1
|
Pantaleno R, Scuffi D, Schiel P, Schwarzländer M, Costa A, García-Mata C. Mitochondrial ß-Cyanoalanine Synthase Participates in flg22-Induced Stomatal Immunity. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39288437 DOI: 10.1111/pce.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Plants regulate gas exchange with the environment and modulate transpirational water flow through guard cells, which set the aperture of the stomatal pores. External and internal stimuli are detected by guard cells and integrated into a signalling network that modulate turgor pressure and, hence, pore size. Pathogen-associated molecular patterns are among the stimuli that induce stomatal closure, to prevent pathogen entry through the pores, and this response, also referred to as stomatal immunity, is one of the hallmarks of PAMP-triggered immunity. While reactive oxygen species (ROS)-mediated signalling plays a key role in stomatal immunity, also the gasotransmitter hydrogen sulphide (H2S) interacts with key components of the guard cell signalling network to induce stomatal closure. While the role of H2S, produced by the main cytosolic source L-cysteine desulfhydrase 1, has been already investigated, there are additional enzymatic sources that synthesize H2S in different subcellular compartments. Their function has remained enigmatic, however. In this work, we elucidate the involvement of the mitochondrial H2S source, β-cyanoalanine synthase CAS-C1, on stomatal immunity induced by the bacterial PAMP flagellin (flg22). We show that cas-c1 plants are impaired to induce flg22-triggered stomatal closure and apoplastic ROS production, while they are more susceptible to bacterial surface inoculation. Moreover, mitochondrial H2S donor AP39 induced stomatal closure in an RBOHD-dependent manner, while depletion of endogenous H2S, impaired RBOHD-mediated apoplastic ROS production. In addition, pharmacological disruption of mitochondrial electron transport chain activity, affected stomatal closure produced by flg22, indicating its participation in the stomatal immunity response. Our findings add evidence to the emerging realization that intracellular organelles play a decisive role in orchestrating stomatal signalling and immune responses and suggest that mitochondrial-derived H2S is an important player of the stomatal immunity signalling network.
Collapse
Affiliation(s)
- Rosario Pantaleno
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Paula Schiel
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
2
|
Movahedi A, Hwarari D, Dzinyela R, Ni S, Yang L. A close-up of regulatory networks and signaling pathways of MKK5 in biotic and abiotic stresses. Crit Rev Biotechnol 2024:1-18. [PMID: 38797669 DOI: 10.1080/07388551.2024.2344584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.
Collapse
Affiliation(s)
- Ali Movahedi
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE, USA
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Raphael Dzinyela
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Siyi Ni
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Chen Y, Zhang X, Fan Y, Sui D, Jiang J, Wang L. The role of WRKY transcription factors in exogenous potassium (K +) response to NaCl stress in Tamarix ramosissima. Front Genet 2023; 14:1274288. [PMID: 38054027 PMCID: PMC10694239 DOI: 10.3389/fgene.2023.1274288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction: Soil salinization poses a significant challenge to plant growth and vitality. Plants like Tamarix ramosissima Ledeb (T. ramosissima), which are halophytes, are often integrated into planting schemes tailored for saline environments. Yet, the role of WRKY transcription factors in T. ramosissima, especially under sodium chloride (NaCl) stress mitigated by exogenous K+ application, is not well-understood. This research endeavors to bridge this knowledge gap. Methods: Using Pfam protein domain prediction and physicochemical property analysis, we delved into the WRKY genes in T. ramosissima roots that are implicated in counteracting NaCl stress when aided by exogenous K+ applications. By observing shifts in the expression levels of WRKY genes annotated to the KEGG pathway under NaCl stress at 0, 48, and 168 h, we aimed to identify potential key WRKY genes. Results: We found that the expression of 56 WRKY genes in T. ramosissima roots responded to exogenous K+ application during NaCl stress at the indicated time points. Particularly, the expression levels of these genes were primarily upregulated within 168 h. From these, 10 WRKY genes were found to be relevant in the KEGG pathways. Moreover, six genes, namely Unigene0024962, Unigene0024963, Unigene0010090, Unigene0007135, Unigene0070215, and Unigene0077293, were annotated to the Plant-pathogen interaction pathway or the MAPK signaling pathway in plants. These genes exhibited dynamic expression regulation at 48 h with the application of exogenous K+ under NaCl stress. Discussion: Our research highlights that WRKY transcription factors can modulate the activation or inhibition of related genes during NaCl stress with the application of exogenous K+. This regulation enhances the plant's adaptability to saline environments and mitigates the damage induced by NaCl. These findings provide valuable gene resources for future salt-tolerant Tamarix breeding and expand our understanding of the molecular mechanisms of WRKY transcription factors in alleviating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Jiangsu Academy of Forestry, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Xuanyi Zhang
- Jiangsu Academy of Forestry, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Yunlong Fan
- Faculty of Science Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Dezong Sui
- Jiangsu Academy of Forestry, Nanjing, China
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing, China
| |
Collapse
|
4
|
Shi J, Shui D, Su S, Xiong Z, Zai W. Gene enrichment and co-expression analysis shed light on transcriptional responses to Ralstonia solanacearum in tomato. BMC Genomics 2023; 24:159. [PMID: 36991339 DOI: 10.1186/s12864-023-09237-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Tomato (Solanum lycopersicum) is both an important agricultural product and an excellent model system for studying plant-pathogen interactions. It is susceptible to bacterial wilt caused by Ralstonia solanacearum (Rs), and infection can result in severe yield and quality losses. To investigate which genes are involved in the resistance response to this pathogen, we sequenced the transcriptomes of both resistant and susceptible tomato inbred lines before and after Rs inoculation. RESULTS In total, 75.02 Gb of high-quality reads were generated from 12 RNA-seq libraries. A total of 1,312 differentially expressed genes (DEGs) were identified, including 693 up-regulated and 621 down-regulated genes. Additionally, 836 unique DEGs were obtained when comparing two tomato lines, including 27 co-expression hub genes. A total of 1,290 DEGs were functionally annotated using eight databases, most of which were found to be involved in biological pathways such as DNA and chromatin activity, plant-pathogen interaction, plant hormone signal transduction, secondary metabolite biosynthesis, and defense response. Among the core-enriched genes in 12 key pathways related to resistance, 36 genotype-specific DEGs were identified. RT-qPCR integrated analysis revealed that multiple DEGs may play a significant role in tomato response to Rs. In particular, Solyc01g073985.1 (NLR disease resistance protein) and Solyc04g058170.1 (calcium-binding protein) in plant-pathogen interaction are likely to be involved in the resistance. CONCLUSION We analyzed the transcriptomes of both resistant and susceptible tomato lines during control and inoculated conditions and identified several key genotype-specific hub genes involved in a variety of different biological processes. These findings lay a foundation for better understanding the molecular basis by which resistant tomato lines respond to Rs.
Collapse
Affiliation(s)
- Jianlei Shi
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Deju Shui
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China
| | - Shiwen Su
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China
| | - Zili Xiong
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China.
| | - Wenshan Zai
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China.
| |
Collapse
|
5
|
Zhou F, Singh S, Zhang J, Fang Q, Li C, Wang J, Zhao C, Wang P, Huang CF. The MEKK1-MKK1/2-MPK4 cascade phosphorylates and stabilizes STOP1 to confer aluminum resistance in Arabidopsis. MOLECULAR PLANT 2023; 16:337-353. [PMID: 36419357 DOI: 10.1016/j.molp.2022.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Aluminum (Al) toxicity can seriously restrict crop production on acidic soils, which comprise 40% of the world's potentially arable land. The zinc finger transcription factor STOP1 has a conserved and essential function in mediating plant Al resistance. Al stress induces STOP1 accumulation via post-transcriptional regulatory mechanisms. However, the upstream signaling pathway involved in Al-triggered STOP1 accumulation remains unclear. Here, we report that the MEKK1-MKK1/2-MPK4 cascade positively regulates STOP1 phosphorylation and stability. Mutations of MEKK1, MKK1/2, or MPK4 lead to decreased STOP1 stability and Al resistance. Al stress induces the kinase activity of MPK4, which interacts with and phosphorylates STOP1. The phosphorylation of STOP1 reduces its interaction with the F-box protein RAE1 that mediates STOP1 degradation, thereby leading to enhanced STOP1 stability and Al resistance. Taken together, our results suggest that the MEKK1-MKK1/2-MPK4 cascade is important for Al signaling and confers Al resistance through phosphorylation-mediated enhancement of STOP1 accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Fanglin Zhou
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Somesh Singh
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiu Fang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chongyang Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiawen Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunzhao Zhao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pengcheng Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Chang CH, Wang WG, Su PY, Chen YS, Nguyen TP, Xu J, Ohme-Takagi M, Mimura T, Hou PF, Huang HJ. The involvement of AtMKK1 and AtMKK3 in plant-deleterious microbial volatile compounds-induced defense responses. PLANT MOLECULAR BIOLOGY 2023; 111:21-36. [PMID: 36109466 DOI: 10.1007/s11103-022-01308-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Plant-deleterious microbial volatiles activate the transactivation of hypoxia, MAMPs and wound responsive genes in Arabidopsis thaliana. AtMKK1 and AtMKK3 are involved in the plant-deleterious microbial volatiles-induced defense responses. Microbial volatile compounds (mVCs) are a collection of volatile metabolites from microorganisms with biological effects on all living organisms. mVCs function as gaseous modulators of plant growth and plant health. In this study, the defense events induced by plant-deleterious mVCs were investigated. Enterobacter aerogenes VCs lead to growth inhibition and immune responses in Arabidopsis thaliana. E. aerogenes VCs negatively regulate auxin response and transport gene expression in the root tip, as evidenced by decreased expression of DR5::GFP, PIN3::PIN3-GFP and PIN4::PIN4-GFP. Data from transcriptional analysis suggests that E. aerogenes VCs trigger hypoxia response, innate immune responses and metabolic processes. In addition, the transcript levels of the genes involved in the synthetic pathways of antimicrobial metabolites camalexin and coumarin are increased after the E. aerogenes VCs exposure. Moreover, we demonstrate that MKK1 serves as a regulator of camalexin biosynthesis gene expression in response to E. aerogenes VCs, while MKK3 is the regulator of coumarin biosynthesis gene expression. Additionally, MKK1 and MKK3 mediate the E. aerogenes VCs-induced callose deposition. Collectively, these studies provide molecular insights into immune responses by plant-deleterious mVCs.
