1
|
Zhuravleva АА, Silkova ОG. Disomic chromosome 3R(3B) substitution causes a complex of meiotic abnormalities in bread wheat Triticum aestivum L. Vavilovskii Zhurnal Genet Selektsii 2024; 28:365-376. [PMID: 39027125 PMCID: PMC11253021 DOI: 10.18699/vjgb-24-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 07/20/2024] Open
Abstract
Triticum aestivum L. lines introgressed with alien chromosomes create a new genetic background that changes the gene expression of both wheat and donor chromosomes. The genes involved in meiosis regulation are localized on wheat chromosome 3B. The purpose of the present study was to investigate the effect of wheat chromosome 3B substituted with homoeologous rye chromosome 3R on meiosis regulation in disomically substituted wheat line 3R(3B). Employing immunostaining with antibodies against microtubule protein, α-tubulin, and the centromere-specific histone (CENH3), as well as FISH, we analyzed microtubule cytoskeleton dynamics and wheat and rye 3R chromosomes behavior in 3R(3B) (Triticum aestivum L. variety Saratovskaya 29 × Secale cereale L. variety Onokhoiskaya) meiosis. The results revealed a set of abnormalities in the microtubule dynamics and chromosome behavior in both first and second divisions. A feature of metaphase I in 3R(3B) was a decrease in the chiasmata number compared with variety Saratovskaya 29, 34.9 ± 0.62 and 41.92 ± 0.38, respectively. Rye homologs 3R in 13.18 % of meiocytes did not form bivalents. Chromosomes were characterized by varying degrees of compaction; 53.33 ± 14.62 cells lacked a metaphase plate. Disturbances were found in microtubule nucleation at the bivalent kinetochores and in their convergence at the spindle division poles. An important feature of meiosis was the asynchronous chromosome behavior in the second division and dyads at the telophase II in 8-13 % of meiocytes, depending on the anther studied. Considering the 3R(3B) meiotic phenotype, chromosome 3B contains the genes involved in the regulation of meiotic division, and substituting 3B3B chromosomes with rye 3R3R does not compensate for their absence.
Collapse
Affiliation(s)
- А А Zhuravleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - О G Silkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Gagnon M, Duceppe M, Colville A, Pope L, Côté M, Ogunremi D. An integrated strategy involving high-throughput sequencing to characterize an unknown GM wheat event in Canada. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:904-914. [PMID: 38051549 PMCID: PMC10955494 DOI: 10.1111/pbi.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023]
Abstract
Glyphosate-resistant wheat plants were discovered in southern Alberta in 2017, representing an unauthorized GM release in Canada. The Canadian Food Inspection Agency undertook a series of experiments to characterize and identify this unknown GM wheat, as well as to develop and validate construct-specific and event-specific qPCR assays. Results of PCR-based assays and Sanger sequencing indicated the presence of CaMV 35S promoter (p35S), Rice Actin 1 intron (RactInt1), CP4-EPSPS gene and nopaline synthase terminator (tNOS) elements in the unknown GM wheat. Genome walking and bead capture strategies, combined with high-throughput sequencing, were used to identify the 5' and 3' wheat junctions and the subsequent mapping of the insert to chromosome 3B of the wheat genome. A probable transformation vector, pMON25497, was recognized, and further testing identified the unknown GM wheat as MON71200 event, one of two events obtained with the pMON25497 vector. The two construct-specific assays targeted the junctions of the RactInt1 and the CP4-EPSPS elements and the CP4-EPSPS and tNOS elements, while the event-specific assay was located at the 3' junction into the wheat genome. Both construct-specific and event-specific assays had limits of detection of 0.10% of MON71200 in a seed pool. As expected, the two construct-specific assays cross-reacted with other wheat and corn events containing the same elements in the same order. No cross-reactivity was observed for the event-specific assay. The integrated strategy employed in this study can serve as a model for other cases when facing similar challenges involving unknown GM events.
