1
|
Oliveira ICCS, Marinsek GP, Gonçalves ARN, Lopes BS, Correia LVB, Da Silva RCB, Castro IB, Mari RB. Investigating tributyltin's toxic effects: Intestinal barrier and neuroenteric disruption in rat's jejunum. Neurotoxicology 2024; 105:208-215. [PMID: 39396746 DOI: 10.1016/j.neuro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The expansion of economic activities in coastal areas has significantly increased chemical contamination, leading to major environmental challenges. Contaminants enter the human body through the food chain, particularly via seafood and water consumption, triggering biomagnification and bioaccumulation processes. The gastrointestinal tract (GIT) acts as a selective barrier, protecting against chemical pollutants and maintaining homeostasis through a complex network of cells and immune responses. This study assessed impact of tributyltin (TBT), a highly toxic organometallic compound used in antifouling coatings for ships, on the GIT and myenteric neural plasticity in young rats. TBT exposure leads to histopathological changes, including epithelial detachment and inflammatory foci, especially at lower environmental doses. The study found that TBT causes significant reductions in villi height, increases in goblet cells and intraepithelial lymphocytes, and disrupts the myenteric plexus, with higher densities of extraganglionic neurons in exposed animals.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - A R N Gonçalves
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - B S Lopes
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - L V B Correia
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B Da Silva
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP, Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil
| | - R B Mari
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| |
Collapse
|
2
|
Elfers K, Sehnert AS, Wagner A, Zwirner U, Linge H, Kulik U, Poehnert D, Winny M, Gundert B, Aselmann H, Mazzuoli-Weber G. Functional and Structural Investigation of Myenteric Neurons in the Human Colon. GASTRO HEP ADVANCES 2024; 4:100537. [PMID: 39790245 PMCID: PMC11714724 DOI: 10.1016/j.gastha.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 01/12/2025]
Abstract
Background and Aims The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients. Methods Activity from myenteric neurons in wholemount preparations of different sampling sites of fresh, human colonic tissue was recorded using neuroimaging with the voltage sensitive dye 1-(3-sulfanatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine. Neuronal responses were analyzed following stimulation with nicotine and serotonin (5-HT) for differences based on the donor's age, the disorder indicative for surgery and the colonic region. Immunohistochemistry was performed to calculate the total neuronal numbers. Results Stimulation with nicotine and 5-HT elicited reproducible action potential discharge in a proportion of human myenteric neurons. The responses to 5-HT were significantly greater in tissues from older patients and from those with inflammatory disorders, while neuronal activity to nicotinergic stimulation was comparable in all patients. Neuronal numbers declined with rising patient's age and was highest in the sigmoid colon. Conclusion Neuroimaging with 1-(3-sulfanatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine was successfully adapted to record reproducible responses from human colonic myenteric neurons upon pharmacological stimulation. Evidence exists for an impact of age and inflammation on the serotonergic neuronal signaling and for differences in neuronal numbers in the distinct colonic regions as well as a neuronal decrease with age.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alina Sophia Sehnert
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Alexander Wagner
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrich Zwirner
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Helena Linge
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulf Kulik
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Daniel Poehnert
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Markus Winny
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Benjamin Gundert
- Clinic for General, Visceral and Minimal Invasive Surgery, KRH Klinikum Siloah, Hannover, Germany
| | - Heiko Aselmann
- Clinic for General, Visceral and Minimal Invasive Surgery, KRH Klinikum Siloah, Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
3
|
Gallego-Barceló P, Benítez-Álvarez D, Bagues A, Silván-Ros B, Montalbán-Rodríguez A, López-Gómez L, Vera G, del Castillo MD, Uranga JA, Abalo R. Ex Vivo Study of Colon Health, Contractility and Innervation in Male and Female Rats after Regular Exposure to Instant Cascara Beverage. Foods 2024; 13:2474. [PMID: 39200401 PMCID: PMC11353626 DOI: 10.3390/foods13162474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Instant Cascara (IC) is a sustainable beverage made from dried coffee cherry pulp, a by-product of coffee processing. It is rich in nutrients and bioactive compounds and has a high concentration of antioxidants. This study explored the impact of regular IC consumption on colonic motor function and innervation. Over a period of 4 weeks, male and female healthy rats were given drinking water containing 10 mg/mL of IC. Thereafter, colon samples were obtained to evaluate the longitudinal (LM) and circular (CM) smooth muscle contractile response to acetylcholine (ACh) and electrical field stimulation (EFS) in an organ bath, before and after atropine administration (10-6 M). Histological and immunohistochemical analyses assessed colon damage, muscle thickness, and immunoreactivity to substance P (SP) and neuronal nitric oxide synthase (nNOS). ACh and EFS induced similar responses across groups, but the CM response to EFS was greater in females compared with males, despite their lower body weight. Atropine completely blocked the response to ACh but only partially antagonized the neural response to EFS, particularly that of CM in females treated with IC, which had a greater liquid intake than those exposed to water. However, in the myenteric ganglia, no statistically significant differences were observed in SP or nNOS. Our results suggest that regular IC exposure may enhance specific neural pathway functions, particularly in females, possibly due to their increased IC consumption.
Collapse
Affiliation(s)
- Paula Gallego-Barceló
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - David Benítez-Álvarez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Street 34, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Street 21, 50931 Cologne, Germany
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - Blanca Silván-Ros
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Alba Montalbán-Rodríguez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Gema Vera
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - María Dolores del Castillo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera Street, 9, 28049 Madrid, Spain
| | - José A. Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
4
|
Jamka JR, Gulbransen BD. Mechanisms of enteric neuropathy in diverse contexts of gastrointestinal dysfunction. Neurogastroenterol Motil 2024:e14870. [PMID: 39038157 DOI: 10.1111/nmo.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) commands moment-to-moment gut functions through integrative neurocircuitry housed in the gut wall. The functional continuity of ENS networks is disrupted in enteric neuropathies and contributes to major disturbances in normal gut activities including abnormal gut motility, secretions, pain, immune dysregulation, and disrupted signaling along the gut-brain axis. The conditions under which enteric neuropathy occurs are diverse and the mechanistic underpinnings are incompletely understood. The purpose of this brief review is to summarize the current understanding of the cell types involved, the conditions in which neuropathy occurs, and the mechanisms implicated in enteric neuropathy such as oxidative stress, toll like receptor signaling, purines, and pre-programmed cell death.
