1
|
Qin J, Wang Z, Qian C, Ji G, Zhang Y, Cao Z, Yan B, Cai J. NupR Is Involved in the Control of PlcR: A Pleiotropic Regulator of Extracellular Virulence Factors. Microorganisms 2025; 13:212. [PMID: 39858980 PMCID: PMC11767619 DOI: 10.3390/microorganisms13010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
NupR is a nucleoside permease regulator belonging to the GntR family, mainly regulating nucleoside transport in Bacillus thuringiensis. A conserved binding site for NupR was found in the promoter region of plcR. This study aimed to investigate the regulation of the virulence regulator PlcR by NupR and its impact on Bt virulence. We demonstrated that NupR can directly repress the expression of plcR. The expression of plcR can be induced by glucose and nucleosides. Glucose impacts the expression of plcR mainly through Spo0A, while the induction effect of nucleosides may be due to the production of ribose through nucleoside catabolism. In addition, NupR regulates the expression of the PlcR regulon, including hemolysin, phospholipase C, papR, and oligopeptide permease, which could result in the culture supernatant of BMB171 being less virulent to sf9 cells compared to the nupR knockout strain. The results combine the nutritional status of cells with virulence to form a regulatory loop, providing new ideas and research foundations for the study of bacterial virulence.
Collapse
Affiliation(s)
- Jiaxin Qin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziqi Wang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cheng Qian
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guohui Ji
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhanglei Cao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300071, China
| |
Collapse
|
2
|
Ren F, Chen Y, Yang S, Zhang Y, Liu Y, Ma Y, Wang Y, Liu Y, Dong Q, Lu D. Characterization of emetic Bacillus cereus biofilm formation and cereulide production in biofilm. Food Res Int 2024; 192:114834. [PMID: 39147521 DOI: 10.1016/j.foodres.2024.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Bacillus cereus is a well-known foodborne pathogen that can cause human diseases, including vomiting caused by emetic toxin, cereulide, requiring 105-108 cells per gram to cause the disease. The bacterial cells may be eliminated during processing, but cereulide can survive in most processing techniques due to its resistance to high temperatures, extreme pH and proteolytic enzymes. Herein, we reported dynamic processes of biofilm formation of four different types and cereulide production within the biofilm. Confocal laser scanning microscopy (CLSM) images revealed that biofilms of the four different types reach each stage at different time points. Among the extracellular polymeric substances (EPS) components of the four biofilms formed by the emetic B. cereus F4810/72 strain, proteins account for the majority. In addition, there are significant differences (p < 0.05) in the EPS components at the same stage among biofilms of different types. The time point at which cereulide was first detected in the four types of biofilms was 24 h. In the biofilm of B. cereus formed in ultra-high-temperature (UHT) milk, the first peak of cereulide appeared at 72 h. The cereulide content of the biofilms formed in BHI was mostly higher than that of the biofilms formed in UHT milk. This study contributes to a better understanding of food safety issues in the industry caused by biofilm and cereulide toxin produced by B. cereus.
Collapse
Affiliation(s)
- Fanchong Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhang Chen
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Shuo Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yinan Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China.
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yating Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yang Liu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China.
| |
Collapse
|
3
|
Frentzel H, Kraemer M, Kelner-Burgos Y, Uelze L, Bodi D. Cereulide production capacities and genetic properties of 31 emetic Bacillus cereus group strains. Int J Food Microbiol 2024; 417:110694. [PMID: 38614024 DOI: 10.1016/j.ijfoodmicro.2024.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
The highly potent toxin cereulide is a frequent cause of foodborne intoxications. This extremely resistant toxin is produced by Bacillus cereus group strains carrying the plasmid encoded cesHPTABCD gene cluster. It is known that the capacities to produce cereulide vary greatly between different strains but the genetic background of these variations is not clear. In this study, cereulide production capacities were associated with genetic characteristics. For this, cereulide levels in cultures of 31 strains were determined after incubation in tryptic soy broth for 24 h at 24 °C, 30 °C and 37 °C. Whole genome sequencing based data were used for an in-depth characterization of gene sequences related to cereulide production. The taxonomy, population structure and phylogenetic relationships of the strains were evaluated based on average nucleotide identity, multi-locus sequence typing (MLST), core genome MLST and single nucleotide polymorphism analyses. Despite a limited strain number, the approach of a genome wide association study (GWAS) was tested to link genetic variation with cereulide quantities. Our study confirms strain-dependent differences in cereulide production. For most strains, these differences were not explainable by sequence variations in the cesHPTABCD gene cluster or the regulatory genes abrB, spo0A, codY and pagRBc. Likewise, the population structure and phylogeny of the tested strains did not comprehensively reflect the cereulide production capacities. GWAS yielded first hints for associated proteins, while their possible effect on cereulide synthesis remains to be further investigated.
Collapse
Affiliation(s)
- Hendrik Frentzel
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Marco Kraemer
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Ylanna Kelner-Burgos
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Laura Uelze
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Sequencing and Genotyping Service Unit, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Dorina Bodi
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
4
|
Lopes N, Pereira RB, Correia A, Vilanova M, Cerca N, França A. Deletion of codY impairs Staphylococcus epidermidis biofilm formation, generation of viable but non-culturable cells and stimulates cytokine production in human macrophages. J Med Microbiol 2024; 73. [PMID: 38743043 DOI: 10.1099/jmm.0.001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.
Collapse
Affiliation(s)
- Nathalie Lopes
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Renato B Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Alexandra Correia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Manuel Vilanova
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Nuno Cerca
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS-Laboratório Associado, Braga, Guimarães, Portugal
| | - Angela França
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS-Laboratório Associado, Braga, Guimarães, Portugal
| |
Collapse
|
5
|
Kranzler M, Walser V, Stark TD, Ehling-Schulz M. A poisonous cocktail: interplay of cereulide toxin and its structural isomers in emetic Bacillus cereus. Front Cell Infect Microbiol 2024; 14:1337952. [PMID: 38596651 PMCID: PMC11002159 DOI: 10.3389/fcimb.2024.1337952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Food intoxications evoked by emetic Bacillus cereus strains constitute a serious threat to public health, leading to emesis and severe organ failure. The emetic peptide toxin cereulide, assembled by the non-ribosomal peptide synthetase CesNRPS, cannot be eradicated from contaminated food by usual hygienic measures due to its molecular size and structural stability. Next to cereulide, diverse chemical variants have been described recently that are produced concurrently with cereulide by CesNRPS. However, the contribution of these isocereulides to the actual toxicity of emetic B. cereus, which produces a cocktail of these toxins in a certain ratio, is still elusive. Since cereulide isoforms have already been detected in food remnants from foodborne outbreaks, we aimed to gain insights into the composition of isocereulides and their impact on the overall toxicity of emetic B. cereus. The amounts and ratios of cereulide and isocereulides were determined in B. cereus grown under standard laboratory conditions and in a contaminated sample of fried rice balls responsible for one of the most severe food outbreaks caused by emetic B. cereus in recent years. The ratios of variants were determined as robust, produced either under laboratory or natural, food-poisoning conditions. Examination of their actual toxicity in human epithelial HEp2-cells revealed that isocereulides A-N, although accounting for only 10% of the total cereulide toxins, were responsible for about 40% of the total cytotoxicity. An this despite the fact that some of the isocereulides were less cytotoxic than cereulide when tested individually for cytotoxicity. To estimate the additive, synergistic or antagonistic effects of the single variants, each cereulide variant was mixed with cereulide in a 1:9 and 1:1 binary blend, respectively, and tested on human cells. The results showed additive and synergistic impacts of single variants, highlighting the importance of including not only cereulide but also the isocereulides in routine food and clinical diagnostics to achieve a realistic toxicity evaluation of emetic B. cereus in contaminated food as well as in patient samples linked to foodborne outbreaks. Since the individual isoforms confer different cell toxicity both alone and in association with cereulide, further investigations are needed to fully understand their cocktail effect.
Collapse
Affiliation(s)
- Markus Kranzler
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Walser
- Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising, Germany
| | - Timo D. Stark
- Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Zheng Y, Xu W, Guo H, Yu S, Xue L, Chen M, Zhang J, Xu Z, Wu Q, Wang J, Ding Y. The potential of lactose to inhibit cereulide biosynthesis of emetic Bacillus cereus in milk. Int J Food Microbiol 2024; 411:110517. [PMID: 38096676 DOI: 10.1016/j.ijfoodmicro.2023.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
This study aims to investigate the potential role of lactose on cereulide biosynthesis by emetic Bacillus cereus in dairy matrices. The cereulide yields in whole milk and lactose-free milk were investigated using the emetic reference strain F4810/72. To eliminate the influence of complex food substrates, the LB medium model was further used to characterize the effect of lactose on cereulide produced by F4810/72 and five other emetic B. cereus strains. Results showed that the lactose-free milk displayed a 13-fold higher amount of cereulide than whole milk, but the cereulide level could be reduced by 91 % when the lactose content was restored. The significant inhibition of lactose on cereulide yields of all tested B. cereus strains was observed in LB medium, showing a dose-dependent manner with inhibition rates ranging of 89-98 %. The growth curves and lactose utilization patterns of all strains demonstrated that B. cereus cannot utilize lactose as a carbon source and lactose might act as a signal molecule to regulate cereulide production. Moreover, lactose strongly repressed the expression of cereulide synthetase genes (ces), possibly by inhibiting the key regulator Spo0A at the transcriptional level. Our findings highlight the potential of lactose as an effective strategy to control cereulide production in food.
