1
|
Xie W, Luo D, Soni V, Wang Z. Functional characterization of MMAR_1296 in Mycobacterium marinum and its potential as a vaccine candidate. Vaccine 2025; 48:126720. [PMID: 39809090 DOI: 10.1016/j.vaccine.2025.126720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The Pro-Glu/Pro-Pro-Glu (PE/PPE) family proteins in mycobacteria plays a crucial role in pathogenesis and immune evasion. These proteins characterized by unique structures with conserved sequences. This study elucidated the specific immunological functions of MMAR_1296 from marine mycobacterium. Expressing MMAR_1296 in Mycobacterium smegmatis (M. smegmatis) led to significant alterations in bacterial morphology, as well as reduced survival of M. smegmatis under adverse in vitro conditions and within macrophages. Furthermore, transcriptome analysis of mouse macrophages indicated that natural immunity-related pathways were upregulated in the group infected with M. smegmatis recombinantly expressing MMAR_1296. Moreover, the mycobacterium Growth Inhibition Assays(MGIA)in mice demonstrated that M. smegmatis expressing MMAR_1296 exerted a significant inhibitory effect against Mycobacterium abscessus (M. abscessus) and Mycobacterium marinum (M. marinum) infections. Immunization challenge experiments in mice further confirmed its protective effects, showing a reduction in organ bacterial loads by 1 log10 value compared to the positive control group. These findings indicate that MMAR_1296 is a promising vaccine candidate for M. abscessus and M. marinum. Given that PE/PPE protein family is also a crucial component of Mycobacterium tuberculosis (M. tuberculosis) antigens, further exploration of sequence functions based on MMAR_1296 could reveal broader applications of PE/PPE proteins family for M. tuberculosis treatment. This study supported vaccine development targeting PE/PPE proteins in mycobacteria and paves the way for broader applications.
Collapse
Affiliation(s)
- Weile Xie
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Jaiswal U, Fayaz H, Shrivastava G, Ehtesham NZ, Hasnain SE. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Crit Rev Biochem Mol Biol 2024; 59:310-336. [PMID: 39378051 DOI: 10.1080/10409238.2024.2411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Telangana, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Udyeshita Jaiswal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gauri Shrivastava
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, India
| |
Collapse
|
3
|
Fang WW, Kong XL, Yang JY, Tao NN, Li YM, Wang TT, Li YY, Han QL, Zhang YZ, Hu JJ, Li HC, Liu Y. PE/PPE mutations in the transmission of Mycobacterium tuberculosis in China revealed by whole genome sequencing. BMC Microbiol 2024; 24:206. [PMID: 38858614 PMCID: PMC11163795 DOI: 10.1186/s12866-024-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/26/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.
Collapse
Affiliation(s)
- Wei-Wei Fang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xiang-Long Kong
- Shandong Artificial Intelligence Institute, Qilu University of Technology & Shandong Academy of Sciences, Jinan, Shandong, PR China
| | - Jie-Yu Yang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ning-Ning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ya-Meng Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Ting-Ting Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ying-Ying Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Qi-Lin Han
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yu-Zhen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jin-Jiang Hu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Huai-Chen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
4
|
Jaisinghani N, Previti ML, Andrade J, Askenazi M, Ueberheide B, Seeliger JC. Proteomics from compartment-specific APEX2 labeling in Mycobacterium tuberculosis reveals Type VII secretion substrates in the cell wall. Cell Chem Biol 2024; 31:523-533.e4. [PMID: 37967559 PMCID: PMC11106752 DOI: 10.1016/j.chembiol.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The cell wall of mycobacteria plays a key role in interactions with the environment. Its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites, from ions to lipids to proteins. Identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that although chemical labeling of live cells did not exclusively label surface proteins, protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis accurately identified the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mary L Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
5
|
Lefrançois LH, Nitschke J, Wu H, Panis G, Prados J, Butler RE, Mendum TA, Hanna N, Stewart GR, Soldati T. Temporal genome-wide fitness analysis of Mycobacterium marinum during infection reveals the genetic requirement for virulence and survival in amoebae and microglial cells. mSystems 2024; 9:e0132623. [PMID: 38270456 PMCID: PMC10878075 DOI: 10.1128/msystems.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.
Collapse
Affiliation(s)
- Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
- Bioinformatics Support Platform for data analysis, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| |
Collapse
|
6
|
García-Bengoa M, Vergara EJ, Tran AC, Bossi L, Cooper AM, Pearl JE, Mussá T, von Köckritz-Blickwede M, Singh M, Reljic R. Immunogenicity of PE18, PE31, and PPE26 proteins from Mycobacterium tuberculosis in humans and mice. Front Immunol 2023; 14:1307429. [PMID: 38124744 PMCID: PMC10730732 DOI: 10.3389/fimmu.2023.1307429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The large family of PE and PPE proteins accounts for as much as 10% of the genome of Mycobacterium tuberculosis. In this study, we explored the immunogenicity of three proteins from this family, PE18, PE31, and PPE26, in humans and mice. Methods The investigation involved analyzing the immunoreactivity of the selected proteins using sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy donors from the TB endemic country Mozambique. Antigen-recall responses were examined in PBMC from these groups, including the evaluation of cellular responses in healthy unexposed individuals. Moreover, systemic priming and intranasal boosting with each protein, combined with the Quil-A adjuvant, were conducted in mice. Results We found that all three proteins are immunoreactive with sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy controls. Likewise, antigen-recall responses were induced in PBMC from all groups, and the proteins stimulated proliferation of peripheral blood mononuclear cells from healthy unexposed individuals. In mice, all three antigens induced IgG antibody responses in sera and predominantly IgG, rather than IgA, responses in bronchoalveolar lavage. Additionally, CD4+ and CD8+ effector memory T cell responses were observed in the spleen, with PE18 demonstrating the ability to induce tissue-resident memory T cells in the lungs. Discussion Having demonstrated immunogenicity in both humans and mice, the protective capacity of these antigens was evaluated by challenging immunized mice with low-dose aerosol of Mycobacterium tuberculosis H37Rv. The in vitro Mycobacterial Growth Inhibition Assay (MGIA) and assessment of viable bacteria in the lung did not demonstrate any ability of the vaccination protocol to reduce bacterial growth. We therefore concluded that these three specific PE/PPE proteins, while immunogenic in both humans and mice, were unable to confer protective immunity under these conditions.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Emil Joseph Vergara
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Andy C. Tran
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Lorenzo Bossi
- Immunxperts SA, a Q² Solutions Company, Gosselies, Belgium
| | - Andrea M. Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - John E. Pearl
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Tufária Mussá
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| |
Collapse
|
7
|
Lohitthai S, Rungruengkitkun A, Jitprasutwit N, Kong-Ngoen T, Duangurai T, Tandhavanant S, Sukphopetch P, Chantratita N, Indrawattana N, Pumirat P. Type VI Secretion System Accessory Protein TagAB-5 Promotes Burkholderia pseudomallei Pathogenicity in Human Microglia. Biomedicines 2023; 11:2927. [PMID: 38001928 PMCID: PMC10669256 DOI: 10.3390/biomedicines11112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Central nervous system (CNS) melioidosis caused by Burkholderia pseudomallei is being increasingly reported. Because of the high mortality associated with CNS melioidosis, understanding the underlying mechanism of B. pseudomallei pathogenesis in the CNS needs to be intensively investigated to develop better therapeutic strategies against this deadly disease. The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells to benefit the infection process. In this study, the role of the T6SS accessory protein TagAB-5 in B. pseudomallei pathogenicity was examined using the human microglial cell line HCM3, a unique resident immune cell of the CNS acting as a primary mediator of inflammation. We constructed B. pseudomallei tagAB-5 mutant and complementary strains by the markerless allele replacement method. The effects of tagAB-5 deletion on the pathogenicity of B. pseudomallei were studied by bacterial infection assays of HCM3 cells. Compared with the wild type, the tagAB-5 mutant exhibited defective pathogenic abilities in intracellular replication, multinucleated giant cell formation, and induction of cell damage. Additionally, infection by the tagAB-5 mutant elicited a decreased production of interleukin 8 (IL-8) in HCM3, suggesting that efficient pathogenicity of B. pseudomallei is required for IL-8 production in microglia. However, no significant differences in virulence in the Galleria mellonella model were observed between the tagAB-5 mutant and the wild type. Taken together, this study indicated that microglia might be an important intracellular niche for B. pseudomallei, particularly in CNS infection, and TagAB-5 confers B. pseudomallei pathogenicity in these cells.
