1
|
Liu J, Guo L, Chen Z, Guo Y, Zhang W, Peng X, Wang Z, Zeng YF. Photoredox-catalyzed unsymmetrical diamination of alkenes for access to vicinal diamines. Chem Commun (Camb) 2024; 60:3413-3416. [PMID: 38441256 DOI: 10.1039/d4cc00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A photoredox-catalyzed unsymmetrical diamination of alkenes by using N-aminopyridinium salts and nitriles as the amination reagents has been developed. Various vicinal diamines were obtained in moderate to excellent yields under mild reaction conditions. Furthermore, this protocol could be applied in the late-stage modification of pharmaceuticals and natural products. Preliminary mechanistic studies suggested that this methodology may undergo a radical pathway followed by a Ritter-type reaction.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lu Guo
- Department of Sports Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhang Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan, 421001, China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Lohman RJ, Reddy Tupally K, Kandale A, Cabot PJ, Parekh HS. Design and development of novel, short, stable dynorphin-based opioid agonists for safer analgesic therapy. Front Pharmacol 2023; 14:1150313. [PMID: 36937883 PMCID: PMC10020352 DOI: 10.3389/fphar.2023.1150313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Kappa opioid receptors have exceptional potential as an analgesic target, seemingly devoid of many problematic Mu receptor side-effects. Kappa-selective, small molecule pharmaceutical agents have been developed, but centrally mediated side-effects limit clinical translation. We modify endogenous dynorphin peptides to improve drug-likeness and develop safer KOP receptor agonists for clinical use. Using rational, iterative design, we developed a series of potent, selective, and metabolically stable peptides from dynorphin 1-7. Peptides were assessed for in vitro cAMP-modulation against three opioid receptors, metabolic stability, KOP receptor selectivity, desensitisation and pERK-signalling capability. Lead peptides were evaluated for in vivo efficacy in a rat model of inflammatory nociception. A library of peptides was synthesised and assessed for pharmacological and metabolic stability. Promising peptide candidates showed low nanomolar KOP receptor selectivity in cAMP assay, and improved plasma and trypsin stability. Selected peptides showed bias towards cAMP signalling over pERK activity, also demonstrating reduced desensitisation. In vivo, two peptides showed significant opioid-like antinociception comparable to morphine and U50844H. These highly potent and metabolically stable peptides are promising opioid analgesic leads for clinical translation. Since they are somewhat biased peptide Kappa agonists they may lack many significant side-effects, such as tolerance, addiction, sedation, and euphoria/dysphoria, common to opioid analgesics.
Collapse
|
3
|
Bean BDM, Mulvihill CJ, Garge RK, Boutz DR, Rousseau O, Floyd BM, Cheney W, Gardner EC, Ellington AD, Marcotte EM, Gollihar JD, Whiteway M, Martin VJJ. Functional expression of opioid receptors and other human GPCRs in yeast engineered to produce human sterols. Nat Commun 2022; 13:2882. [PMID: 35610225 PMCID: PMC9130329 DOI: 10.1038/s41467-022-30570-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is powerful for studying human G protein-coupled receptors as they can be coupled to its mating pathway. However, some receptors, including the mu opioid receptor, are non-functional, which may be due to the presence of the fungal sterol ergosterol instead of cholesterol. Here we engineer yeast to produce cholesterol and introduce diverse mu, delta, and kappa opioid receptors to create sensitive opioid biosensors that recapitulate agonist binding profiles and antagonist inhibition. Additionally, human mu opioid receptor variants, including those with clinical relevance, largely display expected phenotypes. By testing mu opioid receptor-based biosensors with systematically adjusted cholesterol biosynthetic intermediates, we relate sterol profiles to biosensor sensitivity. Finally, we apply sterol-modified backgrounds to other human receptors revealing sterol influence in SSTR5, 5-HTR4, FPR1, and NPY1R signaling. This work provides a platform for generating human G protein-coupled receptor-based biosensors, facilitating receptor deorphanization and high-throughput screening of receptors and effectors.
Collapse
Affiliation(s)
- Björn D M Bean
- Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B1R6, Canada
| | - Colleen J Mulvihill
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Riddhiman K Garge
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Daniel R Boutz
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
- DEVCOM Army Research Laboratory-South, Austin, 78712, TX, USA
| | - Olivier Rousseau
- Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B1R6, Canada
| | - Brendan M Floyd
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - William Cheney
- Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B1R6, Canada
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jimmy D Gollihar
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
- DEVCOM Army Research Laboratory-South, Austin, 78712, TX, USA.
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - Malcolm Whiteway
- Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B1R6, Canada
| | - Vincent J J Martin
- Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B1R6, Canada.
| |
Collapse
|
4
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
BouSaba J, Sannaa W, Camilleri M. Pain in irritable bowel syndrome: Does anything really help? Neurogastroenterol Motil 2022; 34:e14305. [PMID: 34859929 PMCID: PMC9017689 DOI: 10.1111/nmo.14305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Pain relief remains a significant challenge in the management of irritable bowel syndrome (IBS): "Does anything really help relieve the pain in patients with IBS?". Interventions aimed at pain relief in patients with IBS include diet, probiotics or antibiotics, antidepressants, antispasmodics, and drugs targeting specific gastrointestinal receptors such as opioid or histamine receptors. In the systematic review and meta-analysis published in this journal, Lambarth et al. examined the literature on the role of oral and parenteral anti-neuropathic agents in the management of pain in patients with IBS. This review article appraises their assessment of the efficacy of the anti-neuropathic agents amitriptyline, pregabalin, gabapentin, and duloxetine in the relief of abdominal pain or discomfort, and impact on overall IBS severity and quality of life. This commentary provides an update of current evidence on the efficacy of the dietary and pharmacological treatments that are available or in development, as well psychological and cognitive behavioral therapy for pain in IBS. Advances in recent years augur well for efficacious treatments that may expand the therapeutic arsenal for pain in IBS.
Collapse
Affiliation(s)
- Joelle BouSaba
- Division of Gastroenterology and Hepatology Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Mayo Clinic Rochester Minnesota USA
| | - Wassel Sannaa
- Division of Gastroenterology and Hepatology Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Mayo Clinic Rochester Minnesota USA
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
6
|
Moniruzzaman M, Yano Y, Ono T, Hisaeda Y, Shimakoshi H. Aerobic Electrochemical Transformations of DDT to Oxygen-Incorporated Products Catalyzed by a B12 Derivative. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshio Yano
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Seth R, Kuppalli SS, Nadav D, Chen G, Gulati A. Recent Advances in Peripheral Opioid Receptor Therapeutics. Curr Pain Headache Rep 2021; 25:46. [PMID: 33970352 DOI: 10.1007/s11916-021-00951-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Although opioids are excellent analgesics, they are associated with severe short- and long-term side effects that are especially concerning for the treatment of chronic pain. Peripherally acting opioid receptor agonists promise to mitigate the more serious centrally mediated side effects of opioids, and the goal of this paper is to identify and elaborate on recent advances in these peripheral opioid receptor therapeutics. RECENT FINDINGS Peripheral opioid receptor agonists are effective analgesics that at the same time circumvent the problem of centrally mediated opioid side effects by (1) preferentially targeting peripheral opioid receptors that are often the source of the pain and (2) their markedly diminished permeability or activity across the blood-brain barrier. Recent novel bottom-up approaches have been notable for the design of therapeutics that are either active only at inflamed tissue, as in the case of fentanyl-derived pH-sensitive opioid ligands, or too bulky or hydrophilic to cross the blood-brain barrier, as in the case of morphine covalently bound to hyperbranched polyglycerols. Recent innovations in peripheral opioid receptor therapeutics of pH-sensitive opioid ligands and limiting opioid permeability across the blood-brain barrier have had promising results in animal models. While this is grounds for optimism that some of these therapeutics will be efficacious in human subjects at a future date, each drug must undergo individualized testing for specific chronic pain syndromes to establish not only the nuances of each drug's therapeutic effect but also a comprehensive safety profile.