Collapse
Affiliation(s)
- Yin Zheng
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Wenxing Xu
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Guo
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Shubo Yu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenlin Xu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yu Ding
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Wang Y, Liu Y, Yang S, Chen Y, Liu Y, Lu D, Niu H, Ren F, Xu A, Dong Q. Effect of Temperature, pH, and a w on Cereulide Synthesis and Regulator Genes Transcription with Respect to Bacillus cereus Growth and Cereulide Production. Toxins (Basel) 2024; 16:32. [PMID: 38251248 PMCID: PMC10818934 DOI: 10.3390/toxins16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Bacillus cereus is a food-borne pathogen that can produce cereulide in the growth period, which causes food poisoning symptoms. Due to its resistance to heat, extreme pH, and proteolytic enzymes, cereulide poses a serious threat to food safety. Temperature, pH, and aw can influence cereulide production, but there is still a lack of research with multi-environmental impacts. In this study, the effects of temperature (15~45 °C), pH (5~8), and aw (0.945~0.996) on the emetic reference strain B. cereus F4810/72 growth, cereulide production, relevant ces genes (cesA, cesB, cesP), and transcription regulators genes (codY and abrB) expression at transcription level were studied. B. cereus survived for 4~53 h or grew to 6.85~8.15 log10 CFU/mL in environmental combinations. Cereulide accumulation was higher in mid-temperature, acidic, or high aw environments. Increased temperature resulted in a lower cereulide concentration at pH 8 or aw of 0.970. The lowest cereulide concentration was found at pH 6.5 with an increased aw from 0.970 to 0.996. Water activity had a strong effect on transcriptional regulator genes as well as the cesB gene, and temperature was the main effect factor of cesP gene expression. Moreover, environmental factors also impact cereulide synthesis at transcriptional levels thereby altering the cereulide concentrations. The interaction of environmental factors may result in the survival of B. cereus without growth for a period. Gene expression is affected by environmental factors, and temperature and pH may be the main factors influencing the correlation between B. cereus growth and cereulide formation. This study contributed to an initial understanding of the intrinsic link between the impact of environmental factors and cereulide formation and provided valuable information for clarifying the mechanism of cereulide synthesis in combined environmental conditions.
Collapse
Affiliation(s)
- Yating Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Shuo Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Yuhang Chen
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yang Liu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China;
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China
| | - Hongmei Niu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Fanchong Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Anning Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| |
Collapse
|
8
|
Leong SS, Korel F, King JH. Bacillus cereus: A review of "fried rice syndrome" causative agents. Microb Pathog 2023; 185:106418. [PMID: 37866551 DOI: 10.1016/j.micpath.2023.106418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
"Fried rice syndrome" originated from the first exposure to a fried rice dish contaminated with Bacillus cereus. This review compiles available data on the prevalence of B. cereus outbreak cases that occurred between 1984 and 2019. The outcome of B. cereus illness varies dramatically depending on the pathogenic strain encounter and the host's immune system. B. cereus causes a self-limiting, diarrheal illness caused by heat-resistant enterotoxin proteins, and an emetic illness caused by the deadly toxin named cereulide. The toxins together with their extrinsic factors are discussed. The possibility of more contamination of B. cereus in protein-rich food has also been shown. Therefore, the aim of this review is to summarize the available data, focusing mainly on B. cereus physiology as the causative agent for "fried rice syndrome." This review emphasizes the prevalence of B. cereus in starchy food contamination and outbreak cases reported, the virulence of both enterotoxins and emetic toxins produced, and the possibility of contaminated in protein-rich food. The impact of emetic or enterotoxin-producing B. cereus on public health cannot be neglected. Thus, it is essential to constantly monitor for B. cereus contamination during food handling and hygiene practices for food product preparation.
Collapse
Affiliation(s)
- Sui Sien Leong
- Department of Animal Sciences and Fishery, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia, Nyabau Road, Bintulu, 97008, Sarawak, Malaysia; Institute of Ecosystem Science Borneo, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, Bintulu, 97008, Sarawak, Malaysia.
| | - Figen Korel
- Food Engineering Department, Faculty of Engineering, Izmir Institute of Technology, Urla, 35430, İzmir, Turkey
| | - Jie Hung King
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia, Nyabau Road, Bintulu, 97008, Sarawak, Malaysia
| |
Collapse
|
9
|
Jenull S, Bauer T, Silbermayr K, Dreer M, Stark TD, Ehling-Schulz M. The toxicological spectrum of the Bacillus cereus toxin cereulide points towards niche-specific specialisation. Environ Microbiol 2023; 25:2231-2249. [PMID: 37354053 DOI: 10.1111/1462-2920.16454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Most microbes share their environmental niches with very different forms of life thereby engaging in specialised relationships to enable their persistence. The bacterium Bacillus cereus occurs ubiquitously in the environment with certain strain backgrounds causing foodborne and opportunistic infections in humans. The emetic lineage of B. cereus is capable of producing the toxin cereulide, which evokes emetic illnesses. Although food products favouring the accumulation of cereulide are known, the ecological role of cereulide and the environmental niche of emetic B. cereus remain elusive. To better understand the ecology of cereulide-producing B. cereus, we systematically assayed the toxicological spectrum of cereulide on a variety of organisms belonging to different kingdoms. As cereulide is a potassium ionophore, we further tested the effect of environmental potassium levels on the action of cereulide. We found that adverse effects of cereulide exposure are species-specific, which can be exacerbated with increased environmental potassium. Additionally, we demonstrate that cereulide is produced within an insect cadaver indicating its potential ecological function for a saprophytic lifestyle. Collectively, distinct cereulide susceptibilities of other organisms may reflect its role in enabling competitive niche specialization of emetic B. cereus.
Collapse
Affiliation(s)
- Sabrina Jenull
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Bauer
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katja Silbermayr
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maximilian Dreer
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Hainzl T, Bonde M, Almqvist F, Johansson J, Sauer-Eriksson A. Structural insights into CodY activation and DNA recognition. Nucleic Acids Res 2023; 51:7631-7648. [PMID: 37326020 PMCID: PMC10415144 DOI: 10.1093/nar/gkad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Virulence factors enable pathogenic bacteria to infect host cells, establish infection, and contribute to disease progressions. In Gram-positive pathogens such as Staphylococcus aureus (Sa) and Enterococcus faecalis (Ef), the pleiotropic transcription factor CodY plays a key role in integrating metabolism and virulence factor expression. However, to date, the structural mechanisms of CodY activation and DNA recognition are not understood. Here, we report the crystal structures of CodY from Sa and Ef in their ligand-free form and their ligand-bound form complexed with DNA. Binding of the ligands-branched chain amino acids and GTP-induces conformational changes in the form of helical shifts that propagate to the homodimer interface and reorient the linker helices and DNA binding domains. DNA binding is mediated by a non-canonical recognition mechanism dictated by DNA shape readout. Furthermore, two CodY dimers bind to two overlapping binding sites in a highly cooperative manner facilitated by cross-dimer interactions and minor groove deformation. Our structural and biochemical data explain how CodY can bind a wide range of substrates, a hallmark of many pleiotropic transcription factors. These data contribute to a better understanding of the mechanisms underlying virulence activation in important human pathogens.
Collapse
Affiliation(s)
- Tobias Hainzl
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Mari Bonde
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - A Elisabeth Sauer-Eriksson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Nevers A, Kranzler M, Perchat S, Gohar M, Sorokin A, Lereclus D, Ehling-Schulz M, Sanchis-Borja V. Plasmid - Chromosome interplay in natural and non-natural hosts: global transcription study of three Bacillus cereus group strains carrying pCER270 plasmid. Res Microbiol 2023; 174:104074. [PMID: 37149076 DOI: 10.1016/j.resmic.2023.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The Bacillus cereus group comprises genetically related Gram-positive spore-forming bacteria that colonize a wide range of ecological niches and hosts. Despite their high degree of genome conservation, extrachromosomal genetic material diverges between these species. The discriminating properties of the B. cereus group strains are mainly due to plasmid-borne toxins, reflecting the importance of horizontal gene transfers in bacterial evolution and species definition. To investigate how a newly acquired megaplasmid can impact the transcriptome of its host, we transferred the pCER270 from the emetic B. cereus strains to phylogenetically distant B. cereus group strains. RNA-sequencing experiments allowed us to determine the transcriptional influence of the plasmid on host gene expression and the impact of the host genomic background on the pCER270 gene expression. Our results show a transcriptional cross-regulation between the megaplasmid and the host genome. pCER270 impacted carbohydrate metabolism and sporulation genes expression, with a higher effect in the natural host of the plasmid, suggesting a role of the plasmid in the adaptation of the carrying strain to its environment. In addition, the host genomes also modulated the expression of pCER270 genes. Altogether, these results provide an example of the involvement of megaplasmids in the emergence of new pathogenic strains.