Collapse
Affiliation(s)
- Sanisa Lohitthai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Niramol Jitprasutwit
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Taksaon Duangurai
- Department of Companion Animal Clinical Sciences, Kasetsart University, Bangkok 10900, Thailand;
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| |
Collapse
|
8
|
Bunduc CM, Ding Y, Kuijl C, Marlovits TC, Bitter W, Houben ENG. Reconstitution of a minimal ESX-5 type VII secretion system suggests a role for PPE proteins in the outer membrane transport of proteins. mSphere 2023; 8:e0040223. [PMID: 37747201 PMCID: PMC10597459 DOI: 10.1128/msphere.00402-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Mycobacteria utilize type VII secretion systems (T7SSs) to secrete proteins across their highly hydrophobic and diderm cell envelope. Pathogenic mycobacteria have up to five different T7SSs, called ESX-1 to ESX-5, which are crucial for growth and virulence. Here, we use a functionally reconstituted ESX-5 system in the avirulent species Mycobacterium smegmatis that lacks ESX-5, to define the role of each esx-5 gene in system functionality. By creating an array of gene deletions and assessing protein levels of components and membrane complex assembly, we observed that only the five components of the inner membrane complex are required for its assembly. However, in addition to these five core components, active secretion also depends on both the Esx and PE/PPE substrates. Tagging the PPE substrates followed by subcellular fractionation, surface labeling and membrane extraction showed that these proteins localize to the mycobacterial outer membrane. This indicates that they could play a role in secretion across this enigmatic outer barrier. These results provide the first full overview of the role of each esx-5 gene in T7SS functionality. IMPORTANCE Pathogenic mycobacteria, such as the notorious Mycobacterium tuberculosis, are highly successful as pathogens, in part due to their specific and diderm cell envelope, with a mycolic acid-containing outer membrane. The architecture of this highly impermeable membrane is little understood and the proteins that populate it even less so. To transport proteins across their cell envelope, mycobacteria employ a specialized transport pathway called type VII secretion. While recent studies have elucidated the type VII secretion membrane channel that mediates transport across the inner membrane, the identity of the outer membrane channel remains a black box. Here, we show evidence that specific substrates of the type VII pathway could form these channels. Elucidating the pathway and mechanism of protein secretion through the mycobacterial outer membrane will allow its exploitation for the development of novel mycobacterial therapeutics.
Collapse
Affiliation(s)
- C. M. Bunduc
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
- Centre for Structural Systems Biology, Notkestraße, Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße, Hamburg, Germany
- German Electron Synchrotron Centre, Notkestraße, Hamburg, Germany
| | - Y. Ding
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
| | - C. Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - T. C. Marlovits
- Centre for Structural Systems Biology, Notkestraße, Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße, Hamburg, Germany
- German Electron Synchrotron Centre, Notkestraße, Hamburg, Germany
| | - W. Bitter
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - E. N. G. Houben
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Anand PK, Kaur G, Saini V, Kaur J, Kaur J. N-terminal PPE domain plays an integral role in extracellular transportation and stability of the immunomodulatory Rv3539 protein of the Mycobacterium tuberculosis. Biochimie 2023; 213:30-40. [PMID: 37156406 DOI: 10.1016/j.biochi.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Multigene PE/PPE family is exclusively present in mycobacterium species. Only few selected genes of this family have been characterized till date. Rv3539 was annotated as PPE63 with conserved PPE domain at N-terminal and PE-PPE at C-terminal. An α/β hydrolase structural fold, characteristic of lipase/esterase, was present in the PE-PPE domain. To assign the biochemical function to Rv3539, the corresponding gene was cloned in pET-32a (+) as full-length, PPE, and PE-PPE domains individually, followed by expression in E. Coli C41 (DE3). All three proteins demonstrated esterase activity. However, the enzyme activity in the N-terminal PPE domain was very low. The enzyme activity of Rv3539 and PE-PPE proteins was approximately same with the pNP-C4 as optimum substrate at 40 °C and pH 8.0. The loss of enzyme activity after mutating the predicted catalytic triad (Ser296Ala, Asp369Ala, and His395Ala) found only in the PE-PPE domain, confirmed the candidature of the bioinformatically predicted active site residue. The optimal activity and thermostability of the Rv3539 protein was altered by removing the PPE domain. CD-spectroscopy analysis confirmed the role of PPE domain to the thermostability of Rv3539 by maintaining the structural integrity at higher temperatures. The presence of the N-terminal PPE domain directed the Rv3539 protein to the cell membrane/wall and the extracellular compartment. The Rv3539 protein could generate humoral response in TB patients. Therefore, results demonstrated that Rv3539 demonstrated esterase activity. PE-PPE domain of Rv3539 is functionally automated, however, N-terminus domain played a role in protein stabilization and its transportation. Both domains participated in immunomodulation.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Gagandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India.
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Li F, Guo X, Bi Y, Jia R, Pitt ME, Pan S, Li S, Gasser RB, Coin LJ, Song J. Digerati - A multipath parallel hybrid deep learning framework for the identification of mycobacterial PE/PPE proteins. Comput Biol Med 2023; 163:107155. [PMID: 37356289 DOI: 10.1016/j.compbiomed.2023.107155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
The genome of Mycobacterium tuberculosis contains a relatively high percentage (10%) of genes that are poorly characterised because of their highly repetitive nature and high GC content. Some of these genes encode proteins of the PE/PPE family, which are thought to be involved in host-pathogen interactions, virulence, and disease pathogenicity. Members of this family are genetically divergent and challenging to both identify and classify using conventional computational tools. Thus, advanced in silico methods are needed to identify proteins of this family for subsequent functional annotation efficiently. In this study, we developed the first deep learning-based approach, termed Digerati, for the rapid and accurate identification of PE and PPE family proteins. Digerati was built upon a multipath parallel hybrid deep learning framework, which equips multi-layer convolutional neural networks with bidirectional, long short-term memory, equipped with a self-attention module to effectively learn the higher-order feature representations of PE/PPE proteins. Empirical studies demonstrated that Digerati achieved a significantly better performance (∼18-20%) than alignment-based approaches, including BLASTP, PHMMER, and HHsuite, in both prediction accuracy and speed. Digerati is anticipated to facilitate community-wide efforts to conduct high-throughput identification and analysis of PE/PPE family members. The webserver and source codes of Digerati are publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/Digerati/.
Collapse
Affiliation(s)
- Fuyi Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia.
| | - Xudong Guo
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yue Bi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Runchang Jia
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Miranda E Pitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Shirui Pan
- School of Information and Communication Technology, Griffith University, QLD, 4222, Australia
| | - Shuqin Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Robin B Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, 3010, Australia
| | - Lachlan Jm Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia.
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
11
|
Levendosky K, Janisch N, Quadri LEN. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. mBio 2023; 14:e0057323. [PMID: 37350613 PMCID: PMC10470612 DOI: 10.1128/mbio.00573-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.
Collapse
Affiliation(s)
- Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
- Biochemistry Program, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
12
|
Anand PK, Saini V, Kaur J, Kumar A, Kaur J. Cell wall and immune modulation by Rv1800 (PPE28) helps M. smegmatis to evade intracellular killing. Int J Biol Macromol 2023; 247:125837. [PMID: 37455004 DOI: 10.1016/j.ijbiomac.2023.125837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Rv1800 is predicted as PPE family protein found in pathogenic mycobacteria only. Under acidic stress, the rv1800 gene was expressed in M. tuberculosis H37Ra. In-silico study showed lipase/esterase activity in C-terminus PE-PPE domain having pentapeptide motif with catalytic Ser-Asp-His residue. Full-length Rv1800 and C-terminus PE-PPE domain proteins showed esterase activity with pNP-C4 at the optimum temperature of 40 °C and pH 8.0. However, the N-terminus PPE domain showed no esterase activity, but involved in thermostability of Rv1800 full-length protein. M. smegmatis expressing rv1800 (MS_Rv1800) showed altered colony morphology and a significant resistance to numerous environmental stresses, antibiotics and higher lipid content. In extracellular and membrane fraction, Rv1800 protein was detected, while C terminus PE-PPE was present in cytoplasm, suggesting the role of N-terminus PPE domain in transportation of protein. MS_Rv1800 infected macrophage showed higher intracellular survival and low production of ROS, NO and expression levels of iNOS and pro-inflammatory cytokines, while induced expression of the anti-inflammatory cytokines. The Rv1800, PPE and PE-PPE showed antibody-mediated immunity in MDR-TB and PTB patients. Overall, these results confirmed the esterase activity in the C-terminus and function of N-terminus in thermostabilization and transportation; predicting the role of Rv1800 in immune/lipid modulation to support intracellular mycobacterium survival.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Anand PK, Kaur J. Rv3539 (PPE63) of Mycobacterium Tuberculosis Promotes Survival of Mycobacterium Smegmatis in Human Macrophages Cell Line via Cell Wall Modulation of Bacteria and Altering Host's Immune Response. Curr Microbiol 2023; 80:267. [PMID: 37401981 DOI: 10.1007/s00284-023-03360-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 07/05/2023]
Abstract
The modulation of host's immune response plays an important role in the intracellular survival of Mycobacterium tuberculosis. The intracellular pathogen counteracts environmental stresses with help of the expression of several genes. The M. tuberculosis genome encodes several immune-modulatory proteins including PE (proline-glutamic acid)/PPE (proline-proline-glutamic acid) superfamily proteins. It is unclear how the unique PE/PPE proteins superfamily contributes to survival under different stress and pathophysiology conditions. Previously, we showed that PPE63 (Rv3539) has C-terminal esterase extension and was localized as a membrane attached and in extracellular compartment. Therefore, the probability of these proteins interacting with the host to modulate the host immune response cannot be ruled out. The physiological role of PPE63 was characterized by expressing the PPE63 in the M. smegmatis, a non-pathogenic strain intrinsically deficient of PPE63. The recombinant M. smegmatis expressing PPE63 altered the colony morphology, lipid composition, and integrity of the cell wall. It provided resistance to multiple hostile environmental stress conditions and several antibiotics. MS_Rv3539 demonstrated higher infection and intracellular survival in comparison to the MS_Vec in the PMA-differentiated THP-1 cells. The decreased intracellular level of ROS, NO, and expression of iNOS was observed in THP-1 cells upon infection with MS_Rv3539 in comparison to MS_Vec. Further, the decrease in expression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β and enhanced anti-inflammatory cytokines like IL-10, pointed toward its role in immune modulation. Overall this study suggested the role of Rv3539 in enhanced intracellular survival of M. smegmatis via cell wall modulation and altered immune response of host.