Collapse
Affiliation(s)
- Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| | - Wu-Guei Wang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Shuo Chen
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jian Xu
- Department of Plant Systems Physiology, Radboud University, Nijmegen, The Netherlands
| | - Masaru Ohme-Takagi
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Tetsuro Mimura
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| | - Ping-Fu Hou
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, Taiwan
| | - Hao-Jen Huang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan.
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Wang J, Sun Z, Chen C, Xu M. The MKK2a Gene Involved in the MAPK Signaling Cascades Enhances Populus Salt Tolerance. Int J Mol Sci 2022; 23:ijms231710185. [PMID: 36077589 PMCID: PMC9456161 DOI: 10.3390/ijms231710185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules, which transmit environmental signals in plant cells through stepwise phosphorylation and play indispensable roles in a wide range of physiological and biochemical processes. Here, we isolated and characterized a gene encoding MKK2 protein from poplar through the rapid amplification of cDNA ends (RACE). The full-length PeMKK2a gene was 1571 bp, including a 1068 bp open reading frame (ORF) encoding 355 amino acids, and the putative PeMKK2a protein belongs to the PKc_like (protein kinase domain) family (70–336 amino acids) in the PKc_MAPKK_plant subfamily and contains 62 sites of possible phosphorylation and two conserved domains, DLK and S/T-xxxxx-S/T. Detailed information about its gene structure, sequence similarities, subcellular localization, and transcript profiles under salt-stress conditions was revealed. Transgenic poplar lines overexpressing PeMKK2a exhibited higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) than non-transgenic poplar under salt stress conditions. These results will provide insight into the roles of MAPK signaling cascades in poplar response to salt stress.
Collapse
Affiliation(s)
| | | | | | - Meng Xu
- Correspondence: ; Tel.: +86-150-9430-7586
| |
Collapse
|
8
|
Banday ZZ, Cecchini NM, Speed DJ, Scott AT, Parent C, Hu CT, Filzen RC, Agbo E, Greenberg JT. Friend or foe: Hybrid proline-rich proteins determine how plants respond to beneficial and pathogenic microbes. PLANT PHYSIOLOGY 2022; 190:860-881. [PMID: 35642916 PMCID: PMC9434206 DOI: 10.1093/plphys/kiac263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/08/2022] [Indexed: 05/21/2023]
Abstract
Plant plastids generate signals, including some derived from lipids, that need to be mobilized to effect signaling. We used informatics to discover potential plastid membrane proteins involved in microbial responses in Arabidopsis (Arabidopsis thaliana). Among these are proteins co-regulated with the systemic immunity component AZELAIC ACID INDUCED 1, a hybrid proline-rich protein (HyPRP), and HyPRP superfamily members. HyPRPs have a transmembrane domain, a proline-rich region (PRR), and a lipid transfer protein domain. The precise subcellular location(s) and function(s) are unknown for most HyPRP family members. As predicted by informatics, a subset of HyPRPs has a pool of proteins that target plastid outer envelope membranes via a mechanism that requires the PRR. Additionally, two HyPRPs may be associated with thylakoid membranes. Most of the plastid- and nonplastid-localized family members also have pools that localize to the endoplasmic reticulum, plasma membrane, or plasmodesmata. HyPRPs with plastid pools regulate, positively or negatively, systemic immunity against the pathogen Pseudomonas syringae. HyPRPs also regulate the interaction with the plant growth-promoting rhizobacteria Pseudomonas simiae WCS417 in the roots to influence colonization, root system architecture, and/or biomass. Thus, HyPRPs have broad and distinct roles in immunity, development, and growth responses to microbes and reside at sites that may facilitate signal molecule transport.
Collapse
Affiliation(s)
- Zeeshan Z Banday
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | - DeQuantarius J Speed
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Allison T Scott
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | - Ciara T Hu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rachael C Filzen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Elinam Agbo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
9
|
Thieffry A, López-Márquez D, Bornholdt J, Malekroudi MG, Bressendorff S, Barghetti A, Sandelin A, Brodersen P. PAMP-triggered genetic reprogramming involves widespread alternative transcription initiation and an immediate transcription factor wave. THE PLANT CELL 2022; 34:2615-2637. [PMID: 35404429 PMCID: PMC9252474 DOI: 10.1093/plcell/koac108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
Immune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers and stabilizers of the growth-to-defense genetic reprogramming remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression. We show that around 15% of all transcription start sites (TSSs) rapidly induced during PTI define alternative transcription initiation events. From these, we identify clear examples of regulatory TSS change via alternative inclusion of target peptides or domains in encoded proteins, or of upstream open reading frames in mRNA leader sequences. We also find that 60% of PAMP response genes respond earlier than previously thought. In particular, a cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors (TFs) whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, examples of known potentiators of PTI, in one case under direct mitogen-activated protein kinase control, support the notion that the rapidly induced TFs could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.
Collapse
Affiliation(s)
- Axel Thieffry
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | - Simon Bressendorff
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Andrea Barghetti
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | |
Collapse
|
10
|
Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:473-495. [PMID: 35562858 DOI: 10.1111/tpj.15809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Liangyu Jiang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Banghan Du
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bin Ning
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Xiaodong Ding
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Yuxin Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Tianyu Rong
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Dongxue Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, 150086, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| |
Collapse
|
11
|
Wang R, Duan D, Metzger C, Zhu X, Riemann M, Pla M, Nick P. Aluminum can activate grapevine defense through actin remodeling. HORTICULTURE RESEARCH 2022; 9:uhab016. [PMID: 35039862 PMCID: PMC8771448 DOI: 10.1093/hr/uhab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 05/31/2023]
Abstract
In the current study, we used a grapevine cell line in which actin filaments are labeled by GFP to show that aluminum causes actin remodeling through activation of NADPH oxidase in the plasma membrane, followed by activation of phytoalexin synthesis genes. Elimination of actin filaments by latrunculin B disrupts gene activation and inhibition of MAPK signaling by the inhibitor PD98059. Interestingly, aluminum also induces the transcription of ISOCHORISMATE SYNTHASE, a key enzyme for the synthesis of salicylic acid, as well as PR1, a gene that is known to be responsive to salicylic acid. However, while salicylic acid responses are usually a hallmark of the hypersensitive response, aluminum-triggered defense is not accompanied by cell death. Both actin remodeling and gene activation in response to aluminum can be suppressed by the natural auxin indole acetic acid, suggesting that the actin response is not caused by nonspecific signaling. Further evidence for the specificity of the aluminum-triggered activation of phytoalexin synthesis genes comes from experiments in which plant peptide elicitors induce significant cellular mortality but do not evoke induction of these transcription. The response in grapevine cells can be recapitulated in grapevine leaf discs from two genotypes contrasting in stilbene inducibility. Here, aluminum can induce accumulation of the central grapevine phytoalexin, the stilbene aglycone trans-resveratrol; this is preceded by a rapid induction of transcription for RESVERATROL SYNTHASE and the regulating transcription factor MYB14. The amplitude of this induction reflects the general stilbene inducibility of these genotypes, indicating that the aluminum effect is not caused by nonspecific toxicity but by activation of specific signaling pathways. The findings are discussed in relation to a model in which actin filaments activate a specific branch of defense signaling, acting in concert with calcium-dependent PAMP-triggered immunity. This pathway links the apoplastic oxidative burst through MAPK signaling with the activation of defense-related transcription.
Collapse
Affiliation(s)
- Ruipu Wang
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Christian Metzger
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Xin Zhu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Maria Pla
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
13
|
Takáč T, Křenek P, Komis G, Vadovič P, Ovečka M, Ohnoutková L, Pechan T, Kašpárek P, Tichá T, Basheer J, Arick M, Šamaj J. TALEN-Based HvMPK3 Knock-Out Attenuates Proteome and Root Hair Phenotypic Responses to flg22 in Barley. FRONTIERS IN PLANT SCIENCE 2021; 12:666229. [PMID: 33995462 PMCID: PMC8117018 DOI: 10.3389/fpls.2021.666229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 05/26/2023]
Abstract
Mitogen activated protein kinases (MAPKs) integrate elicitor perception with both early and late responses associated with plant defense and innate immunity. Much of the existing knowledge on the role of plant MAPKs in defense mechanisms against microbes stems from extensive research in the model plant Arabidopsis thaliana. In the present study, we investigated the involvement of barley (Hordeum vulgare) MPK3 in response to flagellin peptide flg22, a well-known bacterial elicitor. Using differential proteomic analysis we show that TALEN-induced MPK3 knock-out lines of barley (HvMPK3 KO) exhibit constitutive downregulation of defense related proteins such as PR proteins belonging to thaumatin family and chitinases. Further analyses showed that the same protein families were less prone to flg22 elicitation in HvMPK3 KO plants compared to wild types. These results were supported and validated by chitinase activity analyses and immunoblotting for HSP70. In addition, differential proteomes correlated with root hair phenotypes and suggested tolerance of HvMPK3 KO lines to flg22. In conclusion, our study points to the specific role of HvMPK3 in molecular and root hair phenotypic responses of barley to flg22.