Collapse
Affiliation(s)
- Raghav Seth
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Sumanth S Kuppalli
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Danielle Nadav
- Department of Anesthesiology, New York-Presbyterian/Weill Cornell Medicine, New York, NY, USA
| | - Grant Chen
- Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amitabh Gulati
- Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Hu S, Wu J, Lu Z, Wang J, Tao Y, Jiang M, Chen F. Time‐Economical Synthesis of Diarylacetates Enabled by TfOH‐Catalyzed Arylation of
α
‐Aryl‐
α
‐Diazoesters with Arenes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Jiale Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Zuolin Lu
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Jiaqi Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology 310014 Hangzhou P. R. China
| |
Collapse
|
9
|
Abstract
The management of pain, particularly chronic pain, is still an area of medical need. In this context, opioids remain a gold standard for the treatment of pain. However, significant side effects, mainly of central origin, limit their clinical use. Here, we review recent progress to improve the therapeutic and safety profiles of opioids for pain management. Characterization of peripheral opioid-mediated pain mechanisms have been a key component of this process. Several studies identified peripheral µ, δ, and κ opioid receptors (MOR, DOR, and KOR, respectively) and nociceptin/orphanin FQ (NOP) receptors as significant players of opioid-mediated antinociception, able to achieve clinically significant effects independently of any central action. Following this, particularly from a medicinal chemistry point of view, main efforts have been directed towards the peripheralization of opioid receptor agonists with the objective of optimizing receptor activity and minimizing central exposure and the associated undesired effects. These activities have allowed the characterization of a great variety of compounds and investigational drugs that show low central nervous system (CNS) penetration (and therefore a reduced side effect profile) yet maintaining the desired opioid-related peripheral antinociceptive activity. These include highly hydrophilic/amphiphilic and massive molecules unable to easily cross lipid membranes, substrates of glycoprotein P (a extrusion pump that avoids CNS penetration), nanocarriers that release the analgesic agent at the site of inflammation and pain, and pH-sensitive opioid agonists that selectively activate at those sites (and represent a new pharmacodynamic paradigm). Hopefully, patients with pain will benefit soon from the incorporation of these new entities.
Collapse
|
10
|
Sun B, Yang J, Zhang L, Shi R, Zhang X, Xu T, Zhuang X, Zhu R, Yu C, Jin C. Photocatalytic Aerobic Double Friedel‐Crafts Reaction of Glycine Derivatives with Anilines: An Efficient Synthesis of Diarylmethanes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Centre of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Jin Yang
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Liang Zhang
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Rongcheng Shi
- Collaborative Innovation Centre of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Xun Zhang
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Tengwei Xu
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Xiaohui Zhuang
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Rui Zhu
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Chuanming Yu
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Can Jin
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310032 P. R. China
| |
Collapse
|
11
|
Contribution of membrane receptor signalling to chronic visceral pain. Int J Biochem Cell Biol 2018; 98:10-23. [DOI: 10.1016/j.biocel.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
|
12
|
Sinagra E, Morreale GC, Mohammadian G, Fusco G, Guarnotta V, Tomasello G, Cappello F, Rossi F, Amvrosiadis G, Raimondo D. New therapeutic perspectives in irritable bowel syndrome: Targeting low-grade inflammation, immuno-neuroendocrine axis, motility, secretion and beyond. World J Gastroenterol 2017; 23:6593-6627. [PMID: 29085207 PMCID: PMC5643283 DOI: 10.3748/wjg.v23.i36.6593] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/15/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic, recurring, and remitting functional disorder of the gastrointestinal tract characterized by abdominal pain, distention, and changes in bowel habits. Although there are several drugs for IBS, effective and approved treatments for one or more of the symptoms for various IBS subtypes are needed. Improved understanding of pathophysiological mechanisms such as the role of impaired bile acid metabolism, neurohormonal regulation, immune dysfunction, the epithelial barrier and the secretory properties of the gut has led to advancements in the treatment of IBS. With regards to therapies for restoring intestinal permeability, multiple studies with prebiotics and probiotics are ongoing, even if to date their efficacy has been limited. In parallel, much progress has been made in targeting low-grade inflammation, especially through the introduction of drugs such as mesalazine and rifaximin, even if a better knowledge of the mechanisms underlying the low-grade inflammation in IBS may allow the design of clinical trials that test the efficacy and safety of such drugs. This literature review aims to summarize the findings related to new and investigational therapeutic agents for IBS, most recently developed in preclinical as well as Phase 1 and Phase 2 clinical studies.
Collapse
Affiliation(s)
- Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
- Euro-Mediterranean Institute of Science and Technology, 90100 Palermo, Italy
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90100 Palermo, Italy
| | | | - Ghazaleh Mohammadian
- Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska Institutet, Karolinska University Hospital, Huddinge, 17176 Stockholm, Sweden
| | - Giorgio Fusco
- Unit of Internal Medicine, Ospedali Riuniti Villa Sofia-Vincenzo Cervello, 90100 Palermo, Italy
| | - Valentina Guarnotta
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine, University of Palermo, Palermo 90127, Italy
| | - Giovanni Tomasello
- Euro-Mediterranean Institute of Science and Technology, 90100 Palermo, Italy
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90100 Palermo, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, 90100 Palermo, Italy
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90100 Palermo, Italy
| | - Francesca Rossi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
| | - Georgios Amvrosiadis
- Unit of Gastroenterology, Ospedali Riuniti Villa Sofia-Vincenzo Cervello, 90100 Palermo, Italy
| | - Dario Raimondo
- Gastroenterology and Endoscopy Unit, Fondazione Istituto Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
| |
Collapse
|
13
|
Hummel M, Knappenberger T, Reilly M, Whiteside GT. Pharmacological evaluation of NSAID-induced gastropathy as a "Translatable" model of referred visceral hypersensitivity. World J Gastroenterol 2017; 23:6065-6076. [PMID: 28970722 PMCID: PMC5597498 DOI: 10.3748/wjg.v23.i33.6065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/31/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate whether non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastropathy is a clinically predictive model of referred visceral hypersensitivity.
METHODS Gastric ulcer pain was induced by the oral administration of indomethacin to male, CD1 mice (n = 10/group) and then assessed by measuring referred abdominal hypersensitivity to tactile application. A diverse range of pharmacological mechanisms contributing to the pain were subsequently investigated. These mechanisms included: transient receptor potential (TRP), sodium and acid-sensing ion channels (ASICs) as well as opioid receptors and guanylate cyclase C (GC-C).
RESULTS Results showed that two opioids and a GC-C agonist, morphine, asimadoline and linaclotide, respectively, the TRP antagonists, AMG9810 and HC-030031 and the sodium channel blocker, carbamazepine, elicited a dose- and/or time-dependent attenuation of referred visceral hypersensitivity, while the ASIC blocker, amiloride, was ineffective at all doses tested.
CONCLUSION Together, these findings implicate opioid receptors, GC-C, and sodium and TRP channel activation as possible mechanisms associated with visceral hypersensitivity. More importantly, these findings also validate NSAID-induced gastropathy as a sensitive and clinically predictive mouse model suitable for assessing novel molecules with potential pain-attenuating properties.