Collapse
Affiliation(s)
- Pradeep K Anand
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
14
|
D'Souza C, Kishore U, Tsolaki AG. The PE-PPE Family of Mycobacterium tuberculosis: Proteins in Disguise. Immunobiology 2023; 228:152321. [PMID: 36805109 DOI: 10.1016/j.imbio.2022.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis has thrived in parallel with humans for millennia, and despite our efforts, M. tuberculosis continues to plague us, currently infecting a third of the world's population. The success of M. tuberculosis has recently been attributed, in part, to the PE-PPE family; a unique collection of 168 proteins fundamentally involved in the pathogenesis of M. tuberculosis. The PE-PPE family proteins have been at the forefront of intense research efforts since their discovery in 1998 and whilst our knowledge and understanding has significantly advanced over the last two decades, many important questions remain to be elucidated. This review consolidates and examines the vast body of existing literature regarding the PE-PPE family proteins, with respect to the latest developments in elucidating their evolution, structure, subcellular localisation, function, and immunogenicity. This review also highlights significant inconsistencies and contradictions within the field. Additionally, possible explanations for these knowledge gaps are explored. Lastly, this review poses many important questions, which need to be addressed to complete our understanding of the PE-PPE family, as well as highlighting the challenges associated with studying this enigmatic family of proteins. Further research into the PE-PPE family, together with technological advancements in genomics and proteomics, will undoubtedly improve our understanding of the pathogenesis of M. tuberculosis, as well as identify key targets/candidates for the development of novel drugs, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Christopher D'Souza
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anthony G Tsolaki
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
15
|
Bo H, Moure UAE, Yang Y, Pan J, Li L, Wang M, Ke X, Cui H. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front Cell Infect Microbiol 2023; 13:1062963. [PMID: 36936766 PMCID: PMC10020944 DOI: 10.3389/fcimb.2023.1062963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis (TB), remains a pathogen of great interest on a global scale. This airborne pathogen affects the lungs, where it interacts with macrophages. Acidic pH, oxidative and nitrosative stressors, and food restrictions make the macrophage's internal milieu unfriendly to foreign bodies. Mtb subverts the host immune system and causes infection due to its genetic arsenal and secreted effector proteins. In vivo and in vitro research have examined Mtb-host macrophage interaction. This interaction is a crucial stage in Mtb infection because lung macrophages are the first immune cells Mtb encounters in the host. This review summarizes Mtb effectors that interact with macrophages. It also examines how macrophages control and eliminate Mtb and how Mtb manipulates macrophage defense mechanisms for its own survival. Understanding these mechanisms is crucial for TB prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Haotian Bo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yuanmiao Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jun Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Miao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| |
Collapse
|
16
|
Chitale P, Lemenze AD, Fogarty EC, Shah A, Grady C, Odom-Mabey AR, Johnson WE, Yang JH, Eren AM, Brosch R, Kumar P, Alland D. A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome. Nat Commun 2022; 13:7068. [PMID: 36400796 PMCID: PMC9673877 DOI: 10.1038/s41467-022-34853-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
H37Rv is the most widely used Mycobacterium tuberculosis strain, and its genome is globally used as the M. tuberculosis reference sequence. Here, we present Bact-Builder, a pipeline that uses consensus building to generate complete and accurate bacterial genome sequences and apply it to three independently cultured and sequenced H37Rv aliquots of a single laboratory stock. Two of the 4,417,942 base-pair long H37Rv assemblies are 100% identical, with the third differing by a single nucleotide. Compared to the existing H37Rv reference, the new sequence contains ~6.4 kb additional base pairs, encoding ten new regions that include insertions in PE/PPE genes and new paralogs of esxN and esxJ, which are differentially expressed compared to the reference genes. New sequencing and de novo assemblies with Bact-Builder confirm that all 10 regions, plus small additional polymorphisms, are also present in the commonly used H37Rv strains NR123, TMC102, and H37Rv1998. Thus, Bact-Builder shows promise as an improved method to perform accurate and reproducible de novo assemblies of bacterial genomes, and our work provides important updates to the primary M. tuberculosis reference genome.
Collapse
Affiliation(s)
- Poonam Chitale
- Ray V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, USA
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Alexander D Lemenze
- Department of Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Emily C Fogarty
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Microbiology, University of Chicago, Chicago, IL, USA
| | - Avi Shah
- Ray V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University- New Jersey Medical School, Newark, NJ, USA
| | - Courtney Grady
- Ray V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, USA
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Aubrey R Odom-Mabey
- Division of Computational Biomedicine, Boston University School of Medicine and Bioinformatics Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - W Evan Johnson
- Ray V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, USA
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
- Center for Data Science, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Jason H Yang
- Ray V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University- New Jersey Medical School, Newark, NJ, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 6047, Paris, France
| | - Pradeep Kumar
- Ray V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, USA
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - David Alland
- Ray V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, USA.
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
17
|
Nicholson KR, Champion PA. Bacterial secretion systems: Networks of pathogenic regulation and adaptation in mycobacteria and beyond. PLoS Pathog 2022; 18:e1010610. [PMID: 35834482 PMCID: PMC9282442 DOI: 10.1371/journal.ppat.1010610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kathleen R. Nicholson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Patricia A. Champion
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
18
|
Secretory proteins of
Mycobacterium tuberculosis
and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J 2022; 289:4146-4171. [DOI: 10.1111/febs.16369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
|
19
|
Pepperell CS. Evolution of Tuberculosis Pathogenesis. Annu Rev Microbiol 2022; 76:661-680. [PMID: 35709500 DOI: 10.1146/annurev-micro-121321-093031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Caitlin S Pepperell
- Division of Infectious Diseases, Department of Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
20
|
Dwivedi M, Bajpai K. The chamber of secretome in Mycobacterium tuberculosis as a potential therapeutic target. Biotechnol Genet Eng Rev 2022; 39:1-44. [PMID: 35613080 DOI: 10.1080/02648725.2022.2076031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mycobacterium tuberculosis (MTB) causes one of the ancient diseases, Tuberculosis, affects people around the globe and its severity can be understood by its classification as a second infectious disease after COVID-19 and the 13th leading cause of death according to a WHO report. Despite having advanced diagnostic approaches and therapeutic strategies, unfortunately, TB is still spreading across the population due to the emergence of drug-resistance MTB and Latent TB infection (LTBI). We are seeking for effective approaches to overcome these hindrances and efficient treatment for this perilous disease. Therefore, there is an urgent need to develop drugs based on operative targeting of the bacterial system that could result in both efficient treatment and lesser emergence of MDR-TB. One such promising target could be the secretory systems and especially the Type 7 secretory system (T7SS-ESX) of Mycobacterium tuberculosis, which is crucial for the secretion of effector proteins as well as in establishing host-pathogen interactions of the tubercle bacilli. The five paralogous ESX systems (ESX-1 to EXS-5) have been observed by in silico genome analysis of MTB, among which ESX-1 and ESX-5 are substantial for virulence and mediating host cellular inflammasome. The bacterium growth and virulence can be modulated by targeting the T7SS. In the present review, we demonstrate the current status of therapeutics against MTB and focus on the function and cruciality of T7SS along with other secretory systems as a promising therapeutic target against Tuberculosis.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Kriti Bajpai
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| |
Collapse
|
21
|
Wang Y, Tang Y, Lin C, Zhang J, Mai J, Jiang J, Gao X, Li Y, Zhao G, Zhang L, Liu J. Crosstalk between the ancestral type VII secretion system ESX-4 and other T7SS in Mycobacterium marinum. iScience 2022; 25:103585. [PMID: 35005535 PMCID: PMC8718981 DOI: 10.1016/j.isci.2021.103585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
The type VII secretion system (T7SS) of Mycobacterium tuberculosis secretes three substrate classes: Esx, Esp, and PE/PPE proteins, that play important roles in bacterial physiology and host interaction. Five subtypes of T7SS, namely ESX-1 to ESX-5, are present in M. tb. ESX-4 is the progenitor of T7SS but its function is not understood. We investigated the ESX-4 system in Mycobacterium marinum. We show that ESX-4 of M. marinum does not secrete its cognate substrates, EsxT and EsxU, under the conditions tested. Paradoxically, the deletion of eccC4, an essential component of ESX-4, resulted in elevated secretion of protein substrates of ESX-1 and ESX-5. Consequently, the ΔeccC4 mutant was more efficient in inducing actin cytoskeleton rearrangement, which led to enhanced phagocytosis by macrophages. Our results reveal an intimate crosstalk between the progenitor of T7SS and its more recent duplication and expansion, and provide new insight into the evolution of T7SS in mycobacteria.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Microbiology, School of Life Science, Fudan University, Shanghai 200090, China.,Guizhou institute of Biotechnology, Guiyang 550025, Guizhou, China
| | - Yuting Tang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan University, Shanghai 200090, China
| | - Chen Lin
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan University, Shanghai 200090, China
| | - Junli Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan University, Shanghai 200090, China
| | - Juntao Mai
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G1M1, Canada
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan University, Shanghai 200090, China
| | - Xiaoxiao Gao
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan University, Shanghai 200090, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan University, Shanghai 200090, China
| | - Guoping Zhao
- Department of Microbiology, School of Life Science, Fudan University, Shanghai 200090, China
| | - Lu Zhang
- Department of Microbiology, School of Life Science, Fudan University, Shanghai 200090, China.,State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan University, Shanghai 200090, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200090, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G1M1, Canada
| |
Collapse
|
22
|
The Mycobacterium tuberculosis PE_PGRS Protein Family Acts as an Immunological Decoy to Subvert Host Immune Response. Int J Mol Sci 2022; 23:ijms23010525. [PMID: 35008950 PMCID: PMC8745494 DOI: 10.3390/ijms23010525] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.