Collapse
Affiliation(s)
- Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavel Křenek
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavol Vadovič
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Ludmila Ohnoutková
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Petr Kašpárek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Vestec, Czechia
| | - Tereza Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Jasim Basheer
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Mark Arick
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
14
|
González-Coronel JM, Rodríguez-Alonso G, Guevara-García ÁA. A phylogenetic study of the members of the MAPK and MEK families across Viridiplantae. PLoS One 2021; 16:e0250584. [PMID: 33891654 PMCID: PMC8064577 DOI: 10.1371/journal.pone.0250584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Protein phosphorylation is regulated by the activity of enzymes generically known as kinases. One of those kinases is Mitogen-Activated Protein Kinases (MAPK), which operate through a phosphorylation cascade conformed by members from three related protein kinase families namely MAPK kinase kinase (MEKK), MAPK kinase (MEK), and MAPK; these three acts hierarchically. Establishing the evolution of these proteins in the plant kingdom is an interesting but complicated task because the current MAPK, MAPKK, and MAPKKK subfamilies arose from duplications and subsequent sub-functionalization during the early stage of the emergence of Viridiplantae. Here, an in silico genomic analysis was performed on 18 different plant species, which resulted in the identification of 96 genes not previously annotated as components of the MAPK (70) and MEK (26) families. Interestingly, a deeper analysis of the sequences encoded by such genes revealed the existence of putative domains not previously described as signatures of MAPK and MEK kinases. Additionally, our analysis also suggests the presence of conserved activation motifs besides the canonical TEY and TDY domains, which characterize the MAPK family.
Collapse
Affiliation(s)
- José Manuel González-Coronel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gustavo Rodríguez-Alonso
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
15
|
Yu J, Gonzalez JM, Dong Z, Shan Q, Tan B, Koh J, Zhang T, Zhu N, Dufresne C, Martin GB, Chen S. Integrative Proteomic and Phosphoproteomic Analyses of Pattern- and Effector-Triggered Immunity in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:768693. [PMID: 34925416 PMCID: PMC8677958 DOI: 10.3389/fpls.2021.768693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
Plants have evolved a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI and ETI are functionally linked, but also have distinct characteristics. Unraveling how these immune systems coordinate plant responses against pathogens is crucial for understanding the regulatory mechanisms underlying plant defense. Here we report integrative proteomic and phosphoproteomic analyses of the tomato-Pseudomonas syringae (Pst) pathosystem with different Pst mutants that allow the dissection of PTI and ETI. A total of 225 proteins and 79 phosphopeptides differentially accumulated in tomato leaves during Pst infection. The abundances of many proteins and phosphoproteins changed during PTI or ETI, and some responses were triggered by both PTI and ETI. For most proteins, the ETI response was more robust than the PTI response. The patterns of protein abundance and phosphorylation changes revealed key regulators involved in Ca2+ signaling, mitogen-activated protein kinase cascades, reversible protein phosphorylation, reactive oxygen species (ROS) and redox homeostasis, transcription and protein turnover, transport and trafficking, cell wall remodeling, hormone biosynthesis and signaling, suggesting their common or specific roles in PTI and/or ETI. A NAC (NAM, ATAF, and CUC family) domain protein and lipid particle serine esterase, two PTI-specific genes identified from previous transcriptomic work, were not detected as differentially regulated at the protein level and were not induced by PTI. Based on integrative transcriptomics and proteomics data, as well as qRT-PCR analysis, several potential PTI and ETI-specific markers are proposed. These results provide insights into the regulatory mechanisms underlying PTI and ETI in the tomato-Pst pathosystem, and will promote future validation and application of the disease biomarkers in plant defense.
Collapse
Affiliation(s)
- Juanjuan Yu
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
- *Correspondence: Juanjuan Yu,
| | - Juan M. Gonzalez
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
| | - Zhiping Dong
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianru Shan
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Bowen Tan
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Tong Zhang
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Ning Zhu
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Craig Dufresne
- Thermo Fisher Scientific Inc., West Palm Beach, FL, United States
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Sixue Chen,
| |
Collapse
|
16
|
Lu W, Deng F, Jia J, Chen X, Li J, Wen Q, Li T, Meng Y, Shan W. The Arabidopsis thaliana gene AtERF019 negatively regulates plant resistance to Phytophthora parasitica by suppressing PAMP-triggered immunity. MOLECULAR PLANT PATHOLOGY 2020; 21:1179-1193. [PMID: 32725756 PMCID: PMC7411552 DOI: 10.1111/mpp.12971] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 05/18/2023]
Abstract
Phytophthora species are destructive plant pathogens that cause significant crop losses worldwide. To understand plant susceptibility to oomycete pathogens and to explore novel disease resistance strategies, we employed the Arabidopsis thaliana-Phytophthora parasitica model pathosystem and screened for A. thaliana T-DNA insertion mutant lines resistant to P. parasitica. This led to the identification of the resistant mutant 267-31, which carries two T-DNA insertion sites in the promoter region of the ethylene-responsive factor 19 gene (ERF019). Quantitative reverse transcription PCR (RT-qPCR) assays showed that the expression of ERF019 was induced during P. parasitica infection in the wild type, which was suppressed in the 267-31 mutant. Additional erf019 mutants were generated using CRISPR/Cas9 technology and were confirmed to have increased resistance to P. parasitica. In contrast, ERF019 overexpression lines were more susceptible. Transient overexpression assays in Nicotiana benthamiana showed that the nuclear localization of ERF019 is crucial for its susceptible function. RT-qPCR analyses showed that the expression of marker genes for multiple defence pathways was significantly up-regulated in the mutant compared with the wild type during infection. Flg22-induced hydrogen peroxide accumulation and reactive oxygen species burst were impaired in ERF019 overexpression lines, and flg22-induced MAPK activation was enhanced in erf019 mutants. Moreover, transient overexpression of ERF019 strongly suppressed INF-triggered cell death in N. benthamiana. These results reveal the importance of ERF019 in mediating plant susceptibility to P. parasitica through suppression of pathogen-associated molecular pattern-triggered immunity.
Collapse
Affiliation(s)
- Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Fengyan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
- Institute of Plant and Food ScienceDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jinfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qujiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
17
|
Expanding the Toolkit of Fluorescent Biosensors for Studying Mitogen Activated Protein Kinases in Plants. Int J Mol Sci 2020; 21:ijms21155350. [PMID: 32731410 PMCID: PMC7432370 DOI: 10.3390/ijms21155350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of numerous biological processes in plants. To better understand the mechanisms by which these kinases function, high resolution measurement of MAPK activation kinetics in different biological contexts would be beneficial. One method to measure MAPK activation in plants is via fluorescence-based genetically-encoded biosensors, which can provide real-time readouts of the temporal and spatial dynamics of kinase activation in living tissue. Although fluorescent biosensors have been widely used to study MAPK dynamics in animal cells, there is currently only one MAPK biosensor that has been described for use in plants. To facilitate creation of additional plant-specific MAPK fluorescent biosensors, we report the development of two new tools: an in vitro assay for efficiently characterizing MAPK docking domains and a translocation-based kinase biosensor for use in plants. The implementation of these two methods has allowed us to expand the available pool of plant MAPK biosensors, while also providing a means to generate more specific and selective MAPK biosensors in the future. Biosensors developed using these methods have the potential to enhance our understanding of the roles MAPKs play in diverse plant signaling networks affecting growth, development, and stress response.
Collapse
|
18
|
Wang G, Liang YH, Zhang JY, Cheng ZM(M. Cloning, molecular and functional characterization by overexpression in Arabidopsis of MAPKK genes from grapevine (Vitis vinifera). BMC PLANT BIOLOGY 2020; 20:194. [PMID: 32381024 PMCID: PMC7203792 DOI: 10.1186/s12870-020-02378-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/01/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The mitogen-activated protein kinases (MAPKs), as a part of the MAPKKK-MAPKK-MAPK cascade, play crucial roles in plant development as an intracellular signal transduction pathway to respond various environmental signals. However, few MAPKK have been functionally characterized in grapevine. RESULTS In the study, five MAPKK (MKK) members were identified in grapevine (cultivar 'Pinot Noir'), cloned and designated as VvMKK1-VvMKK5. A phylogenetic analysis grouped them into four sub-families based on the similarity of their conserved motifs and gene structure to Arabidopsis MAPKK members. qRT-PCR results indicated that the expression of VvMKK1, VvMKK2, VvMKK4, and VvMKK5 were up-regulated in mature leaf and young blades, and roots, but exhibited low expression in leaf petioles. VvMKK2, VvMKK3, and VvMKK5 genes were differentially up-regulated when grapevine leaves were inoculated with spores of Erisyphe necator, or treated with salicylic acid (SA), ethylene (ETH), H2O2, or exposed to drought, indicating that these genes may be involved in a variety of signaling pathways. Over expression of VvMKK2 and VvMKK4 genes in transgenic Arabidopsis plants resulted in the production of seeds with a significantly higher germination and survival rate, and better seedling growth under stress conditions than wild-type plants. Overexpression of VvMKK2 in Arabidopsis improved salt and drought stress tolerance while overexpression of VvMKK4 only improved salt stress tolerance. CONCLUSIONS Results of the present investigation provide a better understanding of the interaction and function of MAPKKK-MAPKK-MAPK genes at the transcriptional level in grapevine and led to the identification of candidate genes for drought and salt stress in grapes.
Collapse
Affiliation(s)
- Gang Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Ying-hai Liang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Gong Zhuling, Jilin Province, 136100 China
| | - Ji-yu Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Zong-Ming ( Max) Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996 USA
| |
Collapse
|
19
|
Asano T, Nguyen THN, Yasuda M, Sidiq Y, Nishimura K, Nakashita H, Nishiuchi T. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2085-2097. [PMID: 31844896 PMCID: PMC7094076 DOI: 10.1093/jxb/erz556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/13/2019] [Indexed: 05/25/2023]
Abstract
The genome of Arabidopsis encodes more than 60 mitogen-activated protein kinase kinase (MAPKK) kinases (MAPKKKs); however, the functions of most MAPKKKs and their downstream MAPKKs are largely unknown. Here, MAPKKK δ-1 (MKD1), a novel Raf-like MAPKKK, was isolated from Arabidopsis as a subunit of a complex including the transcription factor AtNFXL1, which is involved in the trichothecene phytotoxin response and in disease resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A MKD1-dependent cascade positively regulates disease resistance against PstDC3000 and the trichothecene mycotoxin-producing fungal pathogen Fusarium sporotrichioides. MKD1 expression was induced by trichothecenes derived from Fusarium species. MKD1 directly interacted with MKK1 and MKK5 in vivo, and phosphorylated MKK1 and MKK5 in vitro. Correspondingly, mkk1 mutants and MKK5RNAi transgenic plants showed enhanced susceptibility to F. sporotrichioides. MKD1 was required for full activation of two MAPKs (MPK3 and MPK6) by the T-2 toxin and flg22. Finally, quantitative phosphoproteomics suggested that an MKD1-dependent cascade controlled phosphorylation of a disease resistance protein, SUMO, and a mycotoxin-detoxifying enzyme. Our findings suggest that the MKD1-MKK1/MKK5-MPK3/MPK6-dependent signaling cascade is involved in the full immune responses against both bacterial and fungal infection.
Collapse
Affiliation(s)
- Tomoya Asano
- Institute for Gene Research, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, Ishikawa, Japan
| | - Thi Hang-Ni Nguyen
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michiko Yasuda
- Plant Acquired Immunity Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Yasir Sidiq
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kohji Nishimura
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Hideo Nakashita
- Plant Acquired Immunity Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takumi Nishiuchi
- Institute for Gene Research, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, Ishikawa, Japan
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
20
|
Tian SN, Liu DD, Zhong CL, Xu HY, Yang S, Fang Y, Ran J, Liu JZ. Silencing GmFLS2 enhances the susceptibility of soybean to bacterial pathogen through attenuating the activation of GmMAPK signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110386. [PMID: 32005391 DOI: 10.1016/j.plantsci.2019.110386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The plasma membrane (PM)-localized receptor-like kinases (RLKs) play important roles in pathogen defense. One of the first cloned RLKs is the Arabidopsis receptor kinase FLAGELLIN SENSING 2 (FLS2), which specifically recognizes a conserved 22 amino acid N-terminal sequence of Pseudomonas syringae pv.tomato DC3000 (Pst) flagellin protein (flg22). Although extensively studied in Arabidopsis, the functions of RLKs in crop plants remain largely uninvestigated. To understand the roles of RLKs in soybean (Glycine max), GmFLS2 was silenced via virus induced gene silencing (VIGS) mediated by Bean pod mottle virus (BPMV). No significant morphological differences were observed between GmFLS2-silenced plants and the vector control plants. However, silencing GmFLS2 significantly enhanced the susceptibility of the soybean plants to Pseudomonas syringae pv.glycinea (Psg). Kinase activity assay showed that silencing GmFLS2 significantly reduced the phosphorylation level of GmMPK6 in response to flg22 treatment. However, reduced phosphorylation level of both GmMPK3 and GmMPK6 in response to Psg infection was observed in GmFLS2-silenced plants, implying that defense response is likely transduced through activation of the downstream GmMAPK signaling pathway upon recognition of bacterial pathogen by GmFLS2. The core peptides of flg22 from Pst and Psg were highly conserved and only 4 amino acid differences were seen at their N-termini. Interestingly, it appeared that the Psg-flg22 was more effective in activating soybean MAPKs than activating Arabidopsis MAPKs, and conversely, Pst-flg22 was more effective in activating Arabidopsis MAPKs than activating soybean MAPKs, suggesting that the cognate recognition is more potent than heterologous recognition in activating downstream signaling. Taken together, our results suggest that the function of FLS2 is conserved in immunity against bacteria pathogens across different plant species.
Collapse
Affiliation(s)
- Sheng-Nan Tian
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Dan-Dan Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Chen-Li Zhong
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Hui-Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Shuo Yang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Jie Ran
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China.
| |
Collapse
|
21
|
Genome-wide analysis of WRKY transcription factors in Aquilaria sinensis (Lour.) Gilg. Sci Rep 2020; 10:3018. [PMID: 32080225 PMCID: PMC7033210 DOI: 10.1038/s41598-020-59597-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
The WRKY proteins are a superfamily of transcription factor that regulate diverse developmental and physiological processes in plants. Completion of the whole-genome sequencing of Aquilaria sinensis allowed us to perform a genome-wide investigation for WRKY proteins. Here, we predicted 70 WRKY genes from the A. sinensis genome and undertaken a comprehensive bioinformatic analysis. Due to their diverse structural features, the 70 AsWRKY genes are classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II, except two belong to none of them. Distinct expression profiles of AsWRKYs with RNA sequencing data revealed their diverse expression patterns among different tissues and in the process of whole-tree-inducing agarwood formation. Based on the expression characteristics, we predict some AsWRKYs are pseudogenes, and some may be involved in the biosynthesis of agarwood sesquiterpenes as activators or repressors. Among the tested genes treated with MeJA and H2O2, most of them are induced by H2O2, but downregulated by MeJA, implying the complexity of their involvement in signal transduction regulation. Our results not only provide a basic platform for functional identification of WRKYs in A. sinensis but important clues for further analysis their regulation role in agarwood formation.
Collapse
|
22
|
Khalid MHB, Raza MA, Yu HQ, Khan I, Sun FA, Feng LY, Qu JT, Fu FL, Li WC. Expression, Subcellular Localization, and Interactions of CPK Family Genes in Maize. Int J Mol Sci 2019; 20:E6173. [PMID: 31817801 PMCID: PMC6940914 DOI: 10.3390/ijms20246173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent protein kinase (CPKs) is a key player in the calcium signaling pathway to decode calcium signals into various physiological responses. cDNA sequences of 9 ZmCPK genes were successfully cloned from all four phylogenetic groups in maize. qRT-PCR analysis showed the expression variation of these selected genes under abscisic acid (ABA) and calcium chloride (CaCl2) treatment. Due to the presence of N-myristoylation/palmitoylation sites, the selected ZmCPK members were localized in a plasma membrane. To clarify whether ZmCPK, a key player in calcium signaling, interacts with key players of ABA, protein phosphatase 2Cs (PP2Cs) and the SNF1-related protein kinase 2s (SnRK2s) and mitogen-activated protein kinase (MAPK) signaling pathways in maize, we examined the interaction between 9 CPKs, 8 PP2Cs, 5 SnRKs, and 20 members of the MPK family in maize by using yeast two-hybrid assay. Our results showed that three ZmCPKs interact with three different members of ZmSnRKs while four ZmCPK members had a positive interaction with 13 members of ZmMPKs in different combinations. These four ZmCPK proteins are from three different groups in maize. These findings of physical interactions between ZmCPKs, ZmSnRKs, and ZmMPKs suggested that these signaling pathways do not only have indirect influence but also have direct crosstalk that may involve the defense mechanism in maize. The present study may improve the understanding of signal transduction in plants.
Collapse
Affiliation(s)
- Muhammad Hayder Bin Khalid
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (M.A.R.); (L.Y.F.)
| | - Hao Qiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Imran Khan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Fu Ai Sun
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Ling Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (M.A.R.); (L.Y.F.)
| | - Jing Tao Qu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Feng Ling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Wan Chen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| |
Collapse
|
23
|
Vanthana M, Nakkeeran S, Malathi V, Renukadevi P, Vinodkumar S. Induction of in planta resistance by flagellin (Flg) and elongation factor-TU (EF-Tu) of Bacillus amyloliquefaciens (VB7) against groundnut bud necrosis virus in tomato. Microb Pathog 2019; 137:103757. [DOI: 10.1016/j.micpath.2019.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/05/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023]
|
24
|
Hu T, Huang C, He Y, Castillo-González C, Gui X, Wang Y, Zhang X, Zhou X. βC1 protein encoded in geminivirus satellite concertedly targets MKK2 and MPK4 to counter host defense. PLoS Pathog 2019; 15:e1007728. [PMID: 30998777 PMCID: PMC6499421 DOI: 10.1371/journal.ppat.1007728] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/03/2019] [Accepted: 03/24/2019] [Indexed: 12/30/2022] Open
Abstract
Plant viruses have evolved multiple strategies to overcome host defense to establish an infection. Here, we identified two components of a host mitogen-activated protein kinase (MAPK) cascade, MKK2 and MPK4, as bona fide targets of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNV). βC1 interacts with the kinase domain of MKK2 and inhibits its activity. In vivo, βC1 suppresses flagellin-induced MAPK activation and downstream responses by targeting MKK2. Furthermore, βC1 also interacts with MPK4 and inhibits its kinase activity. TYLCCNV infection induces the activation of the MAPK cascade, mutation in MKK2 or MPK4 renders the plant more susceptible to TYLCCNV, and can complement the lack of βC1. This work shows for the first time that a plant virus both activates and suppresses a MAPK cascade, and the discovery of the ability of βC1 to selectively interfere with the host MAPK activation illustrates a novel virulence function and counter-host defense mechanism of geminiviruses.