Collapse
Affiliation(s)
- Michele Hummel
- Purdue Pharma L.P., Discovery Research, Cranbury, NJ 08512, United States
| | | | - Meghan Reilly
- Purdue Pharma L.P., Discovery Research, Cranbury, NJ 08512, United States
| | - Garth T Whiteside
- Purdue Pharma L.P., Discovery Research, Cranbury, NJ 08512, United States
| |
Collapse
|
14
|
Chen L, Ilham SJ, Feng B. Pharmacological Approach for Managing Pain in Irritable Bowel Syndrome: A Review Article. Anesth Pain Med 2017; 7:e42747. [PMID: 28824858 PMCID: PMC5556397 DOI: 10.5812/aapm.42747] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 12/13/2022] Open
Abstract
Context Visceral pain is a leading symptom for patients with irritable bowel syndrome (IBS) that affects 10% - 20 % of the world population. Conventional pharmacological treatments to manage IBS-related visceral pain is unsatisfactory. Recently, medications have emerged to treat IBS patients by targeting the gastrointestinal (GI) tract and peripheral nerves to alleviate visceral pain while avoiding adverse effects on the central nervous system (CNS). Several investigational drugs for IBS also target the periphery with minimal CNS effects. Evidence of Acquisition In this paper, reputable internet databases from 1960 - 2016 were searched including Pubmed and ClinicalTrials.org, and 97 original articles analyzed. Search was performed based on the following keywords and combinations: irritable bowel syndrome, clinical trial, pain, visceral pain, narcotics, opioid, chloride channel, neuropathy, primary afferent, intestine, microbiota, gut barrier, inflammation, diarrhea, constipation, serotonin, visceral hypersensitivity, nociceptor, sensitization, hyperalgesia. Results Certain conventional pain managing drugs do not effectively improve IBS symptoms, including NSAIDs, acetaminophen, aspirin, and various narcotics. Anxiolytic and antidepressant drugs (Benzodiazepines, TCAs, SSRI and SNRI) can attenuate pain in IBS patients with relevant comorbidities. Clonidine, gabapentin and pregabalin can moderately improve IBS symptoms. Lubiprostone relieves constipation predominant IBS (IBS-C) while loperamide improves diarrhea predominant IBS (IBS-D). Alosetron, granisetron and ondansetron can generally treat pain in IBS-D patients, of which alosetron needs to be used with caution due to cardiovascular toxicity. The optimal drugs for managing pain in IBS-D and IBS-C appear to be eluxadoline and linaclotide, respectively, both of which target peripheral GI tract. Conclusions Conventional pain managing drugs are in general not suitable for treating IBS pain. Medications that target the GI tract and peripheral nerves have better therapeutic profiles by limiting adverse CNS effects.
Collapse
Affiliation(s)
- Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Sheikh J. Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Corresponding author: Bin Feng, Ph.D., Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT 06269-3247, USA. Tel: +1-8604866435, Fax: +1-8604862500, E-mail:
| |
Collapse
|
15
|
Yamagata T, Zanelli U, Gallemann D, Perrin D, Dolgos H, Petersson C. Comparison of methods for the prediction of human clearance from hepatocyte intrinsic clearance for a set of reference compounds and an external evaluation set. Xenobiotica 2016; 47:741-751. [PMID: 27560606 DOI: 10.1080/00498254.2016.1222639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. We compared direct scaling, regression model equation and the so-called "Poulin et al." methods to scale clearance (CL) from in vitro intrinsic clearance (CLint) measured in human hepatocytes using two sets of compounds. One reference set comprised of 20 compounds with known elimination pathways and one external evaluation set based on 17 compounds development in Merck (MS). 2. A 90% prospective confidence interval was calculated using the reference set. This interval was found relevant for the regression equation method. The three outliers identified were justified on the basis of their elimination mechanism. 3. The direct scaling method showed a systematic underestimation of clearance in both the reference and evaluation sets. The "Poulin et al." and the regression equation methods showed no obvious bias in either the reference or evaluation sets. 4. The regression model equation was slightly superior to the "Poulin et al." method in the reference set and showed a better absolute average fold error (AAFE) of value 1.3 compared to 1.6. A larger difference was observed in the evaluation set were the regression method and "Poulin et al." resulted in an AAFE of 1.7 and 2.6, respectively (removing the three compounds with known issues mentioned above). A similar pattern was observed for the correlation coefficient. Based on these data we suggest the regression equation method combined with a prospective confidence interval as the first choice for the extrapolation of human in vivo hepatic metabolic clearance from in vitro systems.
Collapse
Affiliation(s)
- Tetsuo Yamagata
- a Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck KGaA , Grafing , Germany and
| | - Ugo Zanelli
- b Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck KGaA , Darmstadt , Germany
| | - Dieter Gallemann
- a Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck KGaA , Grafing , Germany and
| | - Dominique Perrin
- b Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck KGaA , Darmstadt , Germany
| | - Hugues Dolgos
- b Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck KGaA , Darmstadt , Germany
| | - Carl Petersson
- b Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck KGaA , Darmstadt , Germany
| |
Collapse
|
16
|
Opioid κ Receptors as a Molecular Target for the Creation of a New Generation of Analgesic Drugs. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1388-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Brust A, Croker DE, Colless B, Ragnarsson L, Andersson Å, Jain K, Garcia-Caraballo S, Castro J, Brierley SM, Alewood PF, Lewis RJ. Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. J Med Chem 2016; 59:2381-95. [PMID: 26859603 DOI: 10.1021/acs.jmedchem.5b00911] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioid receptor screening of a conopeptide library led to a novel selective κ-opioid agonist peptide (conorphin T). Intensive medicinal chemistry, guided by potency, selectivity, and stability assays generated a pharmacophore model supporting rational design of highly potent and selective κ-opioid receptor (KOR) agonists (conorphins) with exceptional plasma stability. Conorphins are defined by a hydrophobic benzoprolyl moiety, a double arginine sequence, a spacer amino acid followed by a hydrophobic residue and a C-terminal vicinal disulfide moiety. The pharmacophore model was supported by computational docking studies, revealing receptor-ligand interactions similar to KOR agonist dynorphin A (1-8). A conorphin agonist inhibited colonic nociceptors in a mouse tissue model of chronic visceral hypersensitivity, suggesting the potential of KOR agonists for the treatment of chronic abdominal pain. This new conorphine KOR agonist class and pharmacophore model provide opportunities for future rational drug development and probes for exploring the role of the κ-opioid receptor.
Collapse
Affiliation(s)
- Andreas Brust
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Daniel E Croker
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Barbara Colless
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Lotten Ragnarsson
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Åsa Andersson
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Kapil Jain
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Paul F Alewood
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Richard J Lewis
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| |
Collapse
|
18
|
Lacy BE. Emerging treatments in neurogastroenterology: eluxadoline - a new therapeutic option for diarrhea-predominant IBS. Neurogastroenterol Motil 2016; 28:26-35. [PMID: 26690872 DOI: 10.1111/nmo.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder worldwide. The global prevalence of IBS is estimated to be as high as 15%. For many patients, IBS is a chronic disorder which can significantly reduce quality of life. Just as important as the effects on any one individual, IBS also places a significant impact on the population as a whole with its negative effects on the health care system. Irritable bowel syndrome is categorized into one of three main categories: IBS with diarrhea, IBS with constipation, and IBS with mixed bowel habits. Patients with diarrhea-predominant IBS (IBS-D) comprise a substantial proportion of the overall IBS population. A number of therapeutic options exist to treat the symptoms of abdominal pain, bloating, diarrhea, and fecal urgency, including non-pharmacologic therapies such as dietary changes and probiotics, or pharmacologic therapies such as loperamide and alosetron. However, many patients have persistent symptoms despite these therapies. This unmet need led to the development of eluxadoline, a mu-opioid receptor agonist/delta-opioid receptor antagonist/kappa-receptor agonist. Approved by the FDA in May 2015, this medication shows promise in the treatment of diarrhea-predominant IBS for both men and women. PURPOSE This monograph will briefly review the impact of IBS, discuss current treatments for IBS-D, and then focus on the pharmacology, clinical efficacy and safety of eluxadoline. Potential mechanisms related to rare events of acute pancreatitis or elevated liver tests will be discussed.
Collapse
Affiliation(s)
- B E Lacy
- Division of Gastroenterology & Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
19
|
Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol 2016; 239:343-362. [PMID: 28161834 DOI: 10.1007/164_2016_105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands' synthesizing/degrading enzymes. The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury. For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects. New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.
