1
|
Xiong Y, Song X, Mehra P, Yu S, Li Q, Tashenmaimaiti D, Bennett M, Kong X, Bhosale R, Huang G. ABA-auxin cascade regulates crop root angle in response to drought. Curr Biol 2025:S0960-9822(24)01643-9. [PMID: 39798563 DOI: 10.1016/j.cub.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025]
Abstract
Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecular mechanisms in regulating RSA, especially in cereal crops, remain unclear. In this study, we report a new mechanism whereby ABA mediates local auxin biosynthesis to regulate root gravitropic response, thereby controlling the alteration of RSA in response to drought in cereal crops. Under drought conditions, wild-type (WT) plants displayed a steep root angle compared with normal conditions, while ABA biosynthetic mutants (mhz4, mhz5, osaba1, and osaba2) showed a significantly shallower crown root angle. Gravitropic assays revealed that ABA biosynthetic mutants have reduced gravitropic responses compared with WT plants. Hormone profiling analysis indicated that the mhz5 mutant has reduced auxin levels in root tips, and exogenous auxin (naphthaleneacetic acid [NAA]) application restored its root gravitropic defects. Consistently, auxin reporter analysis in mhz5 showed a reduced auxin gradient formation in root epidermis during gravitropic bending response compared with WT plants. Furthermore, NAA, rather than ABA, was able to rescue the compromised gravitropic response in the auxin biosynthetic mutant mhz10-1/tryptophan amino transferase2 (ostar2). Additionally, the maize ABA biosynthetic mutant viviparous5 (vp5) also showed gravitropic defects and a shallower seminal root angle than WT plants, which were restored by external auxin treatment. Collectively, we suggest that ABA-induced auxin synthesis governs the root gravitropic machinery, thereby influencing root angle in rice, maize, and possibly other cereal crops.
Collapse
Affiliation(s)
- Yali Xiong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Poonam Mehra
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Suhang Yu
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Qiaoyi Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dilixiadanmu Tashenmaimaiti
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Malcolm Bennett
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Xiuzhen Kong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK.
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Wexler Y, Schroeder JI, Shkolnik D. Hydrotropism mechanisms and their interplay with gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1732-1746. [PMID: 38394056 DOI: 10.1111/tpj.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.
Collapse
Affiliation(s)
- Yonatan Wexler
- Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Doron Shkolnik
- Faculty of Agriculture, Food and Environment, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
3
|
Pang L, Kobayashi A, Atsumi Y, Miyazawa Y, Fujii N, Dietrich D, Bennett MJ, Takahashi H. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 control not only positive hydrotropism but also phototropism in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5026-5038. [PMID: 37220914 DOI: 10.1093/jxb/erad193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
In response to unilateral blue light illumination, roots of some plant species such as Arabidopsis thaliana exhibit negative phototropism (bending away from light), which is important for light avoidance in nature. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 are essential for positive hydrotropism (i.e. in the presence of a moisture gradient, root bending towards greater water availability). Intriguingly, mutations in these genes also cause a substantial reduction in phototropism. Here, we examined whether the same tissue-specific sites of expression required for MIZ1- and GNOM/MIZ2-regulated hydrotropism in Arabidopsis roots are also required for phototropism. The attenuated phototropic response of miz1 roots was completely restored when a functional MIZ1-green fluorescent protein (GFP) fusion was expressed in the cortex of the root elongation zone but not in other tissues such as root cap, meristem, epidermis, or endodermis. The hydrotropic defect and reduced phototropism of miz2 roots were restored by GNOM/MIZ2 expression in either the epidermis, cortex, or stele, but not in the root cap or endodermis. Thus, the sites in root tissues that are involved in the regulation of MIZ1- and GNOM/MIZ2-dependent hydrotropism also regulate phototropism. These results suggest that MIZ1- and GNOM/MIZ2-mediated pathways are, at least in part, shared by hydrotropic and phototropic responses in Arabidopsis roots.