Collapse
Affiliation(s)
- Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuting He
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, United States of America
| | - Xiaojian Gui
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, United States of America
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Zaman N, Seitz K, Kabir M, George-Schreder LS, Shepstone I, Liu Y, Zhang S, Krysan PJ. A Förster resonance energy transfer sensor for live-cell imaging of mitogen-activated protein kinase activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:970-983. [PMID: 30444549 PMCID: PMC6750906 DOI: 10.1111/tpj.14164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 05/08/2023]
Abstract
The catalytic activity of mitogen-activated protein kinases (MAPKs) is dynamically modified in plants. Since MAPKs have been shown to play important roles in a wide range of signaling pathways, the ability to monitor MAPK activity in living plant cells would be valuable. Here, we report the development of a genetically encoded MAPK activity sensor for use in Arabidopsis thaliana. The sensor is composed of yellow and blue fluorescent proteins, a phosphopeptide binding domain, a MAPK substrate domain and a flexible linker. Using in vitro testing, we demonstrated that phosphorylation causes an increase in the Förster resonance energy transfer (FRET) efficiency of the sensor. The FRET efficiency can therefore serve as a readout of kinase activity. We also produced transgenic Arabidopsis lines expressing this sensor of MAPK activity (SOMA) and performed live-cell imaging experiments using detached cotyledons. Treatment with NaCl, the synthetic flagellin peptide flg22 and chitin all led to rapid gains in FRET efficiency. Control lines expressing a version of SOMA in which the phosphosite was mutated to an alanine did not show any substantial changes in FRET. We also expressed the sensor in a conditional loss-of-function double-mutant line for the Arabidopsis MAPK genes MPK3 and MPK6. These experiments demonstrated that MPK3/6 are necessary for the NaCl-induced FRET gain of the sensor, while other MAPKs are probably contributing to the chitin and flg22-induced increases in FRET. Taken together, our results suggest that SOMA is able to dynamically report MAPK activity in living plant cells.
Collapse
Affiliation(s)
- Najia Zaman
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Kati Seitz
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Mohiuddin Kabir
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ian Shepstone
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Patrick J. Krysan
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- For correspondence ()
| |
Collapse
|
26
|
Markovic D, Colzi I, Taiti C, Ray S, Scalone R, Gregory Ali J, Mancuso S, Ninkovic V. Airborne signals synchronize the defenses of neighboring plants in response to touch. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:691-700. [PMID: 30380091 PMCID: PMC6322579 DOI: 10.1093/jxb/ery375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/17/2018] [Indexed: 05/19/2023]
Abstract
Plants activate defense-related pathways in response to subtle abiotic or biotic disturbances, changing their volatile profile rapidly. How such perturbations reach and potentially affect neighboring plants is less understood. We evaluated whether brief and light touching had a cascade effect on the profile of volatiles and gene expression of the focal plant and a neighboring untouched plant. Within minutes after contact, Zea mays showed an up-regulation of certain defense genes and increased the emission of specific volatiles that primed neighboring plants, making them less attractive for aphids. Exposure to volatiles from touched plants activated many of the same defense-related genes in non-touched neighboring plants, demonstrating a transcriptional mirroring effect for expression of genes up-regulated by brief contact. Perception of so-far-overlooked touch-induced volatile organic compounds was of ecological significance as these volatiles are directly involved in plant-plant communication as an effective trigger for rapid defense synchronization among nearby plants. Our findings shed new light on mechanisms of plant responses to mechanical contact at the molecular level and on the ecological role of induced volatiles as airborne signals in plant-plant interactions.
Collapse
Affiliation(s)
- Dimitrije Markovic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ilaria Colzi
- Department of Biology, University of Florence, Florence, Italy
| | - Cosimo Taiti
- Department of Biology, University of Florence, Florence, Italy
| | - Swayamjit Ray
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Romain Scalone
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jared Gregory Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Stefano Mancuso
- Department of Biology, University of Florence, Florence, Italy
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Correspondence:
| |
Collapse
|
27
|
Genome-wide Identification of Jatropha curcas MAPK, MAPKK, and MAPKKK Gene Families and Their Expression Profile Under Cold Stress. Sci Rep 2018; 8:16163. [PMID: 30385801 PMCID: PMC6212503 DOI: 10.1038/s41598-018-34614-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/16/2018] [Indexed: 11/26/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in all eukaryotic organisms, controlling cell division, growth, development, and hormone signaling. Additionally, they can be activated in response to a variety of biotic and abiotic stressors. Although the evolution and expression patterns of MAPK cascade families have been systematically investigated in several model plants (e.g., Arabidopsis, rice, and poplar), we still know very little about MAPK, MAPKK, and MAPKKK families in Jatropha curcas, an economically important species. Therefore, this study performed genome-wide identification and transcriptional expression analysis of these three families in J. curcas. We identified 12 J. curcas MAPK (JcMAPKs), 5 JcMAPKKs, and 65 JcMAPKKKs. Phylogenetic analysis classified all JcMAPKs and JcMAPKKs into four subgroups, whereas JcMAPKKKs were grouped into three subfamilies (MEKK, RAF, and ZIK). Similarities in exon/intron structures supported the evolutionary relationships within subgroups and subfamilies. Conserved motif analysis indicated that all J. curcas MAPK cascades possessed typical, 200–300 amino-acid protein kinase domains. MAPK cascade genes were presented throughout all 11 chromosomes. Gene duplication analysis suggested that after JcMAPK and JcMAPKKK diverged, 3 and 19 tandem duplicates occurred under strong purifying selection. Furthermore, RNA-seq and qRT-PCR analyses revealed that some MAPK cascade genes are predominantly expressed in specific tissues. Moreover, their expression levels significantly increased under cold treatment. Our results should provide insight into the roles of MAPK cascade genes in regulating J. curcas stress responses and in hormonal signal transduction. Furthermore, these data have important applications in the genetic improvement of J. curcas.
Collapse
|
28
|
Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1387. [PMID: 30349547 PMCID: PMC6187979 DOI: 10.3389/fpls.2018.01387] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/31/2018] [Indexed: 05/02/2023]
Abstract
Mitogen-activated protein kinase (MAPK) modules play key roles in the transduction of environmental and developmental signals through phosphorylation of downstream signaling targets, including other kinases, enzymes, cytoskeletal proteins or transcription factors, in all eukaryotic cells. A typical MAPK cascade consists of at least three sequentially acting serine/threonine kinases, a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK) and finally, the MAP kinase (MAPK) itself, with each phosphorylating, and hence activating, the next kinase in the cascade. Recent advances in our understanding of hormone signaling pathways have led to the discovery of new regulatory systems. In particular, this research has revealed the emerging role of crosstalk between the protein components of various signaling pathways and the involvement of this crosstalk in multiple cellular processes. Here we provide an overview of current models and mechanisms of hormone signaling with a special emphasis on the role of MAPKs in cell signaling networks. One-sentence summary: In this review we highlight the mechanisms of crosstalk between MAPK cascades and plant hormone signaling pathways and summarize recent findings on MAPK regulation and function in various cellular processes.
Collapse
Affiliation(s)
- Przemysław Jagodzik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Tajdel-Zielinska
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agata Ciesla
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Marczak
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agnieszka Ludwikow
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Agnieszka Ludwikow,
| |
Collapse
|
29
|
Dory M, Hatzimasoura E, Kállai BM, Nagy SK, Jäger K, Darula Z, Nádai TV, Mészáros T, López‐Juez E, Barnabás B, Palme K, Bögre L, Ditengou FA, Dóczi R. Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants. FEBS Lett 2018; 592:89-102. [PMID: 29197077 PMCID: PMC5814726 DOI: 10.1002/1873-3468.12929] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022]
Abstract
Plant growth flexibly adapts to environmental conditions, implying cross-talk between environmental signalling and developmental regulation. Here, we show that the PIN auxin efflux carrier family possesses three highly conserved putative mitogen-activated protein kinase (MAPK) sites adjacent to the phosphorylation sites of the well-characterised AGC kinase PINOID, which regulates the polar localisation of PINs and directional auxin transport, thereby underpinning organ growth. The conserved sites of PIN1 are phosphorylated in vitro by two environmentally activated MAPKs, MPK4 and MPK6. In contrast to AGC kinases, MAPK-mediated phosphorylation of PIN1 at adjacent sites leads to a partial loss of the plasma membrane localisation of PIN1. MAPK-mediated modulation of PIN trafficking may participate in environmental adjustment of plant growth.