Collapse
|
23
|
Anna F, Lopez J, Moncoq F, Blanc C, Authié P, Noirat A, Fert I, Souque P, Nevo F, Pawlik A, Hardy D, Goyard S, Hudrisier D, Brosch R, Guinet F, Neyrolles O, Charneau P, Majlessi L. A lentiviral vector expressing a dendritic cell-targeting multimer induces mucosal anti-mycobacterial CD4 + T-cell immunity. Mucosal Immunol 2022; 15:1389-1404. [PMID: 36104497 PMCID: PMC9473479 DOI: 10.1038/s41385-022-00566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
Most viral vectors, including the potently immunogenic lentiviral vectors (LVs), only poorly direct antigens to the MHC-II endosomal pathway and elicit CD4+ T cells. We developed a new generation of LVs encoding antigen-bearing monomers of collectins substituted at their C-terminal domain with the CD40 ligand ectodomain to target and activate antigen-presenting cells. Host cells transduced with such optimized LVs secreted soluble collectin-antigen polymers with the potential to be endocytosed in vivo and reach the MHC-II pathway. In the murine tuberculosis model, such LVs induced efficient MHC-II antigenic presentation and triggered both CD8+ and CD4+ T cells at the systemic and mucosal levels. They also conferred a significant booster effect, consistent with the importance of CD4+ T cells for protection against Mycobacterium tuberculosis. Given the pivotal role of CD4+ T cells in orchestrating innate and adaptive immunity, this strategy could have a broad range of applications in the vaccinology field.
Collapse
Affiliation(s)
- François Anna
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Jodie Lopez
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Fanny Moncoq
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Catherine Blanc
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Pierre Authié
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Amandine Noirat
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Ingrid Fert
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Philippe Souque
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Fabien Nevo
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Alexandre Pawlik
- grid.428999.70000 0001 2353 6535Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - David Hardy
- grid.428999.70000 0001 2353 6535Histopathology Platform, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Sophie Goyard
- grid.428999.70000 0001 2353 6535Platform for Innovation and Development of Diagnostic Tests, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Denis Hudrisier
- grid.508721.9Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Roland Brosch
- grid.428999.70000 0001 2353 6535Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Françoise Guinet
- grid.428999.70000 0001 2353 6535Lymphocytes and Immunity Unit, INSERM U1223, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Olivier Neyrolles
- grid.508721.9Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Pierre Charneau
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Laleh Majlessi
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| |
Collapse
|
24
|
Imidazole-Thiosemicarbazide Derivatives as Potent Anti- Mycobacterium tuberculosis Compounds with Antibiofilm Activity. Cells 2021; 10:cells10123476. [PMID: 34943984 PMCID: PMC8700351 DOI: 10.3390/cells10123476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogenic bacterium and the causative agent of tuberculosis. This disease is one of the most ancient and deadliest bacterial infections, as it poses major health, social and economic challenges at a global level, primarily in low- and middle-income countries. The lack of an effective vaccine, the long and expensive drug therapy, and the rapid spread of drug-resistant strains of Mtb have led to the re-emergence of tuberculosis as a global pandemic. Here, we assessed the in vitro activity of new imidazole-thiosemicarbazide derivatives (ITDs) against Mtb infection and their effects on mycobacterial biofilm formation. Cytotoxicity studies of the new compounds in cell lines and human monocyte-derived macrophages (MDMs) were performed. The anti-Mtb activity of ITDs was evaluated by determining minimal inhibitory concentrations of resazurin, time-kill curves, bacterial intracellular growth and the effect on biofilm formation. Mutation frequency and whole-genome sequencing of mutants that were resistant to ITDs were performed. The antimycobacterial potential of ITDs with the ability to penetrate Mtb-infected human macrophages and significantly inhibit the intracellular growth of tubercle bacilli and suppress Mtb biofilm formation was observed.
Collapse
|
25
|
De Maio F, Salustri A, Battah B, Palucci I, Marchionni F, Bellesi S, Palmieri V, Papi M, Kramarska E, Sanguinetti M, Sali M, Berisio R, Delogu G. PE_PGRS3 ensures provision of the vital phospholipids cardiolipin and phosphatidylinositols by promoting the interaction between M. tuberculosis and host cells. Virulence 2021; 12:868-884. [PMID: 33757409 PMCID: PMC8007152 DOI: 10.1080/21505594.2021.1897247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) constitute a large family of complex modular proteins whose role is still unclear. Among those, we have previously shown, using the heterologous expression in Mycobacterium smegmatis, that PE_PGRS3 containing a unique arginine-rich C-terminal domain, promotes adhesion to host cells. In this study, we investigate the role of PE_PGRS3 and its C-terminal domain directly in Mtb using functional deletion mutants. The results obtained here show that PE_PGRS3 is localized on the mycobacterial cell wall and its arginine-rich C-terminal region protrudes from the mycobacterial membrane and mediates Mtb entry into epithelial cells. Most importantly, this positively charged helical domain specifically binds phosphorylated phosphatidylinositols and cardiolipin, whereas it is unable to bind other phospholipids. Interestingly, administration of cardiolipin and phosphatidylinositol but no other phospholipids was able to turn-off expression of pe_pgrs3 activated by phosphate starvation conditions. These findings suggest that PE_PGRS3 has the key role to serve as a bridge between mycobacteria and host cells by interacting with specific host phospholipids and extracting them from host cells, for their direct integration or as a source of phosphate, during phases of TB pathogenesis when Mtb is short of phosphate supply.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Basem Battah
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Marchionni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging - CNR-IBB, Naples, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging - CNR-IBB, Naples, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
26
|
Abstract
Animal tuberculosis (TB) is an emergent disease caused by Mycobacterium bovis, one of the animal-adapted ecotypes of the Mycobacterium tuberculosis complex (MTC). In this work, whole-genome comparative analyses of 70 M. bovis were performed to gain insights into the pan-genome architecture. The comparison across M. bovis predicted genome composition enabled clustering into the core- and accessory-genome components, with 2736 CDS for the former, while the accessory moiety included 3897 CDS, of which 2656 are restricted to one/two genomes only. These analyses predicted an open pan-genome architecture, with an average of 32 CDS added by each genome and show the diversification of discrete M. bovis subpopulations supported by both core- and accessory-genome components. The functional annotation of the pan-genome classified each CDS into one or several COG (Clusters of Orthologous Groups) categories, revealing ‘transcription’ (total average CDSs, n=258), ‘lipid metabolism and transport’ (n=242), ‘energy production and conversion’ (n=214) and ‘unknown function’ (n=876) as the most represented. The closer analysis of polymorphisms in virulence-related genes in a restrict group of M. bovis from a multi-host system enabled the identification of clade-monomorphic non-synonymous SNPs, illustrating clade-specific virulence landscapes and correlating with disease severity. This first comparative pan-genome study of a diverse collection of M. bovis encompassing all clonal complexes indicates a high percentage of accessory genes and denotes an open, dynamic non-conservative pan-genome structure, with high evolutionary potential, defying the canons of MTC biology. Furthermore, it shows that M. bovis can shape its virulence repertoire, either by acquisition and loss of genes or by SNP-based diversification, likely towards host immune evasion, adaptation and persistence.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Abstract
Autophagy is a fundamental cellular process that has important roles in innate and adaptive immunity against a broad range of microbes. Many pathogenic microbes have evolved mechanisms to evade or exploit autophagy. It has been previously demonstrated that induction of autophagy can suppress the intracellular survival of mycobacteria, and several PE_PGRS family proteins of Mycobacterium tuberculosis have been proposed to act as inhibitors of autophagy to promote mycobacterial survival. However, the mechanisms by which these effectors inhibit autophagy have not been defined. Here, we report detailed studies of M. tuberculosis deletion mutants of two genes, pe_pgrs20 and pe_pgrs47, that we previously reported as having a role in preventing autophagy of infected host cells. These mutants resulted in increased autophagy and reduced intracellular survival of M. tuberculosis in macrophages. This phenotype was accompanied by increased cytokine production and antigen presentation by infected cells. We further demonstrated that autophagy inhibition by PE_PGRS20 and PE_PGRS47 resulted from canonical autophagy rather than autophagy flux inhibition. Using macrophages transfected to express PE_PGRS20 or PE_PGRS47, we showed that these proteins inhibited autophagy initiation directly by interacting with Ras-related protein Rab1A. Silencing of Rab1A in mammalian cells rescued the survival defects of the pe_pgrs20 and pe_pgrs47 deletion mutant strains and reduced cytokine secretion. To our knowledge, this is the first study to identify mycobacterial effectors that directly interact with host proteins responsible for autophagy initiation. IMPORTANCE Tuberculosis is a significant global infectious disease caused by infection of the lungs with Mycobacterium tuberculosis, which then resides and replicates mainly within host phagocytic cells. Autophagy is a complex host cellular process that helps control intracellular infections and enhance innate and adaptive immune responses. During coevolution with humans, M. tuberculosis has acquired various mechanisms to inhibit host cellular processes, including autophagy. We identified two related M. tuberculosis proteins, PE_PGRS20 and PE_PGRS47, as the first reported examples of specific mycobacterial effectors interfering with the initiation stage of autophagy. Autophagy regulation by these PE_PGRS proteins leads to increased bacterial survival in phagocytic cells and increased autophagic degradation of mycobacterial antigens to stimulate adaptive immune responses. A better understanding of how M. tuberculosis regulates autophagy in host cells could facilitate the design of new and more effective therapeutics or vaccines against tuberculosis.