Collapse
Affiliation(s)
- Lei Pang
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuka Atsumi
- Graduate School of Science and Engineering, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Yutaka Miyazawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Daniela Dietrich
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Research Center for Space Agriculture and Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
4
|
Del Dottore E, Mazzolai B. Perspectives on Computation in Plants. ARTIFICIAL LIFE 2023; 29:336-350. [PMID: 36787453 DOI: 10.1162/artl_a_00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plants thrive in virtually all natural and human-adapted environments and are becoming popular models for developing robotics systems because of their strategies of morphological and behavioral adaptation. Such adaptation and high plasticity offer new approaches for designing, modeling, and controlling artificial systems acting in unstructured scenarios. At the same time, the development of artifacts based on their working principles reveals how plants promote innovative approaches for preservation and management plans and opens new applications for engineering-driven plant science. Environmentally mediated growth patterns (e.g., tropisms) are clear examples of adaptive behaviors displayed through morphological phenotyping. Plants also create networks with other plants through subterranean roots-fungi symbiosis and use these networks to exchange resources or warning signals. This article discusses the functional behaviors of plants and shows the close similarities with a perceptron-like model that could act as a behavior-based control model in plants. We begin by analyzing communication rules and growth behaviors of plants; we then show how we translated plant behaviors into algorithmic solutions for bioinspired robot controllers; and finally, we discuss how those solutions can be extended to embrace original approaches to networking and robotics control architectures.
Collapse
Affiliation(s)
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia.
| |
Collapse
|
5
|
Pei YY, Lei L, Fan XW, Li YZ. Effects of high air temperature, drought, and both combinations on maize: A case study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111543. [PMID: 36427558 DOI: 10.1016/j.plantsci.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
High air temperature (HAT) and natural soil drought (NSD) have seriously affected crop yield and frequently take place in a HAT-NSD combination. Maize (Zea mays) is an important crop, thermophilic but not heat tolerant. In this study, HAT, NSD, and HAT-NSD effects on maize inbred line Huangzao4 -were characterized. Main findings were as follows: H2O2 and O- accumulated much more in immature young leaves than in mature old leaves under the stresses. Lateral roots were highly distributed near the upper pot mix layers under HAT and near root tips under HAT-NSD. Saccharide accumulated mainly in stressed root caps (RC) and formed a highly accumulated saccharide band at the boundary between RC and meristematic zone. Lignin deposition was in stressed roots under NSD and HAT-NSD. Chloroplasts increased in number and formed a high-density ring around leaf vascular bundles (VB) under HAT and HAT-NSD, and sparsely scattered in the peripheral area of VBs under NSD. The RC cells containing starch granules were most under NAD-HAT but least under HAT. Under NSD and HAT-NSD followed by re-watering, anther number per tassel spikelet reduced to 3. These results provide multiple clues for further distinguishing molecular mechanisms for maize to tolerate these stresses.
Collapse
Affiliation(s)
- Yan-Yan Pei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.
| | - Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Li Y, Yuan W, Li L, Dai H, Dang X, Miao R, Baluška F, Kronzucker HJ, Lu C, Zhang J, Xu W. Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7316-7330. [PMID: 32905588 DOI: 10.1093/jxb/eraa409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Hydrotropism is the directed growth of roots toward the water found in the soil. However, mechanisms governing interactions between hydrotropism and gravitropism remain largely unclear. In this study, we found that an air system and an agar-sorbitol system induced only oblique water-potential gradients; an agar-glycerol system induced only vertical water-potential gradients; and a sand system established both oblique and vertical water-potential gradients. We employed obliquely oriented and vertically oriented experimental systems to study hydrotropism in Arabidopsis and tomato plants. Comparative analyses using different hydrotropic systems showed that gravity hindered the ability of roots to search for obliquely oriented water, whilst facilitating roots' search for vertically oriented water. We found that the gravitropism-deficient mutant aux1 showed enhanced hydrotropism in the oblique orientation but impaired root elongation towards water in the vertical orientation. The miz1 mutant exhibited deficient hydrotropism in the oblique orientation but normal root elongation towards water in the vertical orientation. Importantly, in contrast to miz1, the miz1/aux1 double mutant exhibited hydrotropic bending in the oblique orientation and attenuated root elongation towards water in the vertical orientation. Our results suggest that gravitropism is required for MIZ1-regulated root hydrotropism in both the oblique orientation and the vertical orientation, providing further insight into the role of gravity in root hydrotropism.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Wei Yuan