Collapse
Affiliation(s)
- Magdalena Dory
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| | - Elizabeth Hatzimasoura
- School of Biological Sciences and Centre for Systems and Synthetic BiologyRoyal Holloway, University of LondonEghamUK
| | - Brigitta M. Kállai
- Department of Medical ChemistryMolecular Biology and PathobiochemistrySemmelweis UniversityBudapestHungary
| | - Szilvia K. Nagy
- Department of Medical ChemistryMolecular Biology and PathobiochemistrySemmelweis UniversityBudapestHungary
| | - Katalin Jäger
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics ResearchBiological Research CentreHungarian Academy of SciencesSzegedHungary
| | - Tímea V. Nádai
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| | - Tamás Mészáros
- Department of Medical ChemistryMolecular Biology and PathobiochemistrySemmelweis UniversityBudapestHungary
| | - Enrique López‐Juez
- School of Biological Sciences and Centre for Systems and Synthetic BiologyRoyal Holloway, University of LondonEghamUK
| | - Beáta Barnabás
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| | - Klaus Palme
- Institute of Biology IIUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
- Centre for Biological Systems Analysis (ZBSA)University of FreiburgGermany
| | - László Bögre
- School of Biological Sciences and Centre for Systems and Synthetic BiologyRoyal Holloway, University of LondonEghamUK
| | - Franck A. Ditengou
- Institute of Biology IIUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
- Centre for Biological Systems Analysis (ZBSA)University of FreiburgGermany
| | - Róbert Dóczi
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| |
Collapse
|
30
|
Iizasa S, Iizasa E, Watanabe K, Nagano Y. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants. BMC Genomics 2017; 18:995. [PMID: 29284410 PMCID: PMC5747113 DOI: 10.1186/s12864-017-4372-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) from Gram-negative bacteria cause innate immune responses in animals and plants. The molecules involved in LPS signaling in animals are well studied, whereas those in plants are not yet as well documented. Recently, we identified Arabidopsis AtLBR-2, which binds to LPS from Pseudomonas aeruginosa (pLPS) directly and regulates pLPS-induced defense responses, such as pathogenesis-related 1 (PR1) expression and reactive oxygen species (ROS) production. In this study, we investigated the pLPS-induced transcriptomic changes in wild-type (WT) and the atlbr-2 mutant Arabidopsis plants using RNA-Seq technology. RESULTS RNA-Seq data analysis revealed that pLPS treatment significantly altered the expression of 2139 genes, with 605 up-regulated and 1534 down-regulated genes in WT. Gene ontology (GO) analysis on these genes showed that GO terms, "response to bacterium", "response to salicylic acid (SA) stimulus", and "response to abscisic acid (ABA) stimulus" were enriched amongst only in up-regulated genes, as compared to the genes that were down-regulated. Comparative analysis of differentially expressed genes between WT and the atlbr-2 mutant revealed that 65 genes were up-regulated in WT but not in the atlbr-2 after pLPS treatment. Furthermore, GO analysis on these 65 genes demonstrated their importance for the enrichment of several defense-related GO terms, including "response to bacterium", "response to SA stimulus", and "response to ABA stimulus". We also found reduced levels of pLPS-induced conjugated SA glucoside (SAG) accumulation in atlbr-2 mutants, and no differences were observed in the gene expression levels in SA-treated WT and the atlbr-2 mutants. CONCLUSION These 65 AtLBR-2-dependent up-regulated genes appear to be important for the enrichment of some defense-related GO terms. Moreover, AtLBR-2 might be a key molecule that is indispensable for the up-regulation of defense-related genes and for SA signaling pathway, which is involved in defense against pathogens containing LPS.
Collapse
Affiliation(s)
- Sayaka Iizasa
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.,Department of Biological Resource Sciences, Graduate School of Agriculture, Saga University, Saga, Japan.,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Ei'ichi Iizasa
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Keiichi Watanabe
- Department of Biological Resource Sciences, Graduate School of Agriculture, Saga University, Saga, Japan.,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan. .,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
31
|
Phylogenomic analysis of MKKs and MAPKs from 16 legumes and detection of interacting pairs in chickpea divulge MAPK signalling modules. Sci Rep 2017; 7:5026. [PMID: 28694440 PMCID: PMC5504024 DOI: 10.1038/s41598-017-04913-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK)-mediated phosphorylation cascade is a vital component of plant cellular signalling. Despite this, MAPK signalling cascade is less characterized in crop legumes. To fill this void, we present here a comprehensive phylogeny of MAPK kinases (MKKs) and MAPKs identified from 16 legume species belonging to genistoid (Lupinus angustifolius), dalbergioid (Arachis spp.), phaseoloid (Glycine max, Cajanus cajan, Phaseolus vulgaris, and Vigna spp.), and galegoid (Cicer arietinum, Lotus japonicus, Medicago truncatula, Pisum sativum, Trifolium spp., and Vicia faba) clades. Using the genes of the diploid crop chickpea (C. arietinum), an exhaustive interaction analysis was performed between MKKs and MAPKs by split-ubiquitin based yeast two-hybrid (Y2H). Twenty seven interactions of varying strengths were identified between chickpea MKKs and MAPKs. These interactions were verified in planta by bimolecular fluorescence complementation (BiFC). As a first report in plants, four intra-molecular interactions of weak strength were identified within chickpea MKKs. Additionally; two TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors of class I were identified as novel down-stream interacting partners of seven MAPKs. We propose that this highly reliable MAPK interaction network, presented here for chickpea, can be utilized as a reference for legumes and thus will help in deciphering their role in legume-specific events.
Collapse
|
32
|
Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim JY, Chung WS. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res 2017; 45:6613-6627. [PMID: 28510716 PMCID: PMC5499865 DOI: 10.1093/nar/gkx417] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
The expression of CBF (C-repeat-binding factor) genes is required for freezing tolerance in Arabidopsis thaliana. CBFs are positively regulated by INDUCER OF CBF EXPRESSION1 (ICE1) and negatively regulated by MYB15. These transcription factors directly interact with specific elements in the CBF promoters. Mitogen-activated protein kinase (MAPK/MPK) cascades function upstream to regulate CBFs. However, the mechanism by which MPKs control CBF expression during cold stress signaling remains unknown. This study showed that the activity of MYB15, a transcriptional repressor of cold signaling, is regulated by MPK6-mediated phosphorylation. MYB15 specifically interacts with MPK6, and MPK6 phosphorylates MYB15 on Ser168. MPK6-induced phosphorylation reduced the affinity of MYB15 binding to the CBF3 promoter and mutation of its phosphorylation site (MYB15S168A) enhanced the transcriptional repression of CBF3 by MYB15. Furthermore, transgenic plants overexpressing MYB15S168A showed significantly reduced CBF transcript levels in response to cold stress, compared with plants overexpressing MYB15. The MYB15S168A-overexpressing plants were also more sensitive to freezing than MYB15-overexpressing plants. These results suggest that MPK6-mediated regulation of MYB15 plays an important role in cold stress signaling in Arabidopsis.
Collapse
Affiliation(s)
- Sun Ho Kim
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sunghwa Bahk
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jonguk An
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Yeji Yoo
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
33
|
Jiao Y, Wang D, Wang L, Jiang C, Wang Y. VqMAPKKK38 is essential for stilbene accumulation in grapevine. HORTICULTURE RESEARCH 2017; 4:17058. [PMID: 29051820 PMCID: PMC5645558 DOI: 10.1038/hortres.2017.58] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 05/04/2023]
Abstract
Vitis species, including grapevine, produce a class of secondary metabolites called stilbenes that are important for plant disease resistance and can have positive effects on human health. Mitogen-activated protein kinase (MAPK) signaling cascades not only play key roles in plant defense responses but also contribute to stilbene biosynthesis in grapevine. MAPKKKs function at the upper level of the MAPK network and initiate signaling through this pathway. In this study, a Raf-like MAPKKK gene, VqMAPKKK38, was identified and functionally characterized from the Chinese wild grapevine V. quinquangularis accession 'Danfeng-2'. We observed that VqMAPKKK38 transcript levels were elevated by powdery mildew infection, high salinity conditions and chilling stresses, as well as in response to treatments by the hormones salicylic acid (SA), methyl jasmonate (MeJA), ethylene (Eth) and abscisic acid (ABA). In addition, based on both transient overexpression and gene suppression of VqMAPKKK38 in grapevine leaves, we found that VqMAPKKK38 positively regulates stilbene synthase transcription and stilbene accumulation probably by mediating the activation of the transcription factor MYB14. In addition, both hydrogen peroxide (H2O2) and calcium influx activated VqMAPKKK38 expression and stilbene biosynthesis, which suggests that VqMAPKKK38 may be involved in the calcium signaling and ROS signaling pathways.
Collapse
Affiliation(s)
- Yuntong Jiao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Dan Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Lan Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Changyue Jiang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| |
Collapse
|
34
|
|
35
|
Kloth KJ, Wiegers GL, Busscher-Lange J, van Haarst JC, Kruijer W, Bouwmeester HJ, Dicke M, Jongsma MA. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3383-96. [PMID: 27107291 PMCID: PMC4892728 DOI: 10.1093/jxb/erw159] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences.
Collapse
Affiliation(s)
- Karen J Kloth
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Gerrie L Wiegers
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Biointeractions & Plant Health, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Jan C van Haarst
- Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Maarten A Jongsma
- Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
36
|
Bolouri Moghaddam MR, Vilcinskas A, Rahnamaeian M. Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. MOLECULAR PLANT PATHOLOGY 2016; 17. [PMID: 26220619 PMCID: PMC6638509 DOI: 10.1111/mpp.12299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants express a diverse repertoire of functionally and structurally distinct antimicrobial peptides (AMPs) which provide innate immunity by acting directly against a wide range of pathogens. AMPs are expressed in nearly all plant organs, either constitutively or in response to microbial infections. In addition to their direct activity, they also contribute to plant immunity by modulating defence responses resulting from pathogen-associated molecular pattern/effector-triggered immunity, and also interact with other AMPs and pathways involving mitogen-activated protein kinases, reactive oxygen species, hormonal cross-talk and sugar signalling. Such links among AMPs and defence signalling pathways are poorly understood and there is no clear model for their interactions. This article provides a critical review of the empirical data to shed light on the wider role of AMPs in the robust and resource-effective defence responses of plants.
Collapse
Affiliation(s)
- Mohammad Reza Bolouri Moghaddam
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
- Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
- Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Mohammad Rahnamaeian
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
| |
Collapse
|
37
|
Deng XG, Zhu T, Peng XJ, Xi DH, Guo H, Yin Y, Zhang DW, Lin HH. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Sci Rep 2016; 6:20579. [PMID: 26838475 PMCID: PMC4738339 DOI: 10.1038/srep20579] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/06/2016] [Indexed: 01/05/2023] Open
Abstract
Plant steroid hormones, brassinosteroids (BRs), play essential roles in plant growth, development and stress responses. However, mechanisms by which BRs interfere with plant resistance to virus remain largely unclear. In this study, we used pharmacological and genetic approaches in combination with infection experiments to investigate the role of BRs in plant defense against Tobacco Mosaic Virus (TMV) in Nicotiana benthamiana. Exogenous applied BRs enhanced plant resistance to virus infection, while application of Bikinin (inhibitor of glycogen synthase kinase-3), which activated BR signaling, increased virus susceptibility. Silencing of NbBRI1 and NbBSK1 blocked BR-induced TMV resistance, and silencing of NbBES1/BZR1 blocked Bikinin-reduced TMV resistance. Silencing of NbMEK2, NbSIPK and NbRBOHB all compromised BR-induced virus resistance and defense-associated genes expression. Furthermore, we found MEK2-SIPK cascade activated while BES1/BZR1 inhibited RBOHB-dependent ROS production, defense gene expression and virus resistance induced by BRs. Thus, our results revealed BR signaling had two opposite effects on viral defense response. On the one hand, BRs enhanced virus resistance through MEK2-SIPK cascade and RBOHB-dependent ROS burst. On the other hand, BES1/BZR1 inhibited RBOHB-dependent ROS production and acted as an important mediator of the trade-off between growth and immunity in BR signaling.