Collapse
Affiliation(s)
- Julia R Jamka
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
López-Tofiño Y, Barragán del Caz LF, Benítez-Álvarez D, Molero-Mateo P, Nurgali K, Vera G, Bagües A, Abalo R. Contractility of isolated colonic smooth muscle strips from rats treated with cancer chemotherapy: differential effects of cisplatin and vincristine. Front Neurosci 2023; 17:1304609. [PMID: 38192512 PMCID: PMC10773793 DOI: 10.3389/fnins.2023.1304609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Background Certain antineoplastic drugs cause gastrointestinal disorders even after the end of treatment. Enteric neuropathy has been associated with some of these alterations. Our goal was to assess the impact of repeated treatment with cisplatin and vincristine on the contractility of circular and longitudinal muscle strips isolated from the rat colon. Methods Two cohorts of male rats were used: in cohort 1, rats received one intraperitoneal (ip) injection of saline or cisplatin (2 mg kg-1 week-1) on the first day of weeks 1-5; in cohort 2, rats received two cycles of five daily ip injections (Monday to Friday, weeks 1-2) of saline or vincristine (0.1 mg kg-1 day-1). Body weight and food and water intake were monitored throughout the study. One week after treatment, responses of colonic smooth muscle strips to acetylcholine (10-9-10-5 M) and electrical field stimulation (EFS, 0.1-20 Hz), before and after atropine (10-6 M), were evaluated in an organ bath. Results Both drugs decreased body weight gain. Compared to saline, cisplatin significantly decreased responses of both longitudinal and circular smooth muscle strips to EFS, whereas vincristine tended to increase them, although in a non-significant manner. No differences were observed in the muscle response to acetylcholine. Atropine abolished the contractile responses induced by acetylcholine, although those induced by EFS were only partially reduced in the presence of atropine. Conclusion The findings suggest that although both drugs cause the development of enteric neuropathy, this seems to have a functional impact only in cisplatin-treated animals. Understanding the effects of chemotherapy on gastrointestinal motor function is vital for enhancing the quality of life of cancer patients.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- International Doctoral School, URJC, Móstoles, Spain
| | | | - David Benítez-Álvarez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Paula Molero-Mateo
- International Doctoral School, URJC, Móstoles, Spain
- Lescer Center (Neurological Rehabilitation), Madrid, Spain
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, URJC, Alcorcón, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
| | - Ana Bagües
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, Madrid, Spain
| |
Collapse
|
6
|
López-Tofiño Y, Vera G, López-Gómez L, Girón R, Nurgali K, Uranga JA, Abalo R. Effects of the food additive monosodium glutamate on cisplatin-induced gastrointestinal dysmotility and peripheral neuropathy in the rat. Neurogastroenterol Motil 2021; 33:e14020. [PMID: 33112027 DOI: 10.1111/nmo.14020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/30/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cisplatin is an antineoplastic drug known to produce intense vomiting, gastric dysmotility, and peripheral neuropathy. Monosodium glutamate (MSG) is a flavor enhancer with prokinetic properties potentially useful for cancer patients under chemotherapy. Our aim was to test whether MSG may improve gastrointestinal motor dysfunction and other adverse effects induced by repeated cisplatin in rats. METHODS Male Wistar rats were exposed or not to MSG (4 g L-1 ) in drinking water from week 0 to 1 week after treatment. On the first day of weeks 1-5, rats were treated with saline or cisplatin (2 mg kg-1 week-1 , ip). Gastrointestinal motility was measured by radiological methods after first and fifth administrations, as well as 1 week after treatment finalization. One week after treatment, the threshold for mechanical somatic sensitivity was recorded. Finally, samples of stomach, terminal ileum and kidneys were evaluated in sections using conventional histology. The myenteric plexus was immunohistochemically evaluated on distal colon whole-mount preparations. KEY RESULTS Monosodium glutamate prevented the development of cisplatin-induced neuropathy and partially improved intestinal transit after the fifth cisplatin administration with little impact on gastric dysmotility. MSG did not improve the histological damage of gut wall, but prevented the changes induced by cisplatin in the colonic myenteric plexus. CONCLUSION AND INFERENCES Our results suggest that MSG can improve some dysfunctions caused by anticancer chemotherapy in the gut and other systems, associated, at least partially, with neuroprotectant effects. The potentially useful adjuvant role of this food additive to reduce chemotherapy-induced sequelae warrants further evaluation.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada aI+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Rocío Girón
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada aI+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Vic., Australia.,Department of Medicine Western Health, The University of Melbourne, Vic., Australia
| | - Jose A Uranga
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada aI+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Baker C, Ahmed M, Cheng K, Arciero E, Bhave S, Natalie Ho WL, Goldstein AM, Hotta R. Hypoganglionosis in the gastric antrum causes delayed gastric emptying. Neurogastroenterol Motil 2020; 32:e13766. [PMID: 31773831 PMCID: PMC7182502 DOI: 10.1111/nmo.13766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Enteric nervous system (ENS) abnormalities have been implicated in delayed gastric emptying but studies exploring potential treatment options are limited by the lack of an experimental animal model. We examined the ENS abnormalities in the mouse stomach associated with aging, developed a novel model of gastroparesis, and established a new approach to measure gastric emptying. METHODS A modified gastric emptying assay was developed, validated in nNOS -/- mice, and tested in mice at multiple ages. Age-related changes in ENS structure were analyzed by immunohistochemistry. Gastric aganglionosis was generated in Wnt1-iDTR mice using focal administration of diphtheria toxin (DT) into the anterior antral wall. KEY RESULTS Older mice (>5 months) exhibit hypoganglionosis in the gastric antrum and a decreased proportion of nNOS neurons as compared to younger mice (age 5-7 weeks). This was associated with a significant age-dependent decrease in liquid and solid gastric emptying. A novel model of gastric antrum hypoganglionosis was established using neural crest-specific expression of diphtheria toxin receptor. In this model, a significant reduction in liquid and solid gastric emptying is observed. CONCLUSIONS & INFERENCES Older mice exhibit delayed gastric emptying associated with hypoganglionosis and a reduction in nNOS-expressing neurons in the antrum. The causal relationship between antral hypoganglionosis and delayed gastric emptying was verified using a novel experimental model of ENS ablation. This study provides new information regarding the pathogenesis of delayed gastric emptying and provides a robust model system to study this disease and develop novel treatments.
Collapse
Affiliation(s)
- Corey Baker
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Minhal Ahmed
- Department of Bioengineering, Northeastern University, Boston MA 02115
| | - Katarina Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Wing Lam Natalie Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| |
Collapse
|
8
|
Boschetti E, Malagelada C, Accarino A, Malagelada JR, Cogliandro RF, Gori A, Bonora E, Giancola F, Bianco F, Tugnoli V, Clavenzani P, Azpiroz F, Stanghellini V, Sternini C, De Giorgio R. Enteric neuron density correlates with clinical features of severe gut dysmotility. Am J Physiol Gastrointest Liver Physiol 2019; 317:G793-G801. [PMID: 31545923 PMCID: PMC6962493 DOI: 10.1152/ajpgi.00199.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) symptoms can originate from severe dysmotility due to enteric neuropathies. Current methods used to demonstrate enteric neuropathies are based mainly on classic qualitative histopathological/immunohistochemical evaluation. This study was designed to identify an objective morphometric method for paraffin-embedded tissue samples to quantify the interganglionic distance between neighboring myenteric ganglia immunoreactive for neuron-specific enolase, as well as the number of myenteric and submucosal neuronal cell bodies/ganglion in jejunal specimens of patients with severe GI dysmotility. Jejunal full-thickness biopsies were collected from 32 patients (22 females; 16-77 yr) with well-characterized severe dysmotility and 8 controls (4 females; 47-73 yr). A symptom questionnaire was filled before surgery. Mann-Whitney U test, Kruskal-Wallis coupled with Dunn's posttest and nonparametric linear regression tests were used for analyzing morphometric data and clinical correlations, respectively. Compared with controls, patients with severe dysmotility exhibited a significant increase in myenteric interganglionic distance (P = 0.0005) along with a decrease in the number of myenteric (P < 0.00001) and submucosal (P < 0.0004) neurons. A 50% reduction in the number of submucosal and myenteric neurons correlated with an increased interganglionic distance and severity of dysmotility. Our study proposes a relatively simple tool that can be applied for quantitative evaluation of paraffin sections from patients with severe dysmotility. The finding of an increased interganglionic distance may aid diagnosis and limit the direct quantitative analysis of neurons per ganglion in patients with an interganglionic distance within the control range.NEW & NOTEWORTHY Enteric neuropathies are challenging conditions characterized by a severe impairment of gut physiology, including motility. An accurate, unambiguous assessment of enteric neurons provided by quantitative analysis of routine paraffin sections may help to define neuropathy-related gut dysmotility. We showed that patients with severe gut dysmotility exhibited an increased interganglionic distance associated with a decreased number of myenteric and submucosal neurons, which correlated with symptoms and clinical manifestations of deranged intestinal motility.