Collapse
|
28
|
Gallant J, Heunis T, Beltran C, Schildermans K, Bruijns S, Mertens I, Bitter W, Sampson SL. PPE38-Secretion-Dependent Proteins of M. tuberculosis Alter NF-kB Signalling and Inflammatory Responses in Macrophages. Front Immunol 2021; 12:702359. [PMID: 34276695 PMCID: PMC8284050 DOI: 10.3389/fimmu.2021.702359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
It was previously shown that secretion of PE-PGRS and PPE-MPTR proteins is abolished in clinical M. tuberculosis isolates with a deletion in the ppe38-71 operon, which is associated with increased virulence. Here we investigate the proteins dependent on PPE38 for their secretion and their role in the innate immune response using temporal proteomics and protein turnover analysis in a macrophage infection model. A decreased pro-inflammatory response was observed in macrophages infected with PPE38-deficient M. tuberculosis CDC1551 as compared to wild type bacteria. We could show that dampening of the pro-inflammatory response is associated with activation of a RelB/p50 pathway, while the canonical inflammatory pathway is active during infection with wild type M. tuberculosis CDC1551. These results indicate a molecular mechanism by which M. tuberculosis PE/PPE proteins controlled by PPE38 have an effect on modulating macrophage responses through NF-kB signalling.
Collapse
Affiliation(s)
- James Gallant
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tiaan Heunis
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Caroline Beltran
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Samantha L. Sampson
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
29
|
Bade P, Simonetti F, Sans S, Laboudie P, Kissane K, Chappat N, Lagrange S, Apparailly F, Roubert C, Duroux-Richard I. Integrative Analysis of Human Macrophage Inflammatory Response Related to Mycobacterium tuberculosis Virulence. Front Immunol 2021; 12:668060. [PMID: 34276658 PMCID: PMC8284339 DOI: 10.3389/fimmu.2021.668060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, kills 1.5 to 1.7 million people every year. Macrophages are Mtb's main host cells and their inflammatory response is an essential component of the host defense against Mtb. However, Mtb is able to circumvent the macrophages' defenses by triggering an inappropriate inflammatory response. The ability of Mtb to hinder phagolysosome maturation and acidification, and to escape the phagosome into the cytosol, is closely linked to its virulence. The modulation of the host inflammatory response relies on Mtb virulence factors, but remains poorly studied. Understanding macrophage interactions with Mtb is crucial to develop strategies to control tuberculosis. The present study aims to determine the inflammatory response transcriptome and miRNome of human macrophages infected with the virulent H37Rv Mtb strain, to identify macrophage genetic networks specifically modulated by Mtb virulence. Using human macrophages infected with two different live strains of mycobacteria (live or heat-inactivated Mtb H37Rv and M. marinum), we quantified and analyzed 184 inflammatory mRNAs and 765 micro(mi)RNAs. Transcripts and miRNAs differently modulated by H37Rv in comparison with the two other conditions were analyzed using in silico approaches. We identified 30 host inflammatory response genes and 37 miRNAs specific for H37Rv virulence, and highlight evidence suggesting that Mtb intracellular-linked virulence depends on the inhibition of IL-1β-dependent pro-inflammatory response, the repression of apoptosis and the delay of the recruitment and activation of adaptive immune cells. Our findings provide new potential targets for the development of macrophage-based therapeutic strategies against TB.
Collapse
Affiliation(s)
- Pauline Bade
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
- Evotec ID (Lyon), Lyon, France
| | | | | | | | | | | | | | - Florence Apparailly
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| | | | - Isabelle Duroux-Richard
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
30
|
Simeone R, Sayes F, Lawarée E, Brosch R. Breaching the phagosome, the case of the tuberculosis agent. Cell Microbiol 2021; 23:e13344. [PMID: 33860624 DOI: 10.1111/cmi.13344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
The interactions between microbes and their hosts are among the most complex biological phenomena known today. The interaction may reach from overall beneficial interaction, as observed for most microbiome/microbiota related interactions to interaction with virulent pathogens, against which host cells have evolved sophisticated defence strategies. Among the latter, the confinement of invading pathogens in a phagosome plays a key role, which often results in the destruction of the invader, whereas some pathogens may counteract phagosomal arrest and survive by gaining access to the cytosol of the host cell. In the current review, we will discuss recent insights into this dynamic process of host-pathogen interaction, using Mycobacterium tuberculosis and related pathogenic mycobacteria as main examples.
Collapse
Affiliation(s)
- Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Fadel Sayes
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Emeline Lawarée
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| |
Collapse
|
31
|
Asaad M, Kaisar Ali M, Abo-Kadoum MA, Lambert N, Gong Z, Wang H, Uae M, Nazou SAE, Kuang Z, Xie J. Mycobacterium tuberculosis PPE10 (Rv0442c) alters host cell apoptosis and cytokine profile via linear ubiquitin chain assembly complex HOIP-NF-κB signaling axis. Int Immunopharmacol 2021; 94:107363. [PMID: 33667868 DOI: 10.1016/j.intimp.2020.107363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis infection remains one of the top ten causes of deaths worldwide. M. tuberculosis genome devoted 10% capacity for highly repeated PE/PPE genes family. To explore the role of PPE10 in host-pathogen interaction, PPE10 encoding gene Rv0442c was heterologously expressed in the nonpathogenic M. smegmatis strain. PPE10 altered the bacterial cell surface properties, colony morphology, and biofilm formation. Ms_PPE10 showed more resistance to stress conditions such as diamide, and low pH, as well as higher survival within the macrophage. Moreover, the host's cell apoptosis was regulated via decreased expression of caspases, IL-1, IL-6, and TNF-α through the Linear Ubiquitin Chain Assembly Complex (LUBAC) HOIP-NF-κB signaling axis. The study revealed novel insights into the mechanism of action of the PPE family.
Collapse
Affiliation(s)
- Mohammed Asaad
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China; Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Md Kaisar Ali
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - M A Abo-Kadoum
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University Assuit branch, Egypt
| | - Nzungize Lambert
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Zhen Gong
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Hao Wang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Moure Uae
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Stech A E Nazou
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Zhongmei Kuang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China.
| |
Collapse
|
32
|
Izquierdo Lafuente B, Ummels R, Kuijl C, Bitter W, Speer A. Mycobacterium tuberculosis Toxin CpnT Is an ESX-5 Substrate and Requires Three Type VII Secretion Systems for Intracellular Secretion. mBio 2021; 12:e02983-20. [PMID: 33653883 PMCID: PMC8092274 DOI: 10.1128/mbio.02983-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
CpnT, a NAD+ glycohydrolase, is the only known toxin that is secreted by Mycobacterium tuberculosis CpnT is composed of two domains; the C-terminal domain is the toxin, whereas the N-terminal domain is required for secretion. CpnT shows characteristics of type VII secretion (T7S) substrates, including a predicted helix-turn-helix domain followed by a secretion motif (YxxxE). Disruption of this motif indeed abolished CpnT secretion. By analyzing different mutants, we established that CpnT is specifically secreted by the ESX-5 system in Mycobacterium marinum under axenic conditions and during macrophage infection. Surprisingly, intracellular secretion of CpnT was also dependent on both ESX-1 and ESX-4. These secretion defects could be partially rescued by coinfection with wild-type bacteria, indicating that secreted effectors are involved in this process. In summary, our data reveal that three different type VII secretion systems have to be functional in order to observe intracellular secretion of the toxin CpnT.IMPORTANCE For decades, it was believed that the intracellular pathogen M. tuberculosis does not possess toxins. Only fairly recently it was discovered that CpnT is a potent secreted toxin of M. tuberculosis, causing necrotic cell death in host cells. However, until now the secretion pathway remained unknown. In our study, we were able to identify CpnT as a substrate of the mycobacterial type VII secretion system. Pathogenic mycobacteria have up to five different type VII secretion systems, called ESX-1 to ESX-5, which play distinct roles for the pathogen during growth or infection. We were able to elucidate that CpnT is exclusively secreted by the ESX-5 system in bacterial culture. However, to our surprise we discovered that, during infection studies, CpnT secretion relies on intact ESX-1, ESX-4, and ESX-5 systems. We elucidate for the first time the intertwined interplay of three different and independent secretion systems to secrete one substrate during infection.