Collapse
Affiliation(s)
- Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xing-Ji Peng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA 50011, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA 50011, USA
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
38
|
Hao L, Wen Y, Zhao Y, Lu W, Xiao K. Wheat mitogen-activated protein kinase gene TaMPK4 improves plant tolerance to multiple stresses through modifying root growth, ROS metabolism, and nutrient acquisitions. PLANT CELL REPORTS 2015; 34:2081-97. [PMID: 26275989 DOI: 10.1007/s00299-015-1853-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/14/2015] [Accepted: 07/29/2015] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Wheat MAPK member TaMPK4 responds to abiotic stresses of Pi and N deprivations and high salinity and is crucial in regulating plant tolerance to aforementioned stresses. Mitogen-activated protein kinase (MAPK) cascades are important signal transduction modules in regulating plant responses to various environmental stresses. In this study, a wheat MAPK member referred to TaMPK4 was characterized for its roles in mediating plant tolerance to diverse stresses. TaMPK4 shares conserved domains generally identified in plant MAPKs and possesses in vitro kinase activity. Under stresses of Pi and N deprivations and high salinity, TaMPK4 was strongly upregulated and its expressions were restored upon recovery treatments from above stresses. Sense- and antisense-expressing TaMPK4 in tobacco significantly modified plant growth under the stress conditions and dramatically modified the root architecture through transcriptional regulation of the auxin transport-associated genes NtPIN3 and NtPIN9, whose downregulated expressions dramatically reduced the root growth. Compared with wild type (WT), the antioxidant enzymatic activities under the stress conditions, P accumulation under P deprivation, and N amount under N deficiency were altered dramatically in the transgenic plants, showing higher in the TaMPK4-overexpressing and lower in the TaMPK4-knockout plants, which were in concordance with the modified expressions of a set of antioxidant enzyme genes (NtPOD2;1, NtPOD9, NtSOD2, NtFeSOD, and NtCAT), two phosphate transporter genes (NtPT and NtPT2), and two nitrate transporter genes (NtNRT1.1-s and NtNRT1.1-t), respectively. Downregulated expression of above genes in tobacco largely reduced the plant growth, and Pi and N acquisitions under the stress conditions. TaMPK4 also involved regulations of plant K(+) and osmolyte contents under high salinity. Thus, TaMPK4 is functional in regulating plant tolerance to diverse stresses through modifying various biological processes.
Collapse
Affiliation(s)
- Lin Hao
- College of Life Sciences, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China
| | - Yanli Wen
- College of Agronomy, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China
- College of Life Sciences, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China
| | - Yuanyuan Zhao
- College of Agronomy, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China
| | - Wenjing Lu
- College of Life Sciences, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China.
| | - Kai Xiao
- College of Agronomy, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China.
| |
Collapse
|
39
|
Mo H, Wang X, Zhang Y, Zhang G, Zhang J, Ma Z. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:962-75. [PMID: 26221980 DOI: 10.1111/tpj.12941] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 05/05/2023]
Abstract
Verticillium dahliae is a destructive, soil-borne fungal pathogen that causes vascular wilt disease in many economically important crops worldwide. A polyamine oxidase (PAO) gene was identified and cloned by screening suppression subtractive hybridisation and cDNA libraries of cotton genotypes tolerant to Verticillium wilt and was induced early and strongly by inoculation with V. dahliae and application of plant hormone. Recombinant cotton polyamine oxidase (GhPAO) was found to catalyse the conversion of spermine (Spm) to spermidine (Spd) in vitro. Constitutive expression of GhPAO in Arabidopsis thaliana produced improved resistance to V. dahliae and maintained putrescine, Spd and Spm at high levels. Hydrogen peroxide (H2 O2 ), salicylic acid and camalexin (a phytoalexin) levels were distinctly increased in GhPAO-overexpressing Arabidopsis plants during V. dahliae infection when compared with wild-type plants, and Spm and camalexin efficiently inhibited growth of V. dahliae in vitro. Spermine promoted the accumulation of camalexin by inducing the expression of mitogen-activated protein kinases and cytochrome P450 proteins in Arabidopsis and cotton plants. The three polyamines all showed higher accumulation in tolerant cotton cultivars than in susceptible cotton cultivars after inoculation with V. dahliae. GhPAO silencing in cotton significantly reduced the Spd level and increased the Spm level, leading to enhanced susceptibility to infection by V. dahliae, and the levels of H2 O2 and camalexin were distinctly lower in GhPAO-silenced cotton plants after V. dahliae infection. Together, these results suggest that GhPAO contributes to resistance of the plant against V. dahliae through the mediation of Spm and camalexin signalling.
Collapse
Affiliation(s)
- Huijuan Mo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Box 30003, Las Cruces, NM, 88003, USA
| | - Zhiying Ma
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| |
Collapse
|
40
|
Zou J, Wang R, Li R, Kong Y, Wang J, Ning X, Zhang L, Wang S, Hu X, Bao Z. The genome-wide identification of mitogen-activated protein kinase kinase (MKK) genes in Yesso scallop Patinopecten yessoensis and their expression responses to bacteria challenges. FISH & SHELLFISH IMMUNOLOGY 2015; 45:901-911. [PMID: 26067168 DOI: 10.1016/j.fsi.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Mitogen-activated protein kinase kinases (MKK) are the essential components of the evolutionarily conserved MAPK signaling cascade, which regulates a variety of cellular activities and innate immune responses. Although MKK genes have been extensively studied in various vertebrate and invertebrate species, they have not been systematically characterized in bivalves. In this study, we identified and characterized five MKK genes (PyMKK1/2, PyMKK4, PyMKK5, PyMKK3/6 and PyMKK7) in the Yesso scallop (Patinopecten yessoensis). Phylogenetic and protein structural analyses were conducted to determine their identities and evolutionary relationships. To gain insights into the possible roles of MKK genes during scallop innate immune responses, quantitative real-time PCR (qRT-PCR) was used to investigate their expression profiles during different developmental stages in samples taken from healthy adult tissues and hemocytes after Micrococcus luteus and Vibrio anguillarum bacterial infections. The Yesso scallop MKKs (PyMKKs) were found to have highly conserved structural features compared to the MKK genes from other invertebrate species. Using qRT-PCR analysis, three distinct expression patterns were detected among the PyMKKs over the course of ten different developmental stages. In adult scallops, the majority of the PyMKKs were highly expressed in mantle, gill, muscle and hemocytes. The differential expression patterns of the five PyMKKs after M. luteus (Gram-positive) and V. anguillarum (Gram-negative) bacterial infections suggested their possible involvement in the innate immune response and provide the foundation and resource for the further study on innate immune response of MAPK signal pathway in mollusk.
Collapse
Affiliation(s)
- Jiajun Zou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruijia Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Ruojiao Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yifan Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xianhui Ning
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingling Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
41
|
Tsuda K, Somssich IE. Transcriptional networks in plant immunity. THE NEW PHYTOLOGIST 2015; 206:932-947. [PMID: 25623163 DOI: 10.1111/nph.13286] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/09/2014] [Indexed: 05/18/2023]
Abstract
Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.
Collapse
Affiliation(s)
- Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| |
Collapse
|
42
|
Chen C, Liu S, Liu Q, Niu J, Liu P, Zhao J, Jian H. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense. PLoS One 2015; 10:e0122256. [PMID: 25849616 PMCID: PMC4388550 DOI: 10.1371/journal.pone.0122256] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin) and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS) caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI) in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK) signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.
Collapse
Affiliation(s)
- Changlong Chen
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Shusen Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Qian Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Junhai Niu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | - Pei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianlong Zhao
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Heng Jian
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Roux ME, Rasmussen MW, Palma K, Lolle S, Regué ÀM, Bethke G, Glazebrook J, Zhang W, Sieburth L, Larsen MR, Mundy J, Petersen M. The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J 2015; 34:593-608. [PMID: 25603932 DOI: 10.15252/embj.201488645] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multi-layered defense responses are activated in plants upon recognition of invading pathogens. Transmembrane receptors recognize conserved pathogen-associated molecular patterns (PAMPs) and activate MAP kinase cascades, which regulate changes in gene expression to produce appropriate immune responses. For example, Arabidopsis MAP kinase 4 (MPK4) regulates the expression of a subset of defense genes via at least one WRKY transcription factor. We report here that MPK4 is found in complexes in vivo with PAT1, a component of the mRNA decapping machinery. PAT1 is also phosphorylated by MPK4 and, upon flagellin PAMP treatment, PAT1 accumulates and localizes to cytoplasmic processing (P) bodies which are sites for mRNA decay. Pat1 mutants exhibit dwarfism and de-repressed immunity dependent on the immune receptor SUMM2. Since mRNA decapping is a critical step in mRNA turnover, linking MPK4 to mRNA decay via PAT1 provides another mechanism by which MPK4 may rapidly instigate immune responses.
Collapse
Affiliation(s)
- Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Signe Lolle
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Àngels Mateu Regué
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Gerit Bethke
- Department of Plant Biology, University of Minnesota, St. Paul, MN, USA
| | - Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, MN, USA
| | - Weiping Zhang
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Leslie Sieburth
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Martin R Larsen
- University of Southern Denmark Institute for Biochemistry and Molecular Biology, Odense, Denmark
| | - John Mundy
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Stage-specific reprogramming of gene expression characterizes Lr48-mediated adult plant leaf rust resistance in wheat. Funct Integr Genomics 2014; 15:233-45. [DOI: 10.1007/s10142-014-0416-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/09/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022]
|
46
|
Allie F, Pierce EJ, Okoniewski MJ, Rey C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics 2014; 15:1006. [PMID: 25412561 PMCID: PMC4253015 DOI: 10.1186/1471-2164-15-1006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cassava mosaic disease is caused by several distinct geminivirus species, including South African cassava mosaic virus-[South Africa:99] (SACMV). To date, there is limited gene regulation information on viral stress responses in cassava, and global transcriptome profiling in SACMV-infected cassava represents an important step towards understanding natural host responses to plant geminiviruses. RESULTS A RNA-seq time course (12, 32 and 67 dpi) study, monitoring gene expression in SACMV-challenged susceptible (T200) and tolerant (TME3) cassava landraces, was performed using the Applied Biosystems (ABI) SOLiD next-generation sequencing platform. The multiplexed paired end sequencing run produced a total of 523 MB and 693 MB of paired-end reads for SACMV-infected susceptible and tolerant cDNA libraries, respectively. Of these, approximately 50.7% of the T200 reads and 55.06% of TME3 reads mapped to the cassava reference genome available in phytozome. Using a log2 fold cut-off (p<0.05), comparative analysis between the six normalized cDNA libraries showed that 4181 and 1008 transcripts in total were differentially expressed in T200 and TME3, respectively, across 12, 32 and 67 days post infection, compared to mock-inoculated. The number of responsive transcripts increased dramatically from 12 to 32 dpi in both cultivars, but in contrast, in T200 the levels did not change significantly at 67 dpi, while in TME3 they declined. GOslim functional groups illustrated that differentially expressed genes in T200 and TME3 were overrepresented in the cellular component category for stress-related genes, plasma membrane and nucleus. Alterations in the expression of other interesting genes such as transcription factors, resistance (R) genes, and histone/DNA methylation-associated genes, were observed. KEGG pathway analysis uncovered important altered metabolic pathways, including phenylpropanoid biosynthesis, sucrose and starch metabolism, and plant hormone signalling. CONCLUSIONS Molecular mechanisms for TME3 tolerance are proposed, and differences in patterns and levels of transcriptome profiling between T200 and TME3 with susceptible and tolerant phenotypes, respectively, support the hypothesis that viruses rearrange their molecular interactions in adapting to hosts with different genetic backgrounds.
Collapse
Affiliation(s)
- Farhahna Allie
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Erica J Pierce
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Michal J Okoniewski
- />Functional Genomics Center, Zurich, UNI ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chrissie Rey
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| |
Collapse
|
47
|
Liu JZ, Braun E, Qiu WL, Shi YF, Marcelino-Guimarães FC, Navarre D, Hill JH, Whitham SA. Positive and negative roles for soybean MPK6 in regulating defense responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:824-34. [PMID: 24762222 DOI: 10.1094/mpmi-11-13-0350-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It has been well established that MPK6 is a positive regulator of defense responses in model plants such as Arabidopsis and tobacco. However, the functional importance of soybean MPK6 in disease resistance has not been investigated. Here, we showed that silencing of GmMPK6 in soybean using virus-induced gene silencing mediated by Bean pod mottle virus (BPMV) caused stunted growth and spontaneous cell death on the leaves, a typical phenotype of activated defense responses. Consistent with this phenotype, expression of pathogenesis-related (PR) genes and the conjugated form of salicylic acid were significantly increased in GmMPK6-silenced plants. As expected, GmMPK6-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants, indicating a negative role of GmMPK6 in disease resistance. Interestingly, overexpression of GmMPK6, either transiently in Nicotiana benthamiana or stably in Arabidopsis, resulted in hypersensitive response (HR)-like cell death. The HR-like cell death was accompanied by increased PR gene expression, suggesting that GmMPK6, like its counterpart in other plant species, also plays a positive role in cell death induction and defense response. Using bimolecular fluorescence complementation analysis, we determined that GmMKK4 might function upstream of GmMPK6 and GmMKK4 could interact with GmMPK6 independent of its phosphorylation status. Taken together, our results indicate that GmMPK6 functions as both repressor and activator in defense responses of soybean.
Collapse
|
48
|
Wu J, Wang J, Pan C, Guan X, Wang Y, Liu S, He Y, Chen J, Chen L, Lu G. Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PLoS One 2014; 9:e103032. [PMID: 25036993 PMCID: PMC4103895 DOI: 10.1371/journal.pone.0103032] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/25/2014] [Indexed: 01/09/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades have important functions in plant growth, development, and response to various stresses. The MAPKK and MAPKKK gene families in tomato have never been systematically analyzed. In this study, we performed a genome-wide analysis of the MAPKK and MAPKKK gene families in tomato and identified 5 MAPKK genes and 89 MAPKKK genes. Phylogenetic analyses of the MAPKK and MAPKKK gene families showed that all the MAPKK genes formed four groups (groups A, B, C, and D), whereas all the MAPKKK genes were classified into three subfamilies, namely, MEKK, RAF, and ZIK. Evolutionary analysis showed that whole genome or chromosomal segment duplications were the main factors responsible for the expansion of the MAPKK and MAPKKK gene families in tomato. Quantitative real-time RT-PCR analysis showed that the majority of MAPKK and MAPKKK genes were expressed in all tested organs with considerable differences in transcript levels indicating that they might be constitutively expressed. However, the expression level of most of these genes changed significantly under heat, cold, drought, salt, and Pseudomonas syringae treatment. Furthermore, their expression levels exhibited significant changes in response to salicylic acid and indole-3-acetic acid treatment, implying that these genes might have important roles in the plant hormone network. Our comparative analysis of the MAPKK and MAPKKK families would improve our understanding of the evolution and functional characterization of MAPK cascades in tomato.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jie Wang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Changtian Pan
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaoyan Guan
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Songyu Liu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yanjun He
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jingli Chen
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifei Chen
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
49
|
Li BC, Zhang C, Chai QX, Han YY, Wang XY, Liu MX, Feng H, Xu ZQ. Plasmalemma localisation of DOUBLE HYBRID PROLINE-RICH PROTEIN 1 and its function in systemic acquired resistance of Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:768-779. [PMID: 32481031 DOI: 10.1071/fp13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/23/2014] [Indexed: 05/03/2023]
Abstract
The protein encoded by AtDHyPRP1 (DOUBLE HYBRID PROLINE-RICH PROTEIN 1) contains two tandem PRD-8CMs (proline-rich domain-eight cysteine motif) and represents a new type of HyPRPs (hybrid proline-rich proteins). Confocal microscopy to transgenic Arabidopsis plants revealed that AtDHyPRP1-GFP was localised to plasmalemma, especially plasmodesmata. AtDHyPRP1 mainly expressed in leaf tissues and could be induced by salicylic acid, methyl jasmonate, virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and avirulent P. syringae pv. tomato DC3000 harbouring avrRPM1 (Pst avrRPM1), suggesting it is involved in defence response of Arabidopsis thaliana (L. Heynh.). After treatments with bacterial suspension of virulent Pst DC3000 or conidial suspension of Botrytis cinerea, AtDHyPRP1 overexpressing lines exhibited enhanced resistance, whereas AtDHyPRP1 RNA interference lines became more susceptible to the pathogens with obvious chlorosis or necrosis phenotypes. In systemic acquired resistance (SAR) analyses, distal leaves were challenged with virulent Pst DC3000 after inoculation of the primary leaves with avirulent Pst avrRPM1 (AV) or MgSO4 (MV). Compared with MV, the infection symptoms in systemic leaves of wild-type plants and AtDHyPRP1 overexpressing lines were significantly alleviated in AV treatment, whereas the systemic leaves of AtDHyPRP1 RNAi lines were vulnerable to Pst DC3000, indicating AtDHyPRP1 was functionally associated with SAR.
Collapse
Affiliation(s)
- Ben-Chang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Chen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Qiu-Xia Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yao-Yao Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xiao-Yan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Meng-Xin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Huan Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| |
Collapse
|
50
|
Abstract
The MAPK (mitogen-activated kinase) cascade plays important roles in plant perception of and reaction to developmental and environmental cues. Phosphoproteomics are useful to identify target proteins regulated by MAPK-dependent signaling pathway. Here, we introduce the quantitative phosphoproteomic analysis using a chemical labeling method. The isobaric tag for relative and absolute quantitation (iTRAQ) method is a MS-based technique to quantify protein expression among up to eight different samples in one experiment. In this technique, peptides were labeled by some stable isotope-coded covalent tags. We perform quantitative phosphoproteomics comparing Arabidopsis wild type and a stress-responsive mapkk mutant after phytotoxin treatment. To comprehensively identify the downstream phosphoproteins of MAPKK, total proteins were extracted from phytotoxin-treated wild-type and mapkk mutant plants. The phosphoproteins were purified by Pro-Q(®) Diamond Phosphoprotein Enrichment Kit and were digested with trypsin. Resulting peptides were labeled with iTRAQ reagents and were quantified and identified by MALDI TOF/TOF analyzer. We identified many phosphoproteins that were decreased in the mapkk mutant compared with wild type.
Collapse
Affiliation(s)
- Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 920-0934, Kanazawa, Japan
| | | |
Collapse
|