1
|
Zhang JY, Zhang QH, Shuang SP, Cun Z, Wu HM, Chen JW. The Responses of Light Reaction of Photosynthesis to Dynamic Sunflecks in a Typically Shade-Tolerant Species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2021; 12:718981. [PMID: 34721452 PMCID: PMC8548386 DOI: 10.3389/fpls.2021.718981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Light is highly heterogeneous in natural conditions, and plants need to evolve a series of strategies to acclimate the dynamic light since it is immobile. The present study aimed to elucidate the response of light reaction of photosynthesis to dynamic sunflecks in a shade-tolerant species Panax notoginseng and to examine the regulatory mechanisms involved in an adaptation to the simulated sunflecks. When P. notoginseng was exposed to the simulated sunflecks, non-photochemical quenching (NPQ) increased rapidly to the maximum value. Moreover, in response to the simulated sunflecks, there was a rapid increase in light-dependent heat dissipation quantum efficiency of photosystem II (PSII) (ΦNPQ), while the maximum quantum yield of PSII under light (F v'/F m') declined. The relatively high fluorescence and constitutive heat dissipation quantum efficiency of PSII (Φf,d) in the plants exposed to transient high light (400, 800, and 1,600 μmol m-2 s-1) was accompanied by the low effective photochemical quantum yield of PSII (ΦPSII) after the dark recovery for 15 min, whereas the plants exposed to transient low light (50 μmol m-2 s-1) has been shown to lead to significant elevation in ΦPSII after darkness recovery. Furthermore, PSII fluorescence and constitutive heat dissipation electron transfer rate (J f,d) was increased with the intensity of the simulated sunflecks, the residual absorbed energy used for the non-net carboxylative processes (J NC) was decreased when the response of electron transfer rate of NPQ pathway of PSII (J NPQ) to transient low light is restricted. In addition, the acceptor-side limitation of PSI [Y(NA)] was increased, while the donor-side limitation of photosystems I (PSI) [Y(ND)] was decreased at transient high light conditions accompanied with active cyclic electron flow (CEF). Meanwhile, when the leaves were exposed to transient high light, the xanthophyll cycle (V cycle) was activated and subsequently, the J NPQ began to increase. The de-epoxidation state [(Z + A)/(V + A + Z)] was strongly correlated with NPQ in response to the sunflecks. In the present study, a rapid engagement of lutein epoxide (Lx) after the low intensity of sunfleck together with the lower NPQ contributed to an elevation in the maximum photochemical quantum efficiency of PSII under the light. The analysis based on the correlation between the CEF and electron flow devoted to Ribulose-1, 5-bisphosphate (RuBP) oxygenation (J O) indicated that at a high light intensity of sunflecks, the electron flow largely devoted to RuBP oxygenation would contribute to the operation of the CEF. Overall, photorespiration plays an important role in regulating the CEF of the shade-tolerant species, such as P. notoginseng in response to transient high light, whereas active Lx cycle together with the decelerated NPQ may be an effective mechanism of elevating the maximum photochemical quantum efficiency of PSII under light exposure to transient low light.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Qiang-Hao Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Wang T, Xiong B, Tan L, Yang Y, Zhang Y, Ma M, Xu Y, Liao L, Sun G, Liang D, Xia H, Zhang X, Wang Z, Wang J. Effects of interstocks on growth and photosynthetic characteristics in 'Yuanxiaochun' Citrus seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:977-987. [PMID: 32645281 DOI: 10.1071/fp20079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
To obtain the compatibility of interstocks crossing with 'Yuanxiaochun', we performed a comparative analysis with five interstocks. From the 60th to 240th day after grafting, there was a significant difference between different treatments. All the new shoot/interstock diameter ratios were <1, indicating that there was no obvious phenomenon of small feet in 'Yuanxiaochun' seedlings of five kinds of interstocks. The density of 'Yuanxiaochun' was significantly different. Chl a, Chl b, T-Chl content of 'Shiranuhi', 'Harumi', 'Tarocco' changed greatly from the 90th to 120th day after grafting. The intercellular CO2 concentration (Ci) of 'Shiranuhi' was significantly higher than the other interstocks. In addition, when 'Yuanxiaochun' was grafted onto 'Shiranuhi', net photosynthetic rate (Pn), stomatal conductance (gs) and tanspiration rate (Tr) were higher. When 'Harumi' were used as the interstocks of 'Yuanxiaochun', the light saturation point (LSP) value was larger, which was conducive to the utilisation of strong light. Moreover, the value of LSP-LCP (LCP, light compensation point) of 'Harumi' and 'Tarocco' were significantly higher than the other three interstocks. The apparent quantum efficiency (AQE), RuBP maximum regeneration rate (Jmax) and maximum carboxylation efficiency of Rubisco (Vcmax) value of 'Shiranuhi' was significantly lower than that of 'Ponkan'. The CO2 compensation point (CCP) of 'Harumi' interstock was lower, but the CO2 saturation point (CSP) of 'Tarocco' interstock was higher than those of other interstocks respectively. There was a small difference in initial fluorescence (F0) of different interstocks. The maximal photochemical efficiency of PSII in the dark (Fv/Fm) of 'Kumquat' was the lowest. In addition, Both Y(II) and ETR values of the 'Yuanxiaochun' leaves of 'Ponkan' interstock was the largest one. However, the non-photochemical quenching (qN) of 'Ponkan' was significantly lower, and that of 'Tarocco' interstock was the highest one. Interstocks have different effect on the growth and development, photosynthetic characteristics related to physiological characteristics of 'Yuanxiaochun' trees. 'Ponkan' and 'Kumquat' as the interstock of 'Yuanxiaochun' was more conducive to the rapid accumulation of photosynthetic products for normal vegetative and reproductive growth of plants.
Collapse
Affiliation(s)
- Tie Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liping Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Youting Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yue Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mengmeng Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yinghuan Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoai Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; and Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; and Corresponding authors. ;
| | - Jun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; and Corresponding authors. ;
| |
Collapse
|
3
|
Dietz KJ, Krause GH, Siebke K, Krieger-Liszkay A. A tribute to Ulrich Heber (1930-2016) for his contribution to photosynthesis research: understanding the interplay between photosynthetic primary reactions, metabolism and the environment. PHOTOSYNTHESIS RESEARCH 2018; 137:17-28. [PMID: 29368118 DOI: 10.1007/s11120-018-0483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The dynamic and efficient coordination of primary photosynthetic reactions with leaf energization and metabolism under a wide range of environmental conditions is a fundamental property of plants involving processes at all functional levels. The present historical perspective covers 60 years of research aiming to understand the underlying mechanisms, linking major breakthroughs to current progress. It centers on the contributions of Ulrich Heber who had pioneered novel concepts, fundamental methods, and mechanistic understanding of photosynthesis. An important first step was the development of non-aqueous preparation of chloroplasts allowing the investigation of chloroplast metabolites ex vivo (meaning that the obtained results reflect the in vivo situation). Later on, intact chloroplasts, retaining their functional envelope membranes, were isolated in aqueous media to investigate compartmentation and exchange of metabolites between chloroplasts and external medium. These studies elucidated metabolic interaction between chloroplasts and cytoplasm during photosynthesis. Experiments with isolated intact chloroplasts clarified that oxygenation of ribulose-1.5-bisphosphate generates glycolate in photorespiration. The development of non-invasive optical methods enabled researchers identifying mechanisms that balance electron flow in the photosynthetic electron transport system avoiding its over-reduction. Recording chlorophyll a (Chl a) fluorescence allowed one to monitor, among other parameters, thermal energy dissipation by means of 'nonphotochemical quenching' of the excited state of Chl a. Furthermore, studies both in vivo and in vitro led to basic understanding of the biochemical mechanisms of freezing damage and frost tolerance of plant leaves, to SO2 tolerance of tree leaves and dehydrating lichens and mosses.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, 33501, Bielefeld, Germany.
| | - G Heinrich Krause
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, University Street 1, 40225, Düsseldorf, Germany
| | - Katharina Siebke
- Heinz Walz Gesellschaft mit beschränkter Haftung, Eichenring 6, 91090, Effeltrich, Germany
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
4
|
Leonelli L, Brooks MD, Niyogi KK. Engineering the lutein epoxide cycle into Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E7002-E7008. [PMID: 28760990 PMCID: PMC5565435 DOI: 10.1073/pnas.1704373114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although sunlight provides the energy necessary for plants to survive and grow, light can also damage reaction centers of photosystem II (PSII) and reduce photochemical efficiency. To prevent damage, plants possess photoprotective mechanisms that dissipate excess excitation. A subset of these mechanisms is collectively referred to as NPQ, or nonphotochemical quenching of chlorophyll a fluorescence. The regulation of NPQ is intrinsically linked to the cycling of xanthophylls that affects the kinetics and extent of the photoprotective response. The violaxanthin cycle (VAZ cycle) and the lutein epoxide cycle (LxL cycle) are two xanthophyll cycles found in vascular plants. The VAZ cycle has been studied extensively, owing in large part to its presence in model plant species where mutants are available to aid in its characterization. In contrast, the LxL cycle is not found in model plants, and its role in photosynthetic processes has been more difficult to define. To address this challenge, we introduced the LxL cycle into Arabidopsis thaliana and functionally isolated it from the VAZ cycle. Using these plant lines, we showed an increase in dark-acclimated PSII efficiency associated with Lx accumulation and demonstrated that violaxanthin deepoxidase is responsible for the light-driven deepoxidation of Lx. Conversion of Lx to L was reversible during periods of low light and occurred considerably faster than rates previously described in nonmodel species. Finally, we present clear evidence of the LxL cycle's role in modulating a rapid component of NPQ that is necessary to prevent photoinhibition in excess light.
Collapse
Affiliation(s)
- Lauriebeth Leonelli
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Matthew D Brooks
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720;
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
5
|
Osmond B. Our eclectic adventures in the slower eras of photosynthesis: from New England Down Under to biosphere 2 and beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:1-32. [PMID: 24779995 DOI: 10.1146/annurev-arplant-050213-035739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This is a tale of a career in plant physiological ecology that enjoyed the freedom to address photosynthetic physiology and biochemistry in leaves of plants from diverse environments. It was supported by block funding (now sadly a thing of the past) for research at the Australian National University, by grants during appointments in the United States and in Germany, and by Columbia University. It became a "career experiment" in which long-term, high-trust support for curiosity-driven plant biology in Australia, and at times in the United States, led to surprisingly innovative results. Although the rich diversity of short-term competitive grant opportunities in the United States sustained ongoing research, it proved difficult to mobilize support for more risky long-term projects. A decade after the closure of the Biosphere 2 Laboratory, this article highlights the achievements of colleagues in experimental climate change research from 1998 to 2003.
Collapse
Affiliation(s)
- Barry Osmond
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong 2522, Australia;
| |
Collapse
|
6
|
Demmig-Adams B, Koh SC, Cohu CM, Muller O, Stewart JJ, Adams WW. Non-Photochemical Fluorescence Quenching in Contrasting Plant Species and Environments. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:133-46. [PMID: 23647987 DOI: 10.1111/plb.12018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/16/2013] [Indexed: 05/05/2023]
Abstract
The impact of moderate water deficit on the photosynthetic apparatus of three Phaseolus vulgaris L. cultivars, Plovdiv 10 (P10), Dobrudjanski Ran (DR) and Prelom (Prel), was investigated. Water shortage had less impact on leaf hydration, RWC (predawn and midday) and predawn water potential in Prel. RWC and Ψ(p) were more reduced in P10, while there was no osmotic adjustment in any cultivar. Although drought drastically reduced stomatal opening in P10 and DR, reduced A(max) indicated non-stomatal limitations that contributed to the negligible P(n). These limitations were on potential thylakoid electron transport rates of PSI and II, pointing to photosystem functioning as a major limiting step in photosynthesis. This agrees with decreases in actual photochemical efficiency of PSII (F(v)'/F(m)'), quantum yield of photosynthetic non-cyclic electron transport (ϕ(e)) and energy-driven photochemical events (q(P)), although the impact on these parameters would also include down-regulation processes. When compared to DR, Prel retained a higher functional state of the photosynthetic machinery, justifying reduced need for photoprotective mechanisms (non-photochemical quenching, zeaxanthin, lutein, β-carotene) and maintenance of the balance between energy capture and dissipative pigments. The highest increases in fructose, glucose, arabinose and sorbitol in Prel might be related to tolerance to a lower oxidative state. All cultivars had reduced A(max) due to daytime stomatal closure in well-watered conditions. Under moderate drought, Prel had highest tolerance, higher leaf hydration and maintenance of important photochemical use of energy. However, water shortage caused appreciable non-stomatal limitations to photosynthesis linked to regulation/imbalance at the metabolic level (and growth) in all cultivars. This included damage, as reflected in decreased potential photosystem functioning, pointing to higher sensitivity of photosynthesis to drought than is commonly assumed.
Collapse
Affiliation(s)
- J C Ramalho
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - Z S Zlatev
- Department of Plant Physiology and Biochemistry, Agricultural University of Plovdiv, Plovdiv, Bulgaria
| | - A E Leitão
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - I P Pais
- URGEMP/Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - A S Fortunato
- Grupo Interações Planta-Ambiente, Centro Ambiente, Agricultura e Desenvolvimento/Instituto de Investigação Científica Tropical, I.P. (BioTrop/IICT), Oeiras, Portugal
| | - F C Lidon
- Department of Ciências e Tecnologia da Biomassa, Fac. Ciências e Tecnologia, University of Nova de Lisboa, Monte de Caparica, Portugal
| |
Collapse
|
8
|
Involvement of a Second Xanthophyll Cycle in Non-Photochemical Quenching of Chlorophyll Fluorescence: The Lutein Epoxide Story. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Takayama K, King D, Robinson SA, Osmond B. Integrating Transient Heterogeneity of Non-Photochemical Quenching in Shade-Grown Heterobaric Leaves of Avocado (Persea americana L.): Responses to CO2 Concentration, Stomatal Occlusion, Dehydration and Relative Humidity. ACTA ACUST UNITED AC 2013; 54:1852-66. [DOI: 10.1093/pcp/pct128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Grubb PJ, Bellingham PJ, Kohyama TS, Piper FI, Valido A. Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide. Biol Rev Camb Philos Soc 2013; 88:701-44. [PMID: 23506298 PMCID: PMC7161821 DOI: 10.1111/brv.12029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 01/19/2013] [Accepted: 01/25/2013] [Indexed: 12/02/2022]
Abstract
For tropical lowland rain forests, Denslow (1987) hypothesized that in areas with large-scale disturbances tree species with a high demand for light make up a larger proportion of the flora; results of tests have been inconsistent. There has been no test for warm temperate rain forests (WTRFs), but they offer a promising testing ground because they differ widely in the extent of disturbance. WTRF is dominated by microphylls sensu Raunkiaer and has a simpler structure and range of physiognomy than tropical or subtropical rain forests. It occurs in six parts of the world: eastern Asia, New Zealand, Chile, South Africa, SE Australia and the Azores. On the Azores it has been mostly destroyed, so we studied instead the subtropical montane rain forest (STMRF) on the Canary Islands which also represents a relict of the kind of WTRF that once stretched across southern Eurasia. We sought to find whether in these six regions the proportion of tree species needing canopy gaps for establishment reflects the frequency and/or extent of canopy disturbance by wind, landslide, volcanic eruptions (lava flow and ash fall), flood or fire. We used standard floras and ecological accounts to draw up lists of core tree species commonly reaching 5 m height. We excluded species which are very rare, very localized in distribution, or confined to special habitats, e.g. coastal forests or rocky sites. We used published accounts and our own experience to classify species into three groups: (1) needing canopy gaps for establishment; (2) needing either light shade throughout or a canopy gap relatively soon (a few months or years) after establishment; and (3) variously more shade-tolerant. Group 1 species were divided according the kind of canopy opening needed: tree-fall gap, landslide, lava flow, flood or fire. Only some of the significant differences in proportion of Group 1 species were consistent with differences in the extent of disturbance; even in some of those cases other factors seem likely to have had a major determining influence during evolution. We also sought to determine whether the species that are at least 'short-term persistent' in the soil seed bank (lasting 2-4 years) are all species needing canopy gaps for establishment. The answer was negative; large numbers of seeds of some shade-tolerants accumulate in the soil, and these species are able to benefit from soil disturbance in deep shade. We found a significant and strong positive relationship in Japan between mean seed mass and mature tree height, a weak positive relationship in New Zealand and no relationship in any of the other four regions. When comparing the seed mass values of Group 1 and Group 3 species we obtained different answers depending on whether or not we confined ourselves to taxonomically controlled contrasts. In only two of the four regions with an appreciable number of species in Group 1 is the mean seed mass of such species significantly lower than that of Group 3 species when taxonomic relatedness is ignored.
Collapse
Affiliation(s)
- Peter J Grubb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | | | | | | | | |
Collapse
|
11
|
CALIANDRO ROSANNA, NAGEL KERSTINA, KASTENHOLZ BERND, BASSI ROBERTO, LI ZHIRONG, NIYOGI KRISHNAK, POGSON BARRYJ, SCHURR ULRICH, MATSUBARA SHIZUE. Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress. PLANT, CELL & ENVIRONMENT 2013; 36:438-53. [PMID: 22860767 PMCID: PMC3640260 DOI: 10.1111/j.1365-3040.2012.02586.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/16/2012] [Indexed: 05/07/2023]
Abstract
Functions of α- and β-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α- to β-branch carotenoid composition (α/β-ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β-branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β-ratios (lut5, szl1npq1) or without xanthophyll-cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β-ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β-ratios. The results highlight the importance of proper regulation of the α- and β-branch carotenoid pathways for whole-plant acclimation, not only leaf photoprotection, under photo-oxidative stress.
Collapse
Affiliation(s)
- ROSANNA CALIANDRO
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - KERSTIN A NAGEL
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - BERND KASTENHOLZ
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - ROBERTO BASSI
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
- Dipartimento di Biotecnologie, Università degli Studi di Verona37134 Verona, Italy
| | - ZHIRONG LI
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of California
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720-3102, USA
| | - KRISHNA K NIYOGI
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of California
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720-3102, USA
| | - BARRY J POGSON
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National UniversityCanberra, ACT 0200, Australia
| | - ULRICH SCHURR
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - SHIZUE MATSUBARA
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| |
Collapse
|
12
|
Jia H, Förster B, Chow WS, Pogson BJ, Osmond CB. Decreased photochemical efficiency of photosystem II following sunlight exposure of shade-grown leaves of avocado: because of, or in spite of, two kinetically distinct xanthophyll cycles? PLANT PHYSIOLOGY 2013; 161:836-52. [PMID: 23213134 PMCID: PMC3561023 DOI: 10.1104/pp.112.209692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/28/2012] [Indexed: 05/22/2023]
Abstract
This study resolved correlations between changes in xanthophyll pigments and photosynthetic properties in attached and detached shade-grown avocado (Persea americana) leaves upon sun exposure. Lutein epoxide (Lx) was deepoxidized to lutein (L), increasing the total pool by ΔL over 5 h, whereas violaxanthin (V) conversion to antheraxanthin (A) and zeaxanthin (Z) ceased after 1 h. During subsequent dark or shade recovery, de novo synthesis of L and Z continued, followed by epoxidation of A and Z but not of L. Light-saturated nonphotochemical quenching (NPQ) was strongly and linearly correlated with decreasing [Lx] and increasing [L] but showed a biphasic correlation with declining [V] and increasing [A+Z] separated when V deepoxidation ceased. When considering [ΔL+Z], the monophasic linear correlation was restored. Photochemical efficiency of photosystem II (PSII) and photosystem (PSI; deduced from the delivery of electrons to PSI in saturating single-turnover flashes) showed a strong correlation in their continuous decline in sunlight and an increase in NPQ capacity. This decrease was also reflected in the initial reduction of the slope of photosynthetic electron transport versus photon flux density. Generally longer, stronger sun exposures enhanced declines in both slope and maximum photosynthetic electron transport rates as well as photochemical efficiency of PSII and PSII/PSI more severely and prevented full recovery. Interestingly, increased NPQ capacity was accompanied by slower relaxation. This was more prominent in detached leaves with closed stomata, indicating that photorespiratory recycling of CO(2) provided little photoprotection to avocado shade leaves. Sun exposure of these shade leaves initiates a continuum of photoprotection, beyond full engagement of the Lx and V cycle in the antenna, but ultimately photoinactivated PSII reaction centers.
Collapse
Affiliation(s)
- Husen Jia
- Plant Sciences Division, Research School of Biology (H.J., B.F., W.S.C., C.B.O.), and Australian Research Council Centre of Excellence in Plant Energy Biology (B.J.P.), Australian National University, Canberra, Australian Capital Territory 0200 Australia; and Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia (C.B.O.)
| | - Britta Förster
- Plant Sciences Division, Research School of Biology (H.J., B.F., W.S.C., C.B.O.), and Australian Research Council Centre of Excellence in Plant Energy Biology (B.J.P.), Australian National University, Canberra, Australian Capital Territory 0200 Australia; and Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia (C.B.O.)
| | - Wah Soon Chow
- Plant Sciences Division, Research School of Biology (H.J., B.F., W.S.C., C.B.O.), and Australian Research Council Centre of Excellence in Plant Energy Biology (B.J.P.), Australian National University, Canberra, Australian Capital Territory 0200 Australia; and Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia (C.B.O.)
| | - Barry James Pogson
- Plant Sciences Division, Research School of Biology (H.J., B.F., W.S.C., C.B.O.), and Australian Research Council Centre of Excellence in Plant Energy Biology (B.J.P.), Australian National University, Canberra, Australian Capital Territory 0200 Australia; and Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia (C.B.O.)
| | - C. Barry Osmond
- Plant Sciences Division, Research School of Biology (H.J., B.F., W.S.C., C.B.O.), and Australian Research Council Centre of Excellence in Plant Energy Biology (B.J.P.), Australian National University, Canberra, Australian Capital Territory 0200 Australia; and Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia (C.B.O.)
| |
Collapse
|
13
|
Matsubara S, Förster B, Waterman M, Robinson SA, Pogson BJ, Gunning B, Osmond B. From ecophysiology to phenomics: some implications of photoprotection and shade-sun acclimation in situ for dynamics of thylakoids in vitro. Philos Trans R Soc Lond B Biol Sci 2012; 367:3503-14. [PMID: 23148277 PMCID: PMC3497076 DOI: 10.1098/rstb.2012.0072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Half a century of research into the physiology and biochemistry of sun-shade acclimation in diverse plants has provided reality checks for contemporary understanding of thylakoid membrane dynamics. This paper reviews recent insights into photosynthetic efficiency and photoprotection from studies of two xanthophyll cycles in old shade leaves from the inner canopy of the tropical trees Inga sapindoides and Persea americana (avocado). It then presents new physiological data from avocado on the time frames of the slow coordinated photosynthetic development of sink leaves in sunlight and on the slow renovation of photosynthetic properties in old leaves during sun to shade and shade to sun acclimation. In so doing, it grapples with issues in vivo that seem relevant to our increasingly sophisticated understanding of ΔpH-dependent, xanthophyll-pigment-stabilized non-photochemical quenching in the antenna of PSII in thylakoid membranes in vitro.
Collapse
Affiliation(s)
- Shizue Matsubara
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Britta Förster
- Division of Plant Sciences, Research School of Biology (RSB), Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Melinda Waterman
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Sharon A. Robinson
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Barry J. Pogson
- Division of Plant Sciences, Research School of Biology (RSB), Australian National University, Canberra, Australian Capital Territory 0200, Australia
- ARC Centre of Excellence in Plant Energy Biology, RSB, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Brian Gunning
- Division of Plant Sciences, Research School of Biology (RSB), Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Barry Osmond
- Division of Plant Sciences, Research School of Biology (RSB), Australian National University, Canberra, Australian Capital Territory 0200, Australia
- Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
14
|
García-Plazaola JI, Esteban R, Fernández-Marín B, Kranner I, Porcar-Castell A. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. PHOTOSYNTHESIS RESEARCH 2012; 113:89-103. [PMID: 22772904 DOI: 10.1007/s11120-012-9760-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/18/2012] [Indexed: 05/20/2023]
Abstract
Thermal dissipation of excitation energy is a fundamental photoprotection mechanism in plants. Thermal energy dissipation is frequently estimated using the quenching of the chlorophyll fluorescence signal, termed non-photochemical quenching. Over the last two decades, great progress has been made in the understanding of the mechanism of thermal energy dissipation through the use of a few model plants, mainly Arabidopsis. Nonetheless, an emerging number of studies suggest that this model represents only one strategy among several different solutions for the environmental adjustment of thermal energy dissipation that have evolved among photosynthetic organisms in the course of evolution. In this review, a detailed analysis of three examples highlights the need to use models other than Arabidopsis: first, overwintering evergreens that develop a sustained form of thermal energy dissipation; second, desiccation tolerant plants that induce rapid thermal energy dissipation; and third, understorey plants in which a complementary lutein epoxide cycle modulates thermal energy dissipation. The three examples have in common a shift from a photosynthetically efficient state to a dissipative conformation, a strategy widely distributed among stress-tolerant evergreen perennials. Likewise, they show a distinct operation of the xanthophyll cycle. Expanding the list of model species beyond Arabidopsis will enhance our knowledge of these mechanisms and increase the synergy of the current studies now dispersed over a wide number of species.
Collapse
Affiliation(s)
- José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080, Bilbao, Spain.
| | | | | | | | | |
Collapse
|
15
|
Krause GH, Winter K, Matsubara S, Krause B, Jahns P, Virgo A, Aranda J, García M. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. PHOTOSYNTHESIS RESEARCH 2012; 113:273-285. [PMID: 22466529 DOI: 10.1007/s11120-012-9731-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/27/2012] [Indexed: 05/28/2023]
Abstract
High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panama, Republic of Panama.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nichol CJ, Pieruschka R, Takayama K, F Rster B, Kolber Z, Rascher U, Grace J, Robinson SA, Pogson B, Osmond B. Canopy conundrums: building on the Biosphere 2 experience to scale measurements of inner and outer canopy photoprotection from the leaf to the landscape. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:1-24. [PMID: 32480756 DOI: 10.1071/fp11255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 12/02/2011] [Indexed: 06/11/2023]
Abstract
Recognising that plant leaves are the fundamental productive units of terrestrial vegetation and the complexity of different environments in which they must function, this review considers a few of the ways in which these functions may be measured and potentially scaled to the canopy. Although canopy photosynthetic productivity is clearly the sum of all leaves in the canopy, we focus on the quest for 'economical insights' from measurements that might facilitate integration of leaf photosynthetic activities into canopy performance, to better inform modelling based on the 'insights of economics'. It is focussed on the reversible downregulation of photosynthetic efficiency in response to light environment and stress and summarises various xanthophyll-independent and dependent forms of photoprotection within the inner and outer canopy of woody plants. Two main themes are developed. First, we review experiments showing the retention of leaves that grow old in the shade may involve more than the 'payback times' required to recover the costs of their construction and maintenance. In some cases at least, retention of these leaves may reflect selection for distinctive properties that contribute to canopy photosynthesis through utilisation of sun flecks or provide 'back up' capacity following damage to the outer canopy. Second, we report experiments offering hope that remote sensing of photosynthetic properties in the outer canopy (using chlorophyll fluorescence and spectral reflectance technologies) may overcome problems of access and provide integrated measurements of these properties in the canopy as a whole. Finding appropriate tools to scale photosynthesis from the leaf to the landscape still presents a challenge but this synthesis identifies some measurements and criteria in the laboratory and the field that improve our understanding of inner and outer canopy processes.
Collapse
Affiliation(s)
- Caroline J Nichol
- School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, Scotland, UK
| | - Roland Pieruschka
- Institute for Bio- and Geosciences IBG 2: Plant Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kotaro Takayama
- Laboratory of Physiological Green Systems, Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama 790-8566, Japan
| | - Britta F Rster
- Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Zbigniew Kolber
- Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Uwe Rascher
- Institute for Bio- and Geosciences IBG 2: Plant Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - John Grace
- School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, Scotland, UK
| | - Sharon A Robinson
- Institute for Conservation Biology and Ecosystem Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Barry Pogson
- Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Barry Osmond
- Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
17
|
Batista-Santos P, Lidon FC, Fortunato A, Leitão AE, Lopes E, Partelli F, Ribeiro AI, Ramalho JC. The impact of cold on photosynthesis in genotypes of Coffea spp.--photosystem sensitivity, photoprotective mechanisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:792-806. [PMID: 21247660 DOI: 10.1016/j.jplph.2010.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 05/19/2023]
Abstract
Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4°C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica×C. canephora) and Piatã (C. dewevrei×C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on A(max) and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb(6)/f, which could promote better repair ability, contributing to the maintenance of efficient thylakoid functioning. We conclude that Icatu showed the best acclimation ability among the studied genotypes, mostly due to a better upregulation of photoprotection and repair mechanisms. We confirmed the presence of important variability in Coffea spp. that could be exploited in breeding programs, which should be assisted by useful markers of cold tolerance, namely the upregulation of antioxidative molecules, the expression of selected genes and PSI sensitivity.
Collapse
Affiliation(s)
- P Batista-Santos
- Centro de Ecofisiologia, Bioquímica e Biotecnologia Vegetal/Inst. Inv. Científica Tropical, Quinta do Marquês, 2784-505 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Förster B, Pogson BJ, Osmond CB. Lutein from deepoxidation of lutein epoxide replaces zeaxanthin to sustain an enhanced capacity for nonphotochemical chlorophyll fluorescence quenching in avocado shade leaves in the dark. PLANT PHYSIOLOGY 2011; 156:393-403. [PMID: 21427278 PMCID: PMC3091066 DOI: 10.1104/pp.111.173369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/18/2011] [Indexed: 05/20/2023]
Abstract
Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m(-2) s(-1), increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQ(ΔpH)) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQ(ΔLAZ)); and after epoxidation of A+Z but with residual ΔL (NPQ(ΔL)). The capacity of both NPQ(ΔLAZ) and NPQ(ΔL) was similar and 45% larger than NPQ(ΔpH), but dark relaxation of NPQ(ΔLAZ) was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQ(ΔLAZ) and NPQ(ΔL) provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to "lock in" enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools.
Collapse
Affiliation(s)
- Britta Förster
- Plant Sciences Division, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | |
Collapse
|
19
|
Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:271-84. [PMID: 21356597 DOI: 10.1016/j.jphotobiol.2011.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/03/2011] [Accepted: 01/05/2011] [Indexed: 11/23/2022]
Abstract
Lifetime-resolved imaging measurements of chlorophyll a fluorescence were made on leaves of avocado plants to study whether rapidly reversible ΔpH-dependent (transthylakoid H(+) concentration gradient) thermal energy dissipation (qE) and slowly reversible ΔpH-independent fluorescence quenching (qI) are modulated by lutein-epoxide and violaxanthin cycles operating in parallel. Under normal conditions (without inhibitors), analysis of the chlorophyll a fluorescence lifetime data revealed two major lifetime pools (1.5 and 0.5 ns) for photosystem II during the ΔpH build-up under illumination. Formation of the 0.5-ns pool upon illumination was correlated with dark-retention of antheraxanthin and photo-converted lutein in leaves. Interconversion between the 1.5- and 0.5-ns lifetime pools took place during the slow part of the chlorophyll a fluorescence transient: first from 1.5 ns to 0.5 ns in the P-to-S phase, then back from 0.5 ns to 1.5 ns in the S-to-M phase. When linear electron transport and the resulting ΔpH build-up were inhibited by treatment with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), the major fluorescence intensity was due to a 2.2-ns lifetime pool with a minor faster contribution of approximately 0.7 ns. In the presence of DCMU, neither the intensity nor the lifetimes of fluorescence were affected by antheraxanthin and photo-converted lutein. Thus, we conclude that both antheraxanthin and photo-converted lutein are able to enhance ΔpH-dependent qE processes that are associated with the 0.5-ns lifetime pool. However, unlike zeaxanthin, retention of antheraxanthin and photo-converted lutein may not by itself stabilize quenching or cause qI.
Collapse
|
20
|
Tracking plant physiological properties from multi-angular tower-based remote sensing. Oecologia 2011; 165:865-76. [PMID: 21221647 DOI: 10.1007/s00442-010-1901-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Imaging spectroscopy is a powerful technique for monitoring the biochemical constituents of vegetation and is critical for understanding the fluxes of carbon and water between the land surface and the atmosphere. However, spectral observations are subject to the sun-observer geometry and canopy structure which impose confounding effects on spectral estimates of leaf pigments. For instance, the sun-observer geometry influences the spectral brightness measured by the sensor. Likewise, when considering pigment distribution at the stand level scale, the pigment content observed from single view angles may not necessarily be representative of stand-level conditions as some constituents vary as a function of the degree of leaf illumination and are therefore not isotropic. As an alternative to mono-angle observations, multi-angular remote sensing can describe the anisotropy of surface reflectance and yield accurate information on canopy structure. These observations can also be used to describe the bi-directional reflectance distribution which then allows the modeling of reflectance independently of the observation geometry. In this paper, we demonstrate a method for estimating pigment contents of chlorophyll and carotenoids continuously over a year from tower-based, multi-angular spectro-radiometer observations. Estimates of chlorophyll and carotenoid content were derived at two flux-tower sites in western Canada. Pigment contents derived from inversion of a CR model (PROSAIL) compared well to those estimated using a semi-analytical approach (r(2) = 0.90 and r(2) = 0.69, P < 0.05 for both sites, respectively). Analysis of the seasonal dynamics indicated that net ecosystem productivity was strongly related to total canopy chlorophyll content at the deciduous site (r(2) = 0.70, P < 0.001), but not at the coniferous site. Similarly, spectral estimates of photosynthetic light-use efficiency showed strong seasonal patterns in the deciduous stand, but not in conifers. We conclude that multi-angular, spectral observations can play a key role in explaining seasonal dynamics of fluxes of carbon and water and provide a valuable addition to flux-tower-based networks.
Collapse
|
21
|
Betterle N, Ballottari M, Hienerwadel R, Dall'Osto L, Bassi R. Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Arch Biochem Biophys 2010; 504:67-77. [PMID: 20494647 DOI: 10.1016/j.abb.2010.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/14/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Lhcb6 (CP24) is a monomeric antenna protein of photosystem II, which has been shown to play special roles in photoprotective mechanisms, such as the Non-Photochemical Quenching and reorganization of grana membranes in excess light conditions. In this work we analyzed Lhcb6 in vivo and in vitro: we show this protein, upon activation of the xanthophyll cycle, accumulates zeaxanthin into inner binding sites faster and to a larger extent than any other pigment-protein complex. By comparative analysis of Lhcb6 complexes violaxanthin or zeaxanthin binding, we demonstrate that zeaxanthin not only down-regulates chlorophyll singlet excited states, but also increases the efficiency of chlorophyll triplet quenching, with consequent reduction of singlet oxygen production and significant enhancement of photo-stability. On these bases we propose that Lhcb6, the most recent addition to the Lhcb protein family which evolved concomitantly to the adaptation of photosynthesis to land environment, has a crucial role in zeaxanthin-dependent photoprotection.
Collapse
Affiliation(s)
- Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, Ca' Vignal 1, Strada le Grazie 15, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
22
|
Esteban R, Balaguer L, Manrique E, Rubio de Casas R, Ochoa R, Fleck I, Pintó-Marijuan M, Casals I, Morales D, Jiménez MS, Lorenzo R, Artetxe U, Becerril JM, García-Plazaola JI. Alternative methods for sampling and preservation of photosynthetic pigments and tocopherols in plant material from remote locations. PHOTOSYNTHESIS RESEARCH 2009; 101:77-88. [PMID: 19593662 DOI: 10.1007/s11120-009-9468-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 06/30/2009] [Indexed: 05/28/2023]
Abstract
Current methods for the study of pigments involve freezing in liquid nitrogen and storage at -80 degrees C or lyophilization until HPLC analysis. These requirements greatly restrict ecophysiological research in remote areas where such resources are hardly available. We aimed to overcome such limitations by developing several techniques not requiring freezing or lyophilization. Two species with contrasting foliar characteristics (Olea europaea and Taraxacum officinale) were chosen. Seven preservation methods were designed, optimized and tested in a field trial. These protocols were compared with a control immediately frozen after collection. Pigments and tocopherols were analysed by HPLC. Main artefacts were chlorophyll epimerization or phaeophytinization, carotenoid isomerization, altered de-epoxidation index and tocopherol degradation. Among all methods, sample desiccation in silica gel provides robust samples (pigment composition was unaffected by storage time or temperature) and almost unaltered pigment profiles, except for a shift in epoxidation state. Although liquid nitrogen freezing and subsequent lyophilization or freezer storage were preferred, when these facilities are either not available or not suitable for long-distance transport, desiccation with silica gel, passive extraction in acetone and/or storage of fresh samples in water vapour saturated atmospheres enable a complete pigment characterization. Silica gel is advisable for long-term sample conservation.
Collapse
Affiliation(s)
- Raquel Esteban
- Departamento de Biología Vegetal y Ecología, Universidad del País Vasco/EHU, Apdo 644, 48080, Bilbao, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K. Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:20-36. [PMID: 32688624 DOI: 10.1071/fp08214] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 11/10/2008] [Indexed: 05/21/2023]
Abstract
A survey of photosynthetic pigments, including 86 species from 64 families, was conducted for leaves of neotropical vascular plants to study sun-shade patterns in carotenoid biosynthesis and occurrence of α-carotene (α-Car) and lutein epoxide (Lx). Under low light, leaves invested less in structural components and more in light harvesting, as manifested by low leaf dry mass per area (LMA) and enhanced mass-based accumulation of chlorophyll (Chl) and carotenoids, especially lutein and neoxanthin. Under high irradiance, LMA was greater and β-carotene (β-Car) and violaxanthin-cycle pool increased on a leaf area or Chl basis. The majority of plants contained α-Car in leaves, but the α- to β-Car ratio was always low in the sun, suggesting preference for β-Car in strong light. Shade and sun leaves had similar β,ε-carotenoid contents per unit Chl, whereas sun leaves had more β,β-carotenoids than shade leaves. Accumulation of Lx in leaves was found to be widely distributed among taxa: >5 mmol mol Chl-1 in 20% of all species examined and >10 mmol mol Chl-1 in 10% of woody species. In Virola elongata (Benth.) Warb, having substantial Lx in both leaf types, the Lx cycle was operating on a daily basis although Lx restoration in the dark was delayed compared with violaxanthin restoration.
Collapse
Affiliation(s)
- Shizue Matsubara
- Institut für Phytosphäre (ICG-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - G Heinrich Krause
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| | - Kim G Beisel
- Institut für Phytosphäre (ICG-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Peter Jahns
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| |
Collapse
|