Collapse
|
20
|
Cenac N, Castro M, Desormeaux C, Colin P, Sie M, Ranger M, Vergnolle N. A novel orally administered trimebutine compound (GIC-1001) is anti-nociceptive and features peripheral opioid agonistic activity and Hydrogen Sulphide-releasing capacity in mice. Eur J Pain 2015; 20:723-30. [PMID: 26541237 DOI: 10.1002/ejp.798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Trimebutine maleate, a noncompetitive spasmolytic agent with some affinity for peripheral μ- and κ-opioid receptors has been evaluated as a treatment in a limited number of patients undergoing sedation-free full colonoscopy. The efficiency of such treatment was comparable to sedation-based colonoscopies to relieve from pain and discomfort. METHODS A new and improved trimebutine salt capable of releasing in vivo hydrogen sulphide (H2S), a gaseous mediator known to reduce nociception, has been developed. This drug salt (GIC-1001) is composed of trimebutine bearing a H2S-releasing counterion (3-thiocarbamoylbenzoate, 3TCB), the latter having the ability to release H2S. GIC-1001 has been tested here in a mouse model of colorectal distension. RESULTS In mice, while orally given trimebutine (the maleate salt, non-H2 S-releaser) only slightly reduced the nociceptive response to increasing pressures of colorectal distension, oral administration of GIC-1001 (the H2S-releaser) was able to significantly reduce nociceptive response to all noxious stimuli, in a dose-dependent manner. This effect of GIC-1001 was significantly better than the effects of its parent compound trimebutine administered at equimolar doses. CONCLUSIONS Taken together, these results demonstrated increased antinociceptive properties for GIC-1001 compared to trimebutine, suggesting that this compound would be a better option to relieve from visceral pain and discomfort induced by lumenal distension.
Collapse
Affiliation(s)
- N Cenac
- INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, Université Paul Sabatier, France
| | - M Castro
- INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, Université Paul Sabatier, France
| | - C Desormeaux
- INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, Université Paul Sabatier, France
| | - P Colin
- GIcare pharma Inc, Montréal, Canada
| | - M Sie
- INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, Université Paul Sabatier, France
| | - M Ranger
- GIcare pharma Inc, Montréal, Canada
| | - N Vergnolle
- INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, Université Paul Sabatier, France
- Department of Physiology and Pharmacology, University of Calgary, Canada
| |
Collapse
|
21
|
Affiliation(s)
- Pamela J Hornby
- Janssen Research & Development, Cardiovascular and Metabolic Disease, Janssen Pharmaceutical Companies of Johnson and Johnson, SH42-2508-A, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
22
|
Fröhlich J, Lehmkuhl K, Fröhlich R, Wünsch B. Diastereoselective Synthesis of Cyclic Five-Membered trans,trans-Configured Nitrodiols by Double Henry Reaction of 1,4-Dialdehydes. Arch Pharm (Weinheim) 2015; 348:589-94. [PMID: 26010372 DOI: 10.1002/ardp.201500114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/17/2015] [Accepted: 04/24/2015] [Indexed: 11/10/2022]
Abstract
Conformationally constrained perhydroquinoxalines 4 show high κ receptor affinity, selectivity over related receptors and full agonistic activity. Since the κ affinity can be correlated with the dihedral angle of the ethylenediamine pharmacophore (4a: 55°/71°), the dihedral angles of the postulated cyclopentane derivative 5a (73°/84°) and indane derivative 6a (77°/81°) were calculated. The first step of the synthesis represents a double Henry reaction of 1,4-dialdehydes 8 and 10 with nitromethane, leading predominantly to the trans,trans-configured nitrodiols 9 and 11. X-ray crystal structure analyses of 9 and 11 led to dihedral angles O2 N−C−C−OH of 73.4 and 88.3°, respectively, which reflect the calculated dihedral angles of the hypothesized final products 5a and 6a.
Collapse
Affiliation(s)
- Janine Fröhlich
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Kirstin Lehmkuhl
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Roland Fröhlich
- Organisch-Chemisches Institut der Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
23
|
Sałaga M, Polepally PR, Sobczak M, Grzywacz D, Kamysz W, Sibaev A, Storr M, Do Rego JC, Zjawiony JK, Fichna J. Novel orally available salvinorin A analog PR-38 inhibits gastrointestinal motility and reduces abdominal pain in mouse models mimicking irritable bowel syndrome. J Pharmacol Exp Ther 2014; 350:69-78. [PMID: 24891526 DOI: 10.1124/jpet.114.214239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The opioid and cannabinoid systems play a crucial role in multiple physiological processes in the central nervous system and in the periphery. Selective opioid as well as cannabinoid (CB) receptor agonists exert a potent inhibitory action on gastrointestinal (GI) motility and pain. In this study, we examined (in vitro and in vivo) whether PR-38 (2-O-cinnamoylsalvinorin B), a novel analog of salvinorin A, can interact with both systems and demonstrate therapeutic effects. We used mouse models of hypermotility, diarrhea, and abdominal pain. We also assessed the influence of PR-38 on the central nervous system by measurement of motoric parameters and exploratory behaviors in mice. Subsequently, we investigated the pharmacokinetics of PR-38 in mouse blood samples after intraperitoneal and oral administration. PR-38 significantly inhibited mouse colonic motility in vitro and in vivo. Administration of PR-38 significantly prolonged the whole GI transit time, and this effect was mediated by µ- and κ-opioid receptors and the CB1 receptor. PR-38 reversed hypermotility and reduced pain in mouse models mimicking functional GI disorders. These data expand our understanding of the interactions between opioid and cannabinoid systems and their functions in the GI tract. We also provide a novel framework for the development of future potential treatments of functional GI disorders.
Collapse
Affiliation(s)
- M Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - P R Polepally
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - M Sobczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - D Grzywacz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - W Kamysz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - A Sibaev
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - M Storr
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - J C Do Rego
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - J K Zjawiony
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| |
Collapse
|
24
|
Bourgeois C, Werfel E, Galla F, Lehmkuhl K, Torres-Gómez H, Schepmann D, Kögel B, Christoph T, Straßburger W, Englberger W, Soeberdt M, Hüwel S, Galla HJ, Wünsch B. Synthesis and pharmacological evaluation of 5-pyrrolidinylquinoxalines as a novel class of peripherally restricted κ-opioid receptor agonists. J Med Chem 2014; 57:6845-60. [PMID: 25062506 DOI: 10.1021/jm500940q] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Pyrrolidinyl substituted perhydroquinoxalines were designed as conformationally restricted κ-opioid receptor agonists restricted to the periphery. The additional N atom of the quinoxaline system located outside the ethylenediamine κ pharmacophore allows the fine-tuning of the pharmacodynamic and pharmacokinetic properties. The perhydroquinoxalines were synthesized stereoselectively using the concept of late stage diversification of the central building blocks 14. In addition to high κ-opioid receptor affinity they demonstrate high selectivity over μ, δ, σ1, σ2, and NMDA receptors. In the [35S]GTPγS assay full agonism was observed. Because of their high polarity, the secondary amines 14a (log D7.4=0.26) and 14b (log D7.4=0.21) did not penetrate an artificial blood-brain barrier. 14b was able to inhibit the spontaneous pain reaction after rectal mustard oil application to mice (ED50=2.35 mg/kg). This analgesic effect is attributed to activation of peripherally located κ receptors, since 14b did not affect centrally mediated referred allodynia and hyperalgesia.
Collapse
Affiliation(s)
- Christian Bourgeois
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstraße 48, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The neoclerodane diterpene salvinorin A is the major active component of the hallucinogenic mint plant Salvia divinorum Epling and Játiva (Lamiaceae). Since the finding that salvinorin A exerts its potent psychotropic actions through the activation of opioid receptors, the site of action of morphine and related analogues, there has been much interest in elucidating the underlying mechanisms behind its effects. These effects are particularly remarkable because (1) salvinorin A is the first reported non-nitrogenous opioid receptor agonist and (2) its effects are not mediated through the previously investigated targets of psychotomimetics. This Perspective outlines our research program, illustrating a new direction to the development of tools to further elucidate the biological mechanisms of drug tolerance and dependence. The information gained from these efforts is expected to facilitate the design of novel agents to treat pain, drug abuse, and other central nervous system disorders.
