1
|
Wei J, Dai Y, Zhang N, Wang Z, Tian X, Yan T, Jin X, Jiang S. Natural plant-derived polysaccharides targeting macrophage polarization: a promising strategy for cancer immunotherapy. Front Immunol 2024; 15:1408377. [PMID: 39351237 PMCID: PMC11439661 DOI: 10.3389/fimmu.2024.1408377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Tumor associated macrophages (TAMs) are the predominant innate immune cells in the tumor microenvironment (TME). Cytokines induce the differentiation of macrophages into distinct types of TAMs, primarily characterized by two phenotypes: M1-polarized and M2-polarized. Cancer growth is suppressed by M1-polarized macrophages and promoted by M2-polarized macrophages. The regulation of macrophage M1 polarization has emerged as a promising strategy for cancer immunotherapy. Polysaccharides are important bioactive substances found in numerous plants, manifesting a wide range of noteworthy biological actions, such as immunomodulation, anti-tumor effects, antioxidant capabilities, and antiviral functions. In recent years, there has been a significant increase in interest regarding the immunomodulatory and anti-tumor properties of polysaccharides derived from plants. The regulatory impact of polysaccharides on the immune system is mainly associated with the natural immune response, especially with the regulation of macrophages. This review provides a thorough analysis of the regulatory effects and mechanisms of plant polysaccharides on TAMs. Additionally, an analysis of potential opportunities for clinical translation of plant polysaccharides as immune adjuvants is presented. These insights have greatly advanced the research of plant polysaccharides for immunotherapy in tumor-related applications.
Collapse
Affiliation(s)
- Jingyang Wei
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Institute of Chinese Medicine Processing, Shandong Academy of Chinese Medicine, Jinan, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohan Jin
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| | - Shulong Jiang
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| |
Collapse
|
2
|
Yang Q, Sun J, Wu W, Xing Z, Yan X, Lv X, Wang L, Song L. A galectin-9 involved in the microbial recognition and haemocyte autophagy in the Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105063. [PMID: 37730190 DOI: 10.1016/j.dci.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Galectin-9 is a tandem-repeat type member of galectin family participating in various immune responses, such as cell agglutination, phagocytosis, and autophagy. In the present study, a tandem repeat galectin-9 (defined as CgGal-9) was identified from Pacific oyster Crassostrea gigas, which consisted of two conserved carbohydrate recognition domains (CRDs) joined by a linker peptide. CgGal-9 was closely clustered with CaGal-9 from C. angulata, and they were assigned into the branch of invertebrate galectin-9s in the phylogenetic tree. The mRNA transcripts of CgGal-9 were detected in all the tested tissues, with the highest expression level in haemocytes. The mRNA expressions of CgGal-9 in haemocytes increased significantly after lipopolysaccharide (LPS) and Vibrio splendidus stimulation. The recombinant CgGal-9 was able to bind all the examined pathogen-associated molecular patterns (LPS, peptidoglycan, and mannose) and microbes (V. splendidus, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Pichia pastoris), and agglutinated most of them in the presence of Ca2+. In CgGal-9-RNAi oysters, the mRNA expressions of autophagy related genes (CgBeclin1, CgATG5, CgP62 and CgLC3) in haemocytes decreased significantly while that of CgmTOR increased significantly at 3 h after V. splendidus stimulation. The autophagy level and mRNA expressions of autophagy related genes decreased in haemocytes after CgGal-9 was blocked by the corresponding antibody. These results revealed that CgGal-9 was able to bind different microbes and might be involved in haemocyte autophagy in the immune response of oyster.
Collapse
Affiliation(s)
- Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
3
|
Yang ZS, Lin CY, Khan MB, Hsu MC, Assavalapsakul W, Thitithanyanont A, Wang SF. Understanding the role of galectins toward influenza A virus infection. Expert Opin Ther Targets 2023; 27:927-937. [PMID: 37747065 DOI: 10.1080/14728222.2023.2263912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Influenza A virus (IAV) is highly contagious and causes respiratory diseases in birds, mammals, and humans. Some strains of IAV, whether from human or avian sources, have developed resistance to existing antiviral drugs. Therefore, the discovery of new influenza antiviral drugs and therapeutic approaches is crucial. Recent studies have shown that galectins (Gal), a group of β-galactose-binding lectins, play a role in regulating various viral infections, including IAVs. AREAS COVERED This review provides an overview of the roles of different galectins in IAV infection. We discuss the characteristics of galectins, their impact on IAV infection and spread, and highlight their positive or negative regulatory functions and potential mechanisms during IAV infection. Furthermore, we explore the potential application of galectins in IAV therapy. EXPERT OPINION Galectins were first identified in the mid-1970s, and currently, 15 mammalian galectins have been identified. While all galectin members possess the carbohydrate recognition domain (CRD) that interacts with β-galactoside, their regulatory functions vary in different DNA or RNA virus infections. Certain galectin members have been found to regulate IAV infection through diverse mechanisms. Therefore, a comprehensive understanding of their roles in IAV infection is essential, as it may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Zhou ZY, Chang TF, Lin ZB, Jing YT, Wen LS, Niu YL, Bai Q, Guo CM, Sun JX, Wang YS, Dou GR. Microglial Galectin3 enhances endothelial metabolism and promotes pathological angiogenesis via Notch inhibition by competitively binding to Jag1. Cell Death Dis 2023; 14:380. [PMID: 37369647 DOI: 10.1038/s41419-023-05897-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Microglia were considered as immune cells in inflammation until their angiogenic role was widely understood. Although the pro-inflammatory role of microglia in retinal angiogenesis has been explored, little is known about its role in pro-angiogenesis and the microglia-endothelia interaction. Here, we report that galectin-3 (Gal3) released by activated microglia functions as a communicator between microglia and endothelia and competitively binds to Jag1, thus inhibiting the Notch signaling pathway and enhancing endothelial angiogenic metabolism to promote angiogenesis. These results suggest that Gal3 may be a novel and effective target in the treatment of retinal angiogenesis.
Collapse
Affiliation(s)
- Zi-Yi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tian-Fang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Bin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Tong Jing
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Shi Wen
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Li Niu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Bai
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chang-Mei Guo
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Morrison HM, Craft J, Rivera-Lugo R, Johnson JR, Golovkine GR, Bell SL, Dodd CE, Van Dis E, Beatty WL, Margolis SR, Repasy T, Shaker I, Lee AY, Vance RE, Stanley SA, Watson RO, Krogan NJ, Portnoy DA, Penn BH, Cox JS. Deficiency in Galectin-3, -8, and -9 impairs immunity to chronic Mycobacterium tuberculosis infection but not acute infection with multiple intracellular pathogens. PLoS Pathog 2023; 19:e1011088. [PMID: 37352334 PMCID: PMC10325092 DOI: 10.1371/journal.ppat.1011088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/06/2023] [Accepted: 05/01/2023] [Indexed: 06/25/2023] Open
Abstract
Macrophages employ an array of pattern recognition receptors to detect and eliminate intracellular pathogens that access the cytosol. The cytosolic carbohydrate sensors Galectin-3, -8, and -9 (Gal-3, Gal-8, and Gal-9) recognize damaged pathogen-containing phagosomes, and Gal-3 and Gal-8 are reported to restrict bacterial growth via autophagy in cultured cells. However, the contribution of these galectins to host resistance during bacterial infection in vivo remains unclear. We found that Gal-9 binds directly to Mycobacterium tuberculosis (Mtb) and Salmonella enterica serovar Typhimurium (Stm) and localizes to Mtb in macrophages. To determine the combined contribution of membrane damage-sensing galectins to immunity, we generated Gal-3, -8, and -9 triple knockout (TKO) mice. Mtb infection of primary macrophages from TKO mice resulted in defective autophagic flux but normal bacterial replication. Surprisingly, these mice had no discernable defect in resistance to acute infection with Mtb, Stm or Listeria monocytogenes, and had only modest impairments in bacterial growth restriction and CD4 T cell activation during chronic Mtb infection. Collectively, these findings indicate that while Gal-3, -8, and -9 respond to an array of intracellular pathogens, together these membrane damage-sensing galectins play a limited role in host resistance to bacterial infection.
Collapse
Affiliation(s)
- Huntly M. Morrison
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Julia Craft
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeffery R. Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco; Quantitative Biosciences Institute (QBI), University of California, San Francisco; Gladstone Institutes, San Francisco, California, United States of America
| | - Guillaume R. Golovkine
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Samantha L. Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of Medicine, Bryan, Texas, United States of America
| | - Claire E. Dodd
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Erik Van Dis
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shally R. Margolis
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Teresa Repasy
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Isaac Shaker
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Angus Y. Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, California, United States of America
| | - Russell E. Vance
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah A. Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| | - Robert O. Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of Medicine, Bryan, Texas, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco; Quantitative Biosciences Institute (QBI), University of California, San Francisco; Gladstone Institutes, San Francisco, California, United States of America
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Bennett H. Penn
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
6
|
Yang ML, Chen YC, Wang CT, Chong HE, Chung NH, Leu CH, Liu FT, Lai MMC, Ling P, Wu CL, Shiau AL. Upregulation of galectin-3 in influenza A virus infection promotes viral RNA synthesis through its association with viral PA protein. J Biomed Sci 2023; 30:14. [PMID: 36823664 PMCID: PMC9948428 DOI: 10.1186/s12929-023-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the β-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.
Collapse
Affiliation(s)
- Mei-Lin Yang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan ,grid.413878.10000 0004 0572 9327Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Cheng Chen
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chung-Teng Wang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Hao-Earn Chong
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Nai-Hui Chung
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chia-Hsing Leu
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Fu-Tong Liu
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Michael M. C. Lai
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pin Ling
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan.
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan. .,Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.
| |
Collapse
|
7
|
Martin-Saldaña S, Chevalier MT, Pandit A. Therapeutic potential of targeting galectins – A biomaterials-focused perspective. Biomaterials 2022; 286:121585. [DOI: 10.1016/j.biomaterials.2022.121585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022]
|
8
|
Xu H, Liu H, Liu C, Shangguan X, Cheng X, Zhang R, Lu Y, Li P, Cai Y. Molecular characterization and antibacterial ability of galectin-3 and galectin-9 in Onychostoma macrolepis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104333. [PMID: 34914929 DOI: 10.1016/j.dci.2021.104333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Galectins belong to the β-galactoside binding protein family, which have conserved carbohydrate-recognition domains (CRDs) and participate in innate and acquired immunity in animals. In this study, two galectin genes were cloned from Onychostoma macrolepis, OmGal-3 (galectin-3) and OmGal-9 (galectin-9). The open reading frames (ORFs) of OmGal-3 and OmGal-9 contain 732 and 978 base pairs, encoding 243 and 325 amino acids, respectively. OmGal-3 contains a C-terminal CRD, but OmGal-9 contains an N-terminal CRD and a C-terminal CRD. Two galectins were expressed at varying levels in all tissues examined, with the liver showing the highest expression. The relative gene expression levels of OmGal-3 and OmGal-9 following Aeromonas hydrophila infection were significantly up-regulated in the liver and spleen, and OmGal-9 had a greater increase than OmGal-3. The recombinant OmGal-3 and OmGal-9 proteins (rOmGal-3 and rOmGal-9) were authenticated and verified by SDS-PAGE and western blotting. ROmGal-3 and rOmGal-9 agglutinated all tested bacteria, including 3 g-positive bacteria (Aeromonas hydrophila, Escherichia coli, and Vibrio parahaemolyticus) and 3 g-negative bacteria (Streptococcus agalactiae, Staphylococcus aureus, and Bacillus cereus) in vivo without Ca2+. ROmGal-3 showed strong binding both to gram-positive and gram-negative bacteria and OmGal-9 had a stronger binding activity against gram-positive bacteria. Furthermore, rOmGal-3 and rOmGal-9 exhibited dose-dependent binding capability to two classic pathogens associated molecular pattern (LPS and PGN) and two sugars (d-lactose and d-galactose), and rOmGal-3 has better binding activity at lower concentrations in LPS and PGN than rOmGal-3. The integrated analyses indicate that the two galectins probably play an important role in innate immune defense by binding to bacterial cells via the CRD domain against pathogen infection.
Collapse
Affiliation(s)
- Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China.
| | - Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| | - Xinyan Shangguan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| | - Xu Cheng
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| | - Ruifang Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| | - Ping Li
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Yingjie Cai
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
9
|
Ayona D, Zarza SM, Landemarre L, Roubinet B, Decloquement P, Raoult D, Fournier PE, Desnues B. Human galectin-1 and galectin-3 promote Tropheryma whipplei infection. Gut Microbes 2022; 13:1-15. [PMID: 33573443 PMCID: PMC7889132 DOI: 10.1080/19490976.2021.1884515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tropheryma whipplei, is an actinobacterium that causes different infections in humans, including Whipple's disease. The bacterium infects and replicates in macrophages, leading to a Th2-biased immune response. Previous studies have shown that T. whipplei harbors complex surface glycoproteins with evidence of sialylation. However, the exact contribution of these glycoproteins for infection and survival remains obscure. To address this, we characterized the bacterial glycoprofile and evaluated the involvement of human β-galactoside-binding lectins, Galectin-1 (Gal-1) and Galectin-3 (Gal-3) which are highly expressed by macrophages as receptors for bacterial glycans. Tropheryma whipplei glycoproteins harbor different sugars including glucose, mannose, fucose, β-galactose and sialic acid. Mass spectrometry identification revealed that these glycoproteins were membrane- and virulence-associated glycoproteins. Most of these glycoproteins are highly sialylated and N-glycosylated while some of them are rich in poly-N-acetyllactosamine (Poly-LAcNAc) and bind Gal-1 and Gal-3. In vitro, T. whipplei modulates the expression and cellular distribution of Gal-1 and Gal-3. Although both galectins promote T. whipplei infection by enhancing bacterial cell entry, only Gal-3 is required for optimal bacterial uptake. Finally, we found that serum levels of Gal-1 and Gal-3 were altered in patients with T. whipplei infections as compared to healthy individuals, suggesting that galectins are also involved in vivo. Among T. whipplei membrane-associated proteins, poly-LacNAc rich-glycoproteins promote infection through interaction with galectins. T. whipplei modulates the expression of Gal-1 and Gal-3 both in vitro and in vivo. Drugs interfering with galectin-glycan interactions may provide new avenues for the treatment and diagnosis of T. whipplei infections.
Collapse
Affiliation(s)
- Diyoly Ayona
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Sandra Madariaga Zarza
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | | | - Benoît Roubinet
- Glycodiag, Rue De Chartres, BP6759, 45067, Orléans cedex 2, France
| | - Philippe Decloquement
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- IHU-Méditerranée Infection, Marseille, France,Aix Marseille Univ, IRD, APHM, VITROME, Marseille, France,Pierre-Edouard Fournier Aix Marseille Univ, VITROME, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France,CONTACT Benoit Desnues MEPHI, IHU - Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
10
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Paul A, Wu SC, Patel KR, Ho AD, Allen JWL, Verkerke H, Arthur CM, Stowell SR. Purification of Recombinant Galectins from Different Species Using Distinct Affinity Chromatography Methods. Methods Mol Biol 2022; 2442:55-74. [PMID: 35320519 DOI: 10.1007/978-1-0716-2055-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Galectins are lectins having the capacity to recognize β-galactose-containing glycan structures and are widely distributed among various taxa. However, the exact physiological and biochemical functions mediated by galectins that necessitate their wide occurrence among diverse species have not yet been delineated in a precise manner. Purification of recombinant galectins in active form is a fundamental requirement to elucidate their biological function. In this chapter, we are describing methods to recombinantly express and purify galectins using three different methods of affinity purification, i.e., lactosyl-Sepharose chromatography for fungal galectin Coprinopsis cinerea galectin 2 (CGL2), nickel-chromatography for histidine-tagged human galectin-7, and glutathione-Sepharose chromatography for Glutathione S-transferase-tagged (GST-tagged) human galectin-7. Step-by-step instructions are provided for obtaining the above-mentioned recombinant galectins that retain carbohydrate-binding activity and are suitable for conducting biochemical experiments.
Collapse
Affiliation(s)
- Anu Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex D Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerry William Lynn Allen
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hans Verkerke
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
13
|
Hayran Y, Allı N, Akpınar Ü, Öktem A, Yücel Ç, Fırat Oguz E, Turhan T. Serum galectin-3 levels in patients with psoriasis. Int J Clin Pract 2021; 75:e14545. [PMID: 34137138 DOI: 10.1111/ijcp.14545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Galectin-3 is a β-galactoside-binding lectin associated with cellular proliferation, inflammation and angiogenesis, which are the major characteristics of psoriatic skin. OBJECTIVES To investigate serum galectin-3 levels in psoriasis patients compared with healthy controls and to study its relationship with disease characteristics. METHODS Seventy-eight patients diagnosed with psoriasis and 78 age- and sex-matched healthy volunteers were included in the study. Serum galectin-3, IL-17, IL-6 and TNF-α levels were measured using Enzyme-linked immunosorbent assay (ELISA). RESULTS Serum Galectin-3, IL-17, IL-6 and TNF-α levels were significantly higher in psoriasis patients compared with control group (P < .001, P = .003, P < .001 and P < .001, respectively). A cut-off value of 10 ng/mL for galectin-3 was set after receiver operating characteristic analysis. A serum galectin-3 level >10 ng/mL increased the risk of psoriasis by 14.5 times (95% CI: 6.6-32.3, P < .001) and a serum galectin-3 level >10 ng/mL predicted psoriasis with 83.3% sensitivity and 74.3% specificity. No statistically significant association was observed between serum galectin-3 concentrations and disease characteristics including disease severity, presence of psoriatic arthritis, nail involvement and psoriatic comorbidity. No statistically significant correlation was observed between serum galectin-3 level and serum IL-17, IL-6 and TNF-α levels (all three P values > .05). CONCLUSIONS Elevated serum galectin-3 levels in psoriasis patients may indicate a possible role of galectin-3 in pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Yıldız Hayran
- Department of Dermatology, Ankara City Hospital, Ankara, Turkey
| | - Nuran Allı
- Department of Dermatology, Ankara City Hospital, Ankara, Turkey
| | - Ümit Akpınar
- Department of Dermatology, Ankara City Hospital, Ankara, Turkey
| | - Ayşe Öktem
- Department of Dermatology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Çiğdem Yücel
- Department of Medical Biochemistry, University of Health Sciences, Gulhane Teaching and Research Hospital, Ankara, Turkey
| | - Esra Fırat Oguz
- Department of Medical Biochemistry, Ankara City Hospital, Ankara, Turkey
| | - Turan Turhan
- Department of Medical Biochemistry, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
14
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Caldararu O, Ekberg V, Logan DT, Oksanen E, Ryde U. Exploring ligand dynamics in protein crystal structures with ensemble refinement. Acta Crystallogr D Struct Biol 2021; 77:1099-1115. [PMID: 34342282 PMCID: PMC8329865 DOI: 10.1107/s2059798321006513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
Understanding the dynamics of ligands bound to proteins is an important task in medicinal chemistry and drug design. However, the dominant technique for determining protein-ligand structures, X-ray crystallography, does not fully account for dynamics and cannot accurately describe the movements of ligands in protein binding sites. In this article, an alternative method, ensemble refinement, is used on six protein-ligand complexes with the aim of understanding the conformational diversity of ligands in protein crystal structures. The results show that ensemble refinement sometimes indicates that the flexibility of parts of the ligand and some protein side chains is larger than that which can be described by a single conformation and atomic displacement parameters. However, since the electron-density maps are comparable and Rfree values are slightly increased, the original crystal structure is still a better model from a statistical point of view. On the other hand, it is shown that molecular-dynamics simulations and automatic generation of alternative conformations in crystallographic refinement confirm that the flexibility of these groups is larger than is observed in standard refinement. Moreover, the flexible groups in ensemble refinement coincide with groups that give high atomic displacement parameters or non-unity occupancy if optimized in standard refinement. Therefore, the conformational diversity indicated by ensemble refinement seems to be qualitatively correct, indicating that ensemble refinement can be an important complement to standard crystallographic refinement as a tool to discover which parts of crystal structures may show extensive flexibility and therefore are poorly described by a single conformation. However, the diversity of the ensembles is often exaggerated (probably partly owing to the rather poor force field employed) and the ensembles should not be trusted in detail.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Vilhelm Ekberg
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- European Spallation Source Consortium ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
16
|
Meggyes M, Nagy DU, Balassa T, Godony K, Peterfalvi A, Szereday L, Polgar B. Influence of Galectin-9 Treatment on the Phenotype and Function of NK-92MI Cells in the Presence of Different Serum Supplements. Biomolecules 2021; 11:biom11081066. [PMID: 34439744 PMCID: PMC8391477 DOI: 10.3390/biom11081066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Galectins are one of the critical players in the tumor microenvironment-tumor crosstalk and the regulation of local immunity. Galectin-9 has been in the limelight in tumor immunology. Galectin-9 possesses its multiplex biological functions both extracellularly and intracellularly, plays a pivotal role in the modulation of adaptive and innate immunity, and induces immune tolerance. NK-92MI cell lines against different malignancies were extensively studied, and recently published trials used genetically chimeric antigen receptor-transfected NK-92MI cells in tumor immunotherapy. Besides the intensive research in tumor immunotherapy, limited information is available on their immune-checkpoint expression and the impact of checkpoint ligands on their effector functions. To uncover the therapeutic potential of modulating Galectin-9-related immunological pathways in NK-cell-based therapy, we investigated the dose-dependent effect of soluble Galectin-9 on the TIM-3 checkpoint receptor and NKG2D, CD69, FasL, and perforin expression of NK-92MI cells. We also examined how their cytotoxicity and cytokine production was altered after Gal-9 treatment and in the presence of different serum supplements using flow cytometric analysis. Our study provides evidence that the Galectin-9/TIM-3 pathway plays an important role in the regulation of NK cell function, and about the modulatory role of Galectin-9 on the cytotoxicity and cytokine production of NK-92MI cells in the presence of different serum supplements. We hope that our results will aid the development of novel NK-cell-based strategies that target Galectin-9/TIM-3 checkpoint in tumors resistant to T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
- Correspondence: ; Tel.: +3672-536001/1907
| | - David U Nagy
- Medical Centre, Cochrane Hungary, University of Pecs, 7623 Pecs, Hungary;
| | - Timea Balassa
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
| | - Krisztina Godony
- Department of Obstetrics and Gynaecology, Medical School, University of Pecs, 17 Edesanyak Street, 7624 Pecs, Hungary;
| | - Agnes Peterfalvi
- Department of Laboratory Medicine, Medical School, University of Pecs, 13 Ifjusag Street, 7624 Pecs, Hungary;
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
17
|
Serum markers of fibrosis, cardiovascular and all-cause mortality in hemodialysis patients: the AURORA trial. Clin Res Cardiol 2021; 111:614-626. [PMID: 34170371 PMCID: PMC9151553 DOI: 10.1007/s00392-021-01898-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 01/06/2023]
Abstract
Background Biomarkers of fibrosis are associated with outcome in several cardiovascular diseases. However, their relevance to chronic kidney disease and dialysis is uncertain, as it remains unclear how the kidneys and the dialysis procedure itself affect their elimination and degradation. We aimed to investigate the relationship of the blood levels of two markers associated with fibrosis: procollagen type I C-terminal pro-peptide (PICP) and galectin-3 (Gal-3) with mortality in dialysis patients. Methods Procollagen type I C-terminal pro-peptide and galectin-3 were measured at baseline in 2773 patients enrolled in the AURORA trial, investigating the effect of rosuvastatin on cardiovascular outcomes, in patients on hemodialysis, and their interaction with CV death or all-cause mortality using survival models. The added prognostic value of these biomarkers was assessed by the net reclassification improvement (NRI). Results The median follow-up period was 3.8 years. Blood concentrations of PICP and Gal-3 were significantly associated with CV death [adjusted HR per 1 SD = 1.11 (1.02–1.20) and SD = 1.20 (1.10–1.31), respectively] and all-cause mortality (all adjusted p < 0.001). PICP and Gal-3 had a synergistic effect with regard to CV death and all-cause mortality (interaction p = 0.04 and 0.01, respectively). Adding PICP, Gal-3 and their interaction on top of clinical and biological covariates, resulted in significantly improved prognostic accuracy NRI = 0.080 (0.019–0.143) for CV death. Conclusion In dialysis patients, concomitant increase in PICP and Gal-3 concentrations are associated with higher rates of CV death. These results suggest that concomitantly raised PICP and Gal-3 may reflect an activated fibrogenesis relevant to risk stratification in dialysis, raising the hypothesis that anti-fibrotic therapy may be beneficial for cardiovascular protection in such patients. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00392-021-01898-9.
Collapse
|
18
|
Lightfoot A, McGettrick HM, Iqbal AJ. Vascular Endothelial Galectins in Leukocyte Trafficking. Front Immunol 2021; 12:687711. [PMID: 34140956 PMCID: PMC8204101 DOI: 10.3389/fimmu.2021.687711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment to the site of injury is a crucial event in the regulation of an inflammatory response. Tight regulation of interactions between the endothelium and circulating leukocytes is necessary to ensure a protective response to injury does not result in inflammatory disease. Rising interest in the broad immunoregulatory roles displayed by members of the glycan-binding galectin family suggests that these proteins could be an attractive target for therapeutic intervention, since their expression is significantly altered in disease. The focus of this review is to summarize current knowledge on the role of galectins in leukocyte trafficking during inflammation and the clinical approaches being taken to target these interactions for treatment of inflammatory disease.
Collapse
Affiliation(s)
- Abbey Lightfoot
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Sethi A, Sanam S, Alvala R, Alvala M. An updated patent review of galectin-1 and galectin-3 inhibitors and their potential therapeutic applications (2016-present). Expert Opin Ther Pat 2021; 31:709-721. [PMID: 33749494 DOI: 10.1080/13543776.2021.1903430] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Galectins are ubiquitous in nature. They have established themselves as a protein family of high therapeutic potential and play a role in a wide variety of diseases like cancer, fibrosis, and Alzheimer's. Within the galectin family, galectin- 1 and galectin- 3 have been widely studied and their roles and functions have now been well established. AREAS COVERED In this review, we discuss the important advancements in the development of galectin-1 & 3 inhibitors. All patents filed detailing the divergent strategies to inhibit galectin-1 & 3 from 2016 to present have been covered and discussed. EXPERT OPINION Over the past couple of decades, distinct galectin inhibitors have been synthesized, reported and studied. Among all, the mono and disaccharide-based antagonists have been found to be considerably successful. However, the cumbersome synthetic route followed to develop this class of inhibitors, in addition to complexity involved in making selective modifications within these molecules has posed a significant challenge. Recently, there have been numerous reports on heterocyclic-based galectin inhibitors. If these are established as potent galectin inhibitors, their ease of synthesis and tunability could overcome the potential drawbacks of carbohydrate-based inhibitors and could thus be exploited to develop efficient and highly specific galectin inhibitors.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India
| | - Swetha Sanam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India
| | - Ravi Alvala
- G Pulla Reddy College of Pharmacy, Mehdipatnam, Hyderabad, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India.,Assistant Professor, School of Pharmacy and Technology Management, NMIMS (Deemed to be University), Hyderabad, India
| |
Collapse
|
20
|
Xu L, Hartz RA, Beno BR, Ghosh K, Shukla JK, Kumar A, Patel D, Kalidindi N, Lemos N, Gautam SS, Kumar A, Ellsworth BA, Shah D, Sale H, Cheng D, Regueiro-Ren A. Synthesis, Structure-Activity Relationships, and In Vivo Evaluation of Novel Tetrahydropyran-Based Thiodisaccharide Mimics as Galectin-3 Inhibitors. J Med Chem 2021; 64:6634-6655. [PMID: 33988358 DOI: 10.1021/acs.jmedchem.0c02001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Galectin-3 is a member of a family of β-galactoside-binding proteins. A substantial body of literature reports that galectin-3 plays important roles in cancer, inflammation, and fibrosis. Small-molecule galectin-3 inhibitors, which are generally lactose or galactose-based derivatives, have the potential to be valuable disease-modifying agents. In our efforts to identify novel galectin-3 disaccharide mimics to improve drug-like properties, we found that one of the monosaccharide subunits can be replaced with a suitably functionalized tetrahydropyran ring. Optimization of the structure-activity relationships around the tetrahydropyran-based scaffold led to the discovery of potent galectin-3 inhibitors. Compounds 36, 40, and 45 were selected for further in vivo evaluation. The synthesis, structure-activity relationships, and in vivo evaluation of novel tetrahydropyran-based galectin-3 inhibitors are described.
Collapse
Affiliation(s)
- Li Xu
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Brett R Beno
- Department of Computer-Aided Drug Design & Molecular Analytics, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kaushik Ghosh
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Jinal K Shukla
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Amit Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Dipal Patel
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Narasimharaju Kalidindi
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Nadine Lemos
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Shashyendra Singh Gautam
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Anoop Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Bruce A Ellsworth
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Harinath Sale
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Dong Cheng
- Department of Cardiovascular and Fibrosis Discovery Biology, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Alicia Regueiro-Ren
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| |
Collapse
|
21
|
Galectin-9, a Player in Cytokine Release Syndrome and a Surrogate Diagnostic Biomarker in SARS-CoV-2 Infection. mBio 2021; 12:mBio.00384-21. [PMID: 33947753 PMCID: PMC8262904 DOI: 10.1128/mbio.00384-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. In this study, we observed massive elevation of plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls (HCs). By using the receiver operating characteristic (ROC) curve, we found that a baseline of 2,042 pg/ml plasma Gal-9 can differentiate SARS-CoV-2-infected from noninfected individuals with high specificity/sensitivity (95%). Analysis of 30 cytokines and chemokines detected a positive correlation of the plasma Gal-9 with C-reactive protein (CRP) and proinflammatory cytokines/chemokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10, MIP-1α, and MCP-1 but an inverse correlation with transforming growth factor β (TGF-β) in COVID-19 patients. In agreement, we found enhanced production of IL-6 and TNF-α by monocytes and NK cells of COVID-19 patients once treated with the recombinant human Gal-9 in vitro. Also, we observed that although the cell-membrane expression of Gal-9 on monocytes does not change in COVID-19 patients, those with higher Gal-9 expression exhibit an activated phenotype. Furthermore, we noted significant downregulation of surface Gal-9 in neutrophils from COVID-19 patients compared to HCs. Our further investigations indicated that immune activation following SARS-CoV-2 infection results in Gal-9 shedding from neutrophils. The strong correlation of Gal-9 with proinflammatory mediators suggests that inhibition of Gal-9 may severe as a therapeutic approach in COVID-19 infection. Besides, the plasma Gal-9 measurement may be used as a surrogate diagnostic biomarker in COVID-19 patients.
Collapse
|
22
|
Abstract
Background Galectins are proteins that bind β-galactosides such as N-acetyllactosamine present in N-linked and O-linked glycoproteins and that seem to be implicated in inflammatory and immune responses as well as fibrotic mechanisms. This preliminary study investigated serum galectins as clinical biomarkers in lung transplant patients with chronic lung allograft dysfunction (CLAD), phenotype bronchiolitis obliterans syndrome (BOS). Materials and Methods Nineteen lung transplant patients [median age (IQR), 55 (45–62) years; 53% males] were enrolled in the study. Peripheral blood concentrations of galectins-1, 3 and 9 were determined with commercial ELISA kits. Results Galectin-1 concentrations were higher in BOS than in stable LTX patients (p = 0.0394). In logistic regression analysis, testing BOS group as dependent variable with Gal-1 and 3 as independent variables, area under the receiver operating characteristics (AUROC) curve was 98.9% (NPV 90% and PPV 88.9%, p = 0.0003). With the stable LTX group as dependent variable and Gal-1, 3 and 9 as independent variables, AUROC was 92.6% (NPV 100% and PPV 90%, p = 0.0023). In stable patients were observed an inverse correlation of Gal-3 with DLCO% and KCO%, and between Gal-9 and KCO%. Conclusion Galectins-1, 3 and 9 are possible clinical biomarkers in lung transplant patients with diagnostic and prognostic meaning. These molecules may be directly implicated in the pathological mechanisms of BOS. The hypothesis that they could be new therapeutic targets in BOS patients is intriguing and also worth exploring.
Collapse
|
23
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Wangler S, Kamali A, Wapp C, Wuertz-Kozak K, Häckel S, Fortes C, Benneker LM, Haglund L, Richards RG, Alini M, Peroglio M, Grad S. Uncovering the secretome of mesenchymal stromal cells exposed to healthy, traumatic, and degenerative intervertebral discs: a proteomic analysis. Stem Cell Res Ther 2021; 12:11. [PMID: 33413584 PMCID: PMC7789679 DOI: 10.1186/s13287-020-02062-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have been introduced as promising cell source for regenerative medicine. Besides their multilineage differentiation capacity, MSCs release a wide spectrum of bioactive factors. This secretome holds immunomodulatory and regenerative capacities. In intervertebral disc (IVD) cells, application of MSC secretome has been shown to decrease the apoptosis rate, induce proliferation, and promote production of extracellular matrix (ECM). For clinical translation of secretome-based treatment, characterization of the secretome composition is needed to better understand the induced biological processes and identify potentially effective secretomes. METHODS This study aimed to investigate the proteome released by bone marrow-derived MSCs following exposure to a healthy, traumatic, or degenerative human IVD environment by mass spectroscopy and quantitative immunoassay analyses. Exposure of MSCs to the proinflammatory stimulus interleukin 1β (IL-1β) was used as control. RESULTS Compared to MSC baseline secretome, there were 224 significantly up- or downregulated proteins following healthy, 179 following traumatic, 223 following degenerative IVD, and 160 proteins following IL-1β stimulus. Stimulation of MSCs with IVD conditioned media induced a more complex MSC secretome, involving more biological processes, compared to stimulation with IL-1β. The MSC response to stimulation with IVD conditioned medium was dependent on their pathological status. CONCLUSIONS The MSC secretome seemed to match the primary need of the IVD: homeostasis maintenance in the case of healthy IVDs, versus immunomodulation, adjustment of ECM synthesis and degradation disbalance, and ECM (re) organization in the case of traumatic and degenerative IVDs. These findings highlight the importance of cell preconditioning in the development of tailored secretome therapies. The secretome of human bone marrow-derived mesenchymal stromal cells (MSCs) stimulated with intervertebral disc (IVD) conditioned medium was analyzed by proteomic profiling. Depending on the pathological state of the IVD, the MSC secretome protein composition indicated immunomodulatory or anabolic activity of the secretome. These findings may have implications for tailored secretome therapy for the IVD and other tissues.
Collapse
Affiliation(s)
- Sebastian Wangler
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amir Kamali
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Christina Wapp
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY, USA
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, Germany
| | - Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Lorin M Benneker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lisbet Haglund
- Department of Surgery, Division of Orthopaedics, Faculty of Medicine, McGill University, Montreal, Canada
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Choi BK, Lee HW. The Murine CD137/CD137 Ligand Signalosome: A Signal Platform Generating Signal Complexity. Front Immunol 2020; 11:553715. [PMID: 33362756 PMCID: PMC7758191 DOI: 10.3389/fimmu.2020.553715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
CD137, a member of the TNFR family, is a costimulatory receptor, and CD137L, a member of the TNF family, is its ligand. Studies using CD137- and CD137L-deficient mice and antibodies against CD137 and CD137L have revealed the diverse and paradoxical effects of these two proteins in various cancers, autoimmunity, infections, and inflammation. Both their cellular diversity and their spatiotemporal expression patterns indicate that they mediate complex immune responses. This intricacy is further enhanced by the bidirectional signal transduction events that occur when these two proteins interact in various types of immune cells. Here, we review the biology of murine CD137/CD137L, particularly, the complexity of their proximal signaling pathways, and speculate on their roles in immune responses.
Collapse
Affiliation(s)
- Beom K Choi
- Biomedicine Production Branch, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
26
|
d’Alessandro M, De Vita E, Bergantini L, Mazzei MA, di Valvasone S, Bonizzoli M, Peris A, Sestini P, Bargagli E, Bennett D. Galactin-1, 3 and 9: Potential biomarkers in idiopathic pulmonary fibrosis and other interstitial lung diseases. Respir Physiol Neurobiol 2020; 282:103546. [DOI: 10.1016/j.resp.2020.103546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022]
|
27
|
Niu J, Liu X, Zhang Z, Huang Y, Tang J, Wang B, Lu Y, Cai J, Jian J. The in vivo roles of galectin-2 from Nile tilapia (Oreochromis niloticus) in immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:473-479. [PMID: 32805415 DOI: 10.1016/j.fsi.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Our previous study has recorded that the recombinant protein of Nile tilapia (Oreochromis niloticus) galectin-2 (rOnGal-2) can enhance immune response against Streptococcus agalactiae (S.agalactiae) infection in vitro. In this study, we further explored the effects of OnGal-2 in immune response against bacterial infection in vivo. The administration of rOnGal-2 could improve serum antibacterial activity (ALKP, ACP, and LZM) and antioxidant capacity (CAT, POD, and SOD). After S. agalactiae infection, rOnGal-2 injection could reduce bacterial burden and decrease tissue damage in head kidney, spleen, and liver of tilapia. Also, rOnGal-2 regulated the inflammatory-related genes expression including IL-6, IL-8 and IL-10 during bacterial infection. Furthermore, rOnGal-2 administration could increase the relative percentage survival of tilapia infected with S.agalactiae. Taken together, our results indicate that OnGal-2 can protect fish from bacterial infection through reducing bacterial burden, impairing tissue damage and modulating anti-bacterial immune response, which also can be applied as a potential vaccine adjuvant in O.niloticus culture.
Collapse
Affiliation(s)
- Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Xinchao Liu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Guangxi Key Lab for Marine Natural Products and Combinational Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Centre, Guangxi Academy of Sciences, Nanning, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China.
| |
Collapse
|
28
|
Niu J, Liu X, Zhang Z, Huang Y, Tang J, Wang B, Lu Y, Cai J, Jian J. A tandem-repeat galectin-4 from Nile tilapia (Oreochromis niloticus) is involved in immune response to bacterial infection via mediating pathogen recognition and opsonization. Mol Immunol 2020; 127:67-77. [PMID: 32927166 DOI: 10.1016/j.molimm.2020.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Galectins are the family of carbohydrate-binding proteins that participate in host-pathogen interaction. In this study, a galectin-4 homolog (OnGal-4) from Nile tilapia (Oreochromis niloticus) was characterized. The open reading frame of OnGal-4 was 1194 bp, encoding a peptide of 397 amino including two CRD regions and two carbohydrate recognition sites. OnGal-4 mRNA was expressed in all examined tissues with the highest level in spleen. After Streptococcus agalactiae (S.agalactiae) challenge, the OnGal-4 expression was up-regulated in the spleen, head kidney, brain, and monocytes/macrophages (Mo/MΦ). The in vitro experiments showed that recombinant OnGal-4 (rOnGal-4) protein could bind and agglutinate S.agalactiae and A.hydrophila. Also, rOnGal-4 could induce cytokines expressions and increased bactericidal activity of Mo/MΦ. Further in vivo analysis indicated that OnGal-4 overexpression could protect O.niloticus from S.agalactiae infection through modulating inflammation response. Our study suggested that OnGal-4 could improve immune response against bacterial infection by mediating pathogen recognition and opsonization.
Collapse
Affiliation(s)
- Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Xinchao Liu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China; Guangxi Key Lab for Marine Natural Products and Combinational Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Centre, Guangxi Academy of Sciences, Nanning, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China.
| |
Collapse
|
29
|
Niu J, Huang Y, Liu X, Wu F, Tang J, Wang B, Lu Y, Cai J, Jian J. Fish Galectin8-Like Exerts Positive Regulation on Immune Response Against Bacterial Infection. Front Immunol 2020; 11:1140. [PMID: 32676073 PMCID: PMC7333315 DOI: 10.3389/fimmu.2020.01140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Galectin-8 is a member of the galectin family that is involved in immune response against pathogens. However, the roles of fish galectin-8 during pathogen infection require comprehensive studies. In this study, a galectin-8 homolog (OnGal8-like, OnGal8-L) was characterized from Nile tilapia (Oreochromis niloticus), and its roles in response to bacterial infection were analyzed. The OnGal8-L contains an open reading frame of 891 bp, encoding a peptide of 296 amino acids with two CRD regions of tandem-repeat galectin and two carbohydrate recognition sites. The OnGal8-L protein shares 46.42% identities with reported Oreochromis niloticus galectin-8 protein. Transcriptional expression analysis revealed that OnGal8-L was constitutively expressed in all examined tissues and was highly expressed in spleen. The transcript levels of OnGal8-L were up-regulated in the spleen, head kidney, and brain, following Streptococcus agalactiae (S. agalactiae) challenge. Further in vitro analysis indicated that the recombinant protein of OnGal8-L (rOnGal8L) could agglutinate erythrocyte, S. agalactiae, and A. hydrophila and bind S. agalactiae, A. hydrophila, and various PAMPs (lipopolysaccharides, lipoteichoic acid, poly I:C, peptidoglycan, galactose, mannose, and maltose). Also, rOnGal8L could regulate inflammatory-related gene expression, phagocytosis, and a respiratory burst of monocytes/macrophages. Moreover, in vivo analysis showed that OnGal8-L overexpression could protect O. niloticus from S. agalactiae infection through modulating serum antibacterial activity (AKP, ACP, and LZM), antioxidant capacity (CAT, POD, and SOD), and monocyte/macrophage proliferation and cytokine expression, as well as reducing bacterial burden and decreasing tissue damage. Our results collectively indicate that OnGal8-L plays important regulatory roles in immune response against bacterial infection.
Collapse
Affiliation(s)
- Jinzhong Niu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Xinchao Liu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Fenglei Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jufen Tang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.,Guangxi Key Lab for Marine Natural Products and Combinational Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
30
|
Souza MR, Ibelli AMG, Savoldi IR, Cantão ME, Peixoto JDO, Mores MAZ, Lopes JS, Coutinho LL, Ledur MC. Transcriptome analysis identifies genes involved with the development of umbilical hernias in pigs. PLoS One 2020; 15:e0232542. [PMID: 32379844 PMCID: PMC7205231 DOI: 10.1371/journal.pone.0232542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical hernia (UH) is one of the most frequent defects affecting pig production, however, it also affects humans and other mammals. UH is characterized as an abnormal protrusion of the abdominal contents to the umbilical region, causing pain, discomfort and reduced performance in pigs. Some genomic regions associated to UH have already been identified, however, no study involving RNA sequencing was performed when umbilical tissue is considered. Therefore, here, we have sequenced the umbilical ring transcriptome of five normal and five UH-affected pigs to uncover genes and pathways involved with UH development. A total of 13,216 transcripts were expressed in the umbilical ring tissue. From those, 230 genes were differentially expressed (DE) between normal and UH-affected pigs (FDR <0.05), being 145 downregulated and 85 upregulated in the affected compared to the normal pigs. A total of 68 significant biological processes were identified and the most relevant were extracellular matrix, immune system, anatomical development, cell adhesion, membrane components, receptor activation, calcium binding and immune synapse. The results pointed out ACAN, MMPs, COLs, EPYC, VIT, CCBE1 and LGALS3 as strong candidates to trigger umbilical hernias in pigs since they act in the extracellular matrix remodeling and in the production, integrity and resistance of the collagen. We have generated the first transcriptome of the pig umbilical ring tissue, which allowed the identification of genes that had not yet been related to umbilical hernias in pigs. Nevertheless, further studies are needed to identify the causal mutations, SNPs and CNVs in these genes to improve our understanding of the mechanisms of gene regulation.
Collapse
Affiliation(s)
- Mayla Regina Souza
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| |
Collapse
|
31
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
32
|
Different Expression Pattern of TIM-3 and Galectin-9 Molecules by Peripheral and Peritoneal Lymphocytes in Women with and without Endometriosis. Int J Mol Sci 2020; 21:ijms21072343. [PMID: 32231038 PMCID: PMC7177301 DOI: 10.3390/ijms21072343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a gynecological condition that is associated with chronic pelvic inflammation, pain, and infertility. Although substantial evidence supports that immunological alterations contribute to its pathogenesis and we previously posed a pivotal role of Galectin-9 (Gal-9) in this disorder, the involvement of the TIM-3/Gal-9 pathway in the development of endometriosis-associated immunological abnormalities is not yet known. In the present study, multicolor flow cytometry was used to compare the immunophenotype and cell surface expression of TIM-3 and Gal-9 molecules on peripheral blood (PB) and peritoneal fluid (PF) lymphocytes of women with and without endometriosis. We found an altered distribution of different lymphocyte subpopulations, a markedly decreased TIM-3 labeling on all T and NK subsets and a significantly increased Gal-9 positivity on peripheral CD4+ T and Treg cells of the affected cohort. Furthermore, a significantly increased TIM-3 expression on CD4+T-cells and elevated Gal-9 labeling on all T and NK subsets was also revealed in the PF of the examined patients. In conclusion, our results suggest a persistent activation and disturbed TIM-3/Gal-9-dependent regulatory function in endometriosis, which may be involved in the impaired immune surveillance mechanisms, promotes the survival of ectopic lesions, and aids the evolution of reproductive failures in endometriosis.
Collapse
|
33
|
Caldararu O, Misini Ignjatović M, Oksanen E, Ryde U. Water structure in solution and crystal molecular dynamics simulations compared to protein crystal structures. RSC Adv 2020; 10:8435-8443. [PMID: 35497843 PMCID: PMC9049968 DOI: 10.1039/c9ra09601a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/18/2020] [Indexed: 01/13/2023] Open
Abstract
The function of proteins is influenced not only by the atomic structure but also by the detailed structure of the solvent surrounding it. Computational studies of protein structure also critically depend on the water structure around the protein. Herein we compare the water structure obtained from molecular dynamics (MD) simulations of galectin-3 in complex with two ligands to crystallographic water molecules observed in the corresponding crystal structures. We computed MD trajectories both in a water box, which mimics a protein in solution, and in a crystallographic unit cell, which mimics a protein in a crystal. The calculations were compared to crystal structures obtained at both cryogenic and room temperature. Two types of analyses of the MD simulations were performed. First, the positions of the crystallographic water molecules were compared to peaks in the MD density after alignment of the protein in each snapshot. The results of this analysis indicate that all simulations reproduce the crystallographic water structure rather poorly. However, if we define the crystallographic water sites based on their distances to nearby protein atoms and follow these sites throughout the simulations, the MD simulations reproduce the crystallographic water sites much better. This shows that the failure of MD simulations to reproduce the water structure around proteins in crystal structures observed both in this and previous studies is caused by the problem of identifying water sites for a flexible and dynamic protein (traditionally done by overlaying the structures). Our local clustering approach solves the problem and shows that the MD simulations reasonably reproduce the water structure observed in crystals. Furthermore, analysis of the crystal MD simulations indicates a few water molecules that are close to unmodeled electron density peaks in the crystal structures, suggesting that crystal MD could be used as a complementary tool for identifying and modelling water in protein crystallography.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre P. O. Box 124 SE-221 00 Lund Sweden +46-46-2228648 +46-46-2224502
| | - Majda Misini Ignjatović
- Department of Theoretical Chemistry, Lund University, Chemical Centre P. O. Box 124 SE-221 00 Lund Sweden +46-46-2228648 +46-46-2224502
| | - Esko Oksanen
- Instruments Division, European Spallation Source Consortium ESS ERIC P. O. Box 176 SE-221 00 Lund Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre P. O. Box 124 SE-221 00 Lund Sweden +46-46-2228648 +46-46-2224502
| |
Collapse
|
34
|
Han R, Li K, Li L, Zhang L, Zheng H. Expression of microRNA-214 and galectin-3 in peripheral blood of patients with chronic heart failure and its clinical significance. Exp Ther Med 2020; 19:1322-1328. [PMID: 32010305 PMCID: PMC6966201 DOI: 10.3892/etm.2019.8318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Abstract
Expression of microRNA (miR)-214 and galectin-3 (Gal-3) in peripheral blood of patients with chronic heart failure (CHF) and its clinical significance were investigated. A total of 50 cases of CHF patients, diagnosed and treated in Shanghai Xuhui Central Hospital from January 2017 to March 2018, were the study group and 30 healthy subjects who underwent physical examination during the same period were the control group. Concentration of serum Gal-3 was detected by ELISA and the expression of miR-214 in serum was detected by RT-qPCR. The expression of miR-214 and Gal-3 in the peripheral blood of CHF patients were analyzed. The diagnostic and predictive values of efficacy were analyzed by ROC curve analysis, and the correlation between miR-214 and Gal-3 was analyzed by Pearson's correlation analysis. The serum expression levels of miR-214 and Gal-3 in the observation group were significantly higher than those in the control group, with statistically significant difference (P<0.05). Pearson's correlation analysis revealed that the expression levels of miR-214 and Gal-3 were positively correlated in the peripheral blood of CHF patients (r=0.712, P<0.05). The area under curve (AUC) of miR-214 and Gal-3 for CHF diagnosis was 0.916 and 0.852, respectively (P<0.05). The AUC for predicting the efficacy of miR-214 and Gal-3 was 0.874 and 0.897, respectively (P<0.05). In conclusion, it is speculated that miR-214 and Gal-3 are involved in the occurrence and development of CHF, which is of guiding significance for the clinical diagnosis and monitoring of CHF.
Collapse
Affiliation(s)
- Ruimei Han
- Department of Cardiology, Shanghai Xuhui Central Hospital, Shanghai 200031, P.R. China
| | - Ke Li
- Department of Cardiology, The People's Hospital of SND, Suzhou, Jiangsu 215129, P.R. China
| | - Li Li
- Department of Internal Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830002, P.R. China
| | - Lili Zhang
- Department of Endocrinology, The People's Hospital of SND, Suzhou, Jiangsu 215129, P.R. China
| | - Hongchao Zheng
- Department of Cardiology, Shanghai Xuhui Central Hospital, Shanghai 200031, P.R. China
| |
Collapse
|
35
|
Elevated level of Galectin-1 in bronchoalveolar lavage of patients with idiopathic pulmonary fibrosis. Respir Physiol Neurobiol 2020; 273:103323. [DOI: 10.1016/j.resp.2019.103323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
|
36
|
The role of Galectin-1 in HIV associated preeclampsia. Eur J Obstet Gynecol Reprod Biol 2020; 246:138-144. [PMID: 32018196 DOI: 10.1016/j.ejogrb.2020.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE In this study, the role of Gal1, a regulatory protein involved in receptor binding and gene transcription within trophoblast cells, in the pathophysiology of HIV associated preeclampsia was determined by immunolocalizing its expression in the placenta of a South African cohort. STUDY DESIGN this is an analytical study carried out at the Optics and Imaging Center, Neslon R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa. A hundred and twenty HIV negative or positive, Black African primigrad or multigravid women with pre-eclamptic and normotensive pregnancies were involved in the study. Post-delivery, full thickness of centrally located placental tissue obtained was fixed for immunohistochemistry. The expression of Gal1 was immunolocalized using immunohistochemical assay kit and further quantified with using AxioVision Image analysis software package. Student t-test was used to compare the levels of the analytes while One-way ANOVA was used for comparison across the groups. RESULTS Gal1 immunoreactivity was observed within the Hofbauer cells, cytotrophoblast, syncytial knots and in the endothelial cells lining blood vessels in both exchange and conducting villi of both normotensive and preeclamptic pregnancies regardless of HIV status. There was a down regulation in Gal1 immunoreactivity in both the exchange and conducting villi of preeclamptic compared to normotensive pregnancies. However, there was no significant effect of HIV infection on Gal1 immunostaining in both villi types. CONCLUSION The down regulation of Gal1 in preeclampsia may be due to the inhibition of the MAPK pathway. Since Gal1 influences differentiation and migration, the defective trophoblast invasion in preeclampsia may emanate from its decreased immunoexpression. This highlights the role of Gal1 in angiogenesis and placentation.
Collapse
|
37
|
Guerrouahen BS, Maccalli C, Cugno C, Rutella S, Akporiaye ET. Reverting Immune Suppression to Enhance Cancer Immunotherapy. Front Oncol 2020; 9:1554. [PMID: 32039024 PMCID: PMC6985581 DOI: 10.3389/fonc.2019.01554] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 01/26/2023] Open
Abstract
Tumors employ strategies to escape immune control. The principle aim of most cancer immunotherapies is to restore effective immune surveillance. Among the different processes regulating immune escape, tumor microenvironment-associated soluble factors, and/or cell surface-bound molecules are mostly responsible for dysfunctional activity of tumor-specific CD8+T cells. These dynamic immunosuppressive networks prevent tumor rejection at several levels, limiting also the success of immunotherapies. Nevertheless, the recent clinical development of immune checkpoint inhibitors or of molecules modulating cellular targets and immunosuppressive enzymes highlights the great potential of approaches based on the selective disruption of immunosuppressive networks. Currently, the administration of different categories of immunotherapy in combination regimens is the ultimate modality for impacting the survival of cancer patients. With the advent of immune checkpoint inhibitors, designed to mount an effective antitumor immune response, profound changes occurred in cancer immunotherapy: from a global stimulation of the immune system to a specific targeting of an immune component. This review will specifically highlight the players, the mechanisms limiting an efficient antitumor response and the current immunotherapy modalities tailored to target immune suppressive pathways. We also discuss the ongoing challenges encountered by these strategies and provide suggestions for circumventing hurdles to new immunotherapeutic approaches, including the use of relevant biomarkers in the optimization of immunotherapy regimens and the identification of patients who can benefit from defined immune-based approaches.
Collapse
Affiliation(s)
- Bella S Guerrouahen
- Sidra Medicine, Member of Qatar Foundation, Research Department, Doha, Qatar
| | - Cristina Maccalli
- Sidra Medicine, Member of Qatar Foundation, Research Department, Doha, Qatar
| | - Chiara Cugno
- Sidra Medicine, Member of Qatar Foundation, Research Department, Doha, Qatar
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Emmanuel T Akporiaye
- Veana Therapeutics, Inc., Portland, OR, United States.,Providence Cancer Center, Portland, OR, United States
| |
Collapse
|
38
|
Galectins in Host-Pathogen Interactions: Structural, Functional and Evolutionary Aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:169-196. [PMID: 32152947 DOI: 10.1007/978-981-15-1580-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous ("self") carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind ("non-self") glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a new paradigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been "subverted" by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host's immune responses.
Collapse
|
39
|
Novel potential biomarkers for the diagnosis and monitoring of patients with ulcerative colitis. Eur J Gastroenterol Hepatol 2019; 31:1173-1183. [PMID: 31498278 DOI: 10.1097/meg.0000000000001490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unambiguously, great progress has been achieved in the unraveling of more pathological pathways implicated in the development and progression of ulcerative colitis during the last decades. Novel effective drugs that have augmented the management armamentarium have been developed alongside this growing comprehension of the disease, rendering mucosal healing not only a feasible but the optimal goal of every therapy. Clinical evaluation, colonoscopy and biomarkers are the tools used by practitioners for the diagnosis and assessment of the status of the disease in order to achieve clinical remission and mucosal healing for their patients. Among these tools, colonoscopy is the gold method for the cause but is still an invasive, high-cost procedure with possible adverse events such as perforation. While clinical evaluation entails much subjectivity, biomarkers are objective, easily reproducible, non-invasive, cheap and potent surrogate tools of mucosal inflammation. Unfortunately, the well-established, currently in use serum biomarkers, such as C-reactive protein, erythrocyte sedimentation rate and others, do not display sufficiently acceptable sensitivity and specificity rates for the diagnosis of ulcerative colitis and, most importantly, do not represent precisely the mucosal inflammation status of the disease. Therefore, the discovery of new serum biomarkers has been the cause of several studies attempting to discover an "optimal" serum biomarker during the recent years. After thorough research, collection and examination of current data, this review focuses on and selectively presents promising, potential, novel serum biomarkers of ulcerative colitis as they are indicated by studies on the patient over the last years.
Collapse
|
40
|
Li T, Huang X, Wang Q, Zhao L, Ren G, Chen W, Zheng C, Zhou M, Jiang Q, Yin R, Liu Z. A risk stratification for systemic immunoglobulin light‐chain amyloidosis with renal involvement. Br J Haematol 2019; 187:459-469. [PMID: 31348519 DOI: 10.1111/bjh.16112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/29/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Ting Li
- School of Medicine Southeast University NanjingChina
| | - Xianghua Huang
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Qingwen Wang
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Liang Zhao
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Guisheng Ren
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Wencui Chen
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Chunxia Zheng
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Minlin Zhou
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Qi Jiang
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Ru Yin
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| | - Zhihong Liu
- School of Medicine Southeast University NanjingChina
- National Clinical Research Centre of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine Nanjing China
| |
Collapse
|
41
|
Galectin-1, -4, and -7 Were Associated with High Activity of Disease in Patients with Rheumatoid Arthritis. Autoimmune Dis 2019; 2019:3081621. [PMID: 31428469 PMCID: PMC6681614 DOI: 10.1155/2019/3081621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 07/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background Due to the variety of functions that galectins (Gal) possess, it is clear that they participate in the pathogenesis of rheumatoid arthritis (RA). Although some studies demonstrate their functions, there is still no correlation with the clinical data of the disease, having the physiological meaning still unknown. Objectives To compare serum levels of Gal-1, -4, and -7 in patients with RA and healthy controls and to correlate them with clinical parameters. Methods Serum samples were collected from patients with RA and healthy donors to determine the serum levels of Gal-1, -4, and -7. Results Serum levels of Gal-1, -4, and -7 were significantly higher in RA patients compared to controls. We evaluated disease activity (CDAI) with serum levels of galectins and found that patients who were high in disease activity had high levels of galectin compared to the moderate activity group. Galectin-4 had higher levels in patients who were in high activity when compared to the group in remission or low activity. Evaluating the activity of the individual disease (DAS28), patients in high individual activity had high levels of Gal-4 when compared to the group in remission or low activity. We also found an association between positive rheumatoid factor and Gal-1 and Gal-4 levels. Conclusion Our results show for the first time the relationship between serum levels of galectin and the clinical parameters of patients with RA. Demonstrating their role in pathogenesis, new studies with galectins are needed to assess how they function as a biomarker in RA.
Collapse
|
42
|
Shen Q, Chen W, Liu J, Liang Q. Galectin-3 aggravates pulmonary arterial hypertension via immunomodulation in congenital heart disease. Life Sci 2019; 232:116546. [PMID: 31176777 DOI: 10.1016/j.lfs.2019.116546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is reported to contribute to right ventricular failure and death. PAH of variable degrees is often related to congenital heart disease (CHD). Galectin-3 (Gal-3) has been proven to be of great importance in PAH and CHD. Therefore, we investigated the specific mechanism of Gal-3 in CHD-PAH. Patients with CHD-PAH were enrolled to detect the changes of T-cell subsets, cytokine levels, and other related inflammatory cells in the plasma and to assess the Gal-3 levels in the serum. Next, CHD-PAH mouse models were established and treated with restored or depleted Gal-3 to evaluate the systolic pulmonary artery pressure (sPAP) and right ventricular hypertrophy index (RVHI), to determine levels of IL-4, IL-5, IL-13, AKT and p-AKT along with proliferation of pulmonary artery smooth muscle cells (PASMCs). Finally, we explored the effects of adoptive transfer of CD4+T cells on CHD-PAH in mice with Gal-3 knockdown to further investigate the role of Gal-3 in vivo. Initially, Gal-3 was up-regulated in patients with CHD-PAH. Subsequently, it was demonstrated that restored Gal-3 increased sPAP and RVHI, and promoted proliferation of PASMCs by activating the immune response with elevated levels of IL-4, IL-5, IL-13 and p-AKT. Finally, adoptive transfer of CD4+T cells promoted CD4+T cell perivascular infiltration and the progression of CHD-PAH in mice with Gal-3 knockdown. Collectively, the current study suggests a facilitating role of Gal-3 in pulmonary artery remodeling and progression of CHD-PAH via activation of Th2.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Cardiology, University of South China Affiliated Huaihua Hospital, Huaihua 418000, PR China
| | - Wei Chen
- Department of Geriatrics Medicine, University of South China Affiliated Changsha Central Hospital, Changsha 410004, PR China.
| | - Jun Liu
- Department of Cardiology, University of South China Affiliated Huaihua Hospital, Huaihua 418000, PR China
| | - Qingsong Liang
- Department of Neurosurgery, the Fourth People's Hospital of Huaihua, Huaihua 418000, PR China
| |
Collapse
|
43
|
Langer J, García I, Liz-Marzán LM. Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Faraday Discuss 2019; 205:363-375. [PMID: 28880321 DOI: 10.1039/c7fd00123a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present the application of surface-enhanced Raman scattering (SERS) spectroscopy for the fast, sensitive and highly specific detection of the galectin-9 (Gal-9) protein in binding buffer (mimicking natural conditions). The method involves the use of specifically designed nanotags comprising glycan-decorated gold nanoparticles encoded with 4-mercaptobenzoic acid. At fast time scales Gal-9 can be detected down to a concentration of 1.2 nM by monitoring the SERS signal of the reporter, driven by aggregation of the functionalized Au NPs tags, induced by Gal-9 recognition. We additionally demonstrate that the sensitivity and concentration working range of the sensor can be tuned via control of aggregation dynamics and cluster size distribution.
Collapse
Affiliation(s)
- Judith Langer
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.
| | | | | |
Collapse
|
44
|
Tao CC, Cheng KM, Ma YL, Hsu WL, Chen YC, Fuh JL, Lee WJ, Chao CC, Lee EHY. Galectin-3 promotes Aβ oligomerization and Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ 2019; 27:192-209. [PMID: 31127200 PMCID: PMC7206130 DOI: 10.1038/s41418-019-0348-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022] Open
Abstract
Amyloid-β (Aβ) oligomers largely initiate the cascade underlying the pathology of Alzheimer's disease (AD). Galectin-3 (Gal-3), which is a member of the galectin protein family, promotes inflammatory responses and enhances the homotypic aggregation of cancer cells. Here, we examined the role and action mechanism of Gal-3 in Aβ oligomerization and Aβ toxicities. Wild-type (WT) and Gal-3-knockout (KO) mice, APP/PS1;WT mice, APP/PS1;Gal-3+/- mice and brain tissues from normal subjects and AD patients were used. We found that Aβ oligomerization is reduced in Gal-3 KO mice injected with Aβ, whereas overexpression of Gal-3 enhances Aβ oligomerization in the hippocampi of Aβ-injected mice. Gal-3 expression shows an age-dependent increase that parallels endogenous Aβ oligomerization in APP/PS1 mice. Moreover, Aβ oligomerization, Iba1 expression, GFAP expression and amyloid plaque accumulation are reduced in APP/PS1;Gal-3+/- mice compared with APP/PS1;WT mice. APP/PS1;Gal-3+/- mice also show better acquisition and retention performance compared to APP/PS1;WT mice. In studying the mechanism underlying Gal-3-promoted Aβ oligomerization, we found that Gal-3 primarily co-localizes with Iba1, and that microglia-secreted Gal-3 directly interacts with Aβ. Gal-3 also interacts with triggering receptor expressed on myeloid cells-2, which then mediates the ability of Gal-3 to activate microglia for further Gal-3 expression. Immunohistochemical analyses show that the distribution of Gal-3 overlaps with that of endogenous Aβ in APP/PS1 mice and partially overlaps with that of amyloid plaque. Moreover, the expression of the Aβ-degrading enzyme, neprilysin, is increased in Gal-3 KO mice and this is associated with enhanced integrin-mediated signaling. Consistently, Gal-3 expression is also increased in the frontal lobe of AD patients, in parallel with Aβ oligomerization. Because Gal-3 expression is dramatically increased as early as 3 months of age in APP/PS1 mice and anti-Aβ oligomerization is believed to protect against Aβ toxicity, Gal-3 could be considered a novel therapeutic target in efforts to combat AD.
Collapse
Affiliation(s)
- Chih-Chieh Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Min Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Cheng-chi University, Taipei, Taiwan
| | - Yun-Li Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Lun Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yan-Chu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ju Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience, National Cheng-chi University, Taipei, Taiwan
| | - Eminy H Y Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Neuroscience, National Cheng-chi University, Taipei, Taiwan.
| |
Collapse
|
45
|
Cengiz T, Türkboyları S, Gençler OS, Anlar Ö. The roles of galectin-3 and galectin-4 in the idiopatic Parkinson disease and its progression. Clin Neurol Neurosurg 2019; 184:105373. [PMID: 31147178 DOI: 10.1016/j.clineuro.2019.105373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Idiopathic Parkinson's Disease is a neurodegenerative disease caused by the loss of cells that secrete dopamine in the basal ganglia. Galectins are multipotent, evolutionarily conserved, cell surface glycoconjugated and crosslinked carbohydrate-binding proteins. The roles of these proteins in the diagnosis of the disease have been investigated. PATIENT AND METHODS Patients who were diagnosed with idiopathic Parkinson's disease were classified as early (stage 1-2) and advanced stage (stage 3-5) according to the Hoehn-Yahr classification. In addition, voluntary cases without parkinson disease constituted the control group. Serum samples of consecutive Parkinson patients and age and gender matched healthy controls were used to measure serum galectin-3 and serum galectin-4 levels. The levels were compared between Parkinson's patients and control groups and early and advanced stage Parkinson's groups. RESULTS Thirty age and gender-matched healthy controls and 60 parkinson patients were enrolled in the study. Serum galectin-3 levels were lower in controls compared with patients (892.9 (168.2-2416.3) vs. 2271.8 (375.9-9673.4), respectively, P < 0.01). Serum galectin-3 levels were related to Hoehn-Yahr stages and (r: 0.691, P < 0.001). The early stage group (20 patients) had lower serum galectin-4 levels compared with advanced stages (40 patients) (197.97 ± 46.42 vs. 334.263 ± 37, respectively, P < 0.01). Serum galectin-4 levels were also lower in controls compared with patients 185.1 (116.2-313.3) vs. 282.3 (156.9-984.8), respectively, P < 0.01. ROC analysis showed that serum galectin-3 and galectin-4 were statistically significant in the identification of Parkinson disease and advanced stages. The results were significant for galectin-3 (AUC: 0.89, SE: 0.034, P < 0.001 and CI: 0.823-0.958; P < 0.001) and for galectin-4 (AUC: 0.758, SE: 0.05, P < 0.001). CONCLUSION Serum galectin-3 and galectin-4 may be potential noninvasive markers for the identification of Parkinson disease and advanced stages.
Collapse
Affiliation(s)
- Tuğba Cengiz
- Atatürk Training and Research Hospital, Department of Neurology, 06800, Bilkent, Ankara, Turkey.
| | - Saadet Türkboyları
- Dr. A.Y. Ankara Oncology Training and Research Hospital, Department of Neurology, 06520, Bilkent, Ankara, Turkey
| | - Onur Serdar Gençler
- Medical Park Hospital, Department of Neurology, 06370 Batıkent, Ankara, Turkey
| | - Ömer Anlar
- Yıldırım Beyazıt University Faculty of Medicine, Department of Neurology, 06800, Bilkent, Ankara, Turkey
| |
Collapse
|
46
|
Caldararu O, Manzoni F, Oksanen E, Logan DT, Ryde U. Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Acta Crystallogr D Struct Biol 2019; 75:368-380. [PMID: 30988254 PMCID: PMC6465982 DOI: 10.1107/s205979831900175x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Neutron crystallography is a powerful method to determine the positions of H atoms in macromolecular structures. However, it is sometimes hard to judge what would constitute a chemically reasonable model, and the geometry of H atoms depends more on the surroundings (for example the formation of hydrogen bonds) than heavy atoms, so that the empirical geometry information for the H atoms used to supplement the experimental data is often less accurate. These problems may be reduced by using quantum-mechanical calculations. A method has therefore been developed to combine quantum-mechanical calculations with joint crystallographic refinement against X-ray and neutron data. A first validation of this method is provided by re-refining the structure of the galectin-3 carbohydrate-recognition domain in complex with lactose. The geometry is improved, in particular for water molecules, for which the method leads to better-resolved hydrogen-bonding interactions. The method has also been applied to the active copper site of lytic polysaccharide monooxygenase and shows that the protonation state of the amino-terminal histidine residue can be determined.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Francesco Manzoni
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Instruments Division, European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
47
|
Ba H, Wang D, Wu W, Sun H, Li C. Single-cell transcriptome provides novel insights into antler stem cells, a cell type capable of mammalian organ regeneration. Funct Integr Genomics 2019; 19:555-564. [DOI: 10.1007/s10142-019-00659-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
|
48
|
Restriction of Human Cytomegalovirus Infection by Galectin-9. J Virol 2019; 93:JVI.01746-18. [PMID: 30487283 DOI: 10.1128/jvi.01746-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. While HCMV infection is generally asymptomatic in the immunocompetent, it can have devastating consequences in those with compromised or underdeveloped immune systems, including transplant recipients and neonates. Galectins are a widely expressed protein family that have been demonstrated to modulate both antiviral immunity and regulate direct host-virus interactions. The potential for galectins to directly modulate HCMV infection has not previously been studied, and our results reveal that galectin-9 (Gal-9) can potently inhibit HCMV infection. Gal-9-mediated inhibition of HCMV was dependent upon its carbohydrate recognition domains and thus dependent on glycan interactions. Temperature shift studies revealed that Gal-9 specific inhibition was mediated primarily at the level of virus-cell fusion and not binding. Additionally, we found that during reactivation of HCMV in hematopoietic stem cell transplant (HSCT) patients soluble Gal-9 is upregulated. This study provides the first evidence for Gal-9 functioning as a potent antiviral defense effector molecule against HCMV infection and identifies it as a potential clinical candidate to restrict HCMV infections.IMPORTANCE Human cytomegalovirus (HCMV) continues to cause serious and often life-threatening disease in those with impaired or underdeveloped immune systems. This virus is able to infect and replicate in a wide range of human cell types, which enables the virus to spread to other individuals in a number of settings. Current antiviral drugs are associated with a significant toxicity profile, and there is no vaccine; these factors highlight a need to identify additional targets for the development of anti-HCMV therapies. We demonstrate for the first time that secretion of a member of the galectin family of proteins, galectin-9 (Gal-9), is upregulated during natural HCMV-reactivated infection and that this soluble cellular protein possesses a potent capacity to block HCMV infection by inhibiting virus entry into the host cell. Our findings support the possibility of harnessing the antiviral properties of Gal-9 to prevent HCMV infection and disease.
Collapse
|
49
|
Machala EA, McSharry BP, Rouse BT, Abendroth A, Slobedman B. Gal power: the diverse roles of galectins in regulating viral infections. J Gen Virol 2019; 100:333-349. [PMID: 30648945 DOI: 10.1099/jgv.0.001208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses, as a class of pathogenic microbe, remain a significant health burden globally. Viral infections result in significant morbidity and mortality annually and many remain in need of novel vaccine and anti-viral strategies. The development of effective novel anti-viral therapeutics, in particular, requires detailed understanding of the mechanism of viral infection, and the host response, including the innate and adaptive arms of the immune system. In recent years, the role of glycans and lectins in pathogen-host interactions has become an increasingly relevant issue. This review focuses on the interactions between a specific lectin family, galectins, and the broad range of viral infections in which they play a role. Discussed are the diverse activities that galectins play in interacting directly with virions or the cells they infect, to promote or inhibit viral infection. In addition we describe how galectin expression is regulated both transcriptionally and post-transcriptionally by viral infections. We also compare the contribution of known galectin-mediated immune modulation, across a range of innate and adaptive immune anti-viral responses, to the outcome of viral infections.
Collapse
Affiliation(s)
- Emily A Machala
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Brian P McSharry
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry T Rouse
- 2Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Allison Abendroth
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
50
|
Zhong X, Qian X, Chen G, Song X. The role of galectin-3 in heart failure and cardiovascular disease. Clin Exp Pharmacol Physiol 2019; 46:197-203. [PMID: 30372548 DOI: 10.1111/1440-1681.13048] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Zhong
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Xiaoqian Qian
- Department of Nephrology; Xin Hua Hospital Affiliated; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Guangping Chen
- Department of Physiology; Emory University School of Medicine; Atlanta Georgia
| | - Xiang Song
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| |
Collapse
|