Collapse
Affiliation(s)
| | | | - Adam Colville
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| | - Louise Pope
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| | | | - Dele Ogunremi
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| |
Collapse
|
3
|
Iqbal A, Bocian J, Przyborowski M, Orczyk W, Nadolska-Orczyk A. Are TaNAC Transcription Factors Involved in Promoting Wheat Yield by cis-Regulation of TaCKX Gene Family? Int J Mol Sci 2024; 25:2027. [PMID: 38396706 PMCID: PMC10889182 DOI: 10.3390/ijms25042027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
NAC transcription factors (TFs) are one of the largest TF families in plants, and TaNACs have been known to participate in the regulation of the transcription of many yield-regulating genes in bread wheat. The TaCKX gene family members (GFMs) have already been shown to regulate yield-related traits, including grain mass and number, leaf senescence, and root growth. The genes encode cytokinin (CK) degrading enzymes (CKXs) and are specifically expressed in different parts of developing wheat plants. The aim of the study was to identify and characterize TaNACs involved in the cis-regulation of TaCKX GFMs. After analysis of the initial transcription factor data in 1.5 Kb cis-regulatory sequences of a total of 35 homologues of TaCKX GFMs, we selected five of them, namely TaCKX1-3A, TaCKX22.1-3B, TaCKX5-3D, TaCKX9-1B, and TaCKX10, and identified five TaNAC genes: TaNACJ-1, TaNAC13a, TaNAC94, TaNACBr-1, and TaNAC6D, which are potentially involved in the cis-regulation of selected TaCKX genes, respectively. Protein feature analysis revealed that all of the selected TaNACs have a conserved NAC domain and showed a stable tertiary structure model. The expression profile of the selected TaNACs was studied in 5 day-old seedling roots, 5-6 cm inflorescences, 0, 4, 7, and 14 days-after-pollination (DAP) spikes, and the accompanying flag leaves. The expression pattern showed that all of the selected TaNACs were preferentially expressed in seedling roots, 7 and 14 DAP spikes, and flag leaves compared to 5-6 cm inflorescence and 0 and 4 DAP spikes and flag leaves in Kontesa and Ostka spring wheat cultivars (cvs.). In conclusion, the results of this study highlight the potential role of the selected TaNACs in the regulation of grain productivity, leaf senescence, root growth, and response to various stresses.
Collapse
Affiliation(s)
- Adnan Iqbal
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | | | | | | | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
4
|
Gorbenko IV, Petrushin IS, Shcherban AB, Orlov YL, Konstantinov YM. Short Interrupted Repeat Cassette (SIRC)-Novel Type of Repetitive DNA Element Found in Arabidopsis thaliana. Int J Mol Sci 2023; 24:11116. [PMID: 37446293 DOI: 10.3390/ijms241311116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Short interrupted repeat cassette (SIRC)-a novel DNA element found throughout the A. thaliana nuclear genome. SIRCs are represented by short direct repeats interrupted by diverse DNA sequences. The maxima of SIRC's distribution are located within pericentromeric regions. We suggest that originally SIRC was a special case of the complex internal structure of the miniature inverted repeat transposable element (MITE), and further MITE amplification, transposition, and loss of terminal inverted repeats gave rise to SIRC as an independent DNA element. SIRC sites were significantly enriched with several histone modifications associated with constitutive heterochromatin and mobile genetic elements. The majority of DNA-binding proteins, strongly associated with SIRC, are related to histone modifications for transcription repression. A part of SIRC was found to overlap highly inducible protein-coding genes, suggesting a possible regulatory role for these elements, yet their definitive functions need further investigation.
Collapse
Affiliation(s)
- Igor V Gorbenko
- Cell Biology and Bioengineering, Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk 664033, Russia
| | - Ivan S Petrushin
- Cell Biology and Bioengineering, Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk 664033, Russia
- Department of Business Communications and Informatics, Irkutsk State University, Irkutsk 664033, Russia
| | - Andrey B Shcherban
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Kurchatov Genomic Center ICG SB RAS, Novosibirsk 630090, Russia
| | - Yuriy L Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, Moscow 117198, Russia
| | - Yuri M Konstantinov
- Cell Biology and Bioengineering, Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk 664033, Russia
- Biosoil Department, Irkutsk State University, Irkutsk 664003, Russia
| |
Collapse
|
5
|
Fluorescence In Situ Hybridization (FISH) for the Genotyping of Triticeae Tribe Species and Hybrids. Methods Mol Biol 2023; 2638:437-449. [PMID: 36781661 DOI: 10.1007/978-1-0716-3024-2_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This chapter is dedicated to using fluorescence in situ hybridization (FISH) for the genotyping of Triticeae tribe species and hybrids. The basic method of FISH on metaphase chromosomes is presented with a discussion on its modifications, and deoxyribonucleic acid (DNA) probes that can be useful for genotyping are proposed.