Collapse
Affiliation(s)
- Alicia Nevers
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Markus Kranzler
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna; Vienna, Austria
| | - Stéphane Perchat
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Michel Gohar
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Didier Lereclus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna; Vienna, Austria.
| | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
12
|
Yang S, Wang Y, Liu Y, Jia K, Zhang Z, Dong Q. Cereulide and Emetic Bacillus cereus: Characterizations, Impacts and Public Precautions. Foods 2023; 12:833. [PMID: 36832907 PMCID: PMC9956921 DOI: 10.3390/foods12040833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise public concerns. A better understanding of the impact of B. cereus and cereulide is urgently needed to prevent contamination and toxin production, thereby protecting public health. Over the last decade, a wide range of research has been conducted regarding B. cereus and cereulide. Despite this, summarized information highlighting precautions at the public level involving the food industry, consumers and regulators is lacking. Therefore, the aim of the current review is to summarize the available data describing the characterizations and impacts of emetic B. cereus and cereulide; based on this information, precautions at the public level are proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road No. 334, Yangpu District, Shanghai 200093, China
| |
Collapse
|
13
|
Tolibia SEM, Pacheco AD, Balbuena SYG, Rocha J, López Y López VE. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview. World J Microbiol Biotechnol 2022; 39:12. [PMID: 36372802 DOI: 10.1007/s11274-022-03460-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Transcriptional factors are well studied in bacteria for their global interactions and the effects they produce at the phenotypic level. Particularly, Bacillus subtilis has been widely employed as a model Gram-positive microorganism used to characterize these network interactions. Bacillus species are currently used as efficient commercial microbial platforms to produce diverse metabolites such as extracellular enzymes, antibiotics, surfactants, industrial chemicals, heterologous proteins, among others. However, the pleiotropic effects caused by the genetic modification of specific genes that codify for global regulators (transcription factors) have not been implicated commonly from a bioprocess point of view. Recently, these strategies have attracted the attention in Bacillus species because they can have an application to increase production efficiency of certain commercial interest metabolites. In this review, we update the recent advances that involve this trend in the use of genetic engineering (mutations, deletion, or overexpression) performed to global regulators such as Spo0A, CcpA, CodY and AbrB, which can provide an advantage for the development or improvement of bioprocesses that involve Bacillus species as production platforms. Genetic networks, regulation pathways and their relationship to the development of growth stages are also discussed to correlate the interactions that occur between these regulators, which are important to consider for application in the improvement of commercial-interest metabolites. Reported yields from these products currently produced mostly under laboratory conditions and, in a lesser extent at bioreactor level, are also discussed to give valuable perspectives about their potential use and developmental level directed to process optimization at large-scale.
Collapse
Affiliation(s)
- Shirlley Elizabeth Martínez Tolibia
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, CP 90000, Guillermo Valle, Tlaxcala, Mexico
| | - Sulem Yali Granados Balbuena
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Jorge Rocha
- CONACyT - Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, A.C. Blvd. Santa Catarina, SN, C.P. 42163, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
14
|
Impact of a Novel PagR-like Transcriptional Regulator on Cereulide Toxin Synthesis in Emetic Bacillus cereus. Int J Mol Sci 2022; 23:ijms231911479. [PMID: 36232797 PMCID: PMC9570423 DOI: 10.3390/ijms231911479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
The emetic type of foodborne disease caused by Bacillus cereus is produced by the small peptide toxin cereulide. The genetic locus encoding the Ces nonribosomal peptide synthetase (CesNRPS) multienzyme machinery is located on a 270 kb megaplasmid, designated pCER270, which shares its backbone with the Bacillus anthracis toxin plasmid pXO1. Although the ces genes are plasmid-borne, the chromosomally encoded pleiotropic transcriptional factors CodY and AbrB are key players in the control of ces transcription. Since these proteins only repress cereulide synthesis during earlier growth phases, other factors must be involved in the strict control of ces expression and its embedment in the bacterial life cycle. In silico genome analysis revealed that pCER270 carries a putative ArsR/SmtB family transcription factor showing high homology to PagR from B. anthracis. As PagR plays a crucial role in the regulation of the protective antigen gene pagA, which forms part of anthrax toxin, we used a gene-inactivation approach, combined with electrophoretic mobility shift assays and a bacterial two-hybrid system for dissecting the role of the PagR homologue PagRBc in the regulation of cereulide synthesis. Our results highlight that the plasmid-encoded transcriptional regulator PagRBc plays an important role in the complex and multilayered process of cereulide synthesis.
Collapse
|
15
|
Regulation of Enterotoxins Associated with Bacillus cereus Sensu Lato Toxicoinfection. Appl Environ Microbiol 2022; 88:e0040522. [PMID: 35730937 PMCID: PMC9275247 DOI: 10.1128/aem.00405-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus sensu lato (s.l.) includes foodborne pathogens, as well as beneficial microorganisms, such as bioinsecticides. Some of the beneficial and commercially used B. cereus s.l. strains have been shown to carry enterotoxin genes, the products of which can cause toxicoinfection in humans. Furthermore, recent epidemiological reports indicated that some bioinsecticidal strains have been linked with foodborne illness outbreaks. This demonstrates the need for improved surveillance of B. cereus s.l., which includes characterization of isolates' virulence capacity. However, the prediction of virulence capacity of B. cereus s.l. strains is challenging. Genetic screening for enterotoxin gene presence has proven to be insufficient for accurate discrimination between virulent and avirulent strains, given that nearly all B. cereus s.l. strains carry at least one enterotoxin gene. Furthermore, complex regulatory networks governing the expression of enterotoxins, and potential synergistic interactions between enterotoxins and other virulence factors make the prediction of toxicoinfection based on isolates' genome sequences challenging. In this review, we summarize and synthesize the current understanding of the regulation of enterotoxins associated with the B. cereus s.l. toxicoinfection and identify gaps in the knowledge that need to be addressed to facilitate identification of genetic markers predictive of cytotoxicity and toxicoinfection.
Collapse
|
16
|
Bacillus cereus Toxin Repertoire: Diversity of (Iso)cereulide(s). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030872. [PMID: 35164132 PMCID: PMC8840689 DOI: 10.3390/molecules27030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
The emetic Bacillus cereus toxin cereulide (1) poses a significant safety risk in the food industry, causing emesis and nausea after consumption of contaminated foods. Analogously to cereulide, the structures of various isocereulides, namely, isocereulides A–G, have been recently reported and could also be identified in B. cereus-contaminated food samples. The HPLC fractionation of B. cereus extracts allows us to isolate additional isocereulides. By applying MSn sequencing, post-hydrolytic dipeptide, amino acid and α-hydroxy acid analyses using UPLC-ESI-TOF-MS to purify the analytes, seven new isocereulides H–N (2–8) could be elucidated in their chemical structures. The structure elucidation was supported by one-dimensional and two-dimensional NMR spectra of the isocereulides H (2), K (5), L and N (6 + 8) and M (7). The toxicity of 2–8 was investigated in a HEp-2 cell assay to determine their respective 50% effective concentration (EC50). Thus, 2–8 exhibited EC50 values ranging from a 0.4- to 1.4-fold value compared to cereulide (1). Missing structure-activity correlations indicate the necessity to determine the toxic potential of all naturally present isocereulides as single compounds to be able to perform a thorough toxicity evaluation of B. cereus-contaminated foods in the future.
Collapse
|
17
|
Jovanovic J, Ornelis VFM, Madder A, Rajkovic A. Bacillus cereus food intoxication and toxicoinfection. Compr Rev Food Sci Food Saf 2021; 20:3719-3761. [PMID: 34160120 DOI: 10.1111/1541-4337.12785] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vincent F M Ornelis
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Coburn PS, Miller FC, Enty MA, Land C, LaGrow AL, Mursalin MH, Callegan MC. The Bacillus virulome in endophthalmitis. MICROBIOLOGY-SGM 2021; 167. [PMID: 34032564 DOI: 10.1099/mic.0.001057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacillus cereus is recognized as a causative agent of gastrointestinal syndromes, but can also cause a devastating form of intraocular infection known as endophthalmitis. We have previously reported that the PlcR/PapR master virulence factor regulator system regulates intraocular virulence, and that the S-layer protein (SlpA) contributes to the severity of B. cereus endophthalmitis. To better understand the role of other B. cereus virulence genes in endophthalmitis, expression of a subset of factors was measured at the midpoint of disease progression in a murine model of endophthalmitis by RNA-Seq. Several cytolytic toxins were expressed at significantly higher levels in vivo than in BHI. The virulence regulators codY, gntR, and nprR were also expressed in vivo. However, at this timepoint, plcR/papR was not detectable, although we previously reported that a B. cereus mutant deficient in PlcR was attenuated in the eye. The motility-related genes fla, fliF, and motB, and the chemotaxis-related gene cheA were detected during infection. We have shown previously that motility and chemotaxis phenotypes are important in B. cereus endophthalmitis. The sodA2 variant of manganese superoxide dismutase was the most highly expressed gene in vivo. Expression of the surface layer protein gene, slpA, an activator of Toll-like receptors (TLR)-2 and -4, was also detected during infection, albeit at low levels. Genes expressed in a mouse model of Bacillus endophthalmitis might play crucial roles in the unique virulence of B. cereus endophthalmitis, and serve as candidates for novel therapies designed to attenuate the severity of this often blinding infection.