Collapse
Affiliation(s)
- B Izquierdo Lafuente
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - C Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - W Bitter
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| | - A Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Pisu D, Huang L, Grenier JK, Russell DG. Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Rep 2021; 30:335-350.e4. [PMID: 31940480 PMCID: PMC7032562 DOI: 10.1016/j.celrep.2019.12.033] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/31/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Dissecting the in vivo host-pathogen interplay is crucial to understanding the molecular mechanisms governing control or progression of intracellular infections. In this work, we explore the in vivo molecular dynamics of Mtb infection by performing dual RNA-seq on Mycobacterium tuberculosis-infected, ontogenetically distinct macrophage lineages isolated directly from murine lungs. We first define an in vivo signature of 180 genes specifically upregulated by Mtb in mouse lung macrophages, then we uncover a divergent transcriptional response of the bacteria between alveolar macrophages that appear to sustain Mtb growth through increased access to iron and fatty acids and interstitial macrophages that restrict Mtb growth through iron sequestration and higher levels of nitric oxide. We use an enrichment protocol for bacterial transcripts, which enables us to probe Mtb physiology at the host cell level in an in vivo environment, with broader application in understanding the infection dynamics of intracellular pathogens in general. In this study Pisu et al. performed dual RNA-seq on Mycobacterium tuberculosis-infected, ontogenetically distinct macrophage lineages isolated directly from infected murine lungs. The transcriptional response of host and bacteria diverged between alveolar macrophages that sustain Mtb growth and interstitial macrophages that restrict Mtb growth.
Collapse
Affiliation(s)
- Davide Pisu
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Fishbein SRS, Tomasi FG, Wolf ID, Dulberger CL, Wang A, Keshishian H, Wallace L, Carr SA, Ioerger TR, Rego EH, Rubin EJ. The conserved translation factor LepA is required for optimal synthesis of a porin family in Mycobacterium smegmatis. J Bacteriol 2020; 203:JB.00604-20. [PMID: 33361193 PMCID: PMC8095456 DOI: 10.1128/jb.00604-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
The recalcitrance of mycobacteria to antibiotic therapy is in part due to its ability to build proteins into a multi-layer cell wall. Proper synthesis of both cell wall constituents and associated proteins is crucial to maintaining cell integrity, and intimately tied to antibiotic susceptibility. How mycobacteria properly synthesize the membrane-associated proteome, however, remains poorly understood. Recently, we found that loss of lepA in Mycobacterium smegmatis (Msm) altered tolerance to rifampin, a drug that targets a non-ribosomal cellular process. LepA is a ribosome-associated GTPase found in bacteria, mitochondria, and chloroplasts, yet its physiological contribution to cellular processes is not clear. To uncover the determinants of LepA-mediated drug tolerance, we characterized the whole-cell proteomes and transcriptomes of a lepA deletion mutant relative to strains with lepA We find that LepA is important for the steady-state abundance of a number of membrane-associated proteins, including an outer membrane porin, MspA, which is integral to nutrient uptake and drug susceptibility. Loss of LepA leads to a decreased amount of porin in the membrane which leads to the drug tolerance phenotype of the lepA mutant. In mycobacteria, the translation factor LepA modulates mycobacterial membrane homeostasis, which in turn affects antibiotic tolerance.ImportanceThe mycobacterial cell wall is a promising target for new antibiotics due to the abundance of important membrane-associated proteins. Defining mechanisms of synthesis of the membrane proteome will be critical to uncovering and validating drug targets. We found that LepA, a universally conserved translation factor, controls the synthesis of a number of major membrane proteins in M. smegmatis LepA primarily controls synthesis of the major porin MspA. Loss of LepA results in decreased permeability through the loss of this porin, including permeability to antibiotics like rifampin and vancomycin. In mycobacteria, regulation from the ribosome is critical for the maintenance of membrane homeostasis and, importantly, antibiotic susceptibility.
Collapse
Affiliation(s)
- Skye R S Fishbein
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Francesca G Tomasi
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Charles L Dulberger
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Albert Wang
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | | | - Luke Wallace
- Broad Institute of MIT and Harvard, Cambridge, 02142, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, 02142, United States
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, Texas, 77843, United States
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, 06510, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| |
Collapse
|
35
|
Qian J, Chen R, Wang H, Zhang X. Role of the PE/PPE Family in Host-Pathogen Interactions and Prospects for Anti-Tuberculosis Vaccine and Diagnostic Tool Design. Front Cell Infect Microbiol 2020; 10:594288. [PMID: 33324577 PMCID: PMC7726347 DOI: 10.3389/fcimb.2020.594288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
The pe/ppe genes are found in pathogenic, slow-growing Mycobacterium tuberculosis and other M. tuberculosis complex (MTBC) species. These genes are considered key factors in host-pathogen interactions. Although the function of most PE/PPE family proteins remains unclear, accumulating evidence suggests that this family is involved in M. tuberculosis infection. Here, we review the role of PE/PPE proteins, which are believed to be linked to the ESX system function. Further, we highlight the reported functions of PE/PPE proteins, including their roles in host cell interaction, immune response regulation, and cell fate determination during complex host-pathogen processes. Finally, we propose future directions for PE/PPE protein research and consider how the current knowledge might be applied to design more specific diagnostics and effective vaccines for global tuberculosis control.
Collapse
Affiliation(s)
- Jianing Qian
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Run Chen
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xuelian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum. Microbiol Mol Biol Rev 2020; 84:84/4/e00082-19. [DOI: 10.1128/mmbr.00082-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathogenic mycobacteria cause chronic and acute diseases ranging from human tuberculosis (TB) to nontubercular infections.
Mycobacterium tuberculosis
causes both acute and chronic human tuberculosis. Environmentally acquired nontubercular mycobacteria (NTM) cause chronic disease in humans and animals. Not surprisingly, NTM and
M. tuberculosis
often use shared molecular mechanisms to survive within the host. The ESX-1 system is a specialized secretion system that is essential for virulence and is functionally conserved between
M. tuberculosis
and
Mycobacterium marinum
.
Collapse
|
37
|
Tiwari S, Dutt TS, Chen B, Chen M, Kim J, Dai AZ, Lukose R, Shanley C, Fox A, Karger BR, Porcelli SA, Chan J, Podell BK, Obregon-Henao A, Orme IM, Jacobs WR, Henao-Tamayo M. BCG-Prime and boost with Esx-5 secretion system deletion mutant leads to better protection against clinical strains of Mycobacterium tuberculosis. Vaccine 2020; 38:7156-7165. [PMID: 32978002 PMCID: PMC7755135 DOI: 10.1016/j.vaccine.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Although vaccination with BCG prevents disseminated forms of childhood tuberculosis (TB), it does not protect against pulmonary infection or Mycobacterium tuberculosis (Mtb) transmission. In this study, we generated a complete deletion mutant of the Mtb Esx-5 type VII secretion system (Mtb Δesx-5). Mtb Δesx-5 was highly attenuated and safe in immunocompromised mice. When tested as a vaccine candidate to boost BCG-primed immunity, Mtb Δesx-5 improved protection against highly virulent Mtb strains in the murine and guinea pig models of TB. Enhanced protection provided by heterologous BCG-prime plus Mtb Δesx-5 boost regimen was associated with increased pulmonary influx of central memory T cells (TCM), follicular helper T cells (TFH) and activated monocytes. Conversely, lower numbers of T cells expressing exhaustion markers were observed in vaccinated animals. Our results suggest that boosting BCG-primed immunity with Mtb Δesx-5 is a potential approach to improve protective immunity against Mtb. Further insight into the mechanism of action of this novel prime-boost approach is warranted.
Collapse
Affiliation(s)
- Sangeeta Tiwari
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Bing Chen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Mei Chen
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - John Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Annie Zhi Dai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Regy Lukose
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Crystal Shanley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Amy Fox
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Burton R Karger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Brendan K Podell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Ian M Orme
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
38
|
Bunduc CM, Bitter W, Houben E. Structure and Function of the Mycobacterial Type VII Secretion Systems. Annu Rev Microbiol 2020; 74:315-335. [DOI: 10.1146/annurev-micro-012420-081657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria have evolved intricate secretion machineries for the successful delivery of large molecules across their cell envelopes. Such specialized secretion systems allow a variety of bacteria to thrive in specific host environments. In mycobacteria, type VII secretion systems (T7SSs) are dedicated protein transport machineries that fulfill diverse and crucial roles, ranging from metabolite uptake to immune evasion and subversion to conjugation. Since the discovery of mycobacterial T7SSs about 15 y ago, genetic, structural, and functional studies have provided insight into the roles and functioning of these secretion machineries. Here, we focus on recent advances in the elucidation of the structure and mechanism of mycobacterial T7SSs in protein secretion. As many of these systems are essential for mycobacterial growth or virulence, they provide opportunities for the development of novel therapies to combat a number of relevant mycobacterial diseases.
Collapse
Affiliation(s)
- Catalin M. Bunduc
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - W. Bitter
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, 1007 MB Amsterdam, The Netherlands
| | - E.N.G. Houben
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
39
|
Narvskaya O, Starkova D, Levi D, Alexandrova N, Molchanov V, Chernyaeva E, Vyazovaya A, Mushkin A, Zhuravlev V, Solovieva N, Vishnevskiy B, Mokrousov I. First insight into the whole-genome sequence variations in Mycobacterium bovis BCG-1 (Russia) vaccine seed lots and their progeny clinical isolates from children with BCG-induced adverse events. BMC Genomics 2020; 21:567. [PMID: 32811436 PMCID: PMC7437937 DOI: 10.1186/s12864-020-06973-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background The only licensed live Bacille Calmette-Guérin (BCG) vaccine used to prevent severe childhood tuberculosis comprises genetically divergent strains with variable protective efficacy and rates of BCG-induced adverse events. The whole-genome sequencing (WGS) allowed evaluating the genome stability of BCG strains and the impact of spontaneous heterogeneity in seed and commercial lots on the efficacy of BCG-vaccines in different countries. Our study aimed to assess sequence variations and their putative effects on genes and protein functions in the BCG-1 (Russia) seed lots compared to their progeny isolates available from immunocompetent children with BCG-induced disease (mainly, osteitis). Results Based on the WGS data, we analyzed the links between seed lots 361, 367, and 368 used for vaccine manufacture in Russia in different periods, and their nine progeny isolates recovered from immunocompetent children with BCG-induced disease. The complete catalog of variants in genes relative to the reference genome (GenBank: CP013741) included 4 synonymous and 8 nonsynonymous single nucleotide polymorphisms, and 3 frameshift deletions. Seed lot 361 shared variants with 2 of 6 descendant isolates that had higher proportions of such polymorphisms in several genes, including ppsC, eccD5, and eccA5 involved in metabolism and cell wall processes and reportedly associated with virulence in mycobacteria. One isolate preserved variants of its parent seed lot 361 without gain of further changes in the sequence profile within 14 years. Conclusions The background genomic information allowed us for the first time to follow the BCG diversity starting from the freeze-dried seed lots to descendant clinical isolates. Sequence variations in several genes of seed lot 361 did not alter the genomic stability and viability of the vaccine and appeared accumulated in isolates during the survival in the human organism. The impact of the observed variations in the context of association with the development of BCG-induced disease should be evaluated in parallel with the immune status and host genetics. Comparative genomic studies of BCG seed lots and their descendant clinical isolates represent a beneficial approach to better understand the molecular bases of efficacy and adverse events during the long-term survival of BCG in the host organism.
Collapse
Affiliation(s)
- Olga Narvskaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia. .,St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia.
| | - Daria Starkova
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia
| | - Diana Levi
- Scientific Center for Expert Evaluation of Medical Products, Moscow, 127051, Russia
| | - Natalia Alexandrova
- Scientific Center for Expert Evaluation of Medical Products, Moscow, 127051, Russia
| | - Vladimir Molchanov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia. .,Present address: Van Andel Institute, Grand Rapids, MI, 49503-2518, USA.
| | | | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia
| | - Alexander Mushkin
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia
| | - Boris Vishnevskiy
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, 191036, Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, 197101, Russia
| |
Collapse
|
40
|
Transcriptional portrait of M. bovis BCG during biofilm production shows genes differentially expressed during intercellular aggregation and substrate attachment. Sci Rep 2020; 10:12578. [PMID: 32724037 PMCID: PMC7387457 DOI: 10.1038/s41598-020-69152-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis and M. smegmatis form drug-tolerant biofilms through dedicated genetic programs. In support of a stepwise process regulating biofilm production in mycobacteria, it was shown elsewhere that lsr2 participates in intercellular aggregation, while groEL1 was required for biofilm maturation in M. smegmatis. Here, by means of RNA-Seq, we monitored the early steps of biofilm production in M. bovis BCG, to distinguish intercellular aggregation from attachment to a surface. Genes encoding for the transcriptional regulators dosR and BCG0114 (Rv0081) were significantly regulated and responded differently to intercellular aggregation and surface attachment. Moreover, a M. tuberculosis H37Rv deletion mutant in the Rv3134c-dosS-dosR regulon, formed less biofilm than wild type M. tuberculosis, a phenotype reverted upon reintroduction of this operon into the mutant. Combining RT-qPCR with microbiological assays (colony and surface pellicle morphologies, biofilm quantification, Ziehl–Neelsen staining, growth curve and replication of planktonic cells), we found that BCG0642c affected biofilm production and replication of planktonic BCG, whereas ethR affected only phenotypes linked to planktonic cells despite its downregulation at the intercellular aggregation step. Our results provide evidence for a stage-dependent expression of genes that contribute to biofilm production in slow-growing mycobacteria.
Collapse
|
41
|
Dunlap MD, Prince OA, Rangel-Moreno J, Thomas KA, Scordo JM, Torrelles JB, Cox J, Steyn AJC, Zúñiga J, Kaushal D, Khader SA. Formation of Lung Inducible Bronchus Associated Lymphoid Tissue Is Regulated by Mycobacterium tuberculosis Expressed Determinants. Front Immunol 2020; 11:1325. [PMID: 32695111 PMCID: PMC7338767 DOI: 10.3389/fimmu.2020.01325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of the infectious disease tuberculosis (TB), which is a leading cause of death worldwide. Approximately one fourth of the world's population is infected with Mtb. A major unresolved question is delineating the inducers of protective long-lasting immune response without inducing overt, lung inflammation. Previous studies have shown that the presence of inducible Bronchus-Associated Lymphoid Tissue (iBALT) correlate with protection from Mtb infection. In this study, we hypothesized that specific Mtb factors could influence the formation of iBALT, thus skewing the outcome of TB disease. We infected non-human primates (NHPs) with a transposon mutant library of Mtb, and identified specific Mtb mutants that were over-represented within iBALT-containing granulomas. A major pathway reflected in these mutants was Mtb cell wall lipid transport and metabolism. We mechanistically addressed the function of one such Mtb mutant lacking mycobacteria membrane protein large 7 (MmpL7), which transports phthiocerol dimycocerosate (PDIM) to the mycobacterial outer membrane (MOM). Accordingly, murine aerosol infection with the Mtb mutant Δmmpl7 correlated with increased iBALT-containing granulomas. Our studies showed that the Δmmpl7 mutant lacking PDIMs on the surface overexpressed diacyl trehaloses (DATs) in the cell wall, which altered the cytokine/chemokine production of epithelial and myeloid cells, thus leading to a dampened inflammatory response. Thus, this study describes an Mtb specific factor that participates in the induction of iBALT formation during TB by directly modulating cytokine and chemokine production in host cells.
Collapse
Affiliation(s)
- Micah D Dunlap
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Oliver A Prince
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Kimberly A Thomas
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Julia M Scordo
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jeffery Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Adrie J C Steyn
- Department of Microbiology, Centers for AIDS Research and Free Radical Biology, University of Alabama at Alabama, Birmingham, AL, United States.,African Health Research Institute (AHRI), Durban, South Africa
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX, United States.,Division of Bacteriology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shabaana A Khader
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
42
|
Ly A, Liu J. Mycobacterial Virulence Factors: Surface-Exposed Lipids and Secreted Proteins. Int J Mol Sci 2020; 21:ijms21113985. [PMID: 32498243 PMCID: PMC7312605 DOI: 10.3390/ijms21113985] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
The clinically important Mycobacterium tuberculosis (M. tb) and related mycobacterial pathogens use various virulence mechanisms to survive and cause disease in their hosts. Several well-established virulence factors include the surface-exposed lipids in the mycobacterial outer membrane, as well as the Esx family proteins and the Pro-Glu (PE)/ Pro-Pro-Glu (PPE) family proteins secreted by type VII secretion systems (T7SS). Five ESX T7SS exist in M. tb and three—EsxA secretion system-1 (ESX-1), ESX-3, and ESX-5—have been implicated in virulence, yet only the structures of ESX-3 and ESX-5 have been solved to date. Here, we summarize the current research on three outer membrane lipids—phthiocerol dimycocerosates, phenolic glycolipids, and sulfolipids—as well as the secretion machinery and substrates of three mycobacterial T7SS—ESX-1, ESX-3, and ESX-5. We propose a structural model of the M. tb ESX-1 system based on the latest structural findings of the ESX-3 and ESX-5 secretion apparatuses to gain insight into the transport mechanism of ESX-associated virulence factors.
Collapse
Affiliation(s)
| | - Jun Liu
- Correspondence: ; Tel.: +1-416-946-5067
| |
Collapse
|
43
|
Crosskey TD, Beckham KS, Wilmanns M. The ATPases of the mycobacterial type VII secretion system: Structural and mechanistic insights into secretion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 152:25-34. [DOI: 10.1016/j.pbiomolbio.2019.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
|
44
|
Kurniawati S, Mertaniasih NM, Ato M, Tamura T, Soedarsono S, Aulanni'am A, Mori S, Maeda Y, Mukai T. Cloning and Protein Expression of eccB5 Gene in ESX-5 System from Mycobacterium tuberculosis. Biores Open Access 2020; 9:86-93. [PMID: 32257624 PMCID: PMC7133456 DOI: 10.1089/biores.2019.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis in human. One of the major M. tuberculosis virulence factors is early secretory antigenic target of 6-kDa (ESAT-6), and EccB5 protein encoded by eccB5 is one of its components. EccB5 protein is a transmembrane protein in ESX-5 system. The aim of this study is to explore the characteristics of wild-type EccB5 and its mutant form N426I. We expressed the EccB5 protein by cloning the mutant and wild-type eccB5 gene in Escherichia coli (E. coli). We compared the protein structure of wild type and mutant form of EccB5 and found changes in structure around Asn426 (loop structure) in wild type and around Ile426 (β-strand) in the mutant. The truncated recombinant protein of EccB5 was successfully cloned and expressed using plasmid pCold I in E. coli DH5α and E. coli strain Rosetta-gami B (DE3) and purified as a 38.6 kDa protein by using the affinity column. There was no detectable adenosine triphosphatase activity in truncated forms of EccB5 and its mutant. In conclusion, our study reveals successful cloning and protein expression of truncated form of eccB5 gene of M. tuberculosis. EccB5 protein in ESX-5 system may be an important membrane component involved in the transport machinery of type VII secretion system, which is essential for growth and virulence.
Collapse
Affiliation(s)
- Siti Kurniawati
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ni Made Mertaniasih
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiki Tamura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Soedarsono Soedarsono
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aulanni'am Aulanni'am
- Department of Biochemistry, Faculty of Veterinary Medicine, Brawijaya University, Malang, Indonesia
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
45
|
Bunduc CM, Ummels R, Bitter W, Houben ENG. Species-specific secretion of ESX-5 type VII substrates is determined by the linker 2 of EccC 5. Mol Microbiol 2020; 114:66-76. [PMID: 32096294 PMCID: PMC7384006 DOI: 10.1111/mmi.14496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Indexed: 12/20/2022]
Abstract
Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5 , possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5 . This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5 , showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5 .
Collapse
Affiliation(s)
- Catalin M Bunduc
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
PPE51 Is Involved in the Uptake of Disaccharides by Mycobacterium tuberculosis. Cells 2020; 9:cells9030603. [PMID: 32138343 PMCID: PMC7140425 DOI: 10.3390/cells9030603] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
We have recently found that selected thio-disaccharides possess bactericidal effects against Mycobacterium tuberculosis but not against Escherichia coli or Staphylococcus aureus. Here, we selected spontaneous mutants displaying resistance against the investigated thio-glycoside. According to next-generation sequencing, four of six analyzed mutants which were resistant to high concentrations of the tested chemical carried nonsynonymous mutations in the gene encoding the PPE51 protein. The complementation of these mutants with an intact ppe51 gene returned their sensitivity to the wild-type level. The uptake of tritiated thio-glycoside was significantly more abundant in wild-type Mycobacterium tuberculosis compared to the strain carrying the mutated ppe51 gene. The ppe51 mutations or CRISPR-Cas9-mediated downregulation of PPE51 expression affected the growth of mutant strains on minimal media supplemented with disaccharides (maltose or lactose) but not with glycerol or glucose as the sole carbon and energy source. Taking the above into account, we postulate that PPE51 participates in the uptake of disaccharides by tubercle bacilli.
Collapse
|
47
|
Polarly Localized EccE 1 Is Required for ESX-1 Function and Stabilization of ESX-1 Membrane Proteins in Mycobacterium tuberculosis. J Bacteriol 2020; 202:JB.00662-19. [PMID: 31843799 DOI: 10.1128/jb.00662-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis is a slow-growing intracellular bacterium with the ability to induce host cell death and persist indefinitely in the human body. This pathogen uses the specialized ESX-1 secretion system to secrete virulence factors and potent immunogenic effectors required for disease progression. ESX-1 is a multisubunit apparatus with a membrane complex that is predicted to form a channel in the cytoplasmic membrane. In M. tuberculosis this complex is composed of five membrane proteins: EccB1, EccCa1, EccCb1, EccD1, and EccE1 In this study, we have characterized the membrane component EccE1 and found that deletion of eccE 1 lowers the levels of EccB1, EccCa1, and EccD1, thereby abolishing ESX-1 secretion and attenuating M. tuberculosis ex vivo Surprisingly, secretion of EspB was not affected by loss of EccE1 Furthermore, EccE1 was found to be a membrane- and cell wall-associated protein that needs the presence of other ESX-1 components to assemble into a stable complex at the poles of M. tuberculosis Overall, this investigation provides new insights into the role of EccE1 and its localization in M. tuberculosis IMPORTANCE Tuberculosis (TB), the world's leading cause of death of humans from an infectious disease, is caused by the intracellular bacterium Mycobacterium tuberculosis The development of successful strategies to control TB requires better understanding of the complex interactions between the pathogen and the human host. We investigated the contribution of EccE1, a membrane protein, to the function of the ESX-1 secretion system, the major virulence determinant of M. tuberculosis By combining genetic analysis of selected mutants with eukaryotic cell biology and proteomics, we demonstrate that EccE1 is critical for ESX-1 function, secretion of effector proteins, and pathogenesis. Our research improves knowledge of the molecular basis of M. tuberculosis virulence and enhances our understanding of pathogenesis.
Collapse
|
48
|
A Chimeric EccB-MycP Fusion Protein is Functional and a Stable Component of the ESX-5 Type VII Secretion System Membrane Complex. J Mol Biol 2020; 432:1265-1278. [DOI: 10.1016/j.jmb.2019.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022]
|
49
|
Ates LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol 2020; 113:4-21. [PMID: 31661176 PMCID: PMC7028111 DOI: 10.1111/mmi.14409] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/30/2022]
Abstract
The PE and PPE proteins of Mycobacterium tuberculosis have been studied with great interest since their discovery. Named after the conserved proline (P) and glutamic acid (E) residues in their N-terminal domains, these proteins are postulated to perform wide-ranging roles in virulence and immune modulation. However, technical challenges in studying these proteins and their encoding genes have hampered the elucidation of molecular mechanisms and leave many open questions regarding the biological functions mediated by these proteins. Here, I review the shared and unique characteristics of PE and PPE proteins from a molecular perspective linking this information to their functions in mycobacterial virulence. I discuss how the different subgroups (PE_PGRS, PPE-PPW, PPE-SVP and PPE-MPTR) are defined and why this classification of paramount importance to understand the PE and PPE proteins as individuals and or groups. The goal of this MicroReview is to summarize and structure the existing information on this gene family into a simplified framework of thinking about PE and PPE proteins and genes. Thereby, I hope to provide helpful starting points in studying these genes and proteins for researchers with different backgrounds. This has particular implications for the design and monitoring of novel vaccine candidates and in understanding the evolution of the M. tuberculosis complex.
Collapse
Affiliation(s)
- Louis S. Ates
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdam UMCUniversity of AmsterdamMeibergdreef 9Amsterdamthe Netherlands
| |
Collapse
|
50
|
Global Assessment of Mycobacterium avium subsp. hominissuis Genetic Requirement for Growth and Virulence. mSystems 2019; 4:4/6/e00402-19. [PMID: 31822597 PMCID: PMC6906737 DOI: 10.1128/msystems.00402-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth and organized ∼3,500 identified transposon mutants for hypothesis-driven research. The majority (96%) of the genes we identified as essential for MAH in vitro had a mutual ortholog in the related and highly virulent Mycobacterium tuberculosis (Mtb). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. More than 97% of the MAH virulence genes had a mutual ortholog in Mtb Finally, we validated novel genes required for successful MAH infection: one encoding a probable major facilitator superfamily (MFS) transporter and another encoding a hypothetical protein located in the immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection.IMPORTANCE Pulmonary disease caused by nontuberculous mycobacteria is increasing worldwide. The majority of these infections are caused by the Mycobacterium avium complex (MAC), whereof >90% are due to Mycobacterium avium subsp. hominissuis (MAH). Treatment of MAH infections is currently difficult, with a combination of antibiotics given for at least 12 months. To control MAH by improved therapy, prevention, and diagnostics, we need to understand the underlying mechanisms of infection. Here, we provide crucial insights into MAH's global genetic requirements for growth and infection. We find that the vast majority of genes required for MAH growth and virulence (96% and 97%, respectively) have mutual orthologs in the tuberculosis-causing pathogen M. tuberculosis (Mtb). However, we also find growth and virulence genes specific to MAC species. Finally, we validate novel mycobacterial virulence factors that might serve as future drug targets for MAH-specific treatment or translate to broader treatment of related mycobacterial diseases.
Collapse
|