1
|
Kim SY, Cheon J. Senescence-associated microvascular endothelial dysfunction: A focus on the blood-brain and blood-retinal barriers. Ageing Res Rev 2024; 100:102446. [PMID: 39111407 DOI: 10.1016/j.arr.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The blood-brain barrier (BBB) and blood-retinal barrier (BRB) constitute critical physiochemical interfaces, precisely orchestrating the bidirectional communication between the brain/retina and blood. Increased permeability or leakage of these barriers has been demonstrably linked to age-related vascular and parenchymal damage. While it has been suggested that the gradual aging process may coincide with disruptions in these barriers, this phenomenon is significantly exacerbated in individuals with age-related neurodegenerative disorders (ARND). This review focuses on the microvascular endothelium, a key constituent of BBB and BRB, highlighting the impact of endothelial senescence on barrier dysfunction and exploring recent discoveries regarding core pathways implicated in its breakdown. Subsequently, we address the "vascular senescence hypothesis" for ARND, with a particular emphasis on Alzheimer's disease and age-related macular degeneration, centered on endothelial senescence. Finally, we discuss potential senotherapeutic strategies targeting barrier dysfunction.
Collapse
Affiliation(s)
- Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea; Research Institute of Medical Science, Konkuk University, Republic of Korea; IBST, Konkuk University, Republic of Korea.
| | - Jaejoung Cheon
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea
| |
Collapse
|
2
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
3
|
Hernandez VG, Lechtenberg KJ, Peterson TC, Zhu L, Lucas TA, Bradshaw KP, Owah JO, Dorsey AI, Gentles AJ, Buckwalter MS. Translatome analysis reveals microglia and astrocytes to be distinct regulators of inflammation in the hyperacute and acute phases after stroke. Glia 2023; 71:1960-1984. [PMID: 37067534 PMCID: PMC10330240 DOI: 10.1002/glia.24377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Neuroinflammation is a hallmark of ischemic stroke, which is a leading cause of death and long-term disability. Understanding the exact cellular signaling pathways that initiate and propagate neuroinflammation after stroke will be critical for developing immunomodulatory stroke therapies. In particular, the precise mechanisms of inflammatory signaling in the clinically relevant hyperacute period, hours after stroke, have not been elucidated. We used the RiboTag technique to obtain microglia and astrocyte-derived mRNA transcripts in a hyperacute (4 h) and acute (3 days) period after stroke, as these two cell types are key modulators of acute neuroinflammation. Microglia initiated a rapid response to stroke at 4 h by adopting an inflammatory profile associated with the recruitment of immune cells. The hyperacute astrocyte profile was marked by stress response genes and transcription factors, such as Fos and Jun, involved in pro-inflammatory pathways such as TNF-α. By 3 days, microglia shift to a proliferative state and astrocytes strengthen their inflammatory response. The astrocyte pro-inflammatory response at 3 days is partially driven by the upregulation of the transcription factors C/EBPβ, Spi1, and Rel, which comprise 25% of upregulated transcription factor-target interactions. Surprisingly, few sex differences across all groups were observed. Expression and log2 fold data for all sequenced genes are available on a user-friendly website for researchers to examine gene changes and generate hypotheses for stroke targets. Taken together, our data comprehensively describe the microglia and astrocyte-specific translatome response in the hyperacute and acute period after stroke and identify pathways critical for initiating neuroinflammation.
Collapse
Affiliation(s)
- Victoria G Hernandez
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Kendra J Lechtenberg
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Todd C Peterson
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Li Zhu
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Tawaun A Lucas
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Karen P Bradshaw
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Justice O Owah
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Alanna I Dorsey
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Andrew J Gentles
- Department of Pathology, Stanford University, Stanford, California, USA
- Department of Medicine - Biomedical Informatics Research, Stanford University, Stanford, California, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California, USA
| |
Collapse
|
4
|
Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. Int J Mol Sci 2022; 23:ijms23126788. [PMID: 35743229 PMCID: PMC9224176 DOI: 10.3390/ijms23126788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Laminin, a non-collagenous glycoprotein present in the brain extracellular matrix, helps to maintain blood–brain barrier (BBB) integrity and regulation. Neuroinflammation can compromise laminin structure and function, increasing BBB permeability. The aim of this paper is to determine if neuroinflammation-induced laminin functional changes may serve as a potential biomarker of alterations in the BBB. The 38 publications included evaluated neuroinflammation, BBB disruption, and laminin, and were assessed for quality and risk of bias (protocol registered in PROSPERO; CRD42020212547). We found that laminin may be a good indicator of BBB overall structural integrity, although changes in expression are dependent on the pathologic or experimental model used. In ischemic stroke, permanent vascular damage correlates with increased laminin expression (β and γ subunits), while transient damage correlates with reduced laminin expression (α subunits). Laminin was reduced in traumatic brain injury and cerebral hemorrhage studies but increased in multiple sclerosis and status epilepticus studies. Despite these observations, there is limited knowledge about the role played by different subunits or isoforms (such as 411 or 511) of laminin in maintaining structural architecture of the BBB under neuroinflammation. Further studies may clarify this aspect and the possibility of using laminin as a biomarker in different pathologies, which have alterations in BBB function in common.
Collapse
|
5
|
Villalón H, Pantoja S, Vergara N, Caussade MC, Vial MDLÁ, Pinto M, Silva C. SÍNDROME INFLAMATORIO PERINATAL PERSISTENTE DEL PREMATURO EXTREMO. IMPORTANTE FACTOR DE MORBIMORTALIDAD. PARTE II: COMPROMISO MULTISISTÉMICO. REVISTA MÉDICA CLÍNICA LAS CONDES 2021. [DOI: 10.1016/j.rmclc.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 2020; 42:451-468. [PMID: 32661735 PMCID: PMC7508934 DOI: 10.1007/s00281-020-00803-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
Almost half of all preterm births are caused or triggered by an inflammatory process at the feto-maternal interface resulting in preterm labor or rupture of membranes with or without chorioamnionitis (“first inflammatory hit”). Preterm babies have highly vulnerable body surfaces and immature organ systems. They are postnatally confronted with a drastically altered antigen exposure including hospital-specific microbes, artificial devices, drugs, nutritional antigens, and hypoxia or hyperoxia (“second inflammatory hit”). This is of particular importance to extremely preterm infants born before 28 weeks, as they have not experienced important “third-trimester” adaptation processes to tolerate maternal and self-antigens. Instead of a balanced adaptation to extrauterine life, the delicate co-regulation between immune defense mechanisms and immunosuppression (tolerance) to allow microbiome establishment is therefore often disturbed. Hence, preterm infants are predisposed to sepsis but also to several injurious conditions that can contribute to the onset or perpetuation of sustained inflammation (SI). This is a continuing challenge to clinicians involved in the care of preterm infants, as SI is regarded as a crucial mediator for mortality and the development of morbidities in preterm infants. This review will outline the (i) role of inflammation for short-term consequences of preterm birth and (ii) the effect of SI on organ development and long-term outcome.
Collapse
|
7
|
Pathophysiological Role of TRPM2 in Age-Related Cognitive Impairment in Mice. Neuroscience 2019; 408:204-213. [PMID: 30999030 DOI: 10.1016/j.neuroscience.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/23/2022]
Abstract
Aging causes various functional changes, including cognitive impairment and inflammatory responses in the brain. Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable channel expressed abundantly in immune cells, exacerbates inflammatory responses. Previously, we reported that TRPM2 on resident microglia plays a critical role in exacerbating inflammation, white matter injury, and cognitive impairment during chronic cerebral hypoperfusion; however, the physiological or pathophysiological role of TRPM2 during age-associated inflammatory responses remains unclear. Therefore, we examined the effects of TRPM2 deletion in young (2-3 months) and older (12-24 months) mice. Compared with young wild-type (WT) mice, middle-aged (12-16 months) WT mice showed working and cognitive memory dysfunction and aged (20-24 months) WT mice exhibited impaired spatial memory. However, these characteristics were not seen in TRPM2 knockout (TRPM2-KO) mice. Consistent with the finding of cognitive impairment, aged WT mice exhibited white matter injury and hippocampal damage and an increase in the number of Iba1-positive cells and amounts of pro-inflammatory cytokines in the brain; these characteristics were not seen in TRPM2-KO mice. These findings suggest that TRPM2 plays a critical role in exacerbating inflammatory responses and cognitive dysfunction during aging.
Collapse
|
8
|
Sá-Pereira I, Roodselaar J, Couch Y, Consentino Kronka Sosthenes M, Evans MC, Anthony DC, Stolp HB. Hepatic acute phase response protects the brain from focal inflammation during postnatal window of susceptibility. Brain Behav Immun 2018; 69:486-498. [PMID: 29355821 PMCID: PMC5871396 DOI: 10.1016/j.bbi.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Perinatal inflammation is known to contribute to neurodevelopmental diseases. Animal models of perinatal inflammation have revealed that the inflammatory response within the brain is age dependent, but the regulators of this variation remain unclear. In the adult, the peripheral acute phase response (APR) is known to be pivotal in the downstream recruitment of leukocytes to the injured brain. The relationship between perinatal brain injury and the APR has not been established. Here, we generated focal inflammation in the brain using interleukin (IL)-1β at postnatal day (P)7, P14, P21 and P56 and studied both the central nervous system (CNS) and hepatic inflammatory responses at 4 h. We found that there is a significant window of susceptibility in mice at P14, when compared to mice at P7, P21 and P56. This was reflected in increased neutrophil recruitment to the CNS, as well as an increase in blood-brain barrier permeability. To investigate phenomena underlying this window of susceptibility, we performed a dose response of IL-1β. Whilst induction of endogenous IL-1β or intercellular adhesion molecule (ICAM)-1 in the brain and induction of a hepatic APR were dose dependent, the recruitment of neutrophils and associated blood-brain barrier breakdown was inversely proportional. Furthermore, in contrast to adult animals, an additional peripheral challenge (intravenous IL-1β) reduced the degree of CNS inflammation, rather than exacerbating it. Together these results suggest a unique window of susceptibility to CNS injury, meaning that suppressing systemic inflammation after brain injury may exacerbate the damage caused, in an age-dependent manner.
Collapse
Affiliation(s)
- Inês Sá-Pereira
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Jay Roodselaar
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Marcia Consentino Kronka Sosthenes
- Department of Pharmacology, University of Oxford, United Kingdom,Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção, ICB/HUJBB, Belém, Brazil
| | - Matthew C. Evans
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, United Kingdom,Corresponding author at: Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom.Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUnited Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, St Thomas’ Hospital, King’s College London, United Kingdom,Royal Veterinary College, London, United Kingdom
| |
Collapse
|
9
|
Couch Y, Akbar N, Roodselaar J, Evans MC, Gardiner C, Sargent I, Romero IA, Bristow A, Buchan AM, Haughey N, Anthony DC. Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation. Sci Rep 2017; 7:9574. [PMID: 28851955 PMCID: PMC5575066 DOI: 10.1038/s41598-017-09710-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
Brain injury elicits a systemic acute-phase response (APR), which is responsible for co-ordinating the peripheral immunological response to injury. To date, the mechanisms responsible for signalling the presence of injury or disease to selectively activate responses in distant organs were unclear. Circulating endogenous extracellular vesicles (EVs) are increased after brain injury and have the potential to carry targeted injury signals around the body. Here, we examined the potential of EVs, isolated from rats after focal inflammatory brain lesions using IL-1β, to activate a systemic APR in recipient naïve rats, as well as the behavioural consequences of EV transfer. Focal brain lesions increased EV release, and, following isolation and transfer, the EVs were sequestered by the liver where they initiated an APR. Transfer of blood-borne EVs from brain-injured animals was also enough to suppress exploratory behaviours in recipient naïve animals. EVs derived from brain endothelial cell cultures treated with IL-1β also activated an APR and altered behaviour in recipient animals. These experiments reveal that inflammation-induced circulating EVs derived from endothelial cells are able to initiate the APR to brain injury and are sufficient to generate the associated sickness behaviours, and are the first demonstration that EVs are capable of modifying behavioural responses.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Programme, RDM-Investigative Medicine, University of Oxford, Oxford, UK.
| | - Naveed Akbar
- Division of Cardiovascular Medicine, RDM, University of Oxford, Oxford, UK
| | - Jay Roodselaar
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Matthew C Evans
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Ian Sargent
- Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Ignacio A Romero
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | | | - Alastair M Buchan
- Acute Stroke Programme, RDM-Investigative Medicine, University of Oxford, Oxford, UK
| | - Norman Haughey
- Department of Neurology and Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
10
|
Hoffman WH, Artlett CM, Boodhoo D, Gilliland MGF, Ortiz L, Mulder D, Tjan DHT, Martin A, Tatomir A, Rus H. Markers of immune-mediated inflammation in the brains of young adults and adolescents with type 1 diabetes and fatal diabetic ketoacidosis. Is there a difference? Exp Mol Pathol 2017; 102:505-514. [PMID: 28533125 DOI: 10.1016/j.yexmp.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022]
Abstract
Due to the limited data on diabetic ketoacidosis and brain edema (DKA/BE) in children/adolescents and the lack of recent data on adults with type 1 diabetes (T1D), we addressed the question of whether neuroinflammation was present in the fatal DKA of adults. We performed immunohistochemistry (IHC) studies on the brains of two young adults with T1D and fatal DKA and compared them with two teenagers with poorly controlled diabetes and fatal DKA. C5b-9, the membrane attack complex (MAC) had significantly greater deposits in the grey and white matter of the teenagers than the young adults (p=0.03). CD59, a MAC assembly inhibitory protein was absent, possibly suppressed by the hyperglycemia in the teenagers but was expressed in the young adults despite comparable average levels of hyperglycemia. The receptor for advanced glycation end products (RAGE) had an average expression in the young adults significantly greater than in the teenagers (p=0.02). The autophagy marker Light Chain 3 (LC3) A/B was the predominant form of programmed cell death (PCD) in the teenage brains. The young adults had high expressions of both LC3A/B and TUNEL, an apoptotic cell marker for DNA fragmentation. BE was present in the newly diagnosed young adult with hyperglycemic hyperosmolar DKA and also in the two teenagers. Our data indicate that significant differences in neuroinflammatory components, initiated by the dysregulation of DKA and interrelated metabolic and immunologic milieu, are likely present in the brains of fatal DKA of teenagers when compared with young adults.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| | - Carol M Artlett
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Mary G F Gilliland
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Luis Ortiz
- Department of Pediatrics, Nephrology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Dries Mulder
- Department of Pathology, Rijnstate Hospital, Arnhem, The Netherlands
| | - David H T Tjan
- Department of Intensive Care, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Research Service, Veterans Administration Maryland Health Care System, MD 21201, United States.
| |
Collapse
|
11
|
Badaut J, Ajao DO, Sorensen DW, Fukuda AM, Pellerin L. Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: signs of blood-brain barrier healing? Neuroscience 2014; 285:215-26. [PMID: 25450954 DOI: 10.1016/j.neuroscience.2014.10.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is one of the major causes of death and disability in pediatrics, and results in a complex cascade of events including the disruption of the blood-brain barrier (BBB). A controlled-cortical impact on post-natal 17-day-old rats induced BBB disruption by IgG extravasation from 1 to 3 days after injury and returned to normal at day 7. In parallel, we characterized the expression of three caveolin isoforms, caveolin 1 (cav-1), caveolin 2 (cav-2) and caveolin 3 (cav-3). While cav-1 and cav-2 are expressed on endothelial cells, both cav-1 and cav-3 were found to be present on reactive astrocytes, in vivo and in vitro. Following TBI, cav-1 expression was increased in blood vessels at 1 and 7 days in the perilesional cortex. An increase of vascular cav-2 expression was observed 7 days after TBI. In contrast, astrocytic cav-3 expression decreased 3 and 7 days after TBI. Activation of endothelial nitric oxide synthase (eNOS) (via its phosphorylation) was detected 1 day after TBI and phospho-eNOS was detected both in association with blood vessels and with astrocytes. The molecular changes involving caveolins occurring in endothelial cells following juvenile-TBI might participate, independently of eNOS activation, to a mechanism of BBB repair while, they might subserve other undefined roles in astrocytes.
Collapse
Affiliation(s)
- J Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Department of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.
| | - D O Ajao
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - D W Sorensen
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - A M Fukuda
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - L Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Losey P, Young C, Krimholtz E, Bordet R, Anthony DC. The role of hemorrhage following spinal-cord injury. Brain Res 2014; 1569:9-18. [PMID: 24792308 DOI: 10.1016/j.brainres.2014.04.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/29/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023]
Abstract
Spinal-cord injury is characterized by primary damage as a direct consequence of mechanical insult, and secondary damage that is partly due to the acute inflammatory response. The extent of any hemorrhage within the injured cord is also known to be associated with the formation of intraparenchymal cavities and has been anecdotally linked to secondary damage. This study was designed to examine the contribution of blood components to the outcome of spinal-cord injury. We stereotaxically microinjected collagenase, which causes localized bleeding, into the spinal cord to model the hemorrhage associated with spinal cord injury in the absence of significant mechanical trauma. Tissue damage was observed at the collagenase injection site over time, and was associated with localized disruption of the blood-spinal-cord barrier, neuronal cell death, and the recruitment of leukocytes. The magnitude of the bleed was related to neutrophil mobilization. Interestingly, the collagenase-induced injury also provoked extended axonal damage. With this model, the down-stream effects of hemorrhage are easily discernible, and the impact of treatment strategies for spinal-cord injury on hemorrhage-related injury can be evaluated.
Collapse
Affiliation(s)
- Patrick Losey
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| | - Christopher Young
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Emily Krimholtz
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Régis Bordet
- EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| | - Daniel C Anthony
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| |
Collapse
|
13
|
Dickens AM, Vainio S, Marjamäki P, Johansson J, Lehtiniemi P, Rokka J, Rinne J, Solin O, Haaparanta-Solin M, Jones PA, Trigg W, Anthony DC, Airas L. Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180. J Nucl Med 2014; 55:466-72. [PMID: 24516258 DOI: 10.2967/jnumed.113.125625] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED It remains unclear how different translocator protein (TSPO) ligands reflect the spatial extent of astrocyte or microglial activation in various neuroinflammatory conditions. Here, we use a reproducible lipopolysaccharide (LPS)-induced model of acute central nervous system inflammation to compare the binding performance of a new TSPO ligand (18)F-GE-180 with (11)C-(R)-PK11195. Using immunohistochemistry, we also explore the ability of the TSPO ligands to detect activated microglial cells and astrocytes. METHODS Lewis rats (n = 30) were microinjected with LPS (1 or 10 μg) or saline (1 μL) into the left striatum. The animals were imaged in vivo at 16 h after the injection using PET radiotracers (18)F-GE-180 or (11)C-(R)-PK11195 (n = 3 in each group) and were killed afterward for autoradiography of the brain. Immunohistochemical assessment of OX-42 and glial fibrillary acidic protein (GFAP) was performed to identify activated microglial cells and reactive astrocytes. RESULTS In vivo PET imaging revealed an increase in the ipsilateral TSPO binding, compared with binding in the contralateral hemisphere, after the microinjection of 10 μg of LPS. No increase was observed with vehicle. By autoradiography, the TSPO radiotracer binding potential in the injected hemisphere was increased after striatal injection of 1 or 10 μg of LPS. However, the significant increase was observed only when using (18)F-GE-180. The area of CD11b-expressing microglial cells extended beyond that of enhanced GFAP staining and mapped more closely to the extent of (18)F-GE-180 binding than to (11)C-(R)-PK11195 binding. The signal from either PET ligand was significantly increased in regions of increased GFAP immunoreactivity and OX-42 colocalization, meaning that the presence of both activated microglia and astrocytes in a given area leads to increased binding of the TSPO radiotracers. CONCLUSION (18)F-GE-180 is able to reveal sites of activated microglia in both gray and white matter. However, the signal is increased by the presence of activated astrocytes. Therefore, (18)F-GE-180 is a promising new fluorinated longer-half-life tracer that reveals the presence of activated microglia in a manner that is superior to (11)C-(R)-PK11195 due to the higher binding potential observed for this ligand.
Collapse
Affiliation(s)
- Alex M Dickens
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stolp HB, Liddelow SA, Sá-Pereira I, Dziegielewska KM, Saunders NR. Immune responses at brain barriers and implications for brain development and neurological function in later life. Front Integr Neurosci 2013; 7:61. [PMID: 23986663 PMCID: PMC3750212 DOI: 10.3389/fnint.2013.00061] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022] Open
Abstract
For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognized that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signaling or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signaling at the brain barriers that may be an important part of the body's response to damage or infection. This signaling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.
Collapse
Affiliation(s)
- Helen B Stolp
- Department of Perinatal Imaging and Health, King's College London London, UK ; Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | | | | | |
Collapse
|
15
|
Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 2013; 106-107:1-16. [PMID: 23583307 PMCID: PMC3737272 DOI: 10.1016/j.pneurobio.2013.04.001] [Citation(s) in RCA: 1463] [Impact Index Per Article: 121.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7-10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxic-ischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development.
Collapse
Affiliation(s)
- Bridgette D. Semple
- Department of Neurological Surgery, University of California San Francisco, 513 Parnassus Avenue, Room HSE-722, San Francisco, CA 94143-0112, USA
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
- Department of Pediatrics, Queen Silvia's Children's Hospital, University of Gothenburg, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Q2:07, SE 171 76 Stockholm, Sweden
| | - Kayleen Gimlin
- Department of Neurological Surgery, University of California San Francisco, 513 Parnassus Avenue, Room HSE-722, San Francisco, CA 94143-0112, USA
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Linda J. Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, 513 Parnassus Avenue, Room HSE-722, San Francisco, CA 94143-0112, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Gemechu JM, Bentivoglio M. T Cell Recruitment in the Brain during Normal Aging. Front Cell Neurosci 2012; 6:38. [PMID: 23049498 PMCID: PMC3446775 DOI: 10.3389/fncel.2012.00038] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/16/2012] [Indexed: 12/21/2022] Open
Abstract
Aging-related changes in the peripheral immune response are well documented, but less is known about changes of the immune response in the central nervous system. Reactivity of microglia, effectors of the brain innate immunity, is known to increase in the aged brain, but little attention has been hitherto devoted to T cell recruitment. Data in rodents point to a gradual enhancement of T cell homing to the brain in the steady state since the middle age. Experimental findings also point to enhanced transmigration of lymphocytes as part of an amplified response of the aging brain to acute exogenous inflammatory insults. Thus, available data support the capacity of the aged brain to mount a robust immune response, in contrast with peripheral immunity decline, and indicate that such central response involves recruitment of lymphocytes. These findings open many questions, including blood-brain barrier molecular regulation and infiltrated T cell subtypes during normal aging. The crosstalk between T cells, glia, and neurons also remains to be clarified in the aged brain parenchyma. This intercellular dialogue and related signaling could be relevant for both protection of the aged brain and its vulnerability to neurological disease.
Collapse
Affiliation(s)
- Jickssa M Gemechu
- Department of Neurological Sciences (DSNNMM), University of Verona Verona, Italy
| | | |
Collapse
|
17
|
Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS One 2012; 7:e43829. [PMID: 22952778 PMCID: PMC3431406 DOI: 10.1371/journal.pone.0043829] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/30/2012] [Indexed: 01/13/2023] Open
Abstract
After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation without major differences in morphological brain damage compared to young.
Collapse
|
18
|
Ruiz-Medina J, Baulies A, Bura SA, Valverde O. Paclitaxel-induced neuropathic pain is age dependent and devolves on glial response. Eur J Pain 2012; 17:75-85. [PMID: 22623135 DOI: 10.1002/j.1532-2149.2012.00172.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND Paclitaxel is an antimitotic antitumour drug highly effective against a broad range of cancers considered refractory to conventional chemotherapy. One of the main serious side effects of paclitaxel treatment is the induction of peripheral neuropathic pain that often diminishes the patient's quality of life. In this study, we evaluated the severity of the neuropathy induced by paclitaxel and the inflammatory reaction in the dorsal horn of the spinal cord in young, adult and aged male CD1 mice. METHOD Hyperalgesia to noxious thermal stimulus and allodynia to non-noxious mechanical stimulus were evaluated using the plantar test and the von Frey filament model, respectively. Spinal cord microglia and astrocytes expression was assessed using Iba1 and glial fibrillary acidic protein immunofluorescence staining, respectively. RESULTS All groups of mice showed a higher nociceptive reaction to thermal noxious (hyperalgesia) and mechanical non-noxious (allodynia) stimuli after paclitaxel treatment. However, these signs of neuropathy were enhanced in young mice followed by aged animals. Additionally, paclitaxel evoked a marked microglial and astrocytic response in the spinal cord of young and aged mice, whereas this enhanced reactivity was less important in adult mice. Indeed, the most severe glial activation observed in juvenile animals correlated well with major signs of neuropathy in this group of age. CONCLUSION Our results demonstrate that paclitaxel-induced neuropathy in mice is an age-dependent phenomenon whose severity devolves on glial response.
Collapse
Affiliation(s)
- J Ruiz-Medina
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
19
|
Carvalho ACBD, Fernandes GVO, Lima I, Oliveira DFD, Henriques HN, Pantaleão JAS, Granjeiro JM, Lopes RT, Guzmán-Silva MA. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats. Acta Cir Bras 2012; 27:217-22. [DOI: 10.1590/s0102-86502012000300003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/10/2012] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). METHODS: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographies of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. RESULTS: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. CONCLUSION: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head.
Collapse
Affiliation(s)
| | | | - Inayá Lima
- Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJA, Anthony DC. The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation 2011; 8:166. [PMID: 22122884 PMCID: PMC3239418 DOI: 10.1186/1742-2094-8-166] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/28/2011] [Indexed: 12/13/2022] Open
Abstract
Background Activated microglia are a feature of the host response to neurodegeneration in Parkinson's disease (PD) and are thought to contribute to disease progression. Recent evidence suggests that extracellular α-synuclein (eSNCA) may play an important role in the pathogenesis of PD and that this may be mediated by a microglial response. Methods We wished to discover whether the host response to eSNCA would be sufficient to induce significant cytokine production. In vitro cultured BV-2 microglia were used to determine the basic inflammatory response to eSNCA. In vivo, 8-week old Biozzi mice were subjected to a single intranigral injection of either 3 μg SNCA, lipopolysaccharide (LPS) or serum protein (BSA) and allowed to recover for 24 hours. A second cohort of animals were peripherally challenged with LPS (0.5 mg/kg) 6 hours prior to tissue collection. Inflammation was studied by quantitative real-time PCR for a number of pro-inflammatory genes and immunohistochemistry for microglial activation, endothelial activation and cell death. Results In vitro data showed a robust microglial response to SNCA, including a positive NFĸB response and the production of pro-inflammatory cytokines. Direct injection of SNCA into the substantia nigra resulted in the upregulation of mRNA expression of proinflammatory cytokines, the expression of endothelial markers of inflammation and microglial activation. However, these results were significantly different to those obtained after direct injection of LPS. By contrast, when the animals were injected intracerebrally with SNCA and subsequently challenged with systemic LPS, the level of production of IL-1β in the substantia nigra became comparable to that induced by the direct injection of LPS into the brain. The injection of albumin into the nigra with a peripheral LPS challenge did not provoke the production of a significant inflammatory response. Direct injection of LPS into the substantia nigra also induces cell death in a more robust manner than direct injection of either SNCA or BSA. Conclusion These results suggest that the presence of eSNCA protein 'primes' microglia, making them susceptible to environmental proinflammatory challenge. For this reason, we hypothesise that where 'inflammation' contributes to the disease progression in PD, it does so in a punctuate manner (on-off) as a result of systemic events.
Collapse
Affiliation(s)
- Yvonne Couch
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | | | | | | |
Collapse
|
21
|
Zhao H, Zhang Q, Xue Y, Chen X, Haun RS. Effects of hyperbaric oxygen on the expression of claudins after cerebral ischemia-reperfusion in rats. Exp Brain Res 2011; 212:109-17. [PMID: 21626096 DOI: 10.1007/s00221-011-2702-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/15/2011] [Indexed: 01/09/2023]
Abstract
The malfunction of tight junctions (TJs) between endothelial cells in the blood brain barrier (BBB) is the pathophysiological basis for cerebral ischemia-reperfusion (IR) injury. Claudins, major molecular elements of the TJs, play a key role in the paracellular permeability of the BBB. Although several studies have demonstrated the impact of hyperbaric oxygenation (HBO) on boosting oxygen supply and reducing infarct size, its effect and underlying mechanism on the integrity of the BBB is unknown. To study the function of HBO on claudins and the permeability of the BBB, we replicated the animal model of local cerebral IR. Using Evans blue dye, permeability of the BBB was examined. Transmission electron microscopy (TEM), immunohistochemistry, western blot, and gelatin zymography were used to detect the integrity of the BBB, the expression of claudin-1 and claudin-5, and the activity of matrix metalloproteinases (MMPs) in brain microvessel endothelium. Our data indicate that compared with the sham-operated group, IR increased permeability of the BBB to Evans blue dye (P < 0.01), peaking at 4 h. The BBB ultrastructure was disrupted and the expression of claudin-5 and claudin-1 decreased (P < 0.01) in the 4 and 72 h IR group, respectively. Increased claudin-5 and claudin-1 expression and decreased permeability of the BBB were observed in the HBO + IR group (P < 0.01) via the suppression of MMP-2 and MMP-9, respectively. Our study provides direct evidence that HBO decreases the permeability of the BBB by reducing the enzymatic activity of MMPs and augmenting the expression of claudins at different stages in cerebral IR injury.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Experimental Center of Functional Subjects, College of Basic Medicine, China Medical University, Shenyang 110001, China.
| | | | | | | | | |
Collapse
|
22
|
Decreased myeloperoxidase expressing cells in the aged rat brain after excitotoxic damage. Exp Gerontol 2011; 46:723-30. [PMID: 21601629 DOI: 10.1016/j.exger.2011.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/12/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
Brain aging is associated to several morphological and functional alterations that influence the evolution and outcome of CNS damage. Acute brain injury such as an excitotoxic insult induces initial tissue damage followed by associated inflammation and oxidative stress, partly attributed to neutrophil recruitment and the expression of oxidative enzymes such as myeloperoxidase (MPO), among others. However, to date, very few studies have focused on how age can influence neutrophil infiltration after acute brain damage. Therefore, to evaluate the age-dependent pattern of neutrophil cell infiltration following an excitotoxic injury, intrastriatal injection of N-methyl-d-aspartate was performed in young and aged male Wistar rats. Animals were sacrificed at different times between 12h post-lesion (hpl) to 14 days post-lesion (dpl). Cryostat sections were processed for myeloperoxidase (MPO) immunohistochemistry, and double labeling for either neuronal cells (NeuN), astrocytes (GFAP), perivascular macrophages (ED-2), or microglia/macrophages (tomato lectin histochemistry). Our observations showed that MPO + cells were observed in the injured striatum from 12 hpl (when maximum values were found) until 7 dpl, when cell density was strongly diminished. However, at all survival times analyzed, the overall density of MPO + cells was lower in the aged versus the adult injured striatum. MPO + cells were mainly identified as neutrophils (especially at 12 hpl and 1 dpl), but it should be noted that MPO + neurons and microglia/macrophages were also found. MPO + neurons were most commonly observed at 12 hpl and reduced in the aged. MPO + microglia/macrophages were the main population expressing MPO from 3 dpl, when density was also reduced in aged subjects. These results point to neutrophil infiltration as another important factor contributing to the different responses of the adult and aged brain to damage, highlighting the need of using aged animals for the study of acute age-related brain insults.
Collapse
|
23
|
Nixon K, Morris SA, Liput DJ, Kelso ML. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders. Alcohol 2010; 44:39-56. [PMID: 20113873 DOI: 10.1016/j.alcohol.2009.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 10/24/2009] [Accepted: 11/07/2009] [Indexed: 01/19/2023]
Abstract
This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescents. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders (AUDs), the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently among the age groups. Finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an AUD.
Collapse
|
24
|
Regulation of cytokine signaling and T-cell recruitment in the aging mouse brain in response to central inflammatory challenge. Brain Behav Immun 2010; 24:138-52. [PMID: 19765643 DOI: 10.1016/j.bbi.2009.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/04/2009] [Accepted: 09/11/2009] [Indexed: 01/26/2023] Open
Abstract
Aging is often accompanied by increased levels of inflammatory molecules in the organism, but age-related changes in the brain response to inflammatory challenges still require clarification. We here investigated in mice whether cytokine signaling and T-cell neuroinvasion undergo age-related changes. We first analyzed the expression of molecules involved in T-cell infiltration and cytokine signaling regulation in the septum and hippocampus of 2-3 months and 20- to 24-month-old mice at 4h after intracerebroventricular injections of tumor necrosis factor (TNF)-alpha or interferon-gammaversus saline injections. Transcripts of the chemokine CXCL9, intercellular adhesion molecule (ICAM)-1 and suppressor of cytokine signaling molecules (SOCS) 1 and 3 were increased in both age groups after cytokine injection; microglia-derived matrix metalloproteinase (MMP) 12 mRNA was induced in old mice also after control saline injections. Age-related changes in ICAM-1 protein expression and T-cell infiltration were then analyzed in mice of 3-4, 8-9 and 15-16 months at 48h after TNF-alpha injections. ICAM-1 immunoreactivity, and Western blotting in striatum, septum, hippocampus and hypothalamus showed progressive age-related enhancement of TNF-alpha-elicited ICAM-1 upregulation. Double immunofluorescence revealed ICAM-1 expression in microglia and astrocytic processes. CD3(+), CD4(+) and CD8(+) T-cells exhibited progressive age-related increases in brain parenchyma and choroid plexus after cytokine exposure. The findings indicate that the brain responses to inflammatory challenges are not only preserved with advancing age, but also include gradual amplification of ICAM-1 expression and T-cell recruitment. The data highlight molecular and cellular correlates of age-related increase of brain sensitivity to inflammatory stimuli, which could be involved in altered brain vulnerability during aging.
Collapse
|
25
|
Anderson J, Sandhir R, Hamilton ES, Berman NEJ. Impaired expression of neuroprotective molecules in the HIF-1alpha pathway following traumatic brain injury in aged mice. J Neurotrauma 2009; 26:1557-66. [PMID: 19203226 DOI: 10.1089/neu.2008.0765] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elderly traumatic brain injury (TBI) patients have higher rates of mortality and worse functional outcome than non-elderly TBI patients. The mechanisms involved in poor outcomes in the elderly are not well understood. Hypoxia-inducible factor-1 alpha (HIF-1alpha) is a basic helix-loop-helix transcription factor that modulates expression of key genes involved in neuroprotection. In this study, we studied the expression of HIF-1alpha and its target survival genes, heme oxygenase-1 (HO-1), vascular endothelial growth factor (VEGF), and erythropoietin (EPO) in the brains of adult versus aged mice following controlled cortical impact (CCI) injury. Adult (5-6 months) and aged (23-24 months) C57Bl/6 mice were injured using a CCI device. At 72 h post-injury, mice were sacrificed and the injured cortex was used for mRNA and protein analysis using real-time reverse transcription--polymerase chain reaction (RT-PCR) and Western blotting protocols. Following injury, HIF-1alpha, HO-1, and VEGF showed upregulation in both the young and aged mice, but in the aged animals the increase in HIF-1alpha and VEGF in response to injury was much lower than in the adult injured animals. EPO was upregulated in the adult injured brain, but not in the aged injured brain. These results support the hypothesis that reduced expression of genes in the HIF-1alpha neuroprotective pathway in aging may contribute to poor prognosis in the elderly following TBI.
Collapse
Affiliation(s)
- Joshua Anderson
- Steve Palermo Nerve Regeneration Laboratory, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Recent studies suggest that the function of the blood-brain barrier (BBB) is not static under normal physiologic conditions and is likely altered in neurodegenerative disease. Prevailing thinking about CNS function, and neurodegenerative disease in particular, is neurocentric excluding the impact of factors outside the CNS. This review challenges this perspective and discusses recent reports suggesting the involvement of peripheral factors including toxins and elements of adaptive immunity that may not only play a role in pathogenesis, but also progression of neurodegenerative diseases. Central to this view is neuroinflammation. Several studies indicate that the neuroinflammatory changes that accompany neurodegeneration affect the BBB or its function by altering transport systems, enhancing immune cell entry, or influencing the BBB's role as a signaling interface. Such changes impair the BBB's normal homeostatic function and affect neural activity. Moreover, recent studies reveal that alterations in BBB and its transporters affect the entry of drugs used to treat neurodegenerative diseases. Incorporating BBB compromise and dysfunction into our view of neurodegenerative disease leads to the inclusion of peripheral mediators in its pathogenesis and progression. In addition, this changing view of the BBB raises interesting new therapeutic possibilities for drug delivery as well as treatment strategies designed to reinstate normal barrier function.
Collapse
Affiliation(s)
- Paul M Carvey
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
27
|
D'Souza T, Sherman-Baust CA, Poosala S, Mullin JM, Morin PJ. Age-related changes of claudin expression in mouse liver, kidney, and pancreas. J Gerontol A Biol Sci Med Sci 2009; 64:1146-53. [PMID: 19692671 DOI: 10.1093/gerona/glp118] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tight junctions (TJs) play crucial roles in tissue homeostasis and inflammation through their roles in the control of paracellular transport and barrier function. There is evidence that these functions are compromised in older organisms, but the exact mechanisms leading to TJ deterioration are not well understood. Claudin proteins are a family of membrane proteins that constitute the structural barrier elements of TJs and therefore play a major role in their formation and function. Using immunohistochemistry and immunoblotting, we have studied the expression of six different claudin proteins (claudin-1, -2, -3, -4, -5, and -7) in three tissues (liver, kidney, and pancreas) of aging male and female mice. In general, we find an age-dependent decrease in the expression of several claudin proteins in all three tissues observed, although the exact changes are tissue specific. Our findings provide a possible basis for the decrease in tissue barrier function in older organisms.
Collapse
Affiliation(s)
- Theresa D'Souza
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, NIH Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
28
|
Anderson J, Sandhir R, Hamilton ES, Berman NE. Impaired Expression of Neuroprotective Molecules in the HIF-1-α Pathway following Traumatic Brain Injury in Aged Mice. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
29
|
Hepatic nuclear factor kappa B regulates neutrophil recruitment to the injured brain. J Neuropathol Exp Neurol 2008; 67:223-30. [PMID: 18344913 DOI: 10.1097/nen.0b013e3181654957] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute brain injury is associated with induction of hepatic chemokine expression, which is an essential element in the subsequent recruitment of leukocytes to the damaged brain. To further understand the significance of the hepatic inflammatory response, we focused on nuclear factor (NF)-kappa B, a pivotal regulator of inflammation. Nondestructive real-time whole-body imaging was undertaken in the 3XNF-kappa B-luciferase mouse to monitor NF-kappa B activation. Acute brain injury induced by intracerebral injection of interleukin-1 provoked rapid activation of hepatic and CNS NF-kappa B, with only minimal changes in other organs. Elevated NF-kappa B in the brain was limited to the site of the lesion, whereas hepatic NF-kappa B was widespread. The function of NF-kappa B in this model was determined by monitoring leukocyte recruitment to the liver and brain of nf kappa b1 mice, which lack the anti-inflammatory p50:p50 NF-kappa B homodimer. Brain injury in the nf kappa b1 mice was associated with increased neutrophil recruitment to the liver and brain compared with wild-type mice, thereby confirming a regulatory role for the NF-kappa B system. To determine the role of hepatic NF-kappa B, it was selectively inhibited by intravenous adenoviral-mediated delivery of an I kappa B alpha super-repressor. This treatment significantly reduced the numbers of neutrophils recruited to the brain. In conclusion, acute brain injury is associated with rapid and robust activation of hepatic NF-kappa B, which is required for efficient mobilization of circulating leukocytes to the brain.
Collapse
|
30
|
McCluskey L, Campbell S, Anthony D, Allan SM. Inflammatory responses in the rat brain in response to different methods of intra-cerebral administration. J Neuroimmunol 2008; 194:27-33. [PMID: 18191461 DOI: 10.1016/j.jneuroim.2007.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 12/21/2022]
Abstract
Direct intra-cerebral administration of substances into the brain parenchyma is a common technique used by researchers in neuroscience. However, inflammatory responses to the needle may confound the results obtained following injection of these substances. In this paper we show that the use of a glass micro-needle for intra-cerebral injection reduces mechanical injury, blood-brain barrier breakdown and neutrophil recruitment in response to the injection of vehicle or interleukin-1, compared to using a 26-gauge Hamilton syringe. Therefore, the use of a glass micro-needle to inject substances intra-cerebrally appears to cause minimal injection artefact and should be the method of choice.
Collapse
Affiliation(s)
- Lisa McCluskey
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
31
|
Cutler SM, Cekic M, Miller DM, Wali B, VanLandingham JW, Stein DG. Progesterone improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma 2007; 24:1475-86. [PMID: 17892409 DOI: 10.1089/neu.2007.0294] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent evidence has demonstrated that treatment with progesterone can attenuate many of the pathophysiological events following traumatic brain injury (TBI) in young adult rats, but this effect has not been investigated in aged animals. In this study, 20-month-old male Fischer 344 rats with bilateral contusions of the frontal cortex (n = 4 per group) or sham operations received 8, 16, or 32 mg/kg of progesterone or vehicle. Locomotor activity was measured at 72 h to assess behavioral recovery. Brain tissue was harvested at 24, 48, and 72 h, and Western blotting was performed for inflammatory and apoptotic factors. Edema was assessed at 48 h by measuring brain water content. Injured animals treated with 8 and 16 mg/kg progesterone showed decreased expression of COX-2, IL-6, and NFkappaB at all time points, indicating a reduction in the acute inflammatory process compared to vehicle. The 16 mg/kg group also showed reduced apoptosis at all time points as well as decreased edema and improved locomotor outcomes. Thus, in aged male rats, treatment with 16 mg/kg progesterone improves short-term motor recovery and attenuates edema, secondary inflammation, and cell death after TBI.
Collapse
Affiliation(s)
- Sarah M Cutler
- Department of Emergency Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|