Collapse
Affiliation(s)
- Phillip S Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Frederick C Miller
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Morgan A Enty
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Craig Land
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Austin L LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michelle C Callegan
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
19
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
20
|
Smith V, Josefsen M, Lindbäck T, Hegna IK, Finke S, Tourasse NJ, Nielsen-LeRoux C, Økstad OA, Fagerlund A. MogR Is a Ubiquitous Transcriptional Repressor Affecting Motility, Biofilm Formation and Virulence in Bacillus thuringiensis. Front Microbiol 2020; 11:610650. [PMID: 33424814 PMCID: PMC7793685 DOI: 10.3389/fmicb.2020.610650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Flagellar motility is considered an important virulence factor in different pathogenic bacteria. In Listeria monocytogenes the transcriptional repressor MogR regulates motility in a temperature-dependent manner, directly repressing flagellar- and chemotaxis genes. The only other bacteria known to carry a mogR homolog are members of the Bacillus cereus group, which includes motile species such as B. cereus and Bacillus thuringiensis as well as the non-motile species Bacillus anthracis, Bacillus mycoides and Bacillus pseudomycoides. Furthermore, the main motility locus in B. cereus group bacteria, carrying the genes for flagellar synthesis, appears to be more closely related to L. monocytogenes than to Bacillus subtilis, which belongs to a separate phylogenetic group of Bacilli and does not carry a mogR ortholog. Here, we show that in B. thuringiensis, MogR overexpression results in non-motile cells devoid of flagella. Global gene expression profiling showed that 110 genes were differentially regulated by MogR overexpression, including flagellar motility genes, but also genes associated with virulence, stress response and biofilm lifestyle. Accordingly, phenotypic assays showed that MogR also affects cytotoxicity and biofilm formation in B. thuringiensis. Overexpression of a MogR variant mutated in two amino acids within the putative DNA binding domain restored phenotypes to those of an empty vector control. In accordance, introduction of these mutations resulted in complete loss in MogR binding to its candidate flagellar locus target site in vitro. In contrast to L. monocytogenes, MogR appears to be regulated in a growth-phase dependent and temperature-independent manner in B. thuringiensis 407. Interestingly, mogR was found to be conserved also in non-motile B. cereus group species such as B. mycoides and B. pseudomycoides, which both carry major gene deletions in the flagellar motility locus and where in B. pseudomycoides mogR is the only gene retained. Furthermore, mogR is expressed in non-motile B. anthracis. Altogether this provides indications of an expanded set of functions for MogR in B. cereus group species, beyond motility regulation. In conclusion, MogR constitutes a novel B. thuringiensis pleiotropic transcriptional regulator, acting as a repressor of motility genes, and affecting the expression of a variety of additional genes involved in biofilm formation and virulence.
Collapse
Affiliation(s)
- Veronika Smith
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Malin Josefsen
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ida K Hegna
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Sarah Finke
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Nicolas J Tourasse
- CNRS, INSERM, ARNA, UMR 5320, U1212, University of Bordeaux, Bordeaux, France
| | | | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Annette Fagerlund
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
21
|
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins (Basel) 2020; 12:E701. [PMID: 33167492 PMCID: PMC7694497 DOI: 10.3390/toxins12110701] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B. cereus.
Collapse
Affiliation(s)
- Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| |
Collapse
|
22
|
Beyond Toxin Transport: Novel Role of ABC Transporter for Enzymatic Machinery of Cereulide NRPS Assembly Line. mBio 2020; 11:mBio.01577-20. [PMID: 32994334 PMCID: PMC7527721 DOI: 10.1128/mbio.01577-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study revealed a novel, potentially conserved mechanism involved in the biosynthesis of microbial natural products, exemplified by the mitochondrial active depsipeptide cereulide. Similar to other bioactive substances, such as the last-resort antibiotics vancomycin and daptomycin, the antitumor drug cryptophycin or the cholesterol-lowering agent lovastatin, cereulide is synthesized nonribosomally by multienzyme machinery, requiring the concerted actions of multiple proteins to ensure correct product assembly. Given the importance of microbial secondary metabolites in human and veterinary medicine, it is critical to understand how these processes are orchestrated within the host cells. By revealing that tethering of a biosynthetic enzyme to the cell membrane by an ABC transporter is essential for nonribosomal peptide production, our study provides novel insights into synthesis of microbial secondary metabolites, which could contribute to isolation of novel compounds from cryptic secondary metabolite clusters or improve the yield of produced pharmaceuticals. Nonribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs) play a pivotal role in the production of bioactive natural products, such as antibiotics and cytotoxins. Despite biomedical and pharmaceutical importance, the molecular mechanisms and architectures of these multimodular enzyme complexes are not fully understood. Here, we report on an ABC transporter that forms a vital part of the nonribosomal peptide biosynthetic machinery. Emetic Bacillus cereus produces the highly potent, mitochondrial active nonribosomal depsipeptide cereulide, synthesized by the NRPS Ces. The ces gene locus includes, next to the structural cesAB genes, a putative ABC transporter, designated cesCD. Our study demonstrates that tethering of CesAB synthetase to the cell membrane by CesCD is critical for peptide assembly. In vivo studies revealed that CesAB colocalizes with CesCD on the cell membrane, suggesting direct involvement of this ABC transporter in the biosynthesis of a nonribosomal peptide. Mutation of cesCD, disrupting the assembly of the CesCD complex, resulted in decreased interaction with CesAB and, as a consequence, negatively affected cereulide biosynthesis. Specific domains within CesAB synthetase interacting with CesC were identified. Furthermore, we demonstrated that the structurally similar BerAB transporter from Bacillus thuringiensis complements CesCD function in cereulide biosynthesis, suggesting that the direct involvement of ABC transporter in secondary metabolite biosynthesis could be a widespread mechanism. In summary, our study revealed a novel, noncanonical function for ABC transporter, which is essential for megaenzyme functionality of NRPS. The new insights into natural product biosynthesis gained may facilitate the discovery of new metabolites with bioactive potential.
Collapse
|
23
|
Coburn PS, Miller FC, Enty MA, Land C, LaGrow AL, Mursalin MH, Callegan MC. Expression of Bacillus cereus Virulence-Related Genes in an Ocular Infection-Related Environment. Microorganisms 2020; 8:microorganisms8040607. [PMID: 32331252 PMCID: PMC7232466 DOI: 10.3390/microorganisms8040607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/03/2022] Open
Abstract
Bacillus cereus produces many factors linked to pathogenesis and is recognized for causing gastrointestinal toxemia and infections. B. cereus also causes a fulminant and often blinding intraocular infection called endophthalmitis. We reported that the PlcR/PapR system regulates intraocular virulence, but the specific factors that contribute to B. cereus virulence in the eye remain elusive. Here, we compared gene expression in ex vivo vitreous humor with expression in Luria Bertani (LB) and Brain Heart Infusion (BHI) broth by RNA-Seq. The expression of several cytolytic toxins in vitreous was less than or similar to levels observed in BHI or LB. Regulators of virulence genes, including PlcR/PapR, were expressed in vitreous. PlcR/PapR was expressed at low levels, though we reported that PlcR-deficient B. cereus was attenuated in the eye. Chemotaxis and motility genes were expressed at similar levels in LB and BHI, but at low to undetectable levels in vitreous, although motility is an important phenotype for B. cereus in the eye. Superoxide dismutase, a potential inhibitor of neutrophil activity in the eye during infection, was the most highly expressed gene in vitreous. Genes previously reported to be important to intraocular virulence were expressed at low levels in vitreous under these conditions, possibly because in vivo cues are required for higher level expression. Genes expressed in vitreous may contribute to the unique virulence of B. cereus endophthalmitis, and future analysis of the B. cereus virulome in the eye will identify those expressed in vivo, which could potentially be targeted to arrest virulence.