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Luocheng Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Hui Dai
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Rui Miao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Stake Key Laboratory of Agrobiotechnology and Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| |
Collapse
|
7
|
Li Y, Yuan W, Li L, Miao R, Dai H, Zhang J, Xu W. Light-Dark Modulates Root Hydrotropism Associated with Gravitropism by Involving Amyloplast Response in Arabidopsis. Cell Rep 2020; 32:108198. [PMID: 32997985 DOI: 10.1016/j.celrep.2020.108198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The role of amyloplasts in the interactions between hydrotropism and gravitropism has been previously described. However, the effect of light-dark on the interactions between the two tropisms remains unclear. Here, by developing a method that makes it possible to mimic natural conditions more closely than the conventional lab conditions, we show that hydrotropism is higher in wild-type Arabidopsis seedlings whose shoots are illuminated but whose roots are grown in the dark compared with seedlings that are fully exposed to light. Root gravitropism is substantially decreased because of the reduction of amyloplast content in the root tip with decreased gene expression in PGM1 (a key starch biosynthesis gene), which may contribute to enhanced root hydrotropism under darkness. Furthermore, the starch-deficient mutant pgm1-1 exhibits greater hydrotropism compared with wild-type. Our results suggest that amyloplast response and starch reduction occur under light-dark modulation, followed by decreased gravitropism and enhanced hydrotropism in Arabidopsis root.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Wei Yuan
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Luocheng Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rui Miao
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Hui Dai
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
8
|
Miyazawa Y, Takahashi H. Molecular mechanisms mediating root hydrotropism: what we have observed since the rediscovery of hydrotropism. JOURNAL OF PLANT RESEARCH 2020; 133:3-14. [PMID: 31797131 PMCID: PMC7082378 DOI: 10.1007/s10265-019-01153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/19/2019] [Indexed: 06/02/2023]
Abstract
Roots display directional growth toward moisture in response to a water potential gradient. Root hydrotropism is thought to facilitate plant adaptation to continuously changing water availability. Hydrotropism has not been as extensively studied as gravitropism. However, comparisons of hydrotropic and gravitropic responses identified mechanisms that are unique to hydrotropism. Regulatory mechanisms underlying the hydrotropic response appear to differ among different species. We recently performed molecular and genetic analyses of root hydrotropism in Arabidopsis thaliana. In this review, we summarize the current knowledge of specific mechanisms mediating root hydrotropism in several plant species.
Collapse
Affiliation(s)
- Yutaka Miyazawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, 990-8560, Japan.
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
9
|
LIMA LUCASK, SANTOS IDÁLIASDOS, GONÇALVES ZANONS, SOARES TALIANEL, JESUS ONILDONDE, GIRARDI EDUARDOA. Grafting height does not affect Fusarium wilt control or horticultural performance of Passiflora gibertii N.E.Br. rootstock. AN ACAD BRAS CIENC 2018; 90:3525-3539. [DOI: 10.1590/0001-3765201820180072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/06/2018] [Indexed: 11/22/2022] Open
|
10
|
Dietrich D. Hydrotropism: how roots search for water. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2759-2771. [PMID: 29529239 DOI: 10.1093/jxb/ery034] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
Fresh water is an increasingly scarce resource for agriculture. Plant roots mediate water uptake from the soil and have developed a number of adaptive traits such as hydrotropism to aid water foraging. Hydrotropism modifies root growth to respond to a water potential gradient in soil and grow towards areas with a higher moisture content. Abscisic acid (ABA) and a small number of genes, including those encoding ABA signal transducers, MIZ2/GNOM, and the hydrotropism-specific MIZ1, are known to be necessary for the response in Arabidopsis thaliana, whereas the role of auxin in hydrotropism appears to vary depending on the plant species. This review will describe recent progress characterizing the hormonal regulation of hydrotropism. Recent advances in identifying the sites of hydrotropic perception and response, together with its interaction with gravitropism, will also be discussed. Finally, I will describe putative mechanisms for perception of the water potential gradient and a potential role for hydrotropism in acclimatizing plants to drought conditions.
Collapse
Affiliation(s)
- Daniela Dietrich
- Centre for Plant Integrative Biology and Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Salazar-Blas A, Noriega-Calixto L, Campos ME, Eapen D, Cruz-Vázquez T, Castillo-Olamendi L, Sepulveda-Jiménez G, Porta H, Dubrovsky JG, Cassab GI. Robust root growth in altered hydrotropic response1 (ahr1) mutant of Arabidopsis is maintained by high rate of cell production at low water potential gradient. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:102-114. [PMID: 27912083 DOI: 10.1016/j.jplph.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 11/09/2016] [Indexed: 05/03/2023]
Abstract
Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this work were to ascertain how ahr1 roots could sustain growth in the WPGS, with a special focus on the integration of cellular processes involved in the signaling that determines root growth during abiotic stress and their relation to hydrotropism. Cellular analysis of the root apical meristem of ahr1 mutant contrary to the wild type showed an absence of changes in the meristem length, the elongation zone length, the length of fully elongated cells, and the cell cycle duration. The robust and steady root growth of ahr1 seedlings in the WPGS is explained by the mutant capacity to maintain cell production and cell elongation at the same level as in the NM. Analysis of auxin response at a transcriptional level showed that roots of the ahr1 mutant had a lower auxin response when grown in the WPGS, compared to wild type, indicating that auxin signaling participates in attenuation of root growth under water stress conditions. Also, wild type plants exhibited a high increase in proline content while ahr1 mutants showed minimum changes in the Normal Medium→Water Stress Medium (NM→WSM), a lower water potential gradient system than the WPGS. Accordingly, in this condition, gene expression of Δ1-6 Pyrroline-5-Carboxylate Synthetase1 (P5CS1) involved in proline synthesis strongly increased in wild type but not in ahr1 seedlings. The ahr1 phenotype shows unique features since the mutant root cells continue to proliferate and grow in the presence of a progressively negative water potential gradient at a level comparable to wild type growing in the NM. As such, it represents an exceptional resource for understanding hydrotropism.
Collapse
Affiliation(s)
- Amed Salazar-Blas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Laura Noriega-Calixto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - María E Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Delfeena Eapen
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Tania Cruz-Vázquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Luis Castillo-Olamendi
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gabriela Sepulveda-Jiménez
- Doctorado en Ciencias Biológicas, Facultad de Ciencias UNAM, Centro de Desarrollo de Productos Bióticos-IPN, Calle CeProBi No. 8, Col. San Isidro, Yautepec Morelos 62731, México
| | - Helena Porta
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México.
| |
Collapse
|
12
|
Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W. Genetic control of root growth: from genes to networks. ANNALS OF BOTANY 2016; 117:9-24. [PMID: 26558398 PMCID: PMC4701154 DOI: 10.1093/aob/mcv160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. SCOPE This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. CONCLUSIONS While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics.
Collapse
Affiliation(s)
- Radka Slovak
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
13
|
Affiliation(s)
- Qian Gao
- Dept. of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian Province 361005 P.R. China
| | - Jie Xiao
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou Jiangsu Province 215123 P.R. China
| | - Xiao Dong Chen
- Dept. of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian Province 361005 P.R. China
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou Jiangsu Province 215123 P.R. China
| |
Collapse
|
14
|
Ma J, Li XQ. Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings. Curr Genet 2015; 61:591-600. [PMID: 25782449 DOI: 10.1007/s00294-015-0482-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 01/30/2023]
Abstract
Little information is available about organellar genome copy numbers and integrity in plant roots, although it was reported recently that the plastid and mitochondrial genomes were damaged under light, resulting in non-functional fragments in green seedling leaves in a maize line. In the present study, we investigated organellar genome copy numbers and integrity, after assessing the cellular ploidy, in seedling leaves and roots of two elite maize (Zea mays) cultivars using both long-fragment polymerase chain reaction (long-PCR) and real-time quantitative polymerase chain reaction (qPCR, a type of short-PCR). Since maize leaf and root cells are mainly diploid according to chromosome number counting and the literature, the DNA amount ratio between the organellar genomes and the nuclear genome could be used to estimate average organellar genome copy numbers per cell. In the present study, both long-PCR and qPCR analyses found that green leaves had dramatically more plastid DNA and less mitochondrial DNA than roots had in both cultivars. The similarity in results from long-PCR and qPCR suggests that green leaves and roots during moderate maturation have largely intact plastid and mitochondrial genomes. The high resolution of qPCR led to the detection of an increase in copies in the plastid genome and a decrease in copies in the analyzed mitochondrial sub-genomes during the moderate maturation of seedling leaves and roots. These results suggest that green seedling leaves and roots of these two maize cultivars during moderate maturation had essentially intact organellar genomes, an increased copy number of the plastid genome, and decreased copy numbers of certain mitochondrial sub-genomes.
Collapse
Affiliation(s)
- Jin Ma
- Potato Research Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, NB, E3B 4Z7, Canada
| | - Xiu-Qing Li
- Potato Research Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, NB, E3B 4Z7, Canada.
| |
Collapse
|
15
|
Nakashima J, Liao F, Sparks JA, Tang Y, Blancaflor EB. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:142-50. [PMID: 23952736 DOI: 10.1111/plb.12062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/24/2013] [Indexed: 05/11/2023]
Abstract
Before plants can be effectively utilised as a component of enclosed life-support systems for space exploration, it is important to understand the molecular mechanisms by which they develop in microgravity. Using the Biological Research in Canisters (BRIC) hardware on board the second to the last flight of the Space Shuttle Discovery (STS-131 mission), we studied how microgravity impacts root growth in Arabidopsis thaliana. Ground-based studies showed that the actin cytoskeleton negatively regulates root gravity responses on Earth, leading us to hypothesise that actin might also be an important modulator of root growth behaviour in space. We investigated how microgravity impacted root growth of wild type (ecotype Columbia) and a mutant (act2-3) disrupted in a root-expressed vegetative actin isoform (ACTIN2). Roots of etiolated wild-type and act2-3 seedlings grown in space skewed vigorously toward the left, which was unexpected given the reduced directional cue provided by gravity. The left-handed directional root growth in space was more pronounced in act2-3 mutants than wild type. To quantify differences in root orientation of these two genotypes in space, we developed an algorithm where single root images were converted into binary images using computational edge detection methods. Binary images were processed with Fast Fourier Transformation (FFT), and histogram and entropy were used to determine spectral distribution, such that high entropy values corresponded to roots that deviated more strongly from linear orientation whereas low entropy values represented straight roots. We found that act2-3 roots had a statistically stronger skewing/coiling response than wild-type roots, but such differences were not apparent on Earth. Ultrastructural studies revealed that newly developed cell walls of space-grown act2-3 roots were more severely disrupted compared to space-grown wild type, and ground control wild-type and act2-3 roots. Collectively, our results provide evidence that, like root gravity responses on Earth, endogenous directional growth patterns of roots in microgravity are suppressed by the actin cytoskeleton. Modulation of root growth in space by actin could be facilitated in part through its impact on cell wall architecture.
Collapse
Affiliation(s)
- J Nakashima
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | | | | | | |
Collapse
|
16
|
Cupp JD, Nielsen BL. Arabidopsis thaliana organellar DNA polymerase IB mutants exhibit reduced mtDNA levels with a decrease in mitochondrial area density. PHYSIOLOGIA PLANTARUM 2013; 149:91-103. [PMID: 23167278 DOI: 10.1111/ppl.12009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 05/04/2023]
Abstract
Plant organelle genomes are complex and the mechanisms for their replication and maintenance remain unclear. Arabidopsis thaliana has two DNA polymerase genes, DNA polymerase IA (polIA) and polIB, that are dual targeted to mitochondria and chloroplasts and are differentially expressed in primary plant tissues. PolIB gene expression occurs at higher levels in tissues not primary for photosynthesis. Arabidopsis T-DNA polIB mutants have a 30% reduction in relative mitochondrial DNA (mtDNA) levels, but also exhibit a 70% increase in polIA gene expression. The polIB mutant shows an increase in mitochondrial numbers but a significant decrease in mitochondrial area density within the hypocotyl epidermis, shoot apex and root tips. Chloroplast numbers are not significantly different in mesophyll protoplasts. These mutants do not have a significant difference in total dark mitorespiration levels but exhibit a difference in light respiration levels and photosynthesis capacity. Organelle-encoded genes for components of respiration and photosynthesis are upregulated in polIB mutants. The mutants exhibited slow growth in conjunction with a decreased rate of cell expansion and other secondary phenotypic effects. Evidence suggests that early plastid development and DNA levels are directly affected by a polIB mutation but are resolved to wild-type levels over time. However, mitochondria numbers and DNA levels never reach wild-type levels in the polIB mutant. We propose that both polIA and polIB are required for mtDNA replication. The results suggest that polIB mutants undergo an adjustment in cell homeostasis, enabling them to maintain functional mitochondria at the cost of normal cell expansion and plant growth.
Collapse
Affiliation(s)
- John D Cupp
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | | |
Collapse
|
17
|
Hong JH, Seah SW, Xu J. The root of ABA action in environmental stress response. PLANT CELL REPORTS 2013; 32:971-83. [PMID: 23571661 DOI: 10.1007/s00299-013-1439-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 05/05/2023]
Abstract
The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.
Collapse
Affiliation(s)
- Jing Han Hong
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | |
Collapse
|
18
|
Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio GA, Fernandez MA, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, Rodriguez PL. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. PLANT PHYSIOLOGY 2013; 161:931-41. [PMID: 23370718 PMCID: PMC3561030 DOI: 10.1104/pp.112.208678] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/11/2012] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) signaling plays a critical role in regulating root growth and root system architecture. ABA-mediated growth promotion and root tropic response under water stress are key responses for plant survival under limiting water conditions. In this work, we have explored the role of Arabidopsis (Arabidopsis thaliana) PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS for root ABA signaling. As a result, we discovered that PYL8 plays a nonredundant role for the regulation of root ABA sensitivity. Unexpectedly, given the multigenic nature and partial functional redundancy observed in the PYR/PYL family, the single pyl8 mutant showed reduced sensitivity to ABA-mediated root growth inhibition. This effect was due to the lack of PYL8-mediated inhibition of several clade A phosphatases type 2C (PP2Cs), since PYL8 interacted in vivo with at least five PP2Cs, namely HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABA-INSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 as revealed by tandem affinity purification and mass spectrometry proteomic approaches. We also discovered that PYR/PYL receptors and clade A PP2Cs are crucial for the hydrotropic response that takes place to guide root growth far from regions with low water potential. Thus, an ABA-hypersensitive pp2c quadruple mutant showed enhanced hydrotropism, whereas an ABA-insensitive sextuple pyr/pyl mutant showed reduced hydrotropic response, indicating that ABA-dependent inhibition of PP2Cs by PYR/PYLs is required for the proper perception of a moisture gradient.
Collapse
|
19
|
Moriwaki T, Miyazawa Y, Kobayashi A, Takahashi H. Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:25-34. [PMID: 23263156 DOI: 10.3732/ajb.1200419] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Roots show positive hydrotropism in response to moisture gradients, which is believed to contribute to plant water acquisition. This article reviews the recent advances of the physiological and molecular genetic studies on hydrotropism in seedling roots of Arabidopsis thaliana. We identified MIZU-KUSSEI1 (MIZ1) and MIZ2, essential genes for hydrotropism in roots; the former encodes a protein of unknown function, and the latter encodes an ARF-GEF (GNOM) protein involved in vesicle trafficking. Because both mutants are defective in hydrotropism but not in gravitropism, these mutations might affect a molecular mechanism unique to hydrotropism. MIZ1 is expressed in the lateral root cap and cortex of the root proper. It is localized as a soluble protein in the cytoplasm and in association with the cytoplasmic face of endoplasmic reticulum (ER) membranes in root cells. Light and ABA independently regulate MIZ1 expression, which influences the ultimate hydrotropic response. In addition, MIZ1 overexpression results in an enhancement of hydrotropism and an inhibition of lateral root formation. This phenotype is likely related to the alteration of auxin content in roots. Specifically, the auxin level in the roots decreases in the MIZ1 overexpressor and increases in the miz1 mutant. Unlike most gnom mutants, miz2 displays normal morphology, growth, and gravitropism, with normal localization of PIN proteins. It is probable that MIZ1 plays a crucial role in hydrotropic response by regulating the endogenous level of auxin in Arabidopsis roots. Furthermore, the role of GNOM/MIZ2 in hydrotropism is distinct from that of gravitropism.
Collapse
Affiliation(s)
- Teppei Moriwaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
20
|
Abstract
While water shortage remains the single-most important factor influencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, temperature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fixed in direction and intensity. However, other environmental factors, such as water potential gradients, which fluctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1, and MIZ2, which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational field, light or touch stimuli. The biological consequence of hydrotropism is also discussed in relation to water stress avoidance.
Collapse
Affiliation(s)
- Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Col. Chamilpa, Cuernavaca, Mor. 62250 México.
| | | | | |
Collapse
|
21
|
Moriwaki T, Miyazawa Y, Fujii N, Takahashi H. Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2012; 35:1359-68. [PMID: 22321255 DOI: 10.1111/j.1365-3040.2012.02493.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant roots undergo tropic growth in response to environmental cues, and each tropic response is affected by several environmental stimuli. Even its importance, molecular regulation of hydrotropism has not been largely uncovered. Tropic responses including hydrotropism were impacted by other environmental signal. We found that hydrotropism was reduced in dark-grown seedling. Moreover, we found that the expression of MIZ1, an essential gene for hydrotropism, was regulated by light signal. From our genetic analysis, phytochrome A (phyA)-, phyB- and HY5-mediated blue-light signalling play curial roles in light-mediated induction of MIZ1 and hydrotropism. In addition, we found that abscisic acid (ABA) also induced MIZ1 expression. ABA treatment could recover weak hydrotropism and MIZ1 expression level of hy5, and ABA synthesis inhibitor, abamineSG, further reduced hydrotropic curvature of hy5. In contrast, ABA treatment did not affect ahydrotropic phenotype of miz1. These results suggest that ABA signalling regulates MIZ1 expression independently from light signalling. Our results demonstrate that environmental signals, such as light and stresses mediated by ABA signalling, are integrated into MIZ1 expression and thus regulate hydrotropism. These machineries will allow plants to acquire sufficient amounts of water.
Collapse
Affiliation(s)
- Teppei Moriwaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
22
|
Strohm AK, Baldwin KL, Masson PH. Molecular mechanisms of root gravity sensing and signal transduction. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:276-85. [PMID: 23801441 DOI: 10.1002/wdev.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism.
Collapse
|
23
|
Abstract
Two essential functions are associated with the root tip: first of all, it ensures a sustained growth of the root system thanks to its role in protecting the stem cell zone responsible for cell division and differentiation. In addition, it is capable of detecting environmental changes at the root cap level, and this property provides a crucial advantage considering that this tissue is located at the forefront of soil exploration. Using results obtained mainly with the plant model Arabidopsis, we summarize the description of the structure of root cap and the known molecular mechanisms regulating its functioning. We briefly review the various responses of the root cap related to the interaction between the plant and its environment, such as phototropism, gravitropism, hydrotropism, mineral composition of the soil and protection against pathogens.
Collapse
Affiliation(s)
- Carole Arnaud
- UMR 6191 CEA, Centre National de la Recherche Scientifique, laboratoire de biologie du développement des plantes, université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | | | | | | |
Collapse
|
24
|
Taniguchi YY, Taniguchi M, Tsuge T, Oka A, Aoyama T. Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism. PLANTA 2010; 231:491-7. [PMID: 19915862 DOI: 10.1007/s00425-009-1052-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 10/26/2009] [Indexed: 05/08/2023]
Abstract
Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dzeta2 gene (PLDzeta2) was localized to epidermal cells in the distal root elongation zone and lateral root cap cells adjacent to them, and that exogenous ABA enhanced the activity and extended its area to the entire root cap. Although pldzeta2 mutant root caps did not exhibit a morphological phenotype in either the absence or presence of exogenous ABA, the inhibitory effect of ABA on gravitropism, which was significant in wild-type roots, was not observed in pldzeta2 mutant roots. In root hydrotropism experiments, pldzeta2 mutations significantly retarded or disturbed root hydrotropic responses. A drought condition similar to that used in a hydrotropism experiment enhanced the PLDzeta2 promoter activity in the root cap, as did exogenous ABA. These results suggest that PLDzeta2 responds to drought through ABA signaling in the root cap and accelerates root hydrotropism through the suppression of root gravitropism.
Collapse
Affiliation(s)
- Yukimi Y Taniguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
25
|
Takahashi H, Miyazawa Y, Fujii N. Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. PLANT MOLECULAR BIOLOGY 2009; 69:489-502. [PMID: 19083152 DOI: 10.1007/s11103-008-9438-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/17/2008] [Indexed: 05/09/2023]
Abstract
Terrestrial plants have evolved remarkable morphological plasticity that enables them to adapt to their surroundings. One of the most important traits that plants have acquired is the ability to sense environmental cues and use them as a basis for governing their growth orientation. The directional growth of plant organs relative to the direction of environmental stimuli is a tropism. The Cholodny-Went theory proposes that auxin plays a key role in several tropisms. Recent molecular genetic studies have strongly supported this hypothesis for gravitropism. However, the molecular mechanisms of other tropisms are far less clear. Hydrotropism is the response of roots to a moisture gradient. Since its re-discovery in 1985, root hydrotropism has been shown to be common among higher plant species. Additionally, in some species, gravitropism interferes with hydrotropism, suggesting that both shared and divergent mechanisms mediating the two tropisms exist. This hypothesis has been supported by recent studies, which provide an understanding of how roots sense multiple environmental cues and exhibit different tropic responses. In this review, we focus on the overlapping and unique mechanisms of the hormonal regulation underlying gravitropism and hydrotropism in roots.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
26
|
Ponce G, Rasgado F, Cassab GI. How amyloplasts, water deficit and root tropisms interact? PLANT SIGNALING & BEHAVIOR 2008; 3:460-2. [PMID: 19704485 PMCID: PMC2634429 DOI: 10.4161/psb.3.7.5672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/31/2008] [Indexed: 05/19/2023]
Abstract
Hydrotropism, the differential growth of plant roots directed by a moisture gradient, is a long recognized, but not well-understood plant behavior. Hydrotropism has been characterized in the model plant Arabidopsis. Previously, it was postulated that roots subjected to water stress are capable of undergo water-directed tropic growth independent of the gravity vector because of the loss of the starch granules in root cap columella cells and hence the loss of the early steps in gravitropic signaling. We have recently proposed that starch degradation in these cells during hydrostimulation sustain osmotic stress and root growth for carrying out hydrotropism instead of reducing gravity responsiveness. In addition, we also proposed that abscisic acid (ABA) and water deficit are critical regulators of root gravitropism and hydrotropism, and thus mediate the interacting mechanism between these two tropisms. Our conclusions are based upon experiments performed with the no hydrotropic response (nhr1) mutant of Arabidopsis, which lacks a hydrotropic response and shows a stronger gravitropic response than that of wild type (WT) in a medium with an osmotic gradient.
Collapse
Affiliation(s)
- Georgina Ponce
- Departamento de Biología Molecular de Plantas; Instituto de Biotecnología; Universidad Nacional Autónoma de México; México
| | | | | |
Collapse
|