Collapse
Affiliation(s)
- Elisa Boschetti
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Carolina Malagelada
- 2Digestive System Research Unit, University Hospital Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Anna Accarino
- 2Digestive System Research Unit, University Hospital Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Juan R. Malagelada
- 2Digestive System Research Unit, University Hospital Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | | | - Alessandra Gori
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elena Bonora
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fiorella Giancola
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bianco
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vitaliano Tugnoli
- 3Department of Biomedical and Neuro Motor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Clavenzani
- 4Department of Veterinary Medicine, University of Bologna, Ozzano, Italy
| | - Fernando Azpiroz
- 2Digestive System Research Unit, University Hospital Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | | | - Catia Sternini
- 5Digestive Disease Division, Departments of Medicine and Neurobiology, University of California, Los Angeles, California
| | | |
Collapse
|
9
|
López-Gómez L, Díaz-Ruano S, Girón R, López-Pérez AE, Vera G, Herradón Pliego E, López-Miranda V, Nurgali K, Martín-Fontelles MI, Uranga JA, Abalo R. Preclinical evaluation of the effects on the gastrointestinal tract of the antineoplastic drug vincristine repeatedly administered to rats. Neurogastroenterol Motil 2018; 30:e13399. [PMID: 29971865 DOI: 10.1111/nmo.13399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Vincristine is a commonly used chemotherapeutic agent. It is associated with undesirable digestive side effects. However, the impact of vincristine on gastrointestinal structure and motility or its long-term effects have not been deeply studied in animal models. This could be useful in order to develop therapeutic or preventive strategies for cancer patients. The aim of this study was to analyze such effects. METHODS Rats received saline or vincristine (0.1 mg kg-1 , ip) daily for 10 days. Evaluations were performed during treatment and 2-6 weeks after. Somatic mechano-sensitivity was assessed using von Frey hairs. Gastrointestinal motor function was studied by means of radiographic still images and colonic propulsion of fecal pellets using fluoroscopy videos. Histological assessment of the gut morphology and immunohistochemistry for HuC/D and nNOS were performed in whole-mount myenteric plexus preparations. KEY RESULTS Peripheral sensitivity was increased in animals treated with vincristine and did not subside 2 weeks after treatment finalization. Vincristine treatment inhibited gastrointestinal motility although this was recovered to normal values with time. Damage in the digestive wall after vincristine treatment was greater in the ileum than in the colon. Villi shortening (in ileum) and large inflammatory nodules still remained 2 weeks after treatment finalization. Finally, the proportion of nNOS-immunoreactive neurons was increased with vincristine and continued to be increased 2 weeks after treatment finalization. CONCLUSIONS AND INFERENCES Vincristine alters gastrointestinal motility, peripheral sensitivity and mucosal architecture. Vincristine-induced neuropathy (somatic and enteric), intestinal mucosa damage and inflammatory infiltrations are relatively long-lasting.
Collapse
Affiliation(s)
- L López-Gómez
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - S Díaz-Ruano
- Unidad del Dolor, Servicio de Anestesia, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - R Girón
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - A E López-Pérez
- Unidad del Dolor, Servicio de Anestesia, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - G Vera
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - E Herradón Pliego
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - V López-Miranda
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - K Nurgali
- Institute for Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Australian Institute of Musculoskeletal Science (AIMSS), Regenerative Medicine and Stem Cells Program, University of Melbourne, Melbourne, Australia
| | - M I Martín-Fontelles
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - J A Uranga
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - R Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| |
Collapse
|
10
|
Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H. Gut microbiome and aging: Physiological and mechanistic insights. NUTRITION AND HEALTHY AGING 2018; 4:267-285. [PMID: 29951588 PMCID: PMC6004897 DOI: 10.3233/nha-170030] [Citation(s) in RCA: 406] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of human gut microbiota begins as soon as the neonate leaves the protective environment of the uterus (or maybe in-utero) and is exposed to innumerable microorganisms from the mother as well as the surrounding environment. Concurrently, the host responses to these microbes during early life manifest during the development of an otherwise hitherto immature immune system. The human gut microbiome, which comprises an extremely diverse and complex community of microorganisms inhabiting the intestinal tract, keeps on fluctuating during different stages of life. While these deviations are largely natural, inevitable and benign, recent studies show that unsolicited perturbations in gut microbiota configuration could have strong impact on several features of host health and disease. Our microbiota undergoes the most prominent deviations during infancy and old age and, interestingly, our immune health is also in its weakest and most unstable state during these two critical stages of life, indicating that our microbiota and health develop and age hand-in-hand. However, the mechanisms underlying these interactions are only now beginning to be revealed. The present review summarizes the evidences related to the age-associated changes in intestinal microbiota and vice-versa, mechanisms involved in this bi-directional relationship, and the prospective for development of microbiota-based interventions such as probiotics for healthy aging.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rabina Mainali
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shokouh Ahmadi
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shaohua Wang
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ria Singh
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Pathology (Comparative Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W. Kitzman
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Almagul Kushugulova
- Center for Life Sciences, NLA, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Francesco Marotta
- ReGenera Research and Development for Aging Interventions, and San Babila Clinic, Corso Matteotti 1/A, Milano, Italy
| | - Hariom Yadav
- Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, NC, USA
- Corresponding author: Hariom Yadav, PhD., Center for Diabetes, Obesity and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Department of Microbiology and Immunology, Biotech Place, Suite 2E-034, 575 Patterson Ave., Winston-Salem, NC 27101, USA. Tel.: +1 336 713 5049; Fax: +1 336 716 9928; E-mail:
| |
Collapse
|
11
|
Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy. Stem Cell Res Ther 2014; 4:157. [PMID: 24423414 PMCID: PMC4054965 DOI: 10.1186/scrt387] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/15/2013] [Accepted: 11/11/2013] [Indexed: 02/07/2023] Open
Abstract
Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis.
Collapse
|
12
|
Saffrey MJ. Aging of the mammalian gastrointestinal tract: a complex organ system. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9603. [PMID: 24352567 PMCID: PMC4082571 DOI: 10.1007/s11357-013-9603-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/25/2013] [Indexed: 05/23/2023]
Abstract
Gastrointestinal disorders are a major cause of morbidity in the elderly population. The gastrointestinal tract is the most complex organ system; its diverse cells perform a range of functions essential to life, not only secretion, digestion, absorption and excretion, but also, very importantly, defence. The gastrointestinal tract acts not only as a barrier to harmful materials and pathogens but also contains the vast number of beneficial bacterial populations that make up the microbiota. Communication between the cells of the gastrointestinal tract and the central nervous and endocrine systems modifies behaviour; the organisms of the microbiota also contribute to this brain-gut-enteric microbiota axis. Age-related physiological changes in the gut are not only common, but also variable, and likely to be influenced by external factors as well as intrinsic aging of the cells involved. The cellular and molecular changes exhibited by the aging gut cells also vary. Aging intestinal smooth muscle cells exhibit a number of changes in the signalling pathways that regulate contraction. There is some evidence for age-associated degeneration of neurons and glia of the enteric nervous system, although enteric neuronal losses are likely not to be nearly as extensive as previously believed. Aging enteric neurons have been shown to exhibit a senescence-associated phenotype. Epithelial stem cells exhibit increased mitochondrial mutation in aging that affects their progeny in the mucosal epithelium. Changes to the microbiota and intestinal immune system during aging are likely to contribute to wider aging of the organism and are increasingly important areas of analysis. How changes of the different cell types of the gut during aging affect the numerous cellular interactions that are essential for normal gut functions will be important areas for future aging research.