Collapse
Affiliation(s)
- Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, Kansas 66045-7572, United States.
| |
Collapse
|
26
|
Wade PR, Palmer JM, McKenney S, Kenigs V, Chevalier K, Moore BA, Mabus JR, Saunders PR, Wallace NH, Schneider CR, Kimball ES, Breslin HJ, He W, Hornby PJ. Modulation of gastrointestinal function by MuDelta, a mixed µ opioid receptor agonist/ µ opioid receptor antagonist. Br J Pharmacol 2013; 167:1111-25. [PMID: 22671931 DOI: 10.1111/j.1476-5381.2012.02068.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND & PURPOSE Loperamide is a selective µ opioid receptor agonist acting locally in the gastrointestinal (GI) tract as an effective anti-diarrhoeal but can cause constipation. We tested whether modulating µ opioid receptor agonism with δ opioid receptor antagonism, by combining reference compounds or using a novel compound ('MuDelta'), could normalize GI motility without constipation. EXPERIMENTAL APPROACH MuDelta was characterized in vitro as a potent µ opioid receptor agonist and high-affinity δ opioid receptor antagonist. Reference compounds, MuDelta and loperamide were assessed in the following ex vivo and in vivo experiments: guinea pig intestinal smooth muscle contractility, mouse intestinal epithelial ion transport and upper GI tract transit, entire GI transit or faecal output in novel environment stressed mice, or four weeks after intracolonic mustard oil (post-inflammatory). Colonic δ opioid receptor immunoreactivity was quantified. KEY RESULTS δ Opioid receptor antagonism opposed µ opioid receptor agonist inhibition of intestinal contractility and motility. MuDelta reduced intestinal contractility and inhibited neurogenically-mediated secretion. Very low plasma levels of MuDelta were detected after oral administration. Stress up-regulated δ opioid receptor expression in colonic epithelial cells. In stressed mice, MuDelta normalized GI transit and faecal output to control levels over a wide dose range, whereas loperamide had a narrow dose range. MuDelta and loperamide reduced upper GI transit in the post-inflammatory model. CONCLUSIONS AND IMPLICATIONS MuDelta normalizes, but does not prevent, perturbed GI transit over a wide dose-range in mice. These data support the subsequent assessment of MuDelta in a clinical phase II trial in patients with diarrhoea-predominant irritable bowel syndrome.
Collapse
Affiliation(s)
- P R Wade
- Enterology Research Team, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Spring House, PA 19087, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Thazhath SS, Jones KL, Horowitz M, Rayner CK. Diabetic gastroparesis: recent insights into pathophysiology and implications for management. Expert Rev Gastroenterol Hepatol 2013; 7:127-39. [PMID: 23363262 DOI: 10.1586/egh.12.82] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Delayed gastric emptying affects a substantial proportion of patients with long-standing diabetes, and when associated with symptoms and/or disordered glycemic control, affects quality of life adversely. Important clinicopathological insights have recently been gained by the systematic analysis of gastric biopsies from patients with severe diabetic gastroparesis, which may stimulate the development of new therapies in the coming decade. Experience with prokinetic therapies and treatments, such as pyloric botulinum toxin injection and gastric electrical stimulation, has established that relief of symptoms does not correlate closely with acceleration of delayed gastric emptying, and that well-designed controlled trials are essential to determine the efficacy of emerging therapies.
Collapse
Affiliation(s)
- Sony S Thazhath
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide 5000, Australia Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
28
|
Mozaffari S, Nikfar S, Abdollahi M. Metabolic and toxicological considerations for the latest drugs used to treat irritable bowel syndrome. Expert Opin Drug Metab Toxicol 2013; 9:403-21. [PMID: 23330973 DOI: 10.1517/17425255.2013.759558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The high prevalence of irritable bowel syndrome (IBS), a chronic gastrointestinal (GI) disorder, its lack of satisfactory effective drugs and its complicated pathophysiology lead to the demand of new therapeutic agents. During a new drug development process, the pharmacokinetic profiling is of a great considerable importance comparable to drug's efficacy. This involves the drug's absorption, distribution, metabolism and excretion, all of which are crucial to its usefulness. In addition, the toxicological profile and possible adverse reactions of the drug should be identified. Also its interactions should be identified at different phases of trials. Several pharmacokinetic studies are carried out to achieve drugs with the best absorption and bioavailability and the least adverse effects and lowest toxicity. AREAS COVERED To make an update on new clinically introduced drugs for IBS and their dynamics and kinetics data, the present systematic review was accomplished. All relevant bibliographic databases were searched from the year 2003 up to May 2012 to identify all clinical trials that evaluated the potential efficacy of a novel agent in IBS. EXPERT OPINION Some evaluated drugs, such as ramosetron (5-HT3 antagonist) and pexacerfont (CRF1 receptor antagonist), have shown some benefits in diarrhea-predominant IBS (D-IBS), while, prucalopride and mosapride (5-HT4 agonist) with prokinetic effect were found useful in constipation-predominant IBS (C-IBS). Besides, dexloxiglumide, lubiprostone and linaclotide have shown beneficial effects in C-IBS patients. Melatonin regulates GI tract motility and, asimadoline, gabapentin and pregabalin show reduction of pain threshold and visceral hypersensitivity. Glucagon-like peptide analog, calcium-channel blockers and neurokinin receptor antagonists have shown benefits in pain attacks. More time is required to indicate both efficacy and safety in long-term treatment due to multifactorial pathophysiology, variations in individual responses and insufficient assessment methods, which limit the right decision-making process about the efficacy and tolerability of these new drugs.
Collapse
Affiliation(s)
- Shilan Mozaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | | | | |
Collapse
|
29
|
Khansari M, Sohrabi M, Zamani F. The Useage of Opioids and their Adverse Effects in Gastrointestinal Practice: A Review. Middle East J Dig Dis 2013; 5:5-16. [PMID: 24829664 PMCID: PMC3990131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/15/2012] [Indexed: 11/10/2022] Open
Abstract
Opium is one of the oldest herbal medicines currently used as an analgesic, sedative and antidiarrheal treatment. The effects of opium are principally mediated by the μ-, κ- and δ-opioid receptors. Opioid substances consist of all natural and synthetic alkaloids that are derived from opium. Most of their effects on gastrointestinal motility and secretion result from suppression of neural activity. Inhibition of gastric emptying, increase in sphincter tone, changes in motor patterns, and blockage of peristalsis result from opioid use. Common adverse effects of opioid administration include sedation, dizziness, nausea, vomiting, constipation, dependency and tolerance, and respiratory depression. The most common adverse effect of opioid use is constipation. Although stool softeners are frequently used to decrease opioid-induced bowel dysfunction, however they are not efficacious. Possibly, the use of specific opioid receptor antagonists is a more suitable approach. Opioid antagonists, both central and peripheral, could affect gastrointestinal function and visceromotor sensitivity, which suggests an important role for endogenous opioid peptides in the control of gastrointestinal physiology. Underlying diseases or medications known to influence the central nervous system (CNS) often accelerate the opioid's adverse effects. However, changing the opioid and/or route of administration could also decrease their adverse effects. Appropriate patient selection, patient education and discussion regarding potential adverse effects may assist physicians in maximizing the effectiveness of opioids, while reducing the number and severity of adverse effects.