Collapse
|
6
|
Liang Y, Xia J, Jiang Y, Bao Y, Chen H, Wang D, Zhang D, Yu J, Cang J. Genome-Wide Identification and Analysis of bZIP Gene Family and Resistance of TaABI5 ( TabZIP96) under Freezing Stress in Wheat ( Triticum aestivum). Int J Mol Sci 2022; 23:2351. [PMID: 35216467 PMCID: PMC8874521 DOI: 10.3390/ijms23042351] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023] Open
Abstract
The basic leucine zipper (bZIP) regulates plant growth and responds to stress as a key transcription factor of the Abscisic acid (ABA) signaling pathway. In this study, TabZIP genes were identified in wheat and the gene structure, physicochemical properties, cis-acting elements, and gene collinearity were analyzed. RNA-Seq and qRT-PCR analysis showed that ABA and abiotic stress induced most TabZIP genes expression. The ectopic expression of TaABI5 up-regulated the expression of several cold-responsive genes in Arabidopsis. Physiological indexes of seedlings of different lines under freezing stress showed that TaABI5 enhanced the freezing tolerance of plants. Subcellular localization showed that TaABI5 is localized in the nucleus. Furthermore, TaABI5 physically interacted with cold-resistant transcription factor TaICE1 in yeast two-hybrid system. In conclusion, this study identified and analyzed members of the TabZIP gene family in wheat. It proved for the first time that the gene TaABI5 affected the cold tolerance of transgenic plants and was convenient for us to understand the cold resistance molecular mechanism of TaABI5. These results will provide a new inspiration for further study on improving plant abiotic stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (J.X.); (Y.J.); (Y.B.); (H.C.); (D.W.); (D.Z.); (J.Y.)
| |
Collapse
|
7
|
Characterization and Use in Wheat Breeding of Leaf Rust Resistance Genes from Durable Varieties. BIOLOGY 2021; 10:biology10111168. [PMID: 34827161 PMCID: PMC8615195 DOI: 10.3390/biology10111168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Wheat leaf rust is one of the most significant diseases worldwide, incited by a parasitic fungus which infects leaves, affecting grain yield. This pathogen is spread by the wind over large areas through microscopic spores. This huge number of spores favors the selection of virulent forms; therefore, there is a continuous need for new resistance genes to control this disease without fungicides. These resistant genes are naturally found in resistant wheat varieties and can be introduced by standard crosses. In this work, seven resistant genes were introduced into several commercial susceptible varieties. The selection of resistance genes was assisted by DNA markers that are close to these genes on the chromosome. Additionally, the selection of desirable traits from the commercial variety was also assisted by DNA markers to accelerate the process. In field testing, the varieties developed here were resistant to leaf rust, and suitable for commercial use. Abstract Leaf rust is one of the most significant diseases of wheat worldwide. In Argentina, it is one of the main reasons for variety replacement that becomes susceptible after large-scale use. Some varieties showed durable resistance to this disease, including Buck Manantial and Sinvalocho MA. RILs (Recombinant Inbred Lines) were developed for each of these varieties and used in genetics studies to identify components of resistance, both in greenhouse inoculations using leaf rust races, and in field evaluations under natural population infections. In Buck Manantial, the APR gene LrBMP1 was associated with resistance in field tests. In crosses involving Sinvalocho MA, four genes were previously identified and associated with resistance in field testing: APR (Adult Plant Resistance) gene LrSV1, the APR genetic system LrSV2 + LrcSV2 and the ASR (All Stage Resistance) gene LrG6. Using backcrosses, LrBMP1 was introgressed in four commercial susceptible varieties and LrSV1, LrSV2 + LrcSV2 and LrG6 were simultaneously introgressed in three susceptible commercial varieties. The use of molecular markers for recurrent parent background selection allowed us to select resistant lines with more than 80% similarity to commercial varieties. Additionally, progress towards positional cloning of the genetic system LrSV2 + LrcSV2 for leaf rust APR is reported.
Collapse
|
8
|
Xing L, Yuan L, Lv Z, Wang Q, Yin C, Huang Z, Liu J, Cao S, Zhang R, Chen P, Karafiátová M, Vrána J, Bartoš J, Doležel J, Cao A. Long-range assembly of sequences helps to unravel the genome structure and small variation of the wheat-Haynaldia villosa translocated chromosome 6VS.6AL. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1567-1578. [PMID: 33606347 PMCID: PMC8384597 DOI: 10.1111/pbi.13570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/06/2021] [Indexed: 05/07/2023]
Abstract
Genomics studies in wild species of wheat have been limited due to the lack of references; however, new technologies and bioinformatics tools have much potential to promote genomic research. The wheat-Haynaldia villosa translocation line T6VS·6AL has been widely used as a backbone parent of wheat breeding in China. Therefore, revealing the genome structure of translocation chromosome 6VS·6AL will clarify how this chromosome formed and will help to determine how it affects agronomic traits. In this study, chromosome flow sorting, NGS sequencing and Chicago long-range linkage assembly were innovatively used to produce the assembled sequences of 6VS·6AL, and gene prediction and genome structure characterization at the molecular level were effectively performed. The analysis discovered that the short arