1
|
Zhang Y, Hu L, Wang S, Gou X, Guo Q, Liang G. Genome-wide identification of R2R3-MYB family in Eriobotrya japonica and functional analysis of EjMYB5 involved in proanthocyanidin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112198. [PMID: 39029629 DOI: 10.1016/j.plantsci.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Loquat (Eriobotrya japonica Lindl.) is a popular fruit and medicinal plant. Proanthocyanidins (PAs), as one of the main types of flavonoids, are the key components of loquat fruit quality and medicinal properties. However, the identification of transcription factors (TFs) involved in PA accumulation in loquat remains limited. R2R3-MYB TFs play key regulatory role in PA accumulation in plants. In this study, 190 R2R3-MYB TFs were identified in loquat genome. Combined with transcriptome data, R2R3-MYB TF EjMYB5 involved in PA accumulation in loquat was isolated. EjMYB5 was transcriptional activator localized to nucleus. Expression of EjMYB5 was closely related to PA accumulation in loquat fruits. Heterogenous overexpression of EjMYB5 in tomato (Solanum lycopersicum) inhibited anthocyanin accumulation and promoted PA accumulation. Additionally, transient overexpression of EjMYB5 in tobacco (Nicotiana benthamiana) leaves promoted PA accumulation by upregulating flavonoid biosynthesis genes (NtDFR, NtANS, and NtLAR). Transcriptome analysis of EjMYB5-overexpressing tomato fruits suggested that EjMYB5 was involved in several biological pathways, including lipid metabolism, MAPK signaling, phenylpropanoid biosynthesis, and flavonoid biosynthesis. Collectively, our findings provided basic data for further analysis the function of R2R3-MYB TFs in loquat, and revealed that EjMYB5 functioned as PA accumulation in loquat.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Luyan Hu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Xiuhong Gou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China.
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
2
|
Zhang W, Wu J, He J, Liu C, Yi W, Xie J, Wu Y, Xie T, Ma J, Zhong Z, Yang M, Chen C, Luan A, He Y. AcMYB266, a key regulator of the red coloration in pineapple peel: a case of subfunctionalization in tandem duplicated genes. HORTICULTURE RESEARCH 2024; 11:uhae116. [PMID: 38919552 PMCID: PMC11197299 DOI: 10.1093/hr/uhae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 06/27/2024]
Abstract
Red fruit peel is an attractive target for pineapple breeding. Various pineapple accessions with distinct red coloration patterns exist; however, the precise molecular mechanism accounting for these differences remains unknown, which hinders the pineapple breeding process from combining high fruit quality with red peel. In this study, we characterized a transcription factor, AcMYB266, which is preferentially expressed in pineapple peel and positively regulates anthocyanin accumulation. Transgenic pineapple, Arabidopsis, and tobacco plants overexpressing AcMYB266 exhibited significant anthocyanin accumulation. Conversely, transient silencing of this gene led to decreased anthocyanin accumulation in pineapple red bracts. In-depth analysis indicated that variations of AcMYB266 sequences in the promoter instead of the protein-coding region seem to contribute to different red coloration patterns in peels of three representative pineapple varieties. In addition, we found that AcMYB266 was located in a cluster of four MYB genes exclusive to and conserved in Ananas species. Of this cluster, each was proved to regulate anthocyanin synthesis in different pineapple tissues, illustrating an interesting case of gene subfunctionalization after tandem duplication. In summary, we have characterized AcMYB266 as a key regulator of pineapple red fruit peel and identified an MYB cluster whose members were subfunctionalized to specifically regulate the red coloration of different pineapple tissues. The present study will assist in establishing a theoretical mechanism for pineapple breeding for red fruit peel and provide an interesting case for the investigation of gene subfunctionalization in plants.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Jing Wu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Junhu He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding, Yazhouwan Technology City, Sanya, Hainan, 572024, China/Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, No.4, Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| | - Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Wen Yi
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Jingyao Xie
- School of Landscape Architecture, Guangdong Eco-Engineering Polytechnic, No. 297, Guangshan 1st Road, Tianhe District, Guangzhou, Guangdong, 510520, China
| | - Ya Wu
- Environment and plant protection institute, Chinese Academy of Tropical Agricultural Sciences, No. 4, Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| | - Tao Xie
- Department of Horticulture, Foshan University, No. 18, Jiangwan 1st Road, Chancheng District, Foshan, Guangdong, 528231, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, Sichuan, 610000, China
| | - Ziqin Zhong
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Mingzhe Yang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| | - Chengjie Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding, Yazhouwan Technology City, Sanya, Hainan, 572024, China/Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, No.4, Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| | - Aiping Luan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding, Yazhouwan Technology City, Sanya, Hainan, 572024, China/Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, No.4, Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
3
|
Wang X, Wei C, Huang H, Kang J, Long R, Chen L, Li M, Yang Q. The GARP family transcription factor MtHHO3 negatively regulates salt tolerance in Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108542. [PMID: 38531119 DOI: 10.1016/j.plaphy.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China.
| | - Chunxue Wei
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Hongmei Huang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Junmei Kang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Ruicai Long
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Lin Chen
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Mingna Li
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Qingchuan Yang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China.
| |
Collapse
|
4
|
Zhao K, Lan Y, Shi Y, Duan C, Yu K. Metabolite and transcriptome analyses reveal the effects of salinity stress on the biosynthesis of proanthocyanidins and anthocyanins in grape suspension cells. FRONTIERS IN PLANT SCIENCE 2024; 15:1351008. [PMID: 38576780 PMCID: PMC10993317 DOI: 10.3389/fpls.2024.1351008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Proanthocyanidins (PAs) and anthocyanins are flavonoids that contribute to the quality and health benefits of grapes and wine. Salinity affects their biosynthesis, but the underlying mechanism is still unclear. We studied the effects of NaCl stress on PA and anthocyanin biosynthesis in grape suspension cells derived from berry skins of Vitis vinifera L. Cabernet Sauvignon using metabolite profiling and transcriptome analysis. We treated the cells with low (75 mM NaCl) and high (150 mM NaCl) salinity for 4 and 7 days. High salinity inhibited cell growth and enhanced PA and anthocyanin accumulation more than low salinity. The salinity-induced PAs and anthocyanins lacked C5'-hydroxylation modification, suggesting the biological significance of delphinidin- and epigallocatechin-derivatives in coping with stress. The genes up-regulated by salinity stress indicated that the anthocyanin pathway was more sensitive to salt concentration than the PA pathway, and WGCNA analysis revealed the coordination between flavonoid biosynthesis and cell wall metabolism under salinity stress. We identified transcription factors potentially involved in regulating NaCl dose- and time-dependent PA and anthocyanin accumulation, showing the dynamic remodeling of flavonoid regulation network under different salinity levels and durations. Our study provides new insights into regulator candidates for tailoring flavonoid composition and molecular indicators of salt stress in grape cells.
Collapse
Affiliation(s)
- Kainan Zhao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Jiang W, Yin Q, Liu J, Su X, Han X, Li Q, Zhang J, Pang Y. The APETALA2-MYBL2 module represses proanthocyanidin biosynthesis by affecting formation of the MBW complex in seeds of Arabidopsis thaliana. PLANT COMMUNICATIONS 2024; 5:100777. [PMID: 38053331 PMCID: PMC10943577 DOI: 10.1016/j.xplc.2023.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Proanthocyanidins (PAs) are the second most abundant plant phenolic natural products. PA biosynthesis is regulated by the well-documented MYB/bHLH/WD40 (MBW) complex, but how this complex itself is regulated remains ill defined. Here, in situ hybridization and β-glucuronidase staining show that APETALA2 (AP2), a well-defined regulator of flower and seed development, is strongly expressed in the seed coat endothelium, where PAs accumulate. AP2 negatively regulates PA content and expression levels of key PA pathway genes. AP2 activates MYBL2 transcription and interacts with MYBL2, a key suppressor of the PA pathway. AP2 exerts its function by directly binding to the AT-rich motifs near the promoter region of MYBL2. Molecular and biochemical analyses revealed that AP2 forms AP2-MYBL2-TT8/EGL3 complexes, disrupting the MBW complex and thereby repressing expression of ANR, TT12, TT19, and AHA10. Genetic analyses revealed that AP2 functions upstream of MYBL2, TT2, and TT8 in PA regulation. Our work reveals a new role of AP2 as a key regulator of PA biosynthesis in Arabidopsis. Overall, this study sheds new light on the comprehensive regulation network of PA biosynthesis as well as the dual regulatory roles of AP2 in seed development and accumulation of major secondary metabolites in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qinggang Yin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinyue Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaojia Su
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoyan Han
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jin Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Feng J, Zhang W, Wang W, Nieuwenhuizen NJ, Atkinson RG, Gao L, Hu H, Zhao W, Ma R, Zheng H, Tao J. Integrated Transcriptomic and Proteomic Analysis Identifies Novel Regulatory Genes Associated with Plant Growth Regulator-Induced Astringency in Grape Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4433-4447. [PMID: 38354220 DOI: 10.1021/acs.jafc.3c04408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi,Xinjiang 830001, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 92169, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 92169, New Zealand
| | - Lei Gao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Haipeng Hu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Wanli Zhao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Ruiyang Ma
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Huan Zheng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Jianmin Tao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi,Xinjiang 830001, China
| |
Collapse
|
7
|
Mei J, Niu Q, Xu K, Huang Y, Bai S, Zhu J, Li H, Miao M, Tong F, Yu D, Ke L, Sun Y. GhmiR858 Inhibits the Accumulation of Proanthocyanidins by Targeting GhTT2L in Cotton ( Gossypium hirsutum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15341-15351. [PMID: 37787767 DOI: 10.1021/acs.jafc.3c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Proanthocyanidins (PAs) are predominantly regulated at the transcriptional level by sophisticated regulatory networks. In cotton, the role of miRNAs as key regulatory factors at the post-transcriptional level is still unclear. Here, we demonstrated that GhmiR858 negatively regulates PA accumulation in cotton leaves and calli by targeting GhTT2L. Excessive expression of GhmiR858 restrained the expression of GhTT2L, resulting in a significant decrease in PA abundance. Conversely, a reduction in GhmiR858 activity upregulated GhTT2L, which increased PA accumulation. Additionally, GhTT2L was found to positively regulate PA accumulation in both cotton and Arabidopsis. Further analyses showed that GhTT2L interacted with transcription factor GhTTG1, which directly binds to the GhANR promoter, to facilitate its transcription. This study provides new information to guide future studies of the PA regulatory mechanisms affected by miRNAs as well as the breeding of novel varieties of colored cotton with rich PAs.
Collapse
Affiliation(s)
- Jun Mei
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qingqing Niu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kunling Xu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuyi Huang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shimei Bai
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiayu Zhu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongwei Li
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Meng Miao
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fudan Tong
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
8
|
Qu C, Zhu M, Hu R, Niu Y, Chen S, Zhao H, Li C, Wang Z, Yin N, Sun F, Chen Z, Shen S, Shang G, Zhou Y, Yan X, Wei L, Liu L, Yi B, Lian J, Li J, Tang Z, Liang Y, Xu X, Wang R, Yin J, Wan H, Du H, Qian W, Chai Y, Zhou Q, He Y, Zhong S, Qiu X, Yu H, Lam HM, Lu K, Fu F, Li J. Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus. Nat Commun 2023; 14:5194. [PMID: 37626056 PMCID: PMC10457299 DOI: 10.1038/s41467-023-40838-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Yellow-seed trait is a desirable breeding characteristic of rapeseed (Brassica napus) that could greatly improve seed oil yield and quality. However, the underlying mechanisms controlling this phenotype in B. napus plants are difficult to discern because of their complexity. Here, we assemble high-quality genomes of yellow-seeded (GH06) and black-seeded (ZY821). Combining in-depth fine mapping of a quantitative trait locus (QTL) for seed color with other omics data reveal BnA09MYB47a, encoding an R2R3-MYB-type transcription factor, as the causal gene of a major QTL controlling the yellow-seed trait. Functional studies show that sequence variation of BnA09MYB47a underlies the functional divergence between the yellow- and black-seeded B. napus. The black-seed allele BnA09MYB47aZY821, but not the yellow-seed allele BnA09MYB47aGH06, promotes flavonoid biosynthesis by directly activating the expression of BnTT18. Our discovery suggests a possible approach to breeding B. napus for improved commercial value and facilitates flavonoid biosynthesis studies in Brassica crops.
Collapse
Affiliation(s)
- Cunmin Qu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meichen Zhu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ran Hu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yongchao Niu
- The State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Si Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huiyan Zhao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chengxiang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Nengwen Yin
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Fujun Sun
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhiyou Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shulin Shen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guoxia Shang
- National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Yan Zhou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xingying Yan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lijuan Wei
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liezhao Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | | | - Jiang Li
- Biozeron Shenzhen, Inc, Shenzhen, China
| | - Zhanglin Tang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Liang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinfu Xu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rui Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiaming Yin
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huafang Wan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai Du
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Qian
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yourong Chai
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qingyuan Zhou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yajun He
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Silin Zhong
- The State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Hon-Ming Lam
- The State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kun Lu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Canada.
| | - Jiana Li
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Yang X, Li A, Xia J, Huang Y, Lu X, Guo G, Sui S. Enhancement of the anthocyanin contents of Caladium leaves and petioles via metabolic engineering with co-overexpression of AtPAP1 and ZmLc transcription factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1186816. [PMID: 37416877 PMCID: PMC10320811 DOI: 10.3389/fpls.2023.1186816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Introduction Metabolic engineering of anthocyanin synthesis is an active research area for pigment breeding and remains a research hotspot involving AtPAP1 and ZmLc transcription factors. Caladium bicolor is a desirable anthocyanin metabolic engineering receptor, with its abundant leaf color and stable genetic transformation system. Methods We transformed C. bicolor with AtPAP1 and ZmLc and successfully obtained transgenic plants. We then used a combination of metabolome, transcriptome, WGCNA and PPI co-expression analyses to identify differentially expressed anthocyanin components and transcripts between wild-type and transgenic lines. Results Cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside and peonidin-3-O-rutinoside are the main components of anthocyanins in the leaves and petioles of C. bicolor. Exogenous introduction of AtPAP1 and ZmLc resulted in significant changes in pelargonidins, particularly pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside in C. bicolor. Furthermore, 5 MYB-TFs, 9 structural genes, and 5 transporters were found to be closely associated with anthocyanin synthesis and transport in C. bicolor. Discussion In this study, a network regulatory model of AtPAP1 and ZmLc in the regulation of anthocyanin biosynthesis and transport in C. bicolor was proposed, which provides insights into the color formation mechanisms of C. bicolor, and lays a foundation for the precise regulation of anthocyanin metabolism and biosynthesis for economic plant pigment breeding.
Collapse
|
10
|
Zhang X, Ma W, Guan X, Wang F, Fan Z, Gao S, Yao Y. VvMYB14 participates in melatonin-induced proanthocyanidin biosynthesis by upregulating expression of VvMYBPA1 and VvMYBPA2 in grape seeds. HORTICULTURE RESEARCH 2023; 10:uhac274. [PMID: 37533674 PMCID: PMC10390852 DOI: 10.1093/hr/uhac274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/02/2022] [Indexed: 08/04/2023]
Abstract
This work demonstrated that melatonin increases continuously in seeds, particularly seed coats, during berry ripening. Exogenous melatonin treatments significantly increased the proanthocyanidin (PA) content, partially through ethylene signaling, in seed coats. VvMYB14 expression exhibited patterns similar to melatonin accumulation over time, which was largely induced by melatonin treatment in seed coats during berry ripening. Additionally, VvMYB14 bound to the MBS element of the VvMYBPA1 promoter to activate expression. VvMYB14 overexpression largely upregulated expression of VvMYBPA1, VvMYBPA2 and VvLAR1 and increased the PA content in grape seed-derived calli. Similar increases in AtTT2 and AtBAN expression and PA content were found in VvMYB14-overexpressing Arabidopsis seeds. It was also observed that VvMYB14 overexpression increased ethylene production and thereby induced expression of VvERF104, which bound to the ERF element of the VvMYBPA2 promoter and activated its expression. Additionally, VvERF104 suppression reduced the VvMYB14 overexpression-induced increases in expression of VvMYBPA2 and VvLAR1 and PA content. Further experiments revealed that melatonin-induced increases in the expression of VvMYBPA1, VvMYBPA2, VvERF104 and VvLAR1 and PA accumulation were significantly reduced in VvMYB14-suppressing grape calli and leaves. Collectively, VvMYB14 mediates melatonin-induced PA biosynthesis by directly transactivating VvMYBPA1 expression and indirectly upregulating VvMYBPA2 expression via VvERF104.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Wanyun Ma
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xueqiang Guan
- Shandong Academy of Grape/Shandong Technology Innovation Center of Wine Grape and Wine, Jinan, Shandong 250100, China
| | - Fei Wang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Zongbao Fan
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Shiwei Gao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | | |
Collapse
|
11
|
Liu X, Du F, Sun L, Li J, Chen S, Li N, Chang Y, Cui J, Chen W, Yao D. Anthocyanin metabolism in Nelumbo: translational and post-translational regulation control transcription. BMC PLANT BIOLOGY 2023; 23:61. [PMID: 36710356 PMCID: PMC9885672 DOI: 10.1186/s12870-023-04068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Lotus (Nelumbo Adans.) is used as an herbal medicine and the flowers are a source of natural flavonoids. 'Da Sajin', which was firstly found in the plateau area, is a natural mutant in flower color with red streamers dyeing around white petals. RESULTS The LC-MS-MS results showed that eight anthocyanin compounds, including cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, malvidin 3-O-galactoside, and malvidin 3-O-glucoside, were differentially enriched in red-pigmented tissues of the petals, whereas most of these metabolites were undetected in white tissues of the petals. Transcriptome profiling indicated that the relative high expression levels of structural genes, such as NnPAL, NnF3H, and NnANS, was inconsistent with the low anthocyanin concentration in white tissues. Members of the NnMYB and NnbHLH transcription factor families were presumed to play a role in the metabolic flux in the anthocyanin and proanthocyanidin biosynthetic pathway. The expression model of translational initiation factor, ribosomal proteins and SKP1-CUL1-F-box protein complex related genes suggested an important role for translational and post-translational network in anthocyanin biosynthesis. In addition, pathway analysis indicated that light reaction or photo destruction might be an important external cause for floral color determination in lotus. CONCLUSIONS In this study, it is supposed that the natural lotus mutant 'Da Sajin' may have originated from a red-flowered ancestor. Partial loss of anthocyanin pigments in petals may result from metabolic disorder caused by light destruction. This disorder is mainly regulated at post translation and translation level, resulting in a non-inherited phenotype. These results contribute to an improved understanding of anthocyanin metabolism in lotus, and indicate that the translational and post-translational regulatory network determines the metabolic flux of anthocyanins and proanthocyanidins under specific environmental conditions.
Collapse
Affiliation(s)
- Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Shaozhou Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Naiwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yajun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wen Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
12
|
Zou H, Zhou L, Han L, Lv J, Jia Y, Wang Y. Transcriptome profiling reveals the roles of pigment formation mechanisms in yellow Paeonia delavayi flowers. Mol Genet Genomics 2023; 298:375-387. [PMID: 36580169 PMCID: PMC9938063 DOI: 10.1007/s00438-022-01973-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/30/2022] [Indexed: 12/30/2022]
Abstract
The yellow colour of ornamental varieties of tree peony originated from Paeonia delavayi. However, but P. delavayi and Paeonia suffruticosa belong to different subgroups, so hybridization is difficult and results in a long breeding cycle. However, no comprehensive transcriptomic profiling has focused on the colour formation mechanisms of yellow tree peony petals. Analysing the colour formation mechanism of yellow petals in P. delavayi is very important for directional molecular breeding. In this study, the transcriptional map of yellow pigment development in petals was used to analyse the mechanism of petal colour formation. We analysed the genes related to the metabolism of flavonoids and carotenoids and the transcription factors (TFs) involved in P. delavayi var. lutea (pure yellow individual) yellow pigment development using transcriptome sequence profiling. Transcriptome sequence profiles revealed three and four differentially expressed transcripts (DETs) involved in flavonoid biosynthesis and carotenoid biosynthesis, respectively. An analysis of DETs in the flavonoid pathway showed that chalcone synthase (CHS) and chalcone 2´-glucosyltransferases (THC2'GT) act in synergy to synthesize isosalipurposide (ISP). CHS and flavonol synthase (FLS) synergistically synthesize quercetin and kaempferol. DEG analysis of the carotenoid pathway revealed that phytoene synthase (PSY), carotenoid isomerase (CRTISO) and β-carotene hydroxylases (CHYB) play a key role in regulating lutein formation, and carotenoid cleavage dioxygenase (CCD) plays an important role in the degradation of carotenoids. These two pathways may be regulated by TF families such as bHLH, ARF, and MYB. The results of the transient overexpression of genes showed that CHS and CHI are regulated by PdMYB2. In this study, the molecular mechanism of ISP synthesis was analysed in depth, and the complete metabolic pathway of carotenoids in Paeonia L. was reported for the first time. By studying the formation mechanism of yellow pigment in P. delavayi petals, a breeding strategy for improving flavonol and carotenoid contents and reducing anthocyanin synthesis by genetic engineering was suggested.
Collapse
Affiliation(s)
- Hongzhu Zou
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - Lulu Han
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - JiHang Lv
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - YingHua Jia
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China.
| |
Collapse
|
13
|
Wang J, Zhang H, Tian S, Hao W, Chen K, Du L. The R2R3MYB transcription factors MaMYBF and MaMYB1 regulate flavonoid biosynthesis in grape hyacinth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:85-95. [PMID: 36395598 DOI: 10.1016/j.plaphy.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
R2R3 MYBs play vital roles in the regulation of flavonoid biosynthesis. However, the regulatory network of R2R3 MYBs in flavonoid biosynthesis is not fully understood in grape hyacinth (Muscari spp.). Here, we identified two R2R3 MYBs, MaMYBF and MaMYB1, as potential regulators of flavonol and anthocyanin biosynthesis, respectively. MaMYBF and MaMYB1 expression was elevated during flower development and was light-induced, and the expression patterns were related to those of the flavonoid structural genes MaFLS and MaDFR, respectively. The BiFC assay verified that MaMYB1 interacts with MabHLH1, but MaMYBF does not. A dual luciferase assay revealed that MaMYBF alone strongly activated pMaFLS, and its activation was attenuated at reduced doses of MaMYBF in the presence of MabHLH1, MaMybA, and MaMYB1. MaDFR transcription mediated by MaMybA and MabHLH1 was inhibited by MaMYB1. Moreover, overexpression of MaMYBF and MaMYB1 in tobacco reduced flower pigmentation and repressed the expression of flavonoid pathway key structural genes. Therefore, MaMYBF regulates the flavonol pathway independently of cofactors. Whereas MaMYB1 regulates anthocyanin biosynthesis by binding to MabHLH1 and disrupting the MaMybA-bHLH complex in grape hyacinth. Our results offer new insights into the intricate regulatory network of flavonoids in grape hyacinth involving the regulation of both flavonol and anthocyanin.
Collapse
Affiliation(s)
- Jiangyu Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Han Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Shuting Tian
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Wenhui Hao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Kaili Chen
- College of Fisheries, Southwest University, Rongchang, 402460, Chongqing, PR China
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
14
|
Wang C, Li J, Zhou T, Zhang Y, Jin H, Liu X. Transcriptional regulation of proanthocyanidin biosynthesis pathway genes and transcription factors in Indigofera stachyodes Lindl. roots. BMC PLANT BIOLOGY 2022; 22:438. [PMID: 36096752 PMCID: PMC9469613 DOI: 10.1186/s12870-022-03794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) have always been considered as important medicinal value component. In order to gain insights into the PA biosynthesis regulatory network in I. stachyodes roots, we analyzed the transcriptome of the I. stachyodes in Leaf, Stem, RootI (one-year-old root), and RootII (two-year-old root). RESULTS In this study, a total of 110,779 non-redundant unigenes were obtained, of which 63,863 could be functionally annotated. Simultaneously, 75 structural genes that regulate PA biosynthesis were identified, of these 6 structural genes (IsF3'H1, IsANR2, IsLAR2, IsUGT72L1-3, IsMATE2, IsMATE3) may play an important role in the synthesis of PAs in I. stachyodes roots. Furthermore, co-expression network analysis revealed that 34 IsMYBs, 18 IsbHLHs, 15 IsWRKYs, 9 IsMADSs, and 3 IsWIPs hub TFs are potential regulators for PA accumulation. Among them, IsMYB24 and IsMYB79 may be closely involved in the PA biosynthesis in I. stachyodes roots. CONCLUSIONS The biosynthesis of PAs in I. stachyodes roots is mainly produced by the subsequent pathway of cyanidin. Our work provides new insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout different tissues.
Collapse
Affiliation(s)
- Chongmin Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yongping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Haijun Jin
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoqing Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
15
|
Jiang W, Xia Y, Su X, Pang Y. ARF2 positively regulates flavonols and proanthocyanidins biosynthesis in Arabidopsis thaliana. PLANTA 2022; 256:44. [PMID: 35857143 DOI: 10.1007/s00425-022-03936-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Auxin response factor 2 acts as a positive regulator to fine-tune the spatial and temporal accumulation of flavonoid compounds, mainly flavonols and proanthocyanidins in Arabidopsis. Auxin response factor (ARF) proteins are reported to involve in auxin-mediated regulation of flavonoid biosynthesis. However, the detailed regulation mechanism of ARF remains still unknown. Here, we provide genetic and molecular evidence that one of the twenty-three ARF members-ARF2-positively regulates flavonoid biosynthesis at multi-level in tissue-specific manner in Arabidopsis thaliana. Loss-of-function mutation of ARF2 led to significant reduction in flavonoid content (e.g., flavonols and proanthocyanidins) in the seedlings and seeds of the Arabidopsis arf2 mutants. Over-expression of ARF2 increased flavonols and proanthocyanidins content in Arabidopsis. Additionally, the changes of flavonoid content correlate well with the transcript abundance of several regulatory genes (e.g., MYB11, MYB12, MYB111, TT2, and GL3), and key biosynthetic genes (e.g., CHS, F3'H, FLS, ANS, ANR, TT12, TT19, and TT15), in the arf2 mutant and ARF2 over-expression lines. Transient transactivation assays with site-directed mutagenesis confirmed that ARF2 directly regulates the expression of MYB12 and FLS genes in the flavonol pathway and ANR in the proanthocyanidin pathway, and indirectly regulates MYB11 and MYB111 genes in the flavonol pathway, and ANS, TT12, TT19 and TT15 genes in the proanthocyanidin pathway. Further genetic results indicated that ARF2 acts upstream of MYB12 to regulate flavonol accumulation, and of TT2 to regulate proanthocyanidins accumulation. In particular, yeast two-hybrid assays revealed that ARF2 physically interacts with TT2, a master regulator of proanthocyanidins biosynthesis. Combined together, these results indicated that ARF2 functions as a positive regulator for the fine-tuned spatial and temporal regulation of flavonoids (mainly flavonols and proanthocyanidins) accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojia Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
16
|
Cui X, Jun JH, Rao X, Bahr C, Chapman E, Temple S, Dixon RA. Leaf layer-based transcriptome profiling for discovery of epidermal-selective promoters in Medicago truncatula. PLANTA 2022; 256:31. [PMID: 35790623 DOI: 10.1007/s00425-022-03920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Transcriptomics of manually dissected leaf layers from Medicago truncatula identifies genes with preferential expression in upper and/or lower epidermis. The promoters of these genes confer epidermal-specific expression of transgenes. Improving the quality and quantity of proanthocyanidins (PAs) in forage legumes has potential to improve the nitrogen nutrition of ruminant animals and protect them from the risk of pasture bloat, as well as parasites. However, ectopic constitutive accumulation of PAs in plants by genetic engineering can significantly inhibit growth. We selected the leaf epidermis as a candidate tissue for targeted engineering of PAs or other pathways. To identify gene promoters selectively expressed in epidermal tissues, we performed comparative transcriptomic analyses in the model legume Medicago truncatula, using five tissue samples representing upper epidermis, lower epidermis, whole leaf without upper epidermis, whole leaf without lower epidermis, and whole leaf. We identified 52 transcripts preferentially expressed in upper epidermis, most of which encode genes involved in flavonoid biosynthesis, and 53 transcripts from lower epidermis, with the most enriched category being anatomical structure formation. Promoters of the preferentially expressed genes were cloned from the M. truncatula genome and shown to direct tissue-selective promoter activities in transient assays. Expression of the PA pathway transcription factor TaMYB14 under control of several of the promoters in transgenic alfalfa resulted in only modest MYB14 transcript accumulation and low levels of PA production. Activity of a subset of promoters was confirmed by transcript analysis in field-grown alfalfa plants throughout the growing season, and revealed variable but consistent expression, which was generally highest 3-4 weeks after cutting. We conclude that, although the selected promoters show acceptable tissue-specificity, they may not drive high enough transcription factor expression to activate the PA pathway.
Collapse
Affiliation(s)
- Xin Cui
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
| | - Ji Hyung Jun
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- College of Life Sciences, Hubei University, Wuhan, 430068, Hubei, China
| | - Camille Bahr
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Elisabeth Chapman
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Stephen Temple
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA.
| |
Collapse
|
17
|
Zou H, Han L, Yuan M, Zhang M, Zhou L, Wang Y. Sequence Analysis and Functional Verification of the Effects of Three Key Structural Genes, PdTHC2'GT, PdCHS and PdCHI, on the Isosalipurposide Synthesis Pathway in Paeonia delavayi var. lutea. Int J Mol Sci 2022; 23:5696. [PMID: 35628506 PMCID: PMC9147737 DOI: 10.3390/ijms23105696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023] Open
Abstract
Isosalipurposide (ISP) is the most important yellow pigment in tree peony. In ISP biosynthesis, CHS catalyzes 1-molecule coumaroyl-CoA and 3-molecule malonyl-CoA to form 2',4',6',4-tetrahyroxychalcone (THC), and THC generates a stable ISP in the vacuole under the action of chalcone2'-glucosyltransferases (THC2'GT). In tree peony, the details of the THC2'GT gene have not yet been reported. In this study, the candidate THC2'GT gene (PdTHC2'GT) in Paeonia delavayi var. lutea was screened. At the same time, we selected the upstream CHS gene (PdCHS) and the competitive CHI gene (PdCHI) to study the biosynthesis pathway of ISP. We successfully cloned three genes and sequenced them; subcellular localization showed that the three genes were located in the nucleus and cytoplasm. The overexpression of PdTHC2'GT in tobacco caused the accumulation of ISP in tobacco petals, which indicated that PdTHC2'GT was the key structural gene in the synthesis of ISP. After the overexpression of PdCHS and PdCHI in tobacco, the accumulation of anthocyanins in tobacco petals increased to different degrees, showing the role of PdCHS and PdCHI in anthocyanin accumulation. The analysis of NtCHS and NtCHI of transgenic tobacco lines by qRT-PCR showed that the THC2'GT gene could increase the expression of CHS. THC2'GT and CHI were found to be competitive; hence, the overexpression of THC2'GT could lead to a decrease in CHI expression. The CHS gene and CHI gene could increase the expression of each other. In conclusion, we verified the key structural gene PdTHC2'GT and studied the operation of the genes in its upstream and competitive pathway, providing a new perspective for the biosynthesis of ISP and new candidate genes for the directional breeding of tree peony.
Collapse
Affiliation(s)
| | | | | | | | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (H.Z.); (L.H.); (M.Y.); (M.Z.)
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (H.Z.); (L.H.); (M.Y.); (M.Z.)
| |
Collapse
|
18
|
Albert NW, Lafferty DJ, Moss SMA, Davies KM. Flavonoids - flowers, fruit, forage and the future. J R Soc N Z 2022; 53:304-331. [PMID: 39439482 PMCID: PMC11459809 DOI: 10.1080/03036758.2022.2034654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Flavonoids are plant-specific secondary metabolites that arose early during land-plant colonisation, most likely evolving for protection from UV-B and other abiotic stresses. As plants increased in complexity, so too did the diversity of flavonoid compounds produced and their physiological roles. The most conspicuous are the pigments, including yellow aurones and chalcones, and the red/purple/blue anthocyanins, which provide colours to flowers, fruits and foliage. Anthocyanins have been particularly well studied, prompted by the ease of identifying mutants of genes involved in biosynthesis or regulation, providing an important model system to study fundamental aspects of genetics, gene regulation and biochemistry. This has included identifying the first plant transcription factor, and later resolving how multiple classes of transcription factor coordinate in regulating the production of various flavonoid classes - each with different activities and produced at differing developmental stages. In addition, dietary flavonoids from fruits/vegetables and forage confer human- and animal-health benefits, respectively. This has prompted strong interest in generating new plant varieties with increased flavonoid content through both traditional breeding and plant biotechnology. Gene-editing technologies provide new opportunities to study how flavonoids are regulated and produced and to improve the flavonoid content of flowers, fruits, vegetables and forages.
Collapse
Affiliation(s)
- Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Declan J. Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah M. A. Moss
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
19
|
Shi J, Yan X, Sun T, Shen Y, Shi Q, Wang W, Bao M, Luo H, Nian F, Ning G. Homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of transgenic tobacco. Gene 2022; 809:146017. [PMID: 34655725 DOI: 10.1016/j.gene.2021.146017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/16/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022]
Abstract
Flavonoids and lignin consist of a large number of secondarymetabolites which are derived from the phenylpropanoid pathway, and they act as a significant role in plant growth, development, and stress response. However, few reports have documented that how different subbranches of phenylpropanoid metablolic pathway mutually interact. In Arabidopsis, AtCPC (AtCAPRICE) is known to play a negative role in anthocyanin accumulation. Nonetheless, whether AtCPC could control the biosynthesis of lignin is largely unknown. Additionally, whether the RrFLS and RrANR, flavonol synthase and anthocyanidin reductase, from Rosa rugosa regulate different branches of phenylpropanoid pathway is unclear. Here, we performed a series of transgenic experiments with short life cycle tobacco and RNA-Seq analysis. Finally, a series of assays related to biological, physiological, and phenotypic characteristics were undertaken. Our results indicated that ectopic expression of AtCPC in tobacco not only decreased the flavonoid compound accumulation, but also up-regulated several lignin biosynthetic genes, and significantly increased the accumulation of lignin. Our results also revealed that although they respectively improved the flavonol and proanthocyanidin contents, the overexpression of RrFLS and RrANR plays positive roles in lignin biosynthesis in transgenic tobacco plants. Our findings provide a novel insight into the mechanism underlying homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of plants.
Collapse
Affiliation(s)
- Jiewei Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxiao Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenen Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318, USA
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, No.452, Fengyuan Road, Kunming, China.
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Chen Y, Zhu W, Shi S, Wu L, Du S, Jin L, Yang K, Zhao W, Yang J, Guo L, Wang Z, Zhang Y. Use of RNAi With OsMYB76R as a Reporter for Candidate Genes Can Efficiently Create and Verify Gametophytic Male Sterility in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:728193. [PMID: 34552609 PMCID: PMC8451479 DOI: 10.3389/fpls.2021.728193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Gametophytic male sterility (GMS) plays an important role in the study of pollen development and seed propagation of recessive nuclear male sterile lines insensitive to the environmental conditions in hybrid rice breeding. Since the inherent phenotypic and genetic characteristics of GMS, it is very difficult to find and identify the GMS mutants. However, due to the abundance of gene transcription data, a large number of pollen-specific genes have been found, and most of them may be associated with GMS. To promote the study of these genes in pollen development and heterosis utilization, in this study, an easy and efficient method of creating and identifying GMS was established using RNAi and OsMYB76R as a reporter. First, the OsC1/OsMYB76 gene involved in anthocyanin synthesis was modified, and we have validated that the modified OsMYB76R is workable as the same as the pre-modified OsMYB76 gene. Then, the ascorbic acid oxidase gene OsPTD1 was downregulated using RNAi, driven by its own promoter that resulted in abnormal pollen tube growth. Finally, the RNAi elements were linked with OsMYB76R and transformed into an osmyb76 mutant, and the distortion of purple color segregation was found in T1 and F1 generations. This indicates that the OsPTD1 GMS was prepared successfully. Compared to current methods, there are several advantages to this method. First, time is saved in material preparation, as one generation less needs to be compared than in the conventional method, and mutation screening can be avoided. In addition, for identification, the cost is lower; PCR, electrophoresis, and other processes are not needed; and no expensive chemicals or instruments are required. Finally, the results are more accurate, with much lower background effects, and no damage to the plant. The result is an easy, efficient, low-cost, and accurate method of preparing and identifying GMS genes.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Wenping Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Shudan Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Lina Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Shuanglin Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Liangshen Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Kuan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Wenjia Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Jiaxin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhongwei Wang
- Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
21
|
Wen CH, Tsao NW, Wang SY, Chu FH. Color variation in young and senescent leaves of Formosan sweet gum (Liquidambar formosana) by the gene regulation of anthocyanidin biosynthesis. PHYSIOLOGIA PLANTARUM 2021; 172:1750-1763. [PMID: 33675234 DOI: 10.1111/ppl.13385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/30/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the same regulatory mechanisms. Formosan sweet gum (Liquidambar formosana Hance) is a subtropical deciduous tree species that possesses attractive autumnal leaf coloration. The color of young leaves is closer to purplish red, while senescent leaves are more orange-red to dark red. It was confirmed that delphinidin and cyanidin are the two anthocyanidins that contribute to the color of Formosan sweet gum leaves, and the content of different anthocyanins influences the appearance of color. To elucidate the regulation of anthocyanidin biosynthesis, recombinant DIHYDROFLAVONOL-4-REDUCTASEs (LfDFR1 and LfDFR2) (EC 1.1.1.234) were produced, and their substrate acceptability was investigated both in vitro and in planta. The functions of flavanones and dihydroflavonols modification by FLAVONOID 3' HYDROXYLASE (LfF3'H1) (EC 1.14.14.82) and FLAVONOID 3'5' HYDROXYLASE (LfF3'5'H) (EC 1.14.14.81) were verified using a transient overexpression experiment in Nicotiana benthamiana. The results showed that LfMYB5 induced LfF3'5'H and LfMYB123 induced both LfF3'H1 and LfDFR1 in spring when the leaves were expanding, whereas LfMYB113 induced LfF3'H1, LfDFR1, and LfDFR2 in late autumn to winter when the leaves were undergoing leaf senescence. In conclusion, the color variation of Formosan sweet gum in young and senescent leaves was attributed to the composition of anthocyanidins through the transcriptional regulation of LfF3'H1 and LfF3'5'H by LfMYB5, LfMYB113, and LfMYB123.
Collapse
Affiliation(s)
- Chi-Hsiang Wen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Yamada Y, Nishida S, Shitan N, Sato F. Genome-Wide Profiling of WRKY Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy ( Eschscholzia californica). FRONTIERS IN PLANT SCIENCE 2021; 12:699326. [PMID: 34220919 PMCID: PMC8248504 DOI: 10.3389/fpls.2021.699326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Transcription factors of the WRKY family play pivotal roles in plant defense responses, including the biosynthesis of specialized metabolites. Based on the previous findings of WRKY proteins regulating benzylisoquinoline alkaloid (BIA) biosynthesis, such as CjWRKY1-a regulator of berberine biosynthesis in Coptis japonica-and PsWRKY1-a regulator of morphine biosynthesis in Papaver somniferum-we performed genome-wide characterization of the WRKY gene family in Eschscholzia californica (California poppy), which produces various BIAs. Fifty WRKY genes were identified by homology search and classified into three groups based on phylogenetic, gene structure, and conserved motif analyses. RNA sequencing showed that several EcWRKY genes transiently responded to methyl jasmonate, a known alkaloid inducer, and the expression patterns of these EcWRKY genes were rather similar to those of BIA biosynthetic enzyme genes. Furthermore, tissue expression profiling suggested the involvement of a few subgroup IIc EcWRKYs in the regulation of BIA biosynthesis. Transactivation analysis using luciferase reporter genes harboring the promoters of biosynthetic enzyme genes indicated little activity of subgroup IIc EcWRKYs, suggesting that the transcriptional network of BIA biosynthesis constitutes multiple members. Finally, we investigated the coexpression patterns of EcWRKYs with some transporter genes and discussed the diversified functions of WRKY genes based on a previous finding that CjWRKY1 overexpression in California poppy cells enhanced BIA secretion into the medium.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Shohei Nishida
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobukazu Shitan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
23
|
Jacob P, Brisou G, Dalmais M, Thévenin J, van der Wal F, Latrasse D, Suresh Devani R, Benhamed M, Dubreucq B, Boualem A, Lepiniec L, Immink RGH, Hirt H, Bendahmane A. The Seed Development Factors TT2 and MYB5 Regulate Heat Stress Response in Arabidopsis. Genes (Basel) 2021; 12:genes12050746. [PMID: 34063415 PMCID: PMC8156827 DOI: 10.3390/genes12050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
HEAT SHOCK FACTOR A2 (HSFA2) is a regulator of multiple environmental stress responses required for stress acclimation. We analyzed HSFA2 co-regulated genes and identified 43 genes strongly co-regulated with HSFA2 during multiple stresses. Motif enrichment analysis revealed an over-representation of the site II element (SIIE) in the promoters of these genes. In a yeast 1-hybrid screen with the SIIE, we identified the closely related R2R3-MYB transcription factors TT2 and MYB5. We found overexpression of MYB5 or TT2 rendered plants heat stress tolerant. In contrast, tt2, myb5, and tt2/myb5 loss of function mutants showed heat stress hypersensitivity. Transient expression assays confirmed that MYB5 and TT2 can regulate the HSFA2 promoter together with the other members of the MBW complex, TT8 and TRANSPARENT TESTA GLABRA 1 (TTG1) and that the SIIE was involved in this regulation. Transcriptomic analysis revealed that TT2/MYB5 target promoters were enriched in SIIE. Overall, we report a new function of TT2 and MYB5 in stress resistance and a role in SIIE-mediated HSFA2 regulation.
Collapse
Affiliation(s)
- Pierre Jacob
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Gwilherm Brisou
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Marion Dalmais
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Johanne Thévenin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (J.T.); (B.D.); (L.L.)
| | - Froukje van der Wal
- Bioscience and Laboratory of Molecular Biology, Wageningen University and Research, 6708PB Wageningen, The Netherlands; (F.v.d.W.); (R.G.H.I.)
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Ravi Suresh Devani
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Bertrand Dubreucq
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (J.T.); (B.D.); (L.L.)
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Loic Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (J.T.); (B.D.); (L.L.)
| | - Richard G. H. Immink
- Bioscience and Laboratory of Molecular Biology, Wageningen University and Research, 6708PB Wageningen, The Netherlands; (F.v.d.W.); (R.G.H.I.)
| | - Heribert Hirt
- Darwin21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
- Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
- Correspondence:
| |
Collapse
|
24
|
Kreynes AE, Yong Z, Ellis BE. Developmental phenotypes of Arabidopsis plants expressing phosphovariants of AtMYB75. PLANT SIGNALING & BEHAVIOR 2021; 16:1836454. [PMID: 33100126 PMCID: PMC7781762 DOI: 10.1080/15592324.2020.1836454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis transcription factor Myeloblastosis protein 75 (MYB75, AT1G56650) is a well-established transcriptional activator of genes required for anthocyanin and flavonoid production, and a repressor of lignin and other secondary cell wall biosynthesis genes. MYB75 is itself tightly regulated at the transcriptional, translational and post-translational levels, including protein phosphorylation by Arabidopsis MAP kinases Examination of the behavior of different phosphovariant versions of MYB75 in vitro and in vivo revealed that overexpression of the MYB75T131E phosphovariant had a particularly marked effect on global changes in gene expression suggesting that phosphorylated MYB75 could be involved in a broader range of functions than previously recognized. Here, we describe a range of distinct developmental phenotypes observed among Arabidopsis lines expressing various phosphovariant forms of MYB75. Expression of either MYB75T131E or MYB75T131A phosphovariants, from the endogenous MYB75 promoter, in Arabidopsis myb75- mutants (Nossen background), resulted in severely impaired germination rates, and developmental arrest at early seedling stages. Arabidopsis plants overexpressing MYB75T131E from a strong constitutive Cauliflower mosaic virus (CaMV35S) promoter displayed slower development, with delayed bolting, flowering and onset of senescence. Conversely, MYB75T131A -overexpressing lines flowered and set seed earlier than either Col-0 WT controls or other MYB75-overexpressors (MYB75WT and MYB75T131E ). Histochemical analysis of mature stems also revealed ectopic vessel development in plants overexpressing MYB75; this phenotype was particularly prominent in the MYB75T131E phosphovariant. These data suggest that MYB75 plays a significant role in plant development, and that this aspect of MYB75 function is influenced by its phosphorylation status.
Collapse
Affiliation(s)
- Anna E. Kreynes
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
- CONTACT Anna E. Kreynes Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Zhenhua Yong
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Brian E. Ellis
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Mao J, Huang L, Chen M, Zeng W, Feng Z, Huang S, Liu T. Integrated Analysis of the Transcriptome and Metabolome Reveals Genes Involved in Terpenoid and Flavonoid Biosynthesis in the Loblolly Pine ( Pinus taeda L.). FRONTIERS IN PLANT SCIENCE 2021; 12:729161. [PMID: 34659295 PMCID: PMC8519504 DOI: 10.3389/fpls.2021.729161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 05/08/2023]
Abstract
Loblolly pine (Pinus taeda L.) is an important tree for afforestation with substantial economic and ecological value. Many metabolites with pharmacological activities are present in the tissues of P. taeda. However, the biosynthesis regulatory mechanisms of these metabolites are poorly understood. In the present study, transcriptome and metabolome analyses were performed on five tissues of P. taeda. A total of 40.4 million clean reads were obtained and assembled into 108,663 unigenes. These were compared with five databases, revealing 39,576 annotated unigenes. A total of 13,491 differentially expressed genes (DEGs) were observed in 10 comparison groups. Of these, 487 unigenes exhibited significantly different expressions in specific tissues of P. taeda. The DEGs were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis. We identified 343 and 173 candidate unigenes related to the biosynthesis of terpenoids and flavonoids, respectively. These included 62 R2R3-MYB, 30 MYB, 15 WRKY, seven bHLH, seven ERF, six ZIP, five AP2, and one WD40 genes that acted as regulators in flavonoid and/or terpenoid biosynthesis. Additionally, metabolomics analysis detected 528 metabolites, among which 168 were flavonoids. A total of 493 differentially accumulated metabolites (DAMs) were obtained in 10 comparison groups. The 3,7-Di-O-methyl quercetin was differentially accumulated in all the comparison groups. The combined transcriptome and metabolome analyses revealed 219 DEGs that were significantly correlated with 45 DAMs. Our study provides valuable genomic and metabolome information for understanding P. taeda at the molecular level, providing a foundation for the further development of P. taeda-related pharmaceutical industry.
Collapse
Affiliation(s)
- Jipeng Mao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Taishan Hongling Seed Orchart, Jiangmen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Linwang Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Manyu Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Weishan Zeng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhiheng Feng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shaowei Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tianyi Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Tianyi Liu
| |
Collapse
|
26
|
Wei J, Yang J, Jiang W, Pang Y. Stacking triple genes increased proanthocyanidins level in Arabidopsis thaliana. PLoS One 2020; 15:e0234799. [PMID: 32584850 PMCID: PMC7316333 DOI: 10.1371/journal.pone.0234799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Anthocyanins and proanthocyanidins are two important plant secondary metabolites, and they contribute to plant survival and human health. In particular, proanthocyanidins could also prevent ruminants from the damage of pasture bloat. However, the improvement of proanthocyanidins content remain unsatisfied. In this study, we attempted to improve proanthocyanidins level by gene stacking in Arabidopsis thaliana as prove-of-concept. Two proanthocyanidin pathway genes from tea plant, CsF3’5’H and CsANR2, were co-expressed in the wild type and PAP1 over-expression Arabidopsis. Over-expression of CsF3’5’H slightly affected anthocyanins level in leaves and proanthocyanidins in mature seed when expressed alone in the pap1-D line. Over-expression of CsANR2 led to an obvious decrease in anthocyanins in leaves of both wild type and pap1-D lines, but increase in proanthocyanidin level in mature seeds. Over-expression of CsANR2 in pap1-D lines lead to production of DMACA-reactive soluble proanthocyanidins in leaves, but not in wild type or pap1-D lines. Anthocyanins level was decreased in the leaves of CsF3’5’H, CsANR2 and pap1-D co-expression lines, but proanthocyanidins were increased remarkably in both leaves and mature seeds in the co-expression line. It is concluded that co-expression of CsANR2 and PAP1 in Arabidopsis produce soluble proanthocyanidins in leaves, and co-expression of CsF3’5’H, CsANR2 and PAP1 lead to a significant increase in proanthocyanidins in mature seeds. The transcript levels of endogenous CHS, DFR, ANS and ANR genes in Arabidopsis were up-regulated in the triple genes co-expression line. Based on these studies, it is possible to develop new plant germplasm with improved proanthocyanidins by co-expressing of multiple genes.
Collapse
Affiliation(s)
- Jiebing Wei
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Yang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (WJ); (YP)
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (WJ); (YP)
| |
Collapse
|
27
|
Zhang Y, Ye J, Liu C, Xu Q, Long L, Deng X. Citrus PH4-Noemi regulatory complex is involved in proanthocyanidin biosynthesis via a positive feedback loop. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1306-1321. [PMID: 31728522 PMCID: PMC7031078 DOI: 10.1093/jxb/erz506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/06/2019] [Indexed: 05/21/2023]
Abstract
Proanthocyanidins (PAs; or condensed tannins) are a major class of flavonoids that contribute to citrus fruit quality. However, the molecular mechanism responsible for PA biosynthesis and accumulation in citrus remains unclear. Here, we identify a PH4-Noemi regulatory complex that regulates proanthocyanidin biosynthesis in citrus. Overexpression of PH4 or Noemi in citrus calli activated the expression of PA biosynthetic genes and significantly increased the PA content. Interestingly, Noemi was also shown to be up-regulated in CsPH4-overexpressing lines compared with wild-type calli. Simultaneously, CsPH4 partially complemented the PA-deficient phenotype of the Arabidopsis tt2 mutant and promoted PA accumulation in the wild-type. Further analysis revealed that CsPH4 interacted with Noemi, and together these proteins synergistically activated the expression of PA biosynthetic genes by directly binding to the MYB-recognizing elements (MRE) of the promoters of these genes. Moreover, CsPH4 could directly bind to the promoter of Noemi and up-regulate the expression of this gene. These findings explain how the CsPH4-Noemi regulatory complex contributes to the activation of PA biosynthetic genes via a positive feedback loop and provide new insights into the molecular mechanisms underlying PA biosynthesis, which can be effectively employed for metabolic engineering to improve citrus fruit quality.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chaoyang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lichang Long
- Agriculture Bureau of Hongjiang City, Hongjiang, Hunan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
28
|
Dong X, Wang Z, Tian L, Zhang Y, Qi D, Huo H, Xu J, Li Z, Liao R, Shi M, Wahocho SA, Liu C, Zhang S, Tian Z, Cao Y. De novo assembly of a wild pear (Pyrus betuleafolia) genome. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:581-595. [PMID: 31368610 PMCID: PMC6953202 DOI: 10.1111/pbi.13226] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/25/2019] [Accepted: 07/23/2019] [Indexed: 05/18/2023]
Abstract
China is the origin and evolutionary centre of Oriental pears. Pyrus betuleafolia is a wild species native to China and distributed in the northern region, and it is widely used as rootstock. Here, we report the de novo assembly of the genome of P. betuleafolia-Shanxi Duli using an integrated strategy that combines PacBio sequencing, BioNano mapping and chromosome conformation capture (Hi-C) sequencing. The genome assembly size was 532.7 Mb, with a contig N50 of 1.57 Mb. A total of 59 552 protein-coding genes and 247.4 Mb of repetitive sequences were annotated for this genome. The expansion genes in P. betuleafolia were significantly enriched in secondary metabolism, which may account for the organism's considerable environmental adaptability. An alignment analysis of orthologous genes showed that fruit size, sugar metabolism and transport, and photosynthetic efficiency were positively selected in Oriental pear during domestication. A total of 573 nucleotide-binding site (NBS)-type resistance gene analogues (RGAs) were identified in the P. betuleafolia genome, 150 of which are TIR-NBS-LRR (TNL)-type genes, which represented the greatest number of TNL-type genes among the published Rosaceae genomes and explained the strong disease resistance of this wild species. The study of flavour metabolism-related genes showed that the anthocyanidin reductase (ANR) metabolic pathway affected the astringency of pear fruit and that sorbitol transporter (SOT) transmembrane transport may be the main factor affecting the accumulation of soluble organic matter. This high-quality P. betuleafolia genome provides a valuable resource for the utilization of wild pear in fundamental pear studies and breeding.
Collapse
Affiliation(s)
- Xingguang Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Luming Tian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Ying Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Dan Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Hongliang Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Jiayu Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zhe Li
- Berry Genomics CorporationBeijingChina
| | - Rui Liao
- Berry Genomics CorporationBeijingChina
| | - Miao Shi
- Berry Genomics CorporationBeijingChina
| | - Safdar Ali Wahocho
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Chao Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Simeng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yufen Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| |
Collapse
|
29
|
Wang L, Lu W, Ran L, Dou L, Yao S, Hu J, Fan D, Li C, Luo K. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:733-751. [PMID: 31021017 DOI: 10.1111/tpj.14364] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
The secondary cell wall is an important carbon sink in higher plants and its biosynthesis requires coordination of metabolic fluxes in the phenylpropanoid pathway. In Arabidopsis (Arabidopsis thaliana), MYB75 and the KNOX transcription factor KNAT7 form functional complexes to regulate secondary cell wall formation in the inflorescence stem. However, the molecular mechanism by which these transcription factors control different branches of the phenylpropanoid pathway remains poorly understood in woody species. We isolated an R2R3-MYB transcription factor MYB6 from Populus tomentosa and determined that it was expressed predominately in young leaves. Overexpression of MYB6 in transgenic poplar upregulated flavonoid biosynthetic gene expression, resulting in significantly increased accumulation of anthocyanin and proanthocyanidins. MYB6-overexpression plants showed reduced secondary cell wall deposition, accompanied by repressed expression of secondary cell wall biosynthetic genes. We further showed that MYB6 interacted physically with KNAT7 and formed functional complexes that acted to repress secondary cell wall development in poplar and Arabidopsis. The results provide an insight into the transcriptional mechanisms involved in the regulation of the metabolic fluxes between the flavonoid and lignin biosynthetic pathways in poplar.
Collapse
Affiliation(s)
- Lijun Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wanxiang Lu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Ran
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Liwen Dou
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shu Yao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
30
|
Peel GJ, Dixon RA. Detection and Quantification of Engineered Proanthocyanidins in Transgenic Plants. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700201008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Proanthocyanidins (PAs) are oligomeric plant natural products mostly derived from epicatechin and/or catechin monomers. In studies aimed at engineering PAs into plant tissues that do not naturally make these compounds, we have expressed PA biosynthetic and regulatory genes in tobacco, alfalfa ( Medicago sativa) and the model legume Medicago truncatula. Because engineered tannins may be produced in small quantities and it is often necessary to screen many independent plant lines, we have developed an improved, highly sensitive method to quantify and determine the composition of oligomeric PAs in plant extracts. The method involves normal-phase HPLC separation of semi-purified PAs followed by post-column reaction with the PA-specific reagent DMACA (dimethylaminocinnamaldehyde). This procedure allows for accurate and sensitive quantification of individual oligomeric PAs and, unlike currently used methods, does not require exhaustive sample preparation and clean-up. Compositional data are shown for genetically engineered PAs in tobacco and alfalfa.
Collapse
Affiliation(s)
- Gregory J. Peel
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore Oklahoma 73401, USA
| | - Richard A. Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore Oklahoma 73401, USA
| |
Collapse
|
31
|
Huang J, Xing M, Li Y, Cheng F, Gu H, Yue C, Zhang Y. Comparative Transcriptome Analysis of the Skin-Specific Accumulation of Anthocyanins in Black Peanut ( Arachis hypogaea L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1312-1324. [PMID: 30614699 DOI: 10.1021/acs.jafc.8b05915] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As an oil crop with good taste and profuse nutrition, peanut ( Arachis hypogaea L.) is grown worldwide, mainly for edible seeds. Black peanuts attract more attention for their appealing color and health-promoting anthocyanins. Here, two cyanidin-based anthocyanins and four quercetin-based flavonols were separated and identified from skins of two black cultivars (Zi Yu and Zi Guan) by HPLC-ESI-Q-TOF-MS. To study the anthocyanin accumulation, libraries constructed from the mRNA of skins of Zi Yu and white cultivar (Bai Yu) were sequenced, and 4042 differentially expressed genes were identified. Gene ontology and KEGG pathway analysis underlined the importance of the high expression of flavonoid biosynthetic and regulatory genes in seed skin of Zi Yu. Furthermore, expression profiles of these genes were analyzed carefully in four representative peanut cultivars. Altogether, these results strongly indicate that the up-regulation of transcriptional activators (AhMYB1, AhMYB2, and AhTT8) accounts for the skin-specific accumulation of anthocyanins in black peanut.
Collapse
Affiliation(s)
- Jinyong Huang
- School of Agricultural Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
- School of Life Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Minghui Xing
- School of Agricultural Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
- School of Life Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Yan Li
- School of Agricultural Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
- School of Life Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Fang Cheng
- School of Agricultural Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
- School of Life Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Huihui Gu
- School of Life Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Caipeng Yue
- School of Agricultural Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
- School of Life Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Yanjie Zhang
- School of Agricultural Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
- School of Life Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| |
Collapse
|
32
|
Knuesting J, Brinkmann MC, Silva B, Schorsch M, Bendix J, Beck E, Scheibe R. Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000 m in the tropical Andes. PLoS One 2018; 13:e0202255. [PMID: 30102718 PMCID: PMC6089443 DOI: 10.1371/journal.pone.0202255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/31/2018] [Indexed: 01/10/2023] Open
Abstract
In tropical agriculture, the vigorously growing Bracken fern causes severe problems by invading pastures and out-competing the common pasture grasses. Due to infestation by that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodiversity-rich tropical forest is progressively cleared for new grazing areas. Here we present a broad physiological comparison of the two plant species that are the main competitors on the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata and the weed Bracken (Pteridium arachnoideum). With increasing elevation, the competitive power of Bracken increases as shown by satellite data of the study region. Using data obtained from field measurements, the annual biomass production of both plant species, as a measure of their competitive strength, was modeled over an elevational gradient from 1800 to 2800 m. The model shows that with increasing elevation, biomass production of the two species shifts in favor of Bracken which, above 1800 m, is capable of outgrowing the grass. In greenhouse experiments, the effects on plant growth of the presumed key variables of the elevational gradient, temperature and UV radiation, were separately analyzed. Low temperature, as well as UV irradiation, inhibited carbon uptake of the C4-grass more than that of the C3-plant Bracken. The less temperature-sensitive photosynthesis of Bracken and its effective protection from UV radiation contribute to the success of the weed on the highland pastures. In field samples of Bracken but not of Setaria, the content of flavonoids as UV-scavengers increased with the elevation. Combining modeling with measurements in greenhouse and field allowed to explain the invasive growth of a common weed in upland pastures. The performance of Setaria decreases with elevation due to suboptimal photosynthesis at lower temperatures and the inability to adapt its cellular UV screen.
Collapse
Affiliation(s)
- Johannes Knuesting
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrueck University, Osnabrueck, Germany
| | - Marie Clara Brinkmann
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrueck University, Osnabrueck, Germany
| | - Brenner Silva
- Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University of Marburg, Marburg, Germany
| | - Michael Schorsch
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrueck University, Osnabrueck, Germany
| | - Jörg Bendix
- Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University of Marburg, Marburg, Germany
| | - Erwin Beck
- Department of Plant Physiology, Faculty of Biology, Chemistry, and Geosciences, BAYCEER, University of Bayreuth, Bayreuth, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrueck University, Osnabrueck, Germany
- * E-mail:
| |
Collapse
|
33
|
Wiesneth S, Aas G, Heilmann J, Jürgenliemk G. Investigation of the flavan-3-ol patterns in willow species during one growing-season. PHYTOCHEMISTRY 2018; 145:26-39. [PMID: 29059537 DOI: 10.1016/j.phytochem.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/18/2017] [Accepted: 10/08/2017] [Indexed: 05/25/2023]
Abstract
Flavonoids, proanthocyanidins (PAs) and salicylic alcohol derivatives are the main groups of ingredients in Salix needed as defensive tools and signal molecules, but have also pharmaceutical importance. The present study investigated total PA content, complete PA pattern, the oligomeric/total PAs quotient and the contents of catechin and epicatechin during one growing-season for the leaves and this year's sprouts in ten willows (Salix pentandra L. ♂, S. alba L. ♂, S. fragilis L. ♀, S. caprea L. ♂ & ♀, S. cinerea L. ♂, S. caprea x cinerea ♂, S. daphnoidesVill. ♂ & ♀ and S. purpurea L. ♀; all Salicaceae). Comparison of the different species revealed distinct seasonal fluctuations of the oligomeric and polymeric PA fractions, but the contents of both groups always developed in the same direction. All willows prefer the synthesis of PAs with DP-2 - DP-4 within the oligomeric fraction (DP-2 - DP-10) and species with rather low PA contents like S. purpurea (0.1-2.6 mg/g) as well as species with rather high PA contents like S. alba (3.8-14.7 mg/g) were found. Only slight gender specific differences could be observed for both sexes of S. daphnoides and S. caprea. The PA pattern of the hybrid S. caprea x cinerea seems to be influenced by both parents. Thus, the accumulation of the oligomeric PAs accorded to S. caprea and the polymeric PAs matched S. cinerea resulting in an overall depression of PAs in the sprouts and a varying seasonal trend in the leaves. In contrast, the content of catechin remained high and seemed to be not influenced in the hybrid. Although only one individual of each Salix species could be considered in this screening study, the present results demonstrate the variability of the flavan-3-ol pattern within the genus Salix but also some preliminary correlations could be observed. Future studies with more Salix species will provide more insights into chemotaxonomic correlations.
Collapse
Affiliation(s)
- Stefan Wiesneth
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Gregor Aas
- Ecological-Botanical Gardens, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Jörg Heilmann
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Guido Jürgenliemk
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
34
|
Singer SD, Weselake RJ, Acharya S. Molecular Enhancement of Alfalfa: Improving Quality Traits for Superior Livestock Performance and Reduced Environmental Impact. CROP SCIENCE 2018; 58:55-71. [PMID: 0 DOI: 10.2135/cropsci2017.07.0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Stacy D. Singer
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| | - Randall J. Weselake
- Dep. of Agricultural, Food and Nutritional Science; Univ. of Alberta; Edmonton AB Canada T6G 2P5
| | - Surya Acharya
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| |
Collapse
|
35
|
Ding K, Pei T, Bai Z, Jia Y, Ma P, Liang Z. SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots. Sci Rep 2017; 7:5104. [PMID: 28698552 PMCID: PMC5506036 DOI: 10.1038/s41598-017-04909-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
Phenolic acids and tanshinones are two major bioactive components in Salvia miltiorrhiza Bunge. A novel endogenous R2R3-MYB transcription factor, SmMYB36, was identified in this research. This transcript factor can simultaneously influence the content of two types of components in SmMYB36 overexpression hairy roots. SmMYB36 was mainly localized in the nucleus of onion epidermis and it has transactivation activity. The overexpression of SmMYB36 promoted tanshinone accumulation but inhibited phenolic acid and flavonoid biosynthesis in Salvia miltiorrhiza hairy roots. The altered metabolite content was due to changed metabolic flow which was regulated by transcript expression of metabolic pathway genes. The gene transcription levels of the phenylpropanoid general pathway, tyrosine derived pathway, methylerythritol phosphate pathway and downstream tanshinone biosynthetic pathway changed significantly due to the overexpression of SmMYB36. The wide distribution of MYB binding elements (MBS, MRE, MBSI and MBSII) and electrophoretic mobility shift assay results indicated that SmMYB36 may be an effective tool to regulate metabolic flux shifts.
Collapse
Affiliation(s)
- Kai Ding
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianlin Pei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengqing Bai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanyan Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zongsuo Liang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
Wang L, Ran L, Hou Y, Tian Q, Li C, Liu R, Fan D, Luo K. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. THE NEW PHYTOLOGIST 2017; 215:351-367. [PMID: 28444797 DOI: 10.1111/nph.14569] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/06/2017] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs) are major defense phenolic compounds in the leaves of poplar (Populus spp.) in response to abiotic and biotic stresses. Transcriptional regulation of PA biosynthetic genes by the MYB-basic helix-loop-helix (bHLH)-WD40 complexes in poplar is not still fully understood. Here, an Arabidopsis TT2-like gene MYB115 was isolated from Populus tomentosa and characterized by various molecular, genetic and biochemical approaches. MYB115 restored PA productions in the seed coat of the Arabidopsis tt2 mutant. Overexpression of MYB115 in poplar activated expression of PA biosynthetic genes, resulting in a significant increase in PA concentrations. By contrast, the CRISPR/Cas9-generated myb115 mutant exhibited reduced PA content and decreased expression of PA biosynthetic genes. MYB115 directly activated the promoters of PA-specific structural genes. MYB115 interacted with poplar TT8. Coexpression of MYB115, TT8 and poplar TTG1 significantly enhanced the expression of ANR1 and LAR3. Additionally, transgenic plants overexpressing MYB115 had increased resistance to the fungal pathogen Dothiorella gregaria, whereas myb115 mutant exhibited greater sensitivity compared with wild-type plants. Our data provide insight into the regulatory mechanisms controlling PA biosynthesis by MYB115 in poplar, which could be effectively employed for metabolic engineering of PAs to improve resistance to fungal pathogens.
Collapse
Affiliation(s)
- Lijun Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Ran
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yisu Hou
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyan Tian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, China
| | - Rui Liu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
37
|
Nanda S, Mohanty JN, Mishra R, Joshi RK. Metabolic Engineering of Phenylpropanoids in Plants. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Yang S, Jiang Y, Xu L, Shiratake K, Luo Z, Zhang Q. Molecular cloning and functional characterization of DkMATE1 involved in proanthocyanidin precursor transport in persimmon (Diospyros kaki Thunb.) fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:241-250. [PMID: 27472890 DOI: 10.1016/j.plaphy.2016.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/18/2016] [Indexed: 05/01/2023]
Abstract
Persimmon fruits accumulate a large amount of proanthocyanidins (PAs) in "tannin cells" during development that cause the sensation of astringency due to coagulation of oral proteins. Pollination-constant non-astringent (PCNA) is a spontaneous mutant persimmon phenotype that loses its astringency naturally on the tree at maturity; while the more common non-PCNA fruits remain rich in PAs until they are fully ripened. Here, we isolated a DkMATE1 gene encoding a Multidrug And Toxic Compound Extrusion (MATE) family protein from the Chinese PCNA (C-PCNA) 'Eshi 1'. Expression patterns of DkMATE1 were positively correlated with the accumulation of PAs in different types of persimmons fruits during fruit development. An analysis of the inferred amino acid sequences and phylogenetic relationships indicated that DkMATE1 is a putative PA precursor transporter, and subcellular localization assays revealed that DkMATE1 is localized in the vacuolar membrane. Ectopic expression of the DkMATE1 in Arabidopsis tt12 mutant supported that DkMATE1 could complement its biological function in transporting epicatechin 3'-O-glucoside as a PAs precursor from the cytoplasm to vacuole. Furthermore, the transient over-expression and silencing of DkMATE1 in 'Mopanshi' persimmon leaves resulted in a significant increase and a decrease in PA content, respectively. The analysis of cis-elements in DkMATE1 promoter regions indicated that DkMATE1 might be regulated by DkMYB4, another well-known structural gene in persimmon. Overall, our results show that DkMATE1 may be an essential PA precursor membrane transporter that plays an important role in PA biosynthesis in persimmon.
Collapse
Affiliation(s)
- Sichao Yang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yun Jiang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Liqing Xu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang 438000, Hubei, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang 438000, Hubei, China.
| |
Collapse
|
39
|
Bulgakov VP, Avramenko TV, Tsitsiashvili GS. Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: focus on anthocyanins. Crit Rev Biotechnol 2016; 37:685-700. [PMID: 26912350 DOI: 10.3109/07388551.2016.1141391] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anthocyanin biosynthesis in Arabidopsis is a convenient and relatively simple model for investigating the basic principles of secondary metabolism regulation. In recent years, many publications have described links between anthocyanin biosynthesis and general defense reactions in plants as well as photomorphogenesis and hormonal signaling. These relationships are complex, and they cannot be understood intuitively. Upon observing the lacuna in the Arabidopsis interactome (an interaction map of the factors involved in the regulation of Arabidopsis secondary metabolism is not available), we attempted to connect various cellular processes that affect anthocyanin biosynthesis. In this review, we revealed the main signaling protein modules that regulate anthocyanin biosynthesis. To our knowledge, this is the first reconstruction of a network of proteins involved in plant secondary metabolism.
Collapse
Affiliation(s)
- Victor P Bulgakov
- a Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences , Vladivostok 690022 , Russia and.,b Far Eastern Federal University , Vladivostok 690950 , Russia , and
| | - Tatiana V Avramenko
- a Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences , Vladivostok 690022 , Russia and
| | | |
Collapse
|
40
|
Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development. Sci Rep 2016; 6:18645. [PMID: 26727353 PMCID: PMC4698713 DOI: 10.1038/srep18645] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/23/2015] [Indexed: 01/05/2023] Open
Abstract
There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis.
Collapse
|
41
|
Albert NW. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes. FRONTIERS IN PLANT SCIENCE 2015; 6:1165. [PMID: 26779194 PMCID: PMC4689181 DOI: 10.3389/fpls.2015.01165] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These two genes are conserved in other legume species, and form two sub-clades within the larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia and Arabidopsis, these R2R3-MYB repressors do not prevent ectopic accumulation of anthocyanins or proanthocyanidins. Instead, they are expressed when anthocyanins or proanthocyanidins are being synthesized, and provide feedback regulation to MBW complexes. This feedback occurs because Tr-MYB133 and Tr-MYB134 are themselves regulated by MBW complexes. Tr-MYB133 is regulated by MBW complexes containing anthocyanin-related R2R3-MYB proteins (Tr-RED LEAF), while Tr-MYB134 is regulated by complexes containing the proanthocyanidin R2R3-MYBs (Tr-MYB14). Other features of the MBW gene regulation networks are also conserved within legumes, including the ability for the anthocyanin MBW complexes to activate the expression of the AN1/TT8 clade bHLH factor. The regulation of Tr-MYB133 and Tr-MYB134 by distinct, pathway-specific MBW complexes has resulted in subspecialization for controlling anthocyanin or proanthocyanidin synthesis.
Collapse
|
42
|
Tohge T, Zhang Y, Peterek S, Matros A, Rallapalli G, Tandrón YA, Butelli E, Kallam K, Hertkorn N, Mock HP, Martin C, Fernie AR. Ectopic expression of snapdragon transcription factors facilitates the identification of genes encoding enzymes of anthocyanin decoration in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:686-704. [PMID: 26108615 DOI: 10.1111/tpj.12920] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/12/2023]
Abstract
Given the potential health benefits of polyphenolic compounds in the diet, there is a growing interest in the generation of food crops enriched with health-protective flavonoids. We undertook a series of metabolite analyses of tomatoes ectopically expressing the Delila and Rosea1 transcription factor genes from snapdragon (Antirrhinum majus), paying particular attention to changes in phenylpropanoids compared to controls. These analyses revealed multiple changes, including depletion of rutin and naringenin chalcone, and enhanced levels of anthocyanins and phenylacylated flavonol derivatives. We isolated and characterized the chemical structures of the two most abundant anthocyanins, which were shown by NMR spectroscopy to be delphinidin-3-(4'''-O-trans-p-coumaroyl)-rutinoside-5-O-glucoside and petunidin-3-(4'''-O-trans-p-coumaroyl)-rutinoside-5-O-glucoside. By performing RNA sequencing on both purple fruit and wild-type fruit, we obtained important information concerning the relative expression of both structural and transcription factor genes. Integrative analysis of the transcript and metabolite datasets provided compelling evidence of the nature of all anthocyanin biosynthetic genes, including those encoding species-specific anthocyanin decoration enzymes. One gene, SlFdAT1 (Solyc12g088170), predicted to encode a flavonoid-3-O-rutinoside-4'''-phenylacyltransferase, was characterized by assays of recombinant protein and over-expression assays in tobacco. The combined data are discussed in the context of both our current understanding of phenylpropanoid metabolism in Solanaceous species, and evolution of flavonoid decorating enzymes and their transcriptional networks in various plant species.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Yang Zhang
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Silke Peterek
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Ghanasyam Rallapalli
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, UK NR4 7UH, UK
| | - Yudelsy A Tandrón
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Eugenio Butelli
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Kalyani Kallam
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Norbert Hertkorn
- German Research Center for Environment and Health, GmbH, Institute of Ecological Chemistry, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764, Neuherberg, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
43
|
Liu J, Osbourn A, Ma P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. MOLECULAR PLANT 2015; 8:689-708. [PMID: 25840349 DOI: 10.1016/j.molp.2015.03.012] [Citation(s) in RCA: 484] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
Phenylpropanoid-derived compounds represent a diverse family of secondary metabolites that originate from phenylalanine. These compounds have roles in plant growth and development, and in defense against biotic and abiotic stress. Many of these compounds are also beneficial to human health and welfare. V-myb myeloblastosis viral oncogene homolog (MYB) proteins belong to a large family of transcription factors and are key regulators of the synthesis of phenylpropanoid-derived compounds. This review summarizes the current understanding of MYB proteins and their roles in the regulation of phenylpropanoid metabolism in plants.
Collapse
Affiliation(s)
- Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
44
|
Feng H, Li Y, Wang S, Zhang L, Liu Y, Xue F, Sun Y, Wang Y, Sun J. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5759-5769. [PMID: 25086591 DOI: 10.1093/jxb/eru286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The structural characteristics and component differences of proanthocyanidins in brown and white cotton fibres were identified by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. Proanthocyanidins in brown and white cotton fibres were found to contain mainly procyanidin (PC) and prodelphidin (PD) units with 2, 3-cis form (epigallocatechin and epicatechin). However, part of the proanthocyanidins in the white cotton fibres were modified by acylation and were constitutively different from the proanthocyanidins in brown cotton fibres. The relative amount of PD was similar to that of PC in white cotton fibres, while proanthocyanidins in brown cotton fibres consisted mainly of PD units with a relative ratio of 9:1. In brown cotton fibres, the proanthocyanidin monomeric composition was consistent with the expression profiles of proanthocyanidin synthase genes, suggesting that anthocyanidin reductase represented the major flow of the proanthocyanidin biosynthesis pathway. In addition, the structural characteristics and component differences of proanthocanidins in brown and white cotton fibres suggested that quinones, the oxidation products of proanthocyanidins, were the direct contributors to colour development in brown cotton fibre. This was demonstrated by vanillin-HCl staining and Borntrager's test. Collectively, these data demonstrated that the biosynthesis of proanthocyanidins is a crucial pigmentation process in brown cotton fibre, and that quinones may represent the main pigments contributing to formation of the the brown colour. This study revealed the molecular basis of pigmentation in brown cotton fibres, and provided important insights for genetic manipulation of pigment production in cotton fibres.
Collapse
Affiliation(s)
- Hongjie Feng
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Yanjun Li
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Shaofang Wang
- Centre for Legumes in Mediterranean Agriculture, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Liangliang Zhang
- Institute of Chemical Industry of Forest Products of Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Yongchuang Liu
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Fei Xue
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Yuqiang Sun
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang Province, China
| | - Yongmei Wang
- Institute of Chemical Industry of Forest Products of Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| |
Collapse
|
45
|
Koyama K, Numata M, Nakajima I, Goto-Yamamoto N, Matsumura H, Tanaka N. Functional characterization of a new grapevine MYB transcription factor and regulation of proanthocyanidin biosynthesis in grapes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4433-49. [PMID: 24860184 DOI: 10.1093/jxb/eru213] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A new regulator of proanthocyanidin (PA) biosynthesis in grapes was found by screening genes coordinately expressed with PA accumulation under different light conditions using a substantially improved method of serial analysis of gene expression (SuperSAGE). This R2R3-MYB transcription factor, VvMYBPAR, shows high protein sequence similarity with PA biosynthesis-regulating plant MYBs, such as VvMYBPA2 and TRANSPARENT TESTA2. Its transcript levels were relatively high in the skins of young berries, whereas the levels were higher in the seeds and at a maximum around veraison. In addition to its response to modified light conditions, the gene responded to abscisic acid application in the skins of cultured berries. Among the PA-specific branch genes, this transcript profile was not correlated with that of VvANR and VvLAR1 but was closely related to that of VvLAR2, suggesting different regulation of PA-specific branch genes from that of a known PA regulator, VvMYBPA2. The PA-specific regulation of VvMYBPAR was confirmed by VvMYBPAR constitutive expression in Arabidopsis in which the transgene specifically induced PA biosynthetic genes and resulted in PA accumulation in plants grown on sucrose-supplemented media to induce anthocyanin synthesis. A transient reporter assay using grapevine cells showed that VvMYBPAR activated the promoters on PA-specific branch genes and candidate genes associated with modification and transport of monomeric PA precursors, as well as the promoters of VvCHS3 and VvF3'5'Hd in the common flavonoid pathway, but not that of VvUFGT on the anthocyanin-specific branch. This new factor suggests the polygenic regulation of PA biosynthesis in grapes by closely related MYB transcription factors.
Collapse
Affiliation(s)
- Kazuya Koyama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mineyo Numata
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Ikuko Nakajima
- National Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Nami Goto-Yamamoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Hideo Matsumura
- Research Institute of Human and Environmental Science, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Nobukazu Tanaka
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
46
|
Xu W, Lepiniec L, Dubos C. New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. PLANT SIGNALING & BEHAVIOR 2014; 9:e28736. [PMID: 24721726 PMCID: PMC4091501 DOI: 10.4161/psb.28736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are secondary metabolites that play important roles throughout the plant life cycle and have potential human health beneficial properties. Flavonols, anthocyanins and proanthocyanidins (PAs or condensed tannins) are the three main class of flavonoids found in Arabidopsis thaliana. We have previously shown that PA biosynthesis (occurring exclusively in seeds) involves the transcriptional activity of four different ternary protein complexes composed of different R2R3-MYB and bHLH factors together with TRANSPARENT TESTA GLABRA 1 (TTG1), a WD repeat containing protein. We have also identified their direct targets, the late biosynthetic genes. In this study, we have further investigated the transcriptional capacity of the MBW complexes through transactivation assays in moss protoplast and overexpression in Arabidopsis siliques. Results provide new information for biotechnological engineering of PA biosynthesis, as well as new insights into the elucidation of the mechanisms that govern the interactions between MBW complexes and the DNA motifs they can target.
Collapse
Affiliation(s)
- Wenjia Xu
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| | - Loïc Lepiniec
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
| | - Christian Dubos
- INRA; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- AgroParisTech; Institut Jean-Pierre Bourgin; Saclay Plant Sciences; RD10; Versailles, France
- Correspondence to: Christian Dubos,
| |
Collapse
|
47
|
Qiu J, Gao F, Shen G, Li C, Han X, Zhao Q, Zhao D, Hua X, Pang Y. Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS One 2013; 8:e70665. [PMID: 23976949 PMCID: PMC3743766 DOI: 10.1371/journal.pone.0070665] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022] Open
Abstract
The rare wild species of snow lotus Saussurea involucrata is a commonly used medicinal herb with great pharmacological value for human health, resulting from its uniquely high level of phenylpropanoid compound production. To gain information on the phenylpropanid biosynthetic pathway genes in this critically important medicinal plant, global transcriptome sequencing was performed. It revealed that the phenylpropanoid pathway genes were well represented in S. involucrata. In addition, we introduced two key phenylpropanoid pathway inducing transcription factors (PAP1 and Lc) into this medicinal plant. Transgenic S. involucrata co-expressing PAP1 and Lc exhibited purple pigments due to a massive accumulation of anthocyanins. The over-expression of PAP1 and Lc largely activated most of the phenylpropanoid pathway genes, and increased accumulation of several phenylpropanoid compounds significantly, including chlorogenic acid, syringin, cyanrine and rutin. Both ABTS (2,2′-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid) and FRAP (ferric reducing anti-oxidant power) assays revealed that the antioxidant capacity of transgenic S. involucrata lines was greatly enhanced over controls. In addition to providing a deeper understanding of the molecular basis of phenylpropanoid metabolism, our results potentially enable an alternation of bioactive compound production in S. involucrata through metabolic engineering.
Collapse
Affiliation(s)
- Jian Qiu
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- The Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, the Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | - Fenghua Gao
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Guoan Shen
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Chonghui Li
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Han
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Qiao Zhao
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Dexiu Zhao
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xuejun Hua
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- * E-mail: (XH); (YP)
| | - Yongzhen Pang
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- * E-mail: (XH); (YP)
| |
Collapse
|
48
|
Pang Y, Cheng X, Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. PLANTA 2013; 238:139-54. [PMID: 23592226 DOI: 10.1007/s00425-013-1879-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/29/2013] [Indexed: 05/13/2023]
Abstract
In the first reaction specific for proanthocyanidin (PA) biosynthesis in Arabidopsis thaliana and Medicago truncatula, anthocyanidin reductase (ANR) converts cyanidin to (-)-epicatechin. The glucosyltransferase UGT72L1 catalyzes formation of epicatechin 3'-O-glucoside (E3'OG), the preferred substrate for MATE transporters implicated in PA biosynthesis in both species. The mechanism of PA polymerization is still unclear, but may involve the laccase-like polyphenol oxidase TRANSPARENT TESTA 10 (TT10). We have employed a combination of cell biological, biochemical and genetic approaches to evaluate this PA pathway model. The promoter regions of UGT72L1 and MtANR share common cis-acting elements and direct overlapping, but partially distinct, expression patterns. UGT72L1 and MtANR are localized in the cytosol, whereas TT10 is localized to the vacuole. Over-expression of UGT72L1 in M. truncatula hairy roots results in increased accumulation of PA-like compounds, and loss of function of UGT72L1 partially reduces epicatechin, E3'OG and extractable PA levels in M. truncatula seeds. Expression of UGT72L1 in A. thaliana leads to a massive increase in E3'OG in immature seed, but reduced levels of extractable PAs. However, when UGT72L1 was expressed in the Arabidopsis tt10 mutant, extractable PA levels increased and seed coat browning was delayed. Our results suggest that glycosylation of epicatechin is important for both PA precursor transport and assembly, but that additional redundant pathways may exist.
Collapse
Affiliation(s)
- Yongzhen Pang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhanglin T, Li J. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2885-98. [PMID: 23698630 PMCID: PMC3697950 DOI: 10.1093/jxb/ert148] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Developing yellow-seeded Brassica napus (rapeseed) with improved qualities is a major breeding goal. The intermediate and final metabolites of the phenylpropanoid and flavonoid pathways affect not only oil quality but also seed coat colour of B. napus. Here, the accumulation of phenolic compounds was analysed in the seed coats of black-seeded (ZY821) and yellow-seeded (GH06) B. napus. Using toluidine blue O staining and liquid chromatography-mass spectrometry, histochemical and biochemical differences were identified in the accumulation of phenolic compounds between ZY821 and GH06. Two and 13 unique flavonol derivatives were detected in ZY821 and GH06, respectively. Quantitative real-time PCR analysis revealed significant differences between ZY821 and GH06 in the expression of common phenylpropanoid biosynthetic genes (BnPAL and BnC4H), common flavonoid biosynthetic genes (BnTT4 and BnTT6), anthocyanin- and proanthocyandin-specific genes (BnTT3 and BnTT18), proanthocyandin-specific genes (BnTT12, BnTT10, and BnUGT2) and three transcription factor genes (BnTTG1, BnTTG2, and BnTT8) that function in the flavonoid biosynthetic pathway. These data provide insight into pigment accumulation in B. napus, and serve as a useful resource for researchers analysing the formation of seed coat colour and the underlying regulatory mechanisms in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
- *These authors contributed equally to this work
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Min Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Junxing Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Huafang Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Tang Zhanglin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Kumar V, Nadda G, Kumar S, Yadav SK. Transgenic Tobacco Overexpressing Tea cDNA Encoding Dihydroflavonol 4-Reductase and Anthocyanidin Reductase Induces Early Flowering and Provides Biotic Stress Tolerance. PLoS One 2013; 8:e65535. [PMID: 23823500 PMCID: PMC3688816 DOI: 10.1371/journal.pone.0065535] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/22/2013] [Indexed: 12/28/2022] Open
Abstract
Flavan-3-ols contribute significantly to flavonoid content of tea (Camellia sinensis L.). Dihydroflavonol 4-reductase (DFR) and anthocyanidin reductase (ANR) are known to be key regulatory enzymes of flavan-3-ols biosynthesis. In this study, we have generated the transgenic tobacco overexpressing individually tea cDNA CsDFR and CsANR encoding for DFR and ANR to evaluate their influence on developmental and protective abilities of plant against biotic stress. The transgenic lines of CsDFR and CsANR produced early flowering and better seed yield. Both types of transgenic tobacco showed higher content of flavonoids than control. Flavan-3-ols such as catechin, epicatechin and epicatechingallate were found to be increased in transgenic lines. The free radical scavenging activity of CsDFR and CsANR transgenic lines was improved. Oxidative stress was observed to induce lesser cell death in transgenic lines compared to control tobacco plants. Transgenic tobacco overexpressing CsDFR and CsANR also showed resistance against infestation by a tobacco leaf cutworm Spodoptera litura. Results suggested that the overexpression of CsDFR and CsANR cDNA in tobacco has improved flavonoids content and antioxidant potential. These attributes in transgenic tobacco have ultimately improved their growth and development, and biotic stress tolerance.
Collapse
Affiliation(s)
- Vinay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| | - Gireesh Nadda
- HATS Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| | - Sudesh Kumar Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| |
Collapse
|