Collapse
Affiliation(s)
- M Jill Saffrey
- Department of Life Health and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, MK7 6AA, UK,
| |
Collapse
|
13
|
Phillips RJ, Hudson CN, Powley TL. Sympathetic axonopathies and hyperinnervation in the small intestine smooth muscle of aged Fischer 344 rats. Auton Neurosci 2013; 179:108-21. [PMID: 24104187 DOI: 10.1016/j.autneu.2013.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 01/13/2023]
Abstract
It is well documented that the intrinsic enteric nervous system of the gastrointestinal (GI) tract sustains neuronal losses and reorganizes as it ages. In contrast, age-related remodeling of the extrinsic sympathetic projections to the wall of the gut is poorly characterized. The present experiment, therefore, surveyed the sympathetic projections to the aged small intestine for axonopathies. Furthermore, the experiment evaluated the specific prediction that catecholaminergic inputs undergo hyperplastic changes. Jejunal tissue was collected from 3-, 8-, 16-, and 24-month-old male Fischer 344 rats, prepared as whole mounts consisting of the muscularis, and processed immunohistochemically for tyrosine hydroxylase, the enzymatic marker for norepinephrine, and either the protein CD163 or the protein MHCII, both phenotypical markers for macrophages. Four distinctive sympathetic axonopathy profiles occurred in the small intestine of the aged rat: (1) swollen and dystrophic terminals, (2) tangled axons, (3) discrete hyperinnervated loci in the smooth muscle wall, including at the bases of Peyer's patches, and (4) ectopic hyperplastic or hyperinnervating axons in the serosa/subserosal layers. In many cases, the axonopathies occurred at localized and limited foci, involving only a few axon terminals, in a pattern consistent with incidences of focal ischemic, vascular, or traumatic insult. The present observations underscore the complexity of the processes of aging on the neural circuitry of the gut, with age-related GI functional impairments likely reflecting a constellation of adjustments that range from selective neuronal losses, through accumulation of cellular debris, to hyperplasias and hyperinnervation of sympathetic inputs.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States.
| | | | | |
Collapse
|
14
|
Phillips RJ, Martin FN, Billingsley CN, Powley TL. Alpha-synuclein expression patterns in the colonic submucosal plexus of the aging Fischer 344 rat: implications for biopsies in aging and neurodegenerative disorders? Neurogastroenterol Motil 2013; 25:e621-33. [PMID: 23809578 PMCID: PMC3735646 DOI: 10.1111/nmo.12176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/01/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND This experiment assessed normative expression patterns of alpha-synuclein (SYNC), including ganglionic remodeling and development of SYNC pathologies, in the submucosal plexus (SMP) of the colon during healthy aging. The observations address age-associated changes in bowel function and are relevant to evaluations of SMP-containing colonic biopsies for SYNC or synucleinopathies associated with aging and peripheral neurodegenerative diseases. METHODS Colonic submucosal whole mounts from groups of virgin male Fischer 344 rats (n ≥ 8 per group) at 4, 8, 16, and 24 months of age were processed immunohistochemically for SYNC and the pan-neuronal marker HuC/D. In addition, macrophages immunoreactive for MHCII were examined. Stereological protocols were used to generate unbiased estimates of neuron density, neurons per ganglion, neurons per ganglionic area, and neuron size. KEY RESULTS The protein SYNC was expressed in a subpopulation of SMP neurons, in both nucleus and cytoplasm. The general age-associated pattern across different cell counts was an increase in the number of SYNC+ neurons between 4 and 8 months of age, with progressively decreasing numbers of both SYNC+ and SYNC- neurons over the remaining lifespan. The soma size of SYNC+ neurons increased progressively with age. Aggregated SYNC occurred in the aging SMP, and macrophages with alternatively activated profiles were located adjacent to pathological SYNC deposits, consistent with ongoing phagocytosis. CONCLUSIONS & INFERENCES Changes in SYNC expression with age, including a baseline of accumulating synucleinopathies in the healthy aging SMP, need to be considered when interpreting either functional disturbances or biopsies of the aging colon.
Collapse
Affiliation(s)
- Robert J. Phillips
- Corresponding author: Robert J Phillips Purdue University 703 Third Street West Lafayette, IN 47907-2091 Phone: 765-494-6268 Fax: 765-496-1264
| | | | | | | |
Collapse
|
15
|
Kapur RP. Counting neurons is not as easy as 'one-two, three'. Neurogastroenterol Motil 2013; 25:549-53. [PMID: 23621607 DOI: 10.1111/nmo.12141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 01/26/2023]
Abstract
An accurate determination of the number of neurons in a segment of bowel is fundamental to establish population norms and identify neurodegenerative conditions, including age-related loss of myenteric ganglion cells. Although the latter phenomenon has been observed by several laboratories in various mammals, in this issue of Neurogastroenterology and Motility, Gamage et al. present evidence that colonic myenteric ganglion cells are maintained in aged mice. These discordant findings prompt a thoughtful consideration, the range of variables affecting the accuracy of neuronal counts and the survival of neuronal populations in aging animals.
Collapse
Affiliation(s)
- R. P. Kapur
- Department of Laboratories; Seattle Children's Hospital; University of Washington; Seattle; WA; USA
| |
Collapse
|
16
|
Gamage PPKM, Ranson RN, Patel BA, Yeoman MS, Saffrey MJ. Myenteric neuron numbers are maintained in aging mouse distal colon. Neurogastroenterol Motil 2013; 25:e495-e505. [PMID: 23517051 DOI: 10.1111/nmo.12114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Age-associated myenteric neuronal loss has been described in several species. In some studies,cholinergic neurons have been reported to be selectively vulnerable, whereas nitrergic neurons are spared. Aging of the mouse enteric nervous system(ENS) and the subtypes of mouse myenteric neurons that may be lost have been little studied. We therefore investigated changes in the numbers of total neurons and two neuronal subpopulations in the mouse distal colon during aging. METHODS Wholemount preparations from 3–4-, 12–13-, 18–19-, and 24–25-month-old C57BL/6 mice were double immunolabeled with HuC/D antibody to identify the total neuronal population and antisera to either calbindin or neuronal nitric oxide synthase (nNOS) to identify myenteric neuronal subpopulations. Samples were analyzed by confocal microscopy. New procedures were employed to ensure unbiased counting and to correct for changes in gut dimensions with age and stretch during sample preparation. The density of nerve fibers in the tertiary plexus was also studied. KEY RESULTS No significant change in numbers of total neurons or of either subpopulation with age was measured, but because of gut growth, the density of myenteric neurons decreased between 3–4 and 12–13 months. The density of nNOS-immunoreactive nerve fibers in the tertiary plexus increased significantly with age, up to 18–19 months. Numerous swollen processes of CB and nNOS-immunoreactive neurons were observed in 18–19- and 24–25-month-old animals. Conclusions &Inferences These results indicate that aging does not result in a loss of myenteric neurons in mouse distal colon at the ages studied, although neurodegenerative changes, which may impact on neuronal function, do occur.
Collapse
Affiliation(s)
- P. P. K. M. Gamage
- Department of Life, Health and Chemical Sciences; Biomedical Research Network; Open University; Walton Hall; Milton Keynes; MK7 6AA; UK
| | - R. N. Ranson
- Faculty of Health and Life Sciences; Northumbria University; Ellison Building; Newcastle upon Tyne; NE1 8ST; UK
| | - B. A. Patel
- School of Pharmacy and Biomolecular Sciences, Huxley Building; University of Brighton; Lewes Road; Brighton; BN2 4GJ; UK
| | - M. S. Yeoman
- School of Pharmacy and Biomolecular Sciences, Huxley Building; University of Brighton; Lewes Road; Brighton; BN2 4GJ; UK
| | - M. J. Saffrey
- Department of Life, Health and Chemical Sciences; Biomedical Research Network; Open University; Walton Hall; Milton Keynes; MK7 6AA; UK
| |
Collapse
|
17
|
Wang C, Houghton MJ, Gamage PPKM, Collins HE, Patel BA, Yeoman MS, Ranson RN, Saffrey MJ. Changes in the innervation of the mouse internal anal sphincter during aging. Neurogastroenterol Motil 2013; 25:e469-77. [PMID: 23634828 DOI: 10.1111/nmo.12144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The innervation of the mouse internal anal sphincter (IAS) has been little studied, and how it changes during aging has not previously been investigated. The aim of this study was therefore to characterize the distribution and density of subtypes of nerve fibers in the IAS and underlying mucosa in 3-, 12- to 13-, 18- and 24- to 25-month-old male C57BL/6 mice. METHODS Nerve fibers were immunolabeled with antibodies against protein gene product 9.5 (PGP9.5), neuronal nitric oxide synthase (nNOS), vasoactive intestinal polypeptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), and calretinin (CR). Immunoreactivity in nerve fibers in the circular muscle and mucosa was quantified using Image J software. KEY RESULTS In young adult (3 month) mice, nNOS-immunoreactive (IR) nerve fibers were densely distributed in the circular muscle, but relatively few in the mucosa; VIP-IR nerve fibers were abundant in the circular muscle and common in the mucosa; SP-IR nerve fibers were common in circular muscle and mucosa; CGRP- and CR-IR nerve fibers were dense in mucosa and sparse in circular muscle. The density of PGP9.5 immunoreactivity (IRY) was not significantly reduced with age, but a significant reduction in nNOS-IRY and SP-IRY with age was found in the IAS circular muscle. Neuronal nitric oxide synthase-, VIP-, and SP-IRY in the anal mucosa were significantly reduced with age. CGRP-IRY in both circular muscle and mucosa was increased in 18-month-old animals. CONCLUSIONS & INFERENCES The density of immunoreactivity of markers for some types of IAS nerve fibers decreases during aging, which may contribute to age-related ano-rectal dysfunction.
Collapse
Affiliation(s)
- C Wang
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Saffrey MJ. Cellular changes in the enteric nervous system during ageing. Dev Biol 2013; 382:344-55. [PMID: 23537898 DOI: 10.1016/j.ydbio.2013.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/22/2013] [Accepted: 03/19/2013] [Indexed: 02/06/2023]
Abstract
The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable functional reserve.
Collapse
Affiliation(s)
- M Jill Saffrey
- Department Life, Health & Chemical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom.
| |
Collapse
|
19
|
Histopathology in gastrointestinal neuromuscular diseases: methodological and ontological issues. Adv Anat Pathol 2013; 20:17-31. [PMID: 23232568 DOI: 10.1097/pap.0b013e31827b65c0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrointestinal neuromuscular diseases (GINMDs) comprise a heterogenous group of chronic conditions associated with impaired gut motility. These gastrointestinal (GI) disorders, differing for etiopathogenic mechanisms, pathologic lesions, and region of gut involvement, represent a relevant matter for public health, because they are very common, can be disabling, and determine major social and economic burdens. GINMDs are presumed or proven to arise as a result of a dysfunctioning GI neuromuscular apparatus, which includes myenteric ganglia (neurons and glial cells), interstitial cells of Cajal and smooth muscle cells. Despite the presence of symptoms related to gut dysmotility in the clinical phenotype of these patients, in the diagnostic setting scarce attention is usually paid to the morphologic pattern of the GI neuromuscular apparatus. It is also objectively difficult to collect full-thickness gut tissue samples from patients with GINMDs, because their disease, which can be only functional in nature, may not justify invasive diagnostic procedures as a first-line approach. As a consequence, whenever available, bioptic gut specimens, retrieved from these patients, must be regarded as a unique chance for obtaining relevant diagnostic information. On the basis of these arguments, there is an urgent need of standardized and validated histopathologic methods, aiming at overcoming the discrepancies affecting current approaches, which usually lead to conflicting definitions of normality and hamper the identification of disease-specific pathologic patterns. This review article intends to address current methodological and ontological issues in the histopathologic diagnosis of GINMDs, to foster the debate on how to discriminate normal morphology from abnormalities.
Collapse
|
20
|
Hoyle CHV, Saffrey MJ. Effects of aging on cholinergic neuromuscular transmission in isolated small intestine of ad libitum fed and calorically-restricted rats. Neurogastroenterol Motil 2012; 24:586-92. [PMID: 22435850 DOI: 10.1111/j.1365-2982.2012.01913.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Age-associated losses of enteric neurons have been described. In rat ileum, myenteric neurons lost during aging have been reported to be predominantly cholinergic, and caloric restriction (CR) has been shown to protect against these losses. Cholinergic myenteric neurons include excitatory motor neurons, so the aim of this work was to determine whether neuronal loss in ad libitum (AL)-fed animals is reflected in dysfunctional cholinergic neuromuscular transmission, and if CR reduces any such dysfunction. METHODS Effects of electrical field stimulation (EFS) and applied acetylcholine (ACh) were examined in the longitudinal muscle of isolated ileal segments from 6-month-old rats and from 13- and 24-month-old rats fed either AL or CR diets. KEY RESULTS Contractile responses to EFS were abolished by atropine and potentiated by the acetylcholinesterase inhibitor, eserine. Frequency-response relationships were not significantly different amongst the three age-groups. Sensitivity to applied ACh, however, was three-fold lower in the oldest animals (P < 0.05). Eserine potentiated responses to ACh; there were no statistically significant differences amongst the sensitivities to ACh in its presence. No significant differences between AL- and CR-fed animals were measured, although variability was less in CR-fed than in AL-fed groups. CONCLUSIONS & INFERENCES The cholinergic system supplying the rat ileum longitudinal muscle did not appear to be impaired in old age. Decreased sensitivity to applied ACh in old tissues may have been due to increased acetylcholinesterase activity. Caloric restriction had no significant effect on responses to EFS or applied ACh. The implications of these results are discussed.
Collapse
Affiliation(s)
- C H V Hoyle
- Department of Anatomy and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
21
|
Phillips RJ, Powley TL. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton Neurosci 2012; 169:12-27. [PMID: 22436622 DOI: 10.1016/j.autneu.2012.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/28/2022]
Abstract
Interactions between macrophages and the autonomic innervation of gastrointestinal (GI) tract smooth muscle have received little experimental attention. To better understand this relationship, immunohistochemistry was performed on GI whole mounts from rats at three ages. The phenotypes, morphologies, and distributions of gut macrophages are consistent with the cells performing extensive housekeeping functions in the smooth muscle layers. Specifically, a dense population of macrophages was located throughout the muscle wall where they were distributed among the muscle fibers and along the vasculature. Macrophages were also associated with ganglia and connectives of the myenteric plexus and with the sympathetic innervation. Additionally, these cells were in tight registration with the dendrites and axons of the myenteric neurons as well as the varicosities along the length of the sympathetic axons, suggestive of a contribution by the macrophages to the homeostasis of both synapses and contacts between the various elements of the enteric circuitry. Similarly, macrophages were involved in the presumed elimination of neuropathies as indicated by their association with dystrophic neurons and neurites which are located throughout the myenteric plexus and smooth muscle wall of aged rats. Importantly, the patterns of macrophage-neuron interactions in the gut paralleled the much more extensively characterized interactions of macrophages (i.e., microglia) and neurons in the CNS. The present observations in the PNS as well as extrapolations from homologous microglia in the CNS suggest that GI macrophages play significant roles in maintaining the nervous system of the gut in the face of wear and tear, disease, and aging.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907-2081, USA
| | | |
Collapse
|
22
|
Vera G, Castillo M, Cabezos PA, Chiarlone A, Martín MI, Gori A, Pasquinelli G, Barbara G, Stanghellini V, Corinaldesi R, De Giorgio R, Abalo R. Enteric neuropathy evoked by repeated cisplatin in the rat. Neurogastroenterol Motil 2011; 23:370-8, e162-3. [PMID: 21299719 DOI: 10.1111/j.1365-2982.2011.01674.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acute administration of the antitumoral drug cisplatin can induce nausea/emesis and diarrhea. The long-term effects of cisplatin on gastrointestinal motility, particularly after repeated administration, are not well known. Because cisplatin is highly neurotoxic, myenteric neurons can be affected. Our aim was to study the prolonged effects of repeated cisplatin administration in a rat model, focusing on gastrointestinal motor function and myenteric neurons. METHODS Rats received saline or cisplatin (1 or 3 mg kg(-1), i.p.) once weekly for 5 weeks. One week after treatment, both upper gastrointestinal transit and colonic activity were evaluated, and tissue samples from ileum, colon and rectum were processed for histological analysis. Intestinal transit was measured invasively (charcoal method). Colonic activity was determined electromyographically. The gut wall structure was evaluated in sections using conventional histology and immunohistochemistry. Whole-mount preparations from the distal colon were labeled for different markers, including nitric oxide synthase (NOS) and calcitonin-gene related peptide (CGRP) to determine relative proportions of myenteric neurons vs the total neuronal population labeled with HuC/D. KEY RESULTS One week after repeated cisplatin exposure, the upper gastrointestinal transit rate and colonic activity were dose-dependently reduced. The number of NSE- or HuC/D-immunoreactive myenteric neurons per ganglion was decreased; the proportion of CGRP-immunoreactive neurons was decreased, whereas that of NOS-immunoreactive cells was increased. CONCLUSIONS & INFERENCES Chronic cisplatin may induce an enteric neuropathy characterized by changes in myenteric neurons associated with marked gastrointestinal motor dysfunction.
Collapse
Affiliation(s)
- G Vera
- Department of Pharmacology and Nutrition, Rey Juan Carlos University, Alcorcón, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Phillips RJ, Walter GC, Powley TL. Age-related changes in vagal afferents innervating the gastrointestinal tract. Auton Neurosci 2010; 153:90-8. [PMID: 19665435 PMCID: PMC2818053 DOI: 10.1016/j.autneu.2009.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 12/16/2022]
Abstract
Recent progress in understanding visceral afferents, some of it reviewed in the present issue, serves to underscore how little is known about the aging of the visceral afferents in the gastrointestinal (GI) tract. In spite of the clinical importance of the issue-with age, GI function often becomes severely compromised-only a few initial observations on age-related structural changes of visceral afferents are available. Primary afferent cell bodies in both the nodose ganglia and dorsal root ganglia lose Nissl material and accumulate lipofucsin, inclusions, aggregates, and tangles. Additionally, in changes that we focus on in the present review, vagal visceral afferent terminals in both the muscle wall and the mucosa of the GI tract exhibit age-related structural changes. In aged animals, both of the vagal terminal types examined, namely intraganglionic laminar endings and villus afferents, exhibit dystrophic or regressive morphological changes. These neuropathies are associated with age-related changes in the structural integrity of the target organs of the affected afferents, suggesting that local changes in trophic environment may give rise to the aging of GI innervation. Given the clinical relevance of GI tract aging, a more complete understanding both of how aging alters the innervation of the gut and of how such changes might be mitigated should be made research priorities.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Ingestive Behavior Research Center, Department of Psychological Sciences, West Lafayette, IN 47907-2081, USA.
| | | | | |
Collapse
|
24
|
Postnatal maturation of the gastrointestinal tract: A functional and immunohistochemical study in the guinea-pig ileum at weaning. Neurosci Lett 2009; 467:105-10. [DOI: 10.1016/j.neulet.2009.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/26/2009] [Accepted: 10/05/2009] [Indexed: 11/20/2022]
|
25
|
Thomson ABR. Small intestinal disorders in the elderly. Best Pract Res Clin Gastroenterol 2009; 23:861-74. [PMID: 19942164 DOI: 10.1016/j.bpg.2009.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/12/2009] [Accepted: 10/12/2009] [Indexed: 01/31/2023]
Abstract
The topic of gastroenterology (GI) in the elderly has been extensively reviewed. It takes special skill, patience and insight to interview the elderly, as well as to appreciate their altered physiology and interpretation of their presenting symptoms and signs, often against an extreme background of complex medical problems. The maldigestion and malabsorption coupled with altered motility contributes to the development of malnutrition. There generally a decrease of function of the GI tract, but there may be loss of adaptability in response to changes in diet or nutritional stress. Pathological alterations which might lead to minor overall intestinal functional variations in the young because of a normal process of adaptation, may lead to much more serious events in the elderly.
Collapse
Affiliation(s)
- Alan B R Thomson
- Division of General Internal Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Peck CJ, Samsuria SD, Harrington AM, King SK, Hutson JM, Southwell BR. Fall in density, but not number of myenteric neurons and circular muscle nerve fibres in guinea-pig colon with ageing. Neurogastroenterol Motil 2009; 21:1075-e90. [PMID: 19538442 DOI: 10.1111/j.1365-2982.2009.01349.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In guinea-pig ileum, ageing has been associated with a decrease in enteric neurons. This study examined guinea-pig colon and measured changes in gut dimensions, neuron size, density and ganglionic area. Changes in motor nerve fibres in the circular muscle were also measured. Myenteric neurons in whole-mount preparations of mid-colon from 2-week, 6-month, and 2-year-old guinea-pigs were labelled immunohistochemically with the neuronal marker human neuronal protein HuC/HuD, and numbers of neurons mm(-2), neuronal size, ganglionic area mm(-2), gut length, circumference and muscle thickness were measured. Corrected numbers of neurons mm(-2) and ganglionic area mm(-2) accounting for growth of the colon were calculated. Additionally, nerve fibres in circular muscle cross-sections were labelled with antibodies against nitric oxide synthase (NOS) and substance P (SP) and the density of nerve fibres in circular muscle was measured. The numbers of neurons mm(-2) decreased by 56% (from 2 weeks to 2 years) with no change in neuron size. Total neuron numbers decreased by 19% (P = 0.14) when adjusted for changes in length and circumference with age. The percentage area of NOS- and SP-immunoreactive (IR) nerve fibres in the circular muscle decreased (P < 0.001), but the total area of NOS and SP-IR nerve fibres increased (P < 0.01) due to an age-related increase in muscle thickness. The density of myenteric neurons in guinea-pig mid-colon halved from 2 weeks to 2 years, but when the increase in colon dimensions was considered, the number of neurons decreased by only 19%. The percentage area of motor nerve fibres in the circular muscle decreased with no change in total volume of nerve fibres.
Collapse
Affiliation(s)
- C J Peck
- F.D. Stephens Surgical Research Laboratory, Murdoch Childrens Research Institute, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Phillips RJ, Walter GC, Ringer BE, Higgs KM, Powley TL. Alpha-synuclein immunopositive aggregates in the myenteric plexus of the aging Fischer 344 rat. Exp Neurol 2009; 220:109-19. [PMID: 19664623 DOI: 10.1016/j.expneurol.2009.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/12/2009] [Accepted: 07/26/2009] [Indexed: 12/12/2022]
Abstract
Dystrophic axons and terminals are common in the myenteric plexus and smooth muscle of the gastrointestinal (GI) tract of aged rats. In young adult rats, alpha-synuclein in its normal state is abundant throughout the myenteric plexus, making this protein-which is prone to fibrillization-a candidate marker for axonopathies in the aged rat. To determine if aggregation of alpha-synuclein is involved in the formation of age-related enteric neuropathies, we sampled the stomach, small intestine and large intestine of adult, middle-aged, and aged virgin male Fischer 344 rats stained for alpha-synuclein in both its normal and pathological states. Alpha-synuclein-positive dystrophic axons and terminals were present throughout the GI tract of middle-aged and aged rats, with immunohistochemical double labeling demonstrating co-localization within nitric oxide synthase-, calretinin-, calbindin-, or tyrosine hydroxylase-positive markedly swollen neurites. However, other dystrophic neurites positive for each of these four markers were not co-reactive for alpha-synuclein. Similarly, a subpopulation of alpha-synuclein inclusions contained deposits immunostained with an anti-tau phospho-specific Ser(262) antibody, but not all of these hyperphosphorylated tau-positive aggregates were co-localized with alpha-synuclein. The presence of heteroplastic and potentially degenerating neural elements and protein aggregates both positive and negative for alpha-synuclein suggests a complex chronological relationship between the onset of degenerative changes and the accumulation of misfolded proteins. Additionally, proteins other than alpha-synuclein appear to be involved in age-related axonopathies. Finally, this study establishes the utility of the aging Fischer 344 rat for the study of synucleopathies and tauopathies in the GI tract.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | | | | | | | |
Collapse
|
28
|
Bernard CE, Gibbons SJ, Gomez-Pinilla PJ, Lurken MS, Schmalz PF, Roeder JL, Linden D, Cima RR, Dozois EJ, Larson DW, Camilleri M, Zinsmeister AR, Pozo MJ, Hicks GA, Farrugia G. Effect of age on the enteric nervous system of the human colon. Neurogastroenterol Motil 2009; 21:746-e46. [PMID: 19220755 PMCID: PMC2776702 DOI: 10.1111/j.1365-2982.2008.01245.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The effect of age on the anatomy and function of the human colon is incompletely understood. The prevalence of disorders in adults such as constipation increase with age but it is unclear if this is due to confounding factors or age-related structural defects. The aim of this study was to determine number and subtypes of enteric neurons and neuronal volumes in the human colon of different ages. Normal colon (descending and sigmoid) from 16 patients (nine male) was studied; ages 33-99. Antibodies to HuC/D, choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and protein gene product 9.5 were used. Effect of age was determined by testing for linear trends using regression analysis. In the myenteric plexus, number of Hu-positive neurons declined with age (slope = -1.3 neurons/mm/10 years, P = 0.03). The number of ChAT-positive neurons also declined with age (slope = -1.1 neurons/mm/10 years of age, P = 0.02). The number of nNOS-positive neurons did not decline with age. As a result, the ratio of nNOS to Hu increased (slope = 0.03 per 10 years of age, P = 0.01). In the submucosal plexus, the number of neurons did not decline with age (slope = -0.3 neurons/mm/10 years, P = 0.09). Volume of nerve fibres in the circular muscle and volume of neuronal structures in the myenteric plexus did not change with age. In conclusion, the number of neurons in the human colon declines with age with sparing of nNOS-positive neurons. This change was not accompanied by changes in total volume of neuronal structures suggesting compensatory changes in the remaining neurons.
Collapse
Affiliation(s)
- Cheryl E. Bernard
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain
| | - Simon J. Gibbons
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain
| | - Pedro J. Gomez-Pinilla
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain,Department of Physiology, Nursing School, University of Extremadura, Caceres, Spain
| | - Matthew S. Lurken
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain
| | - Philip F. Schmalz
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain
| | - Jaime L. Roeder
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain
| | - David Linden
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain
| | - Robert R. Cima
- Department of Surgery, University of Extremadura, Caceres, Spain
| | - Eric J. Dozois
- Department of Surgery, University of Extremadura, Caceres, Spain
| | - David W. Larson
- Department of Surgery, University of Extremadura, Caceres, Spain
| | - Michael Camilleri
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain
| | - Alan R Zinsmeister
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain,Division of Biostatistics, Mayo Clinic College of Medicine, Rochester, MN, University of Extremadura, Caceres, Spain
| | - Maria J Pozo
- Department of Physiology, Nursing School, University of Extremadura, Caceres, Spain,Red Tematica de Investigacion Cooperative en Envejecimiento y, Fragilidad, East Hanover,, NJ
| | | | - Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, University of Extremadura, Caceres, Spain
| |
Collapse
|
29
|
Xi M, Chase MH. The impact of age on the hypnotic effects of eszopiclone and zolpidem in the guinea pig. Psychopharmacology (Berl) 2009; 205:107-17. [PMID: 19343329 PMCID: PMC2695551 DOI: 10.1007/s00213-009-1520-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 03/16/2009] [Indexed: 11/24/2022]
Abstract
RATIONALE Eszopiclone and zolpidem are hypnotics that differentially affect sleep and waking states in adult animals. Therefore, it was of interest to compare their effects on the states of sleep and wakefulness in aged animals. OBJECTIVES Our objective was to determine the responses to eszopiclone and zolpidem vis-à-vis sleep and waking states in aged guinea pigs and to compare them with the effects of these hypnotics in adult animals. METHODS Aged guinea pigs were prepared to monitor sleep and waking states and to perform a frequency analysis of the EEG. Eszopiclone and zolpidem were administered intraperitoneally (1, 3, and 10 mg/kg). RESULTS Eszopiclone produced a more rapid and greater increase in NREM sleep as well as longer duration episodes of NREM sleep compared with zolpidem. There was also a significant increase in the latency to REM sleep with eszopiclone, but not with zolpidem. EEG power during NREM sleep increased in the delta band and decreased in the theta band following eszopiclone administration, whereas zolpidem had no effect on any of the frequency bands analyzed. CONCLUSIONS In aged as well as adult guinea pigs, eszopiclone is a more effective hypnotic insofar as it produces a shorter latency to NREM sleep, a greater amount of NREM sleep and EEG delta waves. Differences in the effects produced by eszopiclone and zolpidem as a function of the aging process likely reflect the fact that they bind to different subunits of the GABA(A) receptors, which are differentially reactive to the aging process.
Collapse
Affiliation(s)
- Mingchu Xi
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024, USA
| | | |
Collapse
|
30
|
Freytag C, Seeger J, Siegemund T, Grosche J, Grosche A, Freeman DE, Schusser GF, Härtig W. Immunohistochemical characterization and quantitative analysis of neurons in the myenteric plexus of the equine intestine. Brain Res 2008; 1244:53-64. [PMID: 18930715 DOI: 10.1016/j.brainres.2008.09.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 01/16/2023]
Abstract
The present study was performed on whole-mount preparations to investigate the chemical neuroanatomy of the equine myenteric plexus throughout its distribution in the intestinal wall. The objective was to quantify neurons of the myenteric plexus, especially the predominant cholinergic and nitrergic subpopulations. Furthermore, we investigated the distribution of vasoactive intestinal polypeptide and the calcium-binding protein calretinin. Samples from different defined areas of the small intestine and the flexura pelvina were taken from 15 adult horses. After fixation and preparation of the tissue, immunofluorescence labeling was performed on free floating whole-mounts. Additionally, samples used for neuropeptide staining were incubated with colchicine to reveal the neuropeptide distribution within the neuronal soma. The evaluation was routinely accomplished using confocal laser-scanning microscopy. For quantitative and qualitative analysis, the pan-neuronal marker anti-HuC/D was applied in combination with the detection of the marker enzymes for cholinergic neurons and nitrergic nerve cells. Quantitative data revealed that the cholinergic subpopulation is larger than the nitrergic one in several different locations of the small intestine. On the contrary, the nitrergic neurons outnumber the cholinergic neurons in the flexura pelvina of the large colon. Furthermore, ganglia are more numerous in the small intestine compared with the large colon, but ganglion sizes are bigger in the large colon. However, comparison of the entire population of neurons in the different locations of the gut showed no difference. The present study adds further data on the chemoarchitecture of the myenteric plexus which might facilitate the understanding of several gastrointestinal disorders in the horse.
Collapse
Affiliation(s)
- Christiane Freytag
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Phillips RJ, Pairitz JC, Powley TL. Age-related neuronal loss in the submucosal plexus of the colon of Fischer 344 rats. Neurobiol Aging 2007; 28:1124-37. [DOI: 10.1016/j.neurobiolaging.2006.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/07/2006] [Accepted: 05/10/2006] [Indexed: 11/28/2022]
|
32
|
Phillips RJ, Powley TL. Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 2007; 136:1-19. [PMID: 17537681 PMCID: PMC2045700 DOI: 10.1016/j.autneu.2007.04.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/10/2007] [Accepted: 04/24/2007] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic projections, including sympathetic and parasympathetic efferents as well as visceral afferents, all of which are compromised by age to different degrees. In the present review, we summarize and illustrate key structural changes in the aging innervation of the gut, and suggest a provisional list of the general patterns of aging of the GI innervation. For example, age-related neuronal losses occur in both the myenteric plexus and submucosal plexus of the intestines. These losses start in adulthood, increase over the rest of the life span, and are specific to cholinergic neurons. Parallel losses of enteric glia also occur. The extent of neuronal and glial loss varies along an oral-to-anal gradient, with the more distal GI tract being more severely affected. Additionally, with aging, dystrophic axonal swellings and markedly dilated varicosities progressively accumulate in the sympathetic, vagal, dorsal root, and enteric nitrergic innervation of the gut. These dramatic and consistent patterns of neuropathy that characterize the aging autonomic nervous system of the GI tract are candidate mechanisms for some of the age-related declines in function evidenced in the elderly.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | |
Collapse
|
33
|
Abalo R, Vera G, Rivera AJ, Martín MI. Age-related changes in the gastrointestinal tract: a functional and immunohistochemical study in guinea-pig ileum. Life Sci 2007; 80:2436-45. [PMID: 17509618 DOI: 10.1016/j.lfs.2007.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/26/2007] [Accepted: 04/09/2007] [Indexed: 11/17/2022]
Abstract
It is known that there is an age-related increase in gastrointestinal diseases. However, there is a lack of studies dealing with the correlation between age-related changes in function and intrinsic innervation in the gastrointestinal tract. The purpose of this work was to study this subject in the guinea pig ileum, whose functional and structural features are well known in the young age. Ileal longitudinal muscle -- myenteric plexus (LMMP) preparations were obtained from 3-to 24-month-old guinea pigs. Both functional and immunohistochemical techniques were applied. The force of the contraction elicited by excitatory stimuli (electrical stimulation, acetylcholine, substance P, and opioid withdrawal) increased in parallel with an age-dependent reduction in the density of excitatory motor neurones to the longitudinal muscle, whereas other subpopulations of neurones, including inhibitory motor neurones, decreased much more slowly. Although the increase in responsiveness could be related to the age/weight-related increment in muscle bulk, some compensatory modifications to the lowered density of excitatory neurones could also be involved. On the other hand, the acute inhibitory response to morphine remained unaltered in old animals, whilst in vitro tolerance was lower. These results suggest that although age-dependent neuronal loss does not cause dramatic changes in intestinal motility, it is a factor that could contribute to disturbing normal responsiveness and, perhaps, underlie the higher frequency of gastrointestinal diseases encountered in the elderly.
Collapse
Affiliation(s)
- Raquel Abalo
- Departamento de Ciencias de la Salud III, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda de Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | | | | | | |
Collapse
|
34
|
Thrasivoulou C, Soubeyre V, Ridha H, Giuliani D, Giaroni C, Michael GJ, Saffrey MJ, Cowen T. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell 2006; 5:247-57. [PMID: 16842497 DOI: 10.1111/j.1474-9726.2006.00214.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have studied the mechanisms underlying nonpathological age-related neuronal cell death. Fifty per cent of neurons in the rat enteric nervous system are lost between 12 and 18 months of age in ad libitum (AL) fed rats. Caloric restriction (CR) protects almost entirely against this neuron loss. Using the ROS-sensitive dyes, dihydrorhodamine (DHR) and 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF) in vitro, we show that the onset of cell death is linked with elevated intraneuronal levels of reactive oxygen species (ROS). Treatment with the neurotrophic factors NT3 and GDNF enhances neuronal antioxidant defence in CR rats at 12-15 months and 24 months but not in adult or aged AL-fed animals. To examine the link between elevated ROS and neuronal cell death, we assessed apoptotic cell death following in vitro treatment with the redox-cycling drug, menadione. Menadione fails to increase apoptosis in 6-month neurons. However, in 12-15mAL fed rats, when age-related cell death begins, menadione induces a 7- to 15-fold increase in the proportion of apoptotic neurons. CR protects age-matched neurons against ROS-induced apoptosis. Treatment with neurotrophic factors, in particular GDNF, rescues neurons from menadione-induced cell death, but only in 12-15mCR animals. We hypothesize that CR enhances antioxidant defence through neurotrophic factor signalling, thereby reducing age-related increases in neuronal ROS levels and in ROS-induced cell death.
Collapse
Affiliation(s)
- C Thrasivoulou
- Department of Anatomy and Developmental Biology, University College London, Royal Free Campus, London NW3 2PF, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Our aim was to provide a synopsis of how the field of enteric neurobiology has advanced during the past year. RECENT FINDINGS With such a large number of studies to choose from and given our emphasis in last year's issue on developmental aspects of the enteric nervous system, we have focused on several key themes reflecting the current interest in the way the enteric nervous system is altered in disease. SUMMARY The new basic science information gathered during the past year provides insight into pathophysiological processes and will pave the way for improved understanding of both organic and 'functional' gastrointestinal disorders.
Collapse
Affiliation(s)
- David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
36
|
Zhang JH, Sampogna S, Morales FR, Chase MH. Age-related changes of hypocretin in basal forebrain of guinea pig. Peptides 2005; 26:2590-6. [PMID: 15951059 DOI: 10.1016/j.peptides.2005.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/02/2005] [Accepted: 05/03/2005] [Indexed: 11/17/2022]
Abstract
Hypocretin-1 (hcrt-1) and hypocretin-2 (hcrt-2) have been implicated in a wide variety of functions including sleep and wakefulness as well as related behaviors. Many of these functions of the hypocretins involve the activation of cholinergic neurons in the basal forebrain (BF). These neurons have been shown to exhibit age-related changes in a variety of species. In the present experiment, in adult and aged guinea pigs, we compared hypocretin immunoreactivity in regions of the BF that include the medial septal nucleus (MS), the vertical and horizontal limbs of the diagonal band of Broca (VDB and HDB) and the magocellular preoptic nucleus (MCPO). In adult guinea pigs (3-5 months of age), all of the preceding BF regions contained dense hypocretin fibers with varicosities. On the contrary, in old guinea pigs (27-28 months), although the MS exhibited a similar intensity of hypocretin immunoreactivity compared with the adult guinea pig, there was a significant decrease in the intensity of immunoreactivity of hypocretinergic fibers in the VDB, HDB and MCPO. These data indicate that the hypocretinergic innervation of specific nuclei of the BF is compromised during the aging process. We suggest that the reduction in hypocretinergic innervation of the BF nuclei may contribute to the age-related changes in the states of sleep and wakefulness as well as deficits in related systems that occur in old age.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024, USA
| | | | | | | |
Collapse
|
37
|
Abalo R, Rivera AJ, Vera G, Suardíaz M, Martín MI. Evaluation of the effect of age on cannabinoid receptor functionality and expression in guinea-pig ileum longitudinal muscle–myenteric plexus preparations. Neurosci Lett 2005; 383:176-81. [PMID: 15936532 DOI: 10.1016/j.neulet.2005.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 11/17/2022]
Abstract
Cannabinoid drugs exert a wide range of biological effects and are currently under study for their multiple potential therapeutic uses. Cannabinoids reduce gastrointestinal (GI) motility and this is mediated by the CB1 cannabinoid receptor (CB1R) present in the myenteric neurones. GI motility can also be affected by a variety of pathophysiological situations, including ageing. The purpose of this work was to study the influence of age on the functionality and expression of CB1R in the myenteric plexus. Ileal longitudinal muscle-myenteric plexus (LMMP) preparations from young, adult and old guinea-pigs were used in two sets of experiments: in vitro assessment of the inhibitory cannabinoid effect upon electrically stimulated contractions and immunohistochemical quantification of myenteric neurones expressing CB1R. LMMP preparations responded to the synthetic cannabinoid WIN 55,212-2, and the endogenous cannabinoid ligand anandamide in an age-independent manner. The total number of CB1R-immunoreactive (IR) myenteric neurones, which included at least part of the motor neurones to the longitudinal smooth muscle, decreased in proportion to the general neuronal population; however, the proportion of CB1R-IR neurones was preserved in old animals. These data may justify the preservation of the effectiveness of the cannabinoids in the isolated guinea-pig ileum. This age-related independency of CB1R expression and effect on GI motility could be of interest if cannabinoids are to be used therapeutically.
Collapse
Affiliation(s)
- Raquel Abalo
- Departamento de Ciencias de la Salud III, Health Sciences III, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.
| | | | | | | | | |
Collapse
|
38
|
Abstract
The enteric nervous system (ENS) is the division of the autonomic nervous system that regulates gastrointestinal (GI) function. Although large numbers of enteric neurons may be lost with age, the GI tract remains surprisingly functional. Exceptions to this generality include swallowing disorders and reduced colonic motility in the elderly. Evidence of age-related neurodegenerative changes in structure and function of the ENS is briefly reviewed in this Perspective.
Collapse
Affiliation(s)
- Paul R Wade
- Enterology Research Team, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Spring House, PA 19477, USA.
| | | |
Collapse
|