Collapse
Affiliation(s)
- MahmoudReza Khansari
- 1Gastrointestinal and Liver Disease Research Center, Firoozgar Hospital, Tehran University of Medical Sciencse, Tehran, Iran
| | - MasourReza Sohrabi
- 1Gastrointestinal and Liver Disease Research Center, Firoozgar Hospital, Tehran University of Medical Sciencse, Tehran, Iran
| | - Farhad Zamani
- 1Gastrointestinal and Liver Disease Research Center, Firoozgar Hospital, Tehran University of Medical Sciencse, Tehran, Iran
,Corresponding Author: Farhad Zamani, MD Gastrointestinal and Liver Disease Research Center (GILDRC), Firoozgar Hospital, Tehran, Iran Tel: + 98 21 82141633 Fax:+ 98 21 88940489
| |
Collapse
|
30
|
Xiong Y, Wu J, Xiao S, Cao S. One-pot Three Component Synthesis of Polyfluoroarylated ArylacetatesviaVNSAr-SNAr Reaction. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201201044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Schicho R, Storr M. Targeting the endocannabinoid system for gastrointestinal diseases: future therapeutic strategies. Expert Rev Clin Pharmacol 2012; 3:193-207. [PMID: 22111567 DOI: 10.1586/ecp.09.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cannabinoids extracted from the marijuana plant (Cannabis sativa) and synthetic cannabinoids have numerous effects on gastrointestinal (GI) functions. Recent experimental data support an important role for cannabinoids in GI diseases. Genetic studies in humans have proven that defects in endocannabinoid metabolism underlie functional GI disorders. Mammalian cells have machinery, the so-called endocannabinoid system (ECS), to produce and metabolize their own cannabinoids in order to control homeostasis of the gut in a rapidly adapting manner. Pharmacological manipulation of the ECS by cannabinoids, or by drugs that raise the levels of endogenous cannabinoids, have shown beneficial effects on GI pathophysiology. This review gives an introduction into the functions of the ECS in the GI tract, highlights the role of the ECS in GI diseases and addresses its potential pharmacological exploitation.
Collapse
Affiliation(s)
- Rudolf Schicho
- Division of Gastroenterology, Department of Medicine, University of Calgary, 6D25, TRW Building, 3280 Hospital Drive NW, Calgary T2N 4N1, AB, Canada.
| | | |
Collapse
|
32
|
Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur J Intern Med 2012; 23:499-505. [PMID: 22863425 DOI: 10.1016/j.ejim.2012.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/14/2022]
Abstract
Gastrointestinal symptoms occur frequently among patients with diabetes mellitus and are associated with considerable morbidity. Diabetic gastrointestinal autonomic neuropathy represents a complex disorder with multifactorial pathogenesis, which is still not well understood. It appears to involve a spectrum of metabolic and cellular changes that affect gastrointestinal motor and sensory control. It may affect any organ in the digestive system. Clinical manifestations are often underestimated, and therefore autonomic neuropathy should be suspected in all diabetic patients with unexplained gastrointestinal symptoms. Advances in technology have now enabled assessment of gastrointestinal motor function. Moreover, novel pharmacological approaches, along with endoscopic and surgical treatment options, contribute to improved outcomes. This review summarises the progress achieved in diabetic gastrointestinal autonomic neuropathy during the last years, focusing on clinical issues of practical importance to the everyday clinician.
Collapse
Affiliation(s)
- A Gatopoulou
- Second Department of Internal Medicine, Democritus University of Thrace, Greece.
| | | | | |
Collapse
|
33
|
Fichna J, Dicay M, Lewellyn K, Janecka A, Zjawiony JK, MacNaughton WK, Storr MA. Salvinorin A has antiinflammatory and antinociceptive effects in experimental models of colitis in mice mediated by KOR and CB1 receptors. Inflamm Bowel Dis 2012; 18:1137-45. [PMID: 21953882 DOI: 10.1002/ibd.21873] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/04/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Salvinorin A (SA) has a potent inhibitory action on mouse gastrointestinal (GI) motility and ion transport, mediated primarily by kappa-opioid receptors (KOR). The aim of the present study was to characterize possible antiinflammatory and antinociceptive effects of SA in the GI tract of mice. METHODS Colonic damage scores and myeloperoxidase activity were determined after intraperitoneal (i.p.), intracolonic (i.c.), and oral (p.o.) administration of SA using the trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulfate (DSS) models of colitis in mice. Additionally, KOR, cannabinoid (CB)1, and CB2 western blot analysis of colon samples was performed. The antinociceptive effect of SA was examined based on the number of behavioral responses to i.c. instillation of mustard oil (MO). RESULTS The i.p. (3 mg/kg, twice daily) and p.o. (10 mg/kg, twice daily) administration of SA significantly attenuated TNBS and DSS colitis in mice. The effect of SA was blocked by KOR antagonist nor-binaltorphimine (10 mg/kg, i.p.). Western blot analysis showed no influence of SA on KOR, CB1, or CB2 levels. SA (3 mg/kg, i.p. and 10 mg/kg, i.c.) significantly decreased the number of pain responses after i.c. instillation of MO in the vehicle- and TNBS-treated mice. The antinociceptive action of SA was blocked by KOR and CB1 antagonists. The analgesic effect of i.c. SA was more potent in TNBS-treated mice compared to controls. CONCLUSIONS Our results suggest that the drugs based on the structure of SA have the potential to become valuable antiinflammatory or analgesic therapeutics for the treatment of GI diseases.
Collapse
Affiliation(s)
- Jakub Fichna
- Snyder Institute of Infection, Immunity and Inflammation (III), University of Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Davis MP. Drug management of visceral pain: concepts from basic research. PAIN RESEARCH AND TREATMENT 2012; 2012:265605. [PMID: 22619712 PMCID: PMC3348642 DOI: 10.1155/2012/265605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Visceral pain is experienced by 40% of the population, and 28% of cancer patients suffer from pain arising from intra- abdominal metastasis or from treatment. Neuroanatomy of visceral nociception and neurotransmitters, receptors, and ion channels that modulate visceral pain are qualitatively or quantitatively different from those that modulate somatic and neuropathic pain. Visceral pain should be recognized as distinct pain phenotype. TRPV1, Na 1.8, and ASIC3 ion channels and peripheral kappa opioid receptors are important mediators of visceral pain. Mu agonists, gabapentinoids, and GABAB agonists reduce pain by binding to central receptors and channels. Combinations of analgesics and adjuvants in animal models have supra-additive antinociception and should be considered in clinical trials. This paper will discuss the neuroanatomy, receptors, ion channels, and neurotransmitters important to visceral pain and provide a basic science rationale for analgesic trials and management.
Collapse
Affiliation(s)
- Mellar P. Davis
- Cleveland Clinic Lerner School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Solid Tumor Division, Harry R. Horvitz Center for Palliative Medicine, Taussig Cancer Institute, USA
| |
Collapse
|
35
|
Mangel AW, Hicks GA. Asimadoline and its potential for the treatment of diarrhea-predominant irritable bowel syndrome: a review. Clin Exp Gastroenterol 2012; 5:1-10. [PMID: 22346361 PMCID: PMC3278196 DOI: 10.2147/ceg.s23274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a multifactorial condition with principal symptoms of pain and altered bowel function. The kappa-opioid agonist asimadoline is being evaluated in Phase III as a potential treatment for IBS. Asimadoline, to date, has shown a good safety profile and the target Phase III population - diarrhea-predominant IBS patients with at least moderate pain - was iteratively determined in a prospective manner from a Phase II dose-ranging study. The clinical data in support of this population are reviewed in this article. Furthermore, the scientific rationale for the use of asimadoline in the treatment of IBS is reviewed. Considering the high patient and societal burdens of IBS, new treatments for IBS represent therapeutic advances.
Collapse
|
36
|
Chey WD, Maneerattaporn M, Saad R. Pharmacologic and complementary and alternative medicine therapies for irritable bowel syndrome. Gut Liver 2011; 5:253-66. [PMID: 21927652 PMCID: PMC3166664 DOI: 10.5009/gnl.2011.5.3.253] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/25/2011] [Indexed: 12/11/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by episodic abdominal pain or discomfort in association with altered bowel habits (diarrhea and/or constipation). Other gastrointestinal symptoms, such as bloating and flatulence, are also common. A variety of factors are believed to play a role in the development of IBS symptoms, including altered bowel motility, visceral hypersensitivity, psychosocial stressors, altered brain-gut interactions, immune activation/low grade inflammation, alterations in the gut microbiome, and genetic factors. In the absence of biomarkers that can distinguish between IBS subgroups on the basis of pathophysiology, treatment of this condition is predicated upon a patient's most bothersome symptoms. In clinical trials, effective therapies have only offered a therapeutic gain over placebos of 7-15%. Evidence based therapies for the global symptoms of constipation predominant IBS (IBS-C) include lubiprostone and tegaserod; evidence based therapies for the global symptoms of diarrhea predominant IBS (IBS-D) include the probiotic Bifidobacter infantis, the nonabsorbable antibiotic rifaximin, and alosetron. Additionally, there is persuasive evidence to suggest that selected antispasmodics and antidepressants are of benefit for the treatment of abdominal pain in IBS patients. Finally, several emerging therapies with novel mechanisms of action are in development. Complementary and alternative medicine therapies including probiotics, herbal therapies and acupuncture are gaining popularity among IBS sufferers, although concerns regarding manufacturing standards and the paucity of high quality efficacy and safety data remain.
Collapse
Affiliation(s)
- William D Chey
- Division of Gastroenterology, University of Michigan Health System, Ann Arbor, MI, USA
| | | | | |
Collapse
|
37
|
Song B, Himmler T, Gooßen LJ. Palladium/Copper-Catalyzed Di-α-arylation of Acetic Acid Esters. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Sauriyal DS, Jaggi AS, Singh N. Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states. Neuropeptides 2011; 45:175-88. [PMID: 21208657 DOI: 10.1016/j.npep.2010.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022]
Abstract
Opioids are well known to exert potent central analgesic actions. In recent years, the numerous studies have unfolded the critical role of opioids in the pathophysiology of various diseases as well as in biological phenomenon of therapeutic interest. The endogenous ligands of opioid receptors are derived from three independent genes and their appropriate processing yields the major representative opioid peptides beta-endorphin, met-enkephalin, leu-enkephalin and dynorphin, respectively. These peptides and their derivatives exhibit different affinity and selectivity for the mu-, delta- and kappa-receptors located on the central and the peripheral neurons, neuroendocrine, immune, and mucosal cells and on many other organ systems. The present review article highlights the role of these peptides in central nervous system disorders such as depression, anxiety, epilepsy, and stress; gastrointestinal disorders such as diarrhea, postoperative ileus, ulceration, and irritable bowel syndrome; immune system and related inflammatory disorders such as osteoarthritis and rheumatoid arthritis; and others including respiratory, alcoholism and obesity/binge eating. Furthermore, the key role of opioids in different forms of pre- and post-conditioning including ischemic and pharmacological along with in remote preconditioning has also been described.
Collapse
|
39
|
Maneerattanaporn M, Chang L, Chey WD. Emerging pharmacological therapies for the irritable bowel syndrome. Gastroenterol Clin North Am 2011; 40:223-43. [PMID: 21333909 DOI: 10.1016/j.gtc.2010.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The irritable bowel syndrome (IBS) is a symptom-based disorder defined by the presence of abdominal pain and altered bowel habits. Clinical presentations of IBS are diverse, with some patients reporting diarrhea, some constipation, and others a mixture of both. Like the varied clinical phenotypes, the pathogenesis of IBS is also diverse. IBS is not a single disease entity, but rather likely consists of several different disease states. This fact has important implications for the choices and efficacy of IBS treatment. This article reviews the IBS drugs that have reached phase II or III clinical trials.
Collapse
Affiliation(s)
- Monthira Maneerattanaporn
- Division of Gastroenterology, University of Michigan Health System, 3912 Taubman Center, Ann Arbor, MI 48109-0362, USA
| | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by abdominal discomfort or pain that is accompanied by a disturbance in defecation. Although the exact etiopathogenesis is not completely understood, recent advances in the understanding of the biochemical, physiologic, and biopsychosocial mechanisms of IBS have resulted in exciting new insights as well as therapies. This article will review the recent developments in pathogenesis, diagnosis, and treatment. RECENT FINDINGS IBS may be the product of various pathogenic mechanisms which include IBS as a serotonergic disorder; the role of genetics; IBS as an inflammatory state and the potential role of mast cells; IBS as a result of bacterial overgrowth and altered gastrointestinal microbiome; and abnormal pain processing and pain memory. Emerging therapies have developed targeting these mechanisms. SUMMARY IBS remains a symptom-based diagnosis that can usually be made comfortably based on clinical history without testing in the absence of alarm features. Novel and emerging therapies that are based upon the evolving understanding of the pathophysiology of IBS hold significant promise and for the first time there are potential therapies that may alter the natural history of this disorder.
Collapse
|
41
|
Abstract
Diabetic gastroparesis is a disorder that occurs in both type 1 and type 2 diabetes. It is associated with considerable morbidity among these patients and with the resultant economic burden on the health system. It is primarily a disease seen in middle-aged women, although the increased predisposition in women still remains unexplained. Patients often present with nausea, vomiting, bloating, early satiety and abdominal pain. The pathogenesis of this complex disorder is still not well understood but involves abnormalities in multiple interacting cell types including the extrinsic nervous system, enteric nervous system, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The primary diagnostic test remains gastric scintigraphy, although other modalities such as breath test, capsule, ultrasound, MRI and single photon emission CT imaging show promise as alternative diagnostic modalities. The mainstay of treatment for diabetic gastroparesis has been antiemetics, prokinetics, nutritional support and pain control. In recent years, gastric stimulation has been used in refractory cases with nausea and vomiting. As we better understand the pathophysiology, newer treatment modalities are emerging with the aim of correcting the underlying defect. In this review, what has been learned about diabetic gastroparesis in the past 5 years is highlighted. The epidemiology, pathogenesis, diagnosis and treatment of diabetic gastroparesis are reviewed, focusing on the areas that are still controversial and those that require more studies. There is also a focus on advances in our understanding of the cellular changes that underlie development of diabetic gastroparesis, highlighting new opportunities for targeted treatment.
Collapse
Affiliation(s)
- Purna Kashyap
- Enteric NeuroScience Program, Department of Physiology and Biomedical Engineering and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
42
|
Tsukahara-Ohsumi Y, Tsuji F, Niwa M, Nakamura M, Mizutani K, Inagaki N, Sasano M, Aono H. SA14867, a newly synthesized kappa-opioid receptor agonist with antinociceptive and antipruritic effects. Eur J Pharmacol 2010; 647:62-7. [DOI: 10.1016/j.ejphar.2010.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/20/2010] [Indexed: 12/01/2022]
|
43
|
Mangel AW, Williams VSL. Asimadoline in the treatment of irritable bowel syndrome. Expert Opin Investig Drugs 2010; 19:1257-64. [DOI: 10.1517/13543784.2010.515209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
The role of kappa-opioid receptor activation in mediating antinociception and addiction. Acta Pharmacol Sin 2010; 31:1065-70. [PMID: 20729876 DOI: 10.1038/aps.2010.138] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The kappa-opioid receptor (KOR), a member of the opioid receptor family, is widely expressed in the central nervous system and peripheral tissues. Substantial evidence has shown that activation of KOR by agonists and endogenous opioid peptides in vivo may produce a strong analgesic effect that is free from the abuse potential and the adverse side effects of mu-opioid receptor (MOR) agonists, such as morphine. In addition, activation of the KOR has also been shown to exert an inverse effect on morphine-induced adverse actions, such as tolerance, reward, and impairment of learning and memory. Therefore, the KOR has received much attention in the effort to develop alternative analgesics to MOR agonists and agents for the treatment of drug addiction. However, KOR agonists also produce several severe undesirable side effects such as dysphoria, water diuresis, salivation, emesis, and sedation in nonhuman primates, which may limit the clinical utility of KOR agonists for pain and drug abuse treatment. This article will review the role of KOR activation in mediating antinociception and addiction. The possible therapeutic application of kappa-agonists in the treatment of pain and drug addiction is also discussed.
Collapse
|
45
|
Kivell B, Prisinzano TE. Kappa opioids and the modulation of pain. Psychopharmacology (Berl) 2010; 210:109-19. [PMID: 20372880 DOI: 10.1007/s00213-010-1819-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/24/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND RATIONALE Pain is a complex sensory experience, involving cognitive factors, environment (setting, society, and culture), experience, and gender and is modulated significantly by the central nervous system (CNS). The mechanisms by which opioid analgesics work are understood, but this class of drugs is not ideal as either an analgesic or anti-hyperalgesic. Accordingly, considerable effort continues to be directed at improved understanding of nociceptor function and development of selective analgesics that do not have the unwanted effects associated with opioid analgesics. OBJECTIVE The purpose of this paper is to provide a review of the role of KOP receptors in the modulation of pain and highlight several chemotypes currently being explored as peripherally restricted KOP ligands. RESULTS A growing body of literature has shown that KOP receptors are implicated in a variety of behavioral pain models. Several different classes of peripherally restricted peptidic and nonpeptidic KOP agonists have been identified and show utility in treating painful conditions. CONCLUSION The pharmacological profile of KOP agonists in visceral pain models suggest that peripherally restricted KOP agonists are potentially useful for a variety of peripheral pain states. Further, clinical investigation of peripherally restricted KOP agonists will help to clarify the painful conditions where KOP agonists will be most effective.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Disease Models, Animal
- Humans
- Mechanoreceptors/physiology
- Nociceptors/physiology
- Pain/drug therapy
- Pain/metabolism
- Pain/physiopathology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
Collapse
Affiliation(s)
- Bronwyn Kivell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | | |
Collapse
|
46
|
Chang JY, Talley NJ. Current and emerging therapies in irritable bowel syndrome: from pathophysiology to treatment. Trends Pharmacol Sci 2010; 31:326-34. [PMID: 20554042 DOI: 10.1016/j.tips.2010.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 12/14/2022]
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder with characteristic symptoms of abdominal pain/discomfort with a concurrent disturbance in defecation. It accounts for a significant healthcare burden, and symptoms may be debilitating for some patients. Traditional symptom-based therapies have been found to be ineffective in the treatment of the entire syndrome complex, and do not modify the natural history of the disorder. Although the exact etiopathogenesis of IBS is incompletely understood, recent advances in the elucidation of the pathophysiology and molecular mechanisms of IBS have resulted in the development of novel therapies, as well as potential future therapeutic targets. This article reviews current and emerging therapies in IBS based upon: IBS as a serotonergic disorder; stimulating intestinal chloride channels; modulation of visceral hypersensitivity; altering low-grade intestinal inflammation; and modulation of the gut microbiota.
Collapse
Affiliation(s)
- Joseph Y Chang
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street SW Rochester, MN 55905, USA
| | | |
Collapse
|
47
|
Parkman HP, Camilleri M, Farrugia G, McCallum RW, Bharucha AE, Mayer EA, Tack JF, Spiller R, Horowitz M, Vinik AI, Galligan JJ, Pasricha PJ, Kuo B, Szarka LA, Marciani L, Jones K, Parrish CR, Sandroni P, Abell T, Ordog T, Hasler W, Koch KL, Sanders K, Norton NJ, Hamilton F. Gastroparesis and functional dyspepsia: excerpts from the AGA/ANMS meeting. Neurogastroenterol Motil 2010; 22:113-33. [PMID: 20003077 PMCID: PMC2892213 DOI: 10.1111/j.1365-2982.2009.01434.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite the relatively high prevalence of gastroparesis and functional dyspepsia, the aetiology and pathophysiology of these disorders remain incompletely understood. Similarly, the diagnostic and treatment options for these two disorders are relatively limited despite recent advances in our understanding of both disorders. PURPOSE This manuscript reviews the advances in the understanding of the epidemiology, pathophysiology, diagnosis, and treatment of gastroparesis and functional dyspepsia as discussed at a recent conference sponsored by the American Gastroenterological Association (AGA) and the American Neurogastroenterology and Motility Society (ANMS). Particular focus is placed on discussing unmet needs and areas for future research.
Collapse
Affiliation(s)
- H P Parkman
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fichna J, Schicho R, Andrews CN, Bashashati M, Klompus M, McKay DM, Sharkey KA, Zjawiony JK, Janecka A, Storr MA. Salvinorin A inhibits colonic transit and neurogenic ion transport in mice by activating kappa-opioid and cannabinoid receptors. Neurogastroenterol Motil 2009; 21:1326-e128. [PMID: 19650775 DOI: 10.1111/j.1365-2982.2009.01369.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The major active ingredient of the plant Salvia divinorum, salvinorin A (SA) has been used to treat gastrointestinal (GI) symptoms. As the action of SA on the regulation of colonic function is unknown, our aim was to examine the effects of SA on mouse colonic motility and secretion in vitro and in vivo. The effects of SA on GI motility were studied using isolated preparations of colon, which were compared with preparations from stomach and ileum. Colonic epithelial ion transport was evaluated using Ussing chambers. Additionally, we studied GI motility in vivo by measuring colonic propulsion, gastric emptying, and upper GI transit. Salvinorin A inhibited contractions of the mouse colon, stomach, and ileum in vitro, prolonged colonic propulsion and slowed upper GI transit in vivo. Salvinorin A had no effect on gastric emptying in vivo. Salvinorin A reduced veratridine-, but not forskolin-induced epithelial ion transport. The effects of SA on colonic motility in vitro were mediated by kappa-opioid receptors (KORs) and cannabinoid (CB) receptors, as they were inhibited by the antagonists nor-binaltorphimine (KOR), AM 251 (CB(1) receptor) and AM 630 (CB(2) receptor). However, in the colon in vivo, the effects were largely mediated by KORs. The effects of SA on veratridine-mediated epithelial ion transport were inhibited by nor-binaltorphimine and AM 630. Salvinorin A slows colonic motility in vitro and in vivo and influences neurogenic ion transport. Due to its specific regional action, SA or its derivatives may be useful drugs in the treatment of lower GI disorders associated with increased GI transit and diarrhoea.
Collapse
Affiliation(s)
- J Fichna
- Division of Gastroenterology, Department of Medicine, Snyder Institute of Infection, Immunity and Inflammation (III), Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aldrich JV, McLaughlin JP. Peptide kappa opioid receptor ligands: potential for drug development. AAPS JOURNAL 2009; 11:312-22. [PMID: 19430912 DOI: 10.1208/s12248-009-9105-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/26/2009] [Indexed: 11/30/2022]
Abstract
While narcotic analgesics such as morphine, which act preferentially through mu opioid receptors, remain the gold standard in the treatment of severe pain, their use is limited by detrimental liabilities such as respiratory depression and drug dependence. Thus, there has been considerable interest in developing ligands for kappa opioid receptors (KOR) as potential analgesics and for the treatment of a variety of other disorders. These include effects mediated both by central receptors, such as antidepressant activity and a reduction in cocaine-seeking behavior, and activity resulting from the activation of peripheral receptors, such as analgesic and anti-inflammatory effects. While the vast majority of opioid receptor ligands that have progressed in preclinical development have been small molecules, significant advances have been made in recent years in identifying opioid peptide analogs that exhibit promising in vivo activity. This review will focus on possible therapeutic applications of ligands for KOR and specifically on the potential development of peptide ligands for these receptors.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., 4050 Malott Hall, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
50
|
Abstract
Gastroparesis is a relatively common and often disabling condition that is characterized by a broad range of clinical presentation ranging from dyspeptic symptoms to nausea, vomiting, abdominal pain, malnutrition, frequent hospitalizations and incapacitation. The treatment of gastroparetic symptoms can be challenging to the gastroenterologist and the intensity of therapy varies with the physician's knowledge. Hence the determination that a patient is refractory to 'standard medical therapy' is an assessment that is subspeciality-based and could differ around the world depending on medications available. In this article, we review the use of available prokinetics, antiemetic agents, the approach for analgesia in the context of gastroparesis, and also discuss potential and evolving pharmacotherapies. The progress has been relatively limited as far as availability of new medications for gastroparesis is concerned; however, active research in developing newer prokinetics holds great promise for the future of management of this challenging entity.
Collapse
Affiliation(s)
- Savio C Reddymasu
- University of Kansas Medical Center, Division of Gastrointestinal Motility, Department of Medicine, Kansas City, 3901 Rainbow Boulevard, KS-66160-7350, USA
| | | |
Collapse
|