiency, University Medical Center Freiburg , Freiburg , Germany
| |
Collapse
|
44
|
Association and virulence gene expression vary among serotype III group B streptococcus isolates following exposure to decidual and lung epithelial cells. Infect Immun 2014; 82:4587-95. [PMID: 25135682 DOI: 10.1128/iai.02181-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) causes severe disease in neonates, the elderly, and immunocompromised individuals. GBS species are highly diverse and can be classified by serotype and multilocus sequence typing. Sequence type 17 (ST-17) strains cause invasive neonatal disease more frequently than strains of other STs. Attachment and invasion of host cells are key steps in GBS pathogenesis. We investigated whether four serotype III strains representing ST-17 (two strains), ST-19, and ST-23 differ in their abilities to attach to and invade both decidual cells and lung epithelial cells. Virulence gene expression following host cell association and exposure to amnion cells was also tested. The ST-17 strains differed in their abilities to attach to and invade decidual cells, whereas there were no differences with lung epithelial cells. The ST-19 and ST-23 strains, however, attached to and invaded decidual cells less than both ST-17 strains. Although the ST-23 strain attached to lung epithelial cells better than ST-17 and -19 strains, none of the strains effectively invaded the lung epithelial cells. Notably, the association with host cells resulted in the differential expression of several virulence genes relative to basal expression levels. Similar expression patterns of some genes were observed regardless of cell type used. Collectively, these results show that GBS strains differ in their abilities to attach to distinct host cell types and express key virulence genes that are relevant to the disease process. Enhancing our understanding of pathogenic mechanisms could aid in the identification of novel therapeutic targets or vaccine candidates that could potentially decrease morbidity and mortality associated with neonatal infections.
Collapse
|
45
|
Kayansamruaj P, Pirarat N, Hirono I, Rodkhum C. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Vet Microbiol 2014; 172:265-71. [DOI: 10.1016/j.vetmic.2014.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/08/2014] [Accepted: 04/18/2014] [Indexed: 01/28/2023]
|
46
|
Fléchard M, Gilot P. Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae. Microbiology (Reading) 2014; 160:1298-1315. [DOI: 10.1099/mic.0.077628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB–lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the ‘success’ of the infectious process.
Collapse
Affiliation(s)
- Maud Fléchard
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Gilot
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, F-37032 Tours, France
| |
Collapse
|
47
|
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of neonatal sepsis and meningitis, peripartum infections in women, and invasive infections in chronically ill or elderly individuals. GBS can be isolated from the gastrointestinal or genital tracts of up to 30% of healthy adults, and infection is thought to arise from invasion from a colonized mucosal site. Accordingly, bacterial surface components that mediate attachment of GBS to host cells or the extracellular matrix represent key factors in the colonization and infection of the human host. We identified a conserved GBS gene of unknown function that was predicted to encode a cell wall-anchored surface protein. Deletion of the gene and a cotranscribed upstream open reading frame (ORF) in GBS strain 515 reduced bacterial adherence to VK2 vaginal epithelial cells in vitro and reduced GBS binding to fibronectin-coated microtiter wells. Expression of the gene product in Lactococcus lactis conferred the ability to adhere to VK2 cells, to fibronectin and laminin, and to fibronectin-coated ME-180 cervical epithelial cells. Expression of the recombinant protein in L. lactis also markedly increased biofilm formation. The adherence function of the protein, named bacterial surface adhesin of GBS (BsaB), depended both on a central BID1 domain found in bacterial intimin-like proteins and on the C-terminal portion of the BsaB protein. Expression of BsaB in GBS, like that of several other adhesins, was regulated by the CsrRS two-component system. We conclude that BsaB represents a newly identified adhesin that participates in GBS attachment to epithelial cells and the extracellular matrix.
Collapse
|
48
|
Godoy D, Carvalho-Castro G, Leal C, Pereira U, Leite R, Figueiredo H. Genetic diversity and new genotyping scheme for fish pathogenic Streptococcus agalactiae. Lett Appl Microbiol 2013; 57:476-83. [DOI: 10.1111/lam.12138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/05/2013] [Accepted: 07/17/2013] [Indexed: 12/01/2022]
Affiliation(s)
- D.T. Godoy
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - G.A. Carvalho-Castro
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - C.A.G. Leal
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - U.P. Pereira
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - R.C. Leite
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - H.C.P. Figueiredo
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| |
Collapse
|
49
|
Papasergi S, Galbo R, Lanza-Cariccio V, Domina M, Signorino G, Biondo C, Pernice I, Poyart C, Trieu-Cuot P, Teti G, Beninati C. Analysis of the Streptococcus agalactiae exoproteome. J Proteomics 2013; 89:154-64. [PMID: 23770297 DOI: 10.1016/j.jprot.2013.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/13/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED The two-component regulatory system CovRS is the main regulator of virulence gene expression in Group B Streptococcus (GBS), the leading cause of invasive infections in neonates. In this study we analyzed by mass spectrometry the GBS extracellular protein complex (i.e. the exoproteome) of NEM316 wild-type (WT) strain and its isogenic covRS deletion mutant (ΔcovRS). A total of 53 proteins, 49 of which had classical secretion signals, were identified: 12 were released by both strains while 21 and 20 were released exclusively by WT and ΔcovRS strains, respectively. In addition to known surface proteins, we detected here unstudied cell-wall associated proteins and/or orthologs of putative virulence factors present in other pathogenic streptococci. While the functional role of these proteins remains to be elucidated, our data suggest that the analysis of the exoproteome of bacterial pathogens under different gene expression conditions may be a powerful tool for the rapid identification of novel virulence factors and vaccine candidates. BIOLOGICAL SIGNIFICANCE We believe that this manuscript will be of interest to Journal of Proteomics readers since the paper describes the identification of several putative virulence factors and vaccine candidates of the group B streptococcus, an important pathogen, using a simple proteomics strategy involving LC-MS analysis of culture supernatants obtained from two strains with divergent gene expression patterns. This technique provided the most comprehensive inventory of extracellular proteins obtained from a single streptococcal species thus far. The approach described has the added benefit of being easily applicable to a large number of different strains, making it ideal for the identification of conserved vaccine candidates.
Collapse
|
50
|
Rosinski-Chupin I, Sauvage E, Mairey B, Mangenot S, Ma L, Da Cunha V, Rusniok C, Bouchier C, Barbe V, Glaser P. Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage. BMC Genomics 2013; 14:252. [PMID: 23586779 PMCID: PMC3637634 DOI: 10.1186/1471-2164-14-252] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/01/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND During host specialization, inactivation of genes whose function is no more required is favored by changes in selective constraints and evolutionary bottlenecks. The Gram positive bacteria Streptococcus agalactiae (also called GBS), responsible for septicemia and meningitis in neonates also emerged during the seventies as a cause of severe epidemics in fish farms. To decipher the genetic basis for the emergence of these highly virulent GBS strains and of their adaptation to fish, we have analyzed the genomic sequence of seven strains isolated from fish and other poikilotherms. RESULTS Comparative analysis shows that the two groups of GBS strains responsible for fish epidemic diseases are only distantly related. While strains belonging to the clonal complex 7 cannot be distinguished from their human CC7 counterparts according to their gene content, strains belonging to the ST260-261 types probably diverged a long time ago. In this lineage, specialization to the fish host was correlated with a massive gene inactivation and broad changes in gene expression. We took advantage of the low level of sequence divergence between GBS strains and of the emergence of sublineages to reconstruct the different steps involved in this process. Non-homologous recombination was found to have played a major role in the genome erosion. CONCLUSIONS Our results show that the early phase of genome reduction during host specialization mostly involves accumulation of small and likely reversible indels, followed by a second evolutionary step marked by a higher frequency of large deletions.
Collapse
Affiliation(s)
- Isabelle Rosinski-Chupin
- Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|