Collapse
Affiliation(s)
- Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
- Correspondence:
| | - Frederick C. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Morgan A. Enty
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
| | - Craig Land
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
| | - Austin L. LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
| | - Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
24
|
Huillet E, Bridoux L, Barboza I, Lemy C, André-Leroux G, Lereclus D. The signaling peptide PapR is required for the activity of the quorum-sensor PlcRa in Bacillus thuringiensis. MICROBIOLOGY-SGM 2020; 166:398-410. [PMID: 32067627 DOI: 10.1099/mic.0.000883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transcriptional regulator PlcR, its cognate cell-cell signaling heptapeptide PapR7, and the oligopeptide permease OppABCDF, required for PapR7 import, form a quorum-sensing system that controls the expression of virulence factors in Bacillus cereus and Bacillus thuringiensis species. In B. cereus strain ATCC 14579, the transcriptional regulator PlcRa activates the expression of abrB2 gene, which encodes an AbrB-like transcriptional regulator involved in cysteine biosynthesis. PlcRa is a structural homolog of PlcR: in particular, its C-terminal TPR peptide-binding domain could be similarly arranged as in PlcR. The signaling peptide of PlcRa is not known. As PlcRa is a PlcR-like protein, the cognate PapR7 peptide (ADLPFEF) is a relevant candidate to act as a signaling peptide for PlcRa activation. Also, the putative PapRa7 peptide (CSIPYEY), encoded by the papRa gene adjacent to the plcRa gene, is a relevant candidate as addition of synthetic PapRa7 induces a dose-dependent increase of abrB2 expression. To address the issue of peptide selectivity of PlcRa, the role of PapR and PapRa peptides in PlcRa activity was investigated in B. thuringiensis 407 strain, by genetic and functional complementation analyses. A transcriptional fusion between the promoter of abrB2 and lacZ was used to monitor the PlcRa activity in various genetic backgrounds. We demonstrated that PapR was necessary and sufficient for PlcRa activity. We showed that synthetic PapRs from pherogroups II, III and IV and synthetic PapRa7 were able to trigger abrB2 expression, suggesting that PlcRa is less selective than PlcR. Lastly, the mode of binding of PlcRa was addressed using an in silico approach. Overall, we report a new role for PapR as a signaling peptide for PlcRa activity and show a functional link between PlcR and PlcRa regulons in B. thuringiensis.
Collapse
Affiliation(s)
- Eugénie Huillet
- INRAE, Micalis, AgroParisTech, Université Paris-Saclay, F-78352, Jouy-en-Josas, France
| | - Ludovic Bridoux
- INRAE, Micalis, AgroParisTech, Université Paris-Saclay, F-78352, Jouy-en-Josas, France
| | - Isabelle Barboza
- Present address: IBENS Institute, CNRS UMR8197, Inserm U1024, Paris, France.,INRAE, Micalis, AgroParisTech, Université Paris-Saclay, F-78352, Jouy-en-Josas, France
| | - Christelle Lemy
- Present address: CERTIA, Unité Matériaux et Transformations, INRA, Villeneuve d'Ascq, France.,INRAE, Micalis, AgroParisTech, Université Paris-Saclay, F-78352, Jouy-en-Josas, France
| | | | - Didier Lereclus
- INRAE, Micalis, AgroParisTech, Université Paris-Saclay, F-78352, Jouy-en-Josas, France
| |
Collapse
|
25
|
The oligopeptide ABC-importers are essential communication channels in Gram-positive bacteria. Res Microbiol 2019; 170:338-344. [PMID: 31376485 DOI: 10.1016/j.resmic.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Abstract
The transport of peptides in microorganisms plays an important role in their physiology and behavior, both as a nutrient source and as a proxy to sense their environment. This latter function is evidenced in Gram-positive bacteria where cell-cell communication is mediated by small peptides. Here, we highlight the importance of the oligopeptide permease (Opp) systems in the various major processes controlled by signaling peptides, such as sporulation, virulence and conjugation. We underline that the functioning of these communication systems is tightly linked to the developmental status of the bacteria via the regulation of opp gene expression by transition phase regulators.
Collapse
|
26
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
27
|
Dubois T, Lemy C, Perchat S, Lereclus D. The signaling peptide NprX controlling sporulation and necrotrophism is imported into Bacillus thuringiensis by two oligopeptide permease systems. Mol Microbiol 2019; 112:219-232. [PMID: 31017318 DOI: 10.1111/mmi.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
Abstract
The infectious cycle of Bacillus thuringiensis in the insect host is regulated by quorum sensors of the RNPP family. The activity of these regulators is modulated by their cognate signaling peptides translocated into the bacterial cells by oligopeptide permeases (Opp systems). In B. thuringiensis, the quorum sensor NprR is a bi-functional regulator that connects sporulation to necrotrophism. The binding of the signaling peptide NprX switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. Here, we report that NprX is imported into the bacterial cells by two different oligopeptide permease systems. The first one is Opp, the system known to be involved in the import of the signaling peptide PapR in B. thuringiensis and Bacillus cereus. The second, designated as Npp (NprX peptide permease), was not previously described. We show that at least two substrate binding proteins (SBPs) are able to translocate NprX through OppBCDF. In contrast, we demonstrate that a unique SBP (NppA) can translocate NprX through NppDFBC. We identified the promoter of the npp operon, and we showed that transcription starts at the onset of stationary phase and is repressed by the nutritional regulator CodY during the exponential growth phase.
Collapse
Affiliation(s)
- Thomas Dubois
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Christelle Lemy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| |
Collapse
|
28
|
Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio 2018; 9:mBio.01188-18. [PMID: 30181248 PMCID: PMC6123439 DOI: 10.1128/mbio.01188-18] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. A body of research has accumulated over the years to describe the multifaceted physiological roles of BCAAs and the mechanisms bacteria use to maintain their intracellular levels. More recent studies have focused on understanding how fluctuations in their intracellular levels impact global regulatory pathways that coordinate the adaptation to nutrient limitation, especially in pathogenic bacteria. In this minireview, we discuss how these studies have refined the individual roles of BCAAs, shed light on how BCAA auxotrophy might promote higher sensitivity to exogenous BCAA levels, and revealed pathogen-specific responses to BCAA deprivation. These advancements improve our understanding of how bacteria meet their nutritional requirements for growth while simultaneously remaining responsive to changes in environmental nutrient availability to promote their survival in a range of environments.
Collapse
|
29
|
CodY-Mediated c-di-GMP-Dependent Inhibition of Mammalian Cell Invasion in Listeria monocytogenes. J Bacteriol 2018; 200:JB.00457-17. [PMID: 29229701 DOI: 10.1128/jb.00457-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
Elevated levels of the second messenger c-di-GMP suppress virulence in diverse pathogenic bacteria, yet mechanisms are poorly characterized. In the foodborne pathogen Listeria monocytogenes, high c-di-GMP levels inhibit mammalian cell invasion. Here, we show that invasion is impaired because of the decreased expression levels of internalin genes whose products are involved in invasion. We further show that at high c-di-GMP levels, the expression of the entire virulence regulon is suppressed, and so is the expression of the prfA gene encoding the master activator of the virulence regulon. Analysis of mechanisms controlling prfA expression pointed to the transcription factor CodY as a c-di-GMP-sensitive component. In high-c-di-GMP strains, codY gene expression is decreased, apparently due to the lower activity of CodY, which functions as an activator of codY transcription. We found that listerial CodY does not bind c-di-GMP in vitro and therefore investigated whether c-di-GMP levels affect two known cofactors of listerial CodY, branched-chain amino acids and GTP. Our manipulation of branched-chain amino acid levels did not perturb the c-di-GMP effect; however, our replacement of listerial CodY with the streptococcal CodY homolog, whose activity is GTP independent, abolished the c-di-GMP effect. The results of this study suggest that elevated c-di-GMP levels decrease the activity of the coordinator of metabolism and virulence, CodY, possibly via lower GTP levels, and that decreased CodY activity suppresses L. monocytogenes virulence by the decreased expression of the PrfA virulence regulon.IMPORTANCEListeria monocytogenes is a pathogen causing listeriosis, a disease responsible for the highest mortality rate among foodborne diseases. Understanding how the virulence of this pathogen is regulated is important for developing treatments to decrease the frequency of listerial infections in susceptible populations. In this study, we describe the mechanism through which elevated levels of the second messenger c-di-GMP inhibit listerial invasion in mammalian cells. Inhibition is caused by the decreased activity of the transcription factor CodY that coordinates metabolism and virulence.
Collapse
|
30
|
The CodY-dependent clhAB2 operon is involved in cell shape, chaining and autolysis in Bacillus cereus ATCC 14579. PLoS One 2017; 12:e0184975. [PMID: 28991912 PMCID: PMC5633148 DOI: 10.1371/journal.pone.0184975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 09/05/2017] [Indexed: 11/19/2022] Open
Abstract
The Gram-positive pathogen Bacillus cereus is able to grow in chains of rod-shaped cells, but the regulation of chaining remains largely unknown. Here, we observe that glucose-grown cells of B. cereus ATCC 14579 form longer chains than those grown in the absence of glucose during the late exponential and transition growth phases, and identify that the clhAB2 operon is required for this chain lengthening phenotype. The clhAB2 operon is specific to the B. cereus group (i.e., B. thuringiensis, B. anthracis and B. cereus) and encodes two membrane proteins of unknown function, which are homologous to the Staphylococcus aureus CidA and CidB proteins involved in cell death control within glucose-grown cells. A deletion mutant (ΔclhAB2) was constructed and our quantitative image analyses show that ΔclhAB2 cells formed abnormal short chains regardless of the presence of glucose. We also found that glucose-grown cells of ΔclhAB2 were significantly wider than wild-type cells (1.47 μm ±CI95% 0.04 vs 1.19 μm ±CI95% 0.03, respectively), suggesting an alteration of the bacterial cell wall. Remarkably, ΔclhAB2 cells showed accelerated autolysis under autolysis-inducing conditions, compared to wild-type cells. Overall, our data suggest that the B. cereus clhAB2 operon modulates peptidoglycan hydrolase activity, which is required for proper cell shape and chain length during cell growth, and down-regulates autolysin activity. Lastly, we studied the transcription of clhAB2 using a lacZ transcriptional reporter in wild-type, ccpA and codY deletion-mutant strains. We found that the global transcriptional regulatory protein CodY is required for the basal level of clhAB2 expression under all conditions tested, including the transition growth phase while CcpA, the major global carbon regulator, is needed for the high-level expression of clhAB2 in glucose-grown cells.
Collapse
|
31
|
Niu K, Kuk M, Jung H, Chan K, Kim S. Leaf Extracts of Selected Gardening Trees Can Attenuate Quorum Sensing and Pathogenicity of Pseudomonas aeruginosa PAO1. Indian J Microbiol 2017; 57:329-338. [PMID: 28904418 DOI: 10.1007/s12088-017-0660-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022] Open
Abstract
An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 (Acer palmatum), K9 (Acer pseudosieboldianum) and K13 (Cercis chinensis) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Kaimin Niu
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Min Kuk
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Haein Jung
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Kokgan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sooki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
32
|
Mascher G, Mertaoja A, Korkeala H, Lindström M. Neurotoxin synthesis is positively regulated by the sporulation transcription factor Spo0A in Clostridium botulinum type E. Environ Microbiol 2017; 19:4287-4300. [PMID: 28809452 DOI: 10.1111/1462-2920.13892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022]
Abstract
Clostridium botulinum produces the most potent natural toxin, the botulinum neurotoxin (BoNT), probably to create anaerobiosis and nutrients by killing the host, and forms endospores that facilitate survival in harsh conditions and transmission. Peak BoNT production coincides with initiation of sporulation in C. botulinum cultures, which suggests common regulation. Here, we show that Spo0A, the master regulator of sporulation, positively regulates BoNT production. Insertional inactivation of spo0A in C. botulinum type E strain Beluga resulted in significantly reduced BoNT production and in abolished or highly reduced sporulation in relation to wild-type controls. Complementation with spo0A restored BoNT production and sporulation. Recombinant DNA-binding domain of Spo0A directly bound to a putative Spo0A-binding box (CTTCGAA) within the BoNT/E operon promoter, demonstrating direct regulation. Spo0A is the first neurotoxin regulator reported in C. botulinum type E. Unlike other C. botulinum strains that are terrestrial and employ the alternative sigma factor BotR in directing BoNT expression, C. botulinum type E strains are adapted to aquatic ecosystems, possess distinct epidemiology and lack BotR. Our results provide fundamental new knowledge on the genetic control of BoNT production and demonstrate common regulation of BoNT production and sporulation, providing a key intervention point for control.
Collapse
Affiliation(s)
- Gerald Mascher
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Mertaoja
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Gómez-Govea MA, García S, Heredia N. Bacterial metabolites from intra- and inter-species influencing thermotolerance: the case of Bacillus cereus and Geobacillus stearothermophilus. Folia Microbiol (Praha) 2016; 62:183-189. [PMID: 27896600 DOI: 10.1007/s12223-016-0487-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Abstract
Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 50 12.2-51.9) when compared to supernatants from non-HS cultures (D 50 7.4-21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 50 3.7-7.1), a subsequent increase was detected in most cases (D 50 18-97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.
Collapse
Affiliation(s)
- Mayra Alejandra Gómez-Govea
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, 66455, San Nicolás de los Garza, N.L, Mexico
| | - Santos García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, 66455, San Nicolás de los Garza, N.L, Mexico
| | - Norma Heredia
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, 66455, San Nicolás de los Garza, N.L, Mexico.
| |
Collapse
|
34
|
Kranzler M, Stollewerk K, Rouzeau-Szynalski K, Blayo L, Sulyok M, Ehling-Schulz M. Temperature Exerts Control of Bacillus cereus Emetic Toxin Production on Post-transcriptional Levels. Front Microbiol 2016; 7:1640. [PMID: 27826288 PMCID: PMC5078297 DOI: 10.3389/fmicb.2016.01640] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
Abstract
In recent years, the emetic toxin cereulide, produced by Bacillus cereus, has gained high relevance in food production and food safety. Cereulide is synthesized non-ribosomal by the multi-enzyme complex Ces-NRPS, which is encoded on a megaplasmid that shares its backbone with the Bacillus anthracis pX01 toxin plasmid. Due to its resistance against heat, proteolysis and extreme pH conditions, the formation of this highly potent depsipeptide toxin is of serious concern in food processing procedures including slow cooling procedures and/or storage of intermediate products at ambient temperatures. So far, systematic data on the effect of extrinsic factors on cereulide synthesis has been lacking. Thus, we investigated the influence of temperature, a central extrinsic parameter in food processing, on the regulation of cereulide synthesis on transcriptional, translational and post-translational levels over the growth temperature range of emetic B. cereus. Bacteria were grown in 3°C interval steps from 12 to 46°C and cereulide synthesis was followed from ces gene transcription to cereulide toxin production. This systematic study revealed that temperature is a cardinal parameter, which primarily impacts cereulide synthesis on post-transcriptional levels, thereby altering the composition of cereulide isoforms. Our work also highlights that the risk of cereulide production could not be predicted from growth parameters or sole cell numbers. Furthermore, for the first time we could show that the formation of the recently identified cereulide isoforms is highly temperature dependent, which may have great importance in terms of food safety and predictive microbiology. Notably the production of isocereulide A, which is about 10-fold more cytotoxic than cereulide, was specifically supported at low temperatures.
Collapse
Affiliation(s)
- Markus Kranzler
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| | - Katharina Stollewerk
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| | | | - Laurence Blayo
- Food Safety Microbiology, Nestec Ltd, Nestlé Research Center Lausanne, Switzerland
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology, IFA Tulln, University of Natural Resources and Life Sciences Vienna (BOKU) Vienna, Austria
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| |
Collapse
|
35
|
Mazzantini D, Celandroni F, Salvetti S, Gueye SA, Lupetti A, Senesi S, Ghelardi E. FlhF Is Required for Swarming Motility and Full Pathogenicity of Bacillus cereus. Front Microbiol 2016; 7:1644. [PMID: 27807433 PMCID: PMC5069341 DOI: 10.3389/fmicb.2016.01644] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/03/2016] [Indexed: 11/13/2022] Open
Abstract
Besides sporulation, Bacillus cereus can undergo a differentiation process in which short swimmer cells become elongated and hyperflagellated swarmer cells that favor migration of the bacterial community on a surface. The functionally enigmatic flagellar protein FlhF, which is the third paralog of the signal recognition particle (SRP) GTPases Ffh and FtsY, is required for swarming in many bacteria. Previous data showed that FlhF is involved in the control of the number and positioning of flagella in B. cereus. In this study, in silico analysis of B. cereus FlhF revealed that this protein presents conserved domains that are typical of SRPs in many organisms and a peculiar N-terminal basic domain. By proteomic analysis, a significant effect of FlhF depletion on the amount of secreted proteins was found with some proteins increased (e.g., B component of the non-hemolytic enterotoxin, cereolysin O, enolase) and others reduced (e.g., flagellin, L2 component of hemolysin BL, bacillolysin, sphingomyelinase, PC-PLC, PI-PLC, cytotoxin K) in the extracellular proteome of a ΔflhF mutant. Deprivation of FlhF also resulted in significant attenuation in the pathogenicity of this strain in an experimental model of infection in Galleria mellonella larvae. Our work highlights the multifunctional role of FlhF in B. cereus, being this protein involved in bacterial flagellation, swarming, protein secretion, and pathogenicity.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Sara Salvetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Sokhna A Gueye
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Sonia Senesi
- Department of Biology, University of Pisa Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy; Research Center Nutraceuticals and Food for Health-Nutrafood, University of PisaPisa, Italy
| |
Collapse
|
36
|
Majed R, Faille C, Kallassy M, Gohar M. Bacillus cereus Biofilms-Same, Only Different. Front Microbiol 2016; 7:1054. [PMID: 27458448 PMCID: PMC4935679 DOI: 10.3389/fmicb.2016.01054] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area.
Collapse
Affiliation(s)
- Racha Majed
- Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-SaclayJouy-en-Josas, France; Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-JosephBeirut, Lebanon
| | - Christine Faille
- UMR UMET: Unité Matériaux et Transformations, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lille Villeneuve d'Ascq, France
| | - Mireille Kallassy
- Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-Joseph Beirut, Lebanon
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-SaclayJouy-en-Josas, France; Unité de Recherche Technologies et Valorisation Alimentaire, Laboratoire de Biotechnologie, Université Saint-JosephBeirut, Lebanon
| |
Collapse
|
37
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
38
|
Böhm ME, Krey VM, Jeßberger N, Frenzel E, Scherer S. Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus hbl and nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity. Front Microbiol 2016; 7:768. [PMID: 27252687 PMCID: PMC4877379 DOI: 10.3389/fmicb.2016.00768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022] Open
Abstract
Bacillus cereus is a food contaminant with greatly varying enteropathogenic potential. Almost all known strains harbor the genes for at least one of the three enterotoxins Nhe, Hbl, and CytK. While some strains show no cytotoxicity, others have caused outbreaks, in rare cases even with lethal outcome. The reason for these differences in cytotoxicity is unknown. To gain insight into the origin of enterotoxin expression heterogeneity in different strains, the architecture and role of 5′ intergenic regions (5′ IGRs) upstream of the nhe and hbl operons was investigated. In silico comparison of 142 strains of all seven phylogenetic groups of B. cereus sensu lato proved the presence of long 5′ IGRs upstream of the nheABC and hblCDAB operons, which harbor recognition sites for several transcriptional regulators, including the virulence regulator PlcR, redox regulators ResD and Fnr, the nutrient-sensitive regulator CodY as well as the master regulator for biofilm formation SinR. By determining transcription start sites, unusually long 5′ untranslated regions (5′ UTRs) upstream of the nhe and hbl start codons were identified, which are not present upstream of cytK-1 and cytK-2. Promoter fusions lacking various parts of the nhe and hbl 5′ UTR in B. cereus INRA C3 showed that the entire 331 bp 5′ UTR of nhe is necessary for full promoter activity, while the presence of the complete 606 bp hbl 5′ UTR lowers promoter activity. Repression was caused by a 268 bp sequence directly upstream of the hbl transcription start. Luciferase activity of reporter strains containing nhe and hbl 5′ IGR lux fusions provided evidence that toxin gene transcription is upregulated by the depletion of free amino acids. Electrophoretic mobility shift assays showed that the branched-chain amino acid sensing regulator CodY binds to both nhe and hbl 5′ UTR downstream of the promoter, potentially acting as a nutrient-responsive roadblock repressor of toxin gene transcription. PlcR binding sites are highly conserved among all B. cereus sensu lato strains, indicating that this regulator does not significantly contribute to the heterogeneity in virulence potentials. The CodY recognition sites are far less conserved, perhaps conferring varying strengths of CodY binding, which might modulate toxin synthesis in a strain-specific manner.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Viktoria M Krey
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Nadja Jeßberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim Germany
| | - Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| |
Collapse
|
39
|
Kovács ÁT. The global regulator CodY is required for the fitness of Bacillus cereus in various laboratory media and certain beverages. FEMS Microbiol Lett 2016; 363:fnw126. [PMID: 27190142 DOI: 10.1093/femsle/fnw126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
The impact of gene mutations on the growth of the cells can be studied using pure cultures. However, the importance of certain proteins and pathways can be also examined via co-culturing wild type and its mutant derivative. Here, the relative fitness of a mutant strain that lacks the global nitrogen regulator, CodY, was examined in Bacillus cereus, a food poisoning Gram-positive bacterium. Fitness measurements revealed that the ΔcodY strain was outcompeted when cocultured with the wild-type ATCC 14579 under various rich laboratory medium, and also when inoculated in certain beverages. In nutrient-poor minimal medium, the ΔcodY mutant had comparable fitness to the wild-type strain. Interestingly, the relative fitness of the ΔcodY strain was antagonistic when it was cultivated in apple or orange juices due to unknown properties of these beverages, highlighting the importance of chemical composition of the test medium during the bacterial fitness measurements.
Collapse
Affiliation(s)
- Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| |
Collapse
|
40
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
41
|
Slamti L, Lemy C, Henry C, Guillot A, Huillet E, Lereclus D. CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis. Front Microbiol 2016; 6:1501. [PMID: 26779156 PMCID: PMC4701985 DOI: 10.3389/fmicb.2015.01501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 01/17/2023] Open
Abstract
In Gram-positive bacteria, cell–cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis (Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growth.
Collapse
Affiliation(s)
- Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Christelle Lemy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Eugénie Huillet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
42
|
The Endospore-Forming Pathogen Bacillus cereus Exploits a Small Colony Variant-Based Diversification Strategy in Response to Aminoglycoside Exposure. mBio 2015; 6:e01172-15. [PMID: 26646008 PMCID: PMC4676280 DOI: 10.1128/mbio.01172-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacillus cereus is among the microorganisms most often isolated from cases of food spoilage and causes gastrointestinal diseases as well as nongastrointestinal infections elicited by the emetic toxin cereulide, enterotoxins, and a panel of tissue-destructive virulence factors. This opportunistic pathogen is increasingly associated with rapidly fatal clinical infections especially linked to neonates and immunocompromised individuals. Fatality results from either the misdiagnosis of B. cereus as a contaminant of the clinical specimen or from failure of antibiotic therapy. Here we report for the first time that exposure to aminoglycoside antibiotics induces a phenotype switching of emetic B. cereus subpopulations to a slow-growing small colony variant (SCV) state. Along with altered antibiotic resistance, SCVs showed distinct phenotypic and metabolic properties, bearing the risk of antibiotic treatment failure and of clinical misdiagnosis by standard identification tests used in routine diagnostic. The SCV subpopulation is characterized by enhanced production of the toxin cereulide, but it does not secrete tissue-destructive and immune system-affecting enzymes such as sphingomyelinase and phospholipase. SCVs showed significantly prolonged persistence and decreased virulence in the Galleria mellonella model for bacterial infections, indicating diversification concerning their ecological lifestyle. Importantly, diversification into coexisting wild-type and SCV subpopulations also emerged during amikacin pressure during in vivo infection experiments. This study shows for the first time that pathogenic spore-forming B. cereus strains are able to switch to a so far unreported slow-growing lifestyle, which differs substantially in terms of developmental, phenotypic, metabolic, and virulence traits from the wild-type populations. This underpins the necessity of molecular-based differential diagnostics and a well-chosen therapeutic treatment strategy in clinical environments to combat B. cereus in a tailored manner. The reported induction of SCV in an endospore-forming human pathogen requires further research to broaden our understanding of a yet unexplored antibiotic resistance mechanism in sporulating bacteria. Our work also raises a general question about the ecological meaning of SCV subpopulation emergence and importance of SCV in sporeformer populations as an alternative route, next to sporulation, to cope with stresses encountered in natural niches, such as soil or host interfaces.
Collapse
|
43
|
Lücking G, Frenzel E, Rütschle A, Marxen S, Stark TD, Hofmann T, Scherer S, Ehling-Schulz M. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels. Front Microbiol 2015; 6:1101. [PMID: 26528255 PMCID: PMC4602138 DOI: 10.3389/fmicb.2015.01101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/23/2015] [Indexed: 11/13/2022] Open
Abstract
The emetic toxin cereulide produced by Bacillus cereus is synthesized by the modular enzyme complex Ces that is encoded on a pXO1-like megaplasmid. To decipher the role of the genes adjacent to the structural genes cesA/cesB, coding for the non-ribosomal peptide synthetase (NRPS), gene inactivation- and overexpression mutants of the emetic strain F4810/72 were constructed and their impact on cereulide biosynthesis was assessed. The hydrolase CesH turned out to be a part of the complex regulatory network controlling cereulide synthesis on a transcriptional level, while the ABC transporter CesCD was found to be essential for post-translational control of cereulide synthesis. Using a gene inactivation approach, we show that the NRPS activating function of the phosphopantetheinyl transferase (PPtase) embedded in the ces locus was complemented by a chromosomally encoded Sfp-like PPtase, representing an interesting example for the functional interaction between a plasmid encoded NRPS and a chromosomally encoded activation enzyme. In summary, our results highlight the complexity of cereulide biosynthesis and reveal multiple levels of toxin formation control. ces operon internal genes were shown to play a pivotal role by acting at different levels of toxin production, thus complementing the action of the chromosomal key transcriptional regulators AbrB and CodY.
Collapse
Affiliation(s)
- Genia Lücking
- Department of Microbiology, Central Institute for Food and Nutrition Research (Zentralinstitut für Ernährungs- und Lebensmittelforschung), Technische Universität München Freising, Germany
| | - Elrike Frenzel
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| | - Andrea Rütschle
- Department of Microbiology, Central Institute for Food and Nutrition Research (Zentralinstitut für Ernährungs- und Lebensmittelforschung), Technische Universität München Freising, Germany
| | - Sandra Marxen
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München Freising, Germany
| | - Siegfried Scherer
- Department of Microbiology, Central Institute for Food and Nutrition Research (Zentralinstitut für Ernährungs- und Lebensmittelforschung), Technische Universität München Freising, Germany ; Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München Freising, Germany
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| |
Collapse
|
44
|
Ehling-Schulz M, Frenzel E, Gohar M. Food-bacteria interplay: pathometabolism of emetic Bacillus cereus. Front Microbiol 2015; 6:704. [PMID: 26236290 PMCID: PMC4500953 DOI: 10.3389/fmicb.2015.00704] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022] Open
Abstract
Bacillus cereus is a Gram-positive endospore forming bacterium known for its wide spectrum of phenotypic traits, enabling it to occupy diverse ecological niches. Although the population structure of B. cereus is highly dynamic and rather panmictic, production of the emetic B. cereus toxin cereulide is restricted to strains with specific genotypic traits, associated with distinct environmental habitats. Cereulide is an ionophoric dodecadepsipeptide that is produced non-ribosomally by an enzyme complex with an unusual modular structure, named cereulide synthetase (Ces non-ribosomal peptide synthetase). The ces gene locus is encoded on a mega virulence plasmid related to the B. anthracis toxin plasmid pXO1. Cereulide, a highly thermo- and pH- resistant molecule, is preformed in food, evokes vomiting a few hours after ingestion, and was shown to be the direct cause of gastroenteritis symptoms; occasionally it is implicated in severe clinical manifestations including acute liver failures. Control of toxin gene expression in emetic B. cereus involves central transcriptional regulators, such as CodY and AbrB, thereby inextricably linking toxin gene expression to life cycle phases and specific conditions, such as the nutrient supply encountered in food matrices. While in recent years considerable progress has been made in the molecular and biochemical characterization of cereulide toxin synthesis, far less is known about the embedment of toxin synthesis in the life cycle of B. cereus. Information about signals acting on toxin production in the food environment is lacking. We summarize the data available on the complex regulatory network controlling cereulide toxin synthesis, discuss the role of intrinsic and extrinsic factors acting on toxin biosynthesis in emetic B. cereus and stress how unraveling these processes can lead to the development of novel effective strategies to prevent toxin synthesis in the food production and processing chain.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine ViennaVienna, Austria
| | - Elrike Frenzel
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine ViennaVienna, Austria
| | - Michel Gohar
- INRA, UMR1319 Micalis, AgroParistech – Domaine de Vilvert, Génétique Microbienne et EnvironnementJouy-en-Josas, France
| |
Collapse
|
45
|
Monnet V, Gardan R. Quorum-sensing regulators in Gram-positive bacteria: 'cherchez le peptide'. Mol Microbiol 2015; 97:181-4. [PMID: 25988215 DOI: 10.1111/mmi.13060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/29/2022]
Abstract
Gram-positive bacteria can regulate gene expression at the population level via a mechanism known as quorum sensing. Oligopeptides serve as the signaling molecules; they are secreted and then are either detected at the bacterial surface by two-component systems or reinternalized via an oligopeptide transport system. In the latter case, imported peptides interact with cognate regulators (phosphatases or transcriptional regulators) that modulate the expression of target genes. These regulators help control crucial functions such as virulence, persistence, conjugation and competence and have been reported in bacilli, enterococci and streptococci. They form the rapidly growing RRNPP group. In this issue of Molecular Microbiology, Hoover et al. (2015) highlight the group's importance: they have identified a new family of regulators, Tprs (Transcription factor regulated by a Phr peptide), which work with internalized Phr-like peptides. The mechanisms underlying the expression of the genes that encode these internalized peptides are poorly documented. However, Hoover et al. (2015) have provided a new insight: an environmental molecule, glucose, can inhibit expression of the Phr-like peptide gene via catabolic repression. This previously undescribed regulatory pathway, controlling the production of a bacteriocin, might influence Streptococcus pneumonia's fitness in the nasopharynx, where galactose is present.
Collapse
Affiliation(s)
- V Monnet
- UMR1319 MICALIS, INRA, Jouy en Josas, France.,UMR MICALIS, AgroParistech, Jouy en Josas, France
| | - R Gardan
- UMR1319 MICALIS, INRA, Jouy en Josas, France.,UMR MICALIS, AgroParistech, Jouy en Josas, France
| |
Collapse
|
46
|
Jeßberger N, Krey VM, Rademacher C, Böhm ME, Mohr AK, Ehling-Schulz M, Scherer S, Märtlbauer E. From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front Microbiol 2015; 6:560. [PMID: 26113843 PMCID: PMC4462024 DOI: 10.3389/fmicb.2015.00560] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 01/30/2023] Open
Abstract
In recent years Bacillus cereus has gained increasing importance as a food poisoning pathogen. It is the eponymous member of the B. cereus sensu lato group that consists of eight closely related species showing impressive diversity of their pathogenicity. The high variability of cytotoxicity and the complex regulatory network of enterotoxin expression have complicated efforts to predict the toxic potential of new B. cereus isolates. In this study, comprehensive analyses of enterotoxin gene sequences, transcription, toxin secretion and cytotoxicity were performed. For the first time, these parameters were compared in a whole set of B. cereus strains representing isolates of different origin (food or food poisoning outbreaks) and of different toxic potential (enteropathogenic and apathogenic) to elucidate potential starting points of strain-specific differential toxicity. While toxin gene sequences were highly conserved and did not allow for differentiation between high and low toxicity strains, comparison of nheB and hblD enterotoxin gene transcription and Nhe and Hbl protein titers revealed not only strain-specific differences but also incongruence between toxin gene transcripts and toxin protein levels. With one exception all strains showed comparable capability of protein secretion and so far, no secretion patterns specific for high and low toxicity strains were identified. These results indicate that enterotoxin expression is more complex than expected, possibly involving the orchestrated interplay of different transcriptional regulator proteins, as well as posttranscriptional and posttranslational regulatory mechanisms plus additional influences of environmental conditions.
Collapse
Affiliation(s)
- Nadja Jeßberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München Oberschleißheim, Germany
| | - Viktoria M Krey
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München Freising, Germany
| | - Corinna Rademacher
- Functional Microbiology, Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine Vienna Vienna, Austria
| | - Maria-Elisabeth Böhm
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München Freising, Germany
| | - Ann-Katrin Mohr
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München Oberschleißheim, Germany
| | - Monika Ehling-Schulz
- Functional Microbiology, Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine Vienna Vienna, Austria
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München Freising, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München Oberschleißheim, Germany
| |
Collapse
|
47
|
Marxen S, Stark TD, Frenzel E, Rütschle A, Lücking G, Pürstinger G, Pohl EE, Scherer S, Ehling-Schulz M, Hofmann T. Chemodiversity of cereulide, the emetic toxin of Bacillus cereus. Anal Bioanal Chem 2015; 407:2439-53. [PMID: 25665710 DOI: 10.1007/s00216-015-8511-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/17/2015] [Accepted: 01/22/2015] [Indexed: 02/04/2023]
Abstract
Food-borne intoxications are increasingly caused by the dodecadepsipeptide cereulide, the emetic toxin produced by Bacillus cereus. As such intoxications pose a health risk to humans, a more detailed understanding on the chemodiversity of this toxin is mandatory for the reliable risk assessment of B. cereus toxins in foods. Mass spectrometric screening now shows a series of at least 18 cereulide variants, among which the previously unknown isocereulides A-G were determined for the first time by means of UPLC-TOF MS and ion-trap MS(n) sequencing, (13)C-labeling experiments, and post-hydrolytic dipeptide and enantioselective amino acid analysis. The data demonstrate a high microheterogeneity in cereulide and show evidence for a relaxed proof reading function of the non-ribosomal cereulide peptide synthetase complex giving rise to an enhanced cereulide chemodiversity. Most intriguingly, the isocereulides were found to differ widely in their cell toxicity correlating with their ionophoric properties (e.g., purified isocereulide A showed about 8-fold higher cytotoxicity than purified cereulide in the HEp-2 assay and induced an immediate breakdown of bilayer membranes). These findings provide a substantial contribution to the knowledge-based risk assessment of B. cereus toxins in foods, representing a still unsolved challenge in the field of food intoxications.
Collapse
Affiliation(s)
- Sandra Marxen
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, 85354, Freising, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Desriac N, Coroller L, Jannic F, Postollec F, Sohier D. mRNA biomarkers selection based on Partial Least Square algorithm in order to further predict Bacillus weihenstephanensis acid resistance. Food Microbiol 2015; 45:111-8. [DOI: 10.1016/j.fm.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/26/2022]
|
49
|
Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 2014; 80:7651-8. [PMID: 25281376 DOI: 10.1128/aem.02838-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status.
Collapse
|
50
|
Laouami S, Clair G, Armengaud J, Duport C. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579. PLoS One 2014; 9:e107354. [PMID: 25216269 PMCID: PMC4162614 DOI: 10.1371/journal.pone.0107354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023] Open
Abstract
The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.
Collapse
Affiliation(s)
- Sabrina Laouami
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
| | - Géremy Clair
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
- Laboratoire de Biochimie des Systèmes Perturbés, CEA Marcoule, DSV-iBEB-SBTN-LBSP, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire de Biochimie des Systèmes Perturbés, CEA Marcoule, DSV-iBEB-SBTN-LBSP, Bagnols-sur-Cèze, France
| | - Catherine Duport
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
| |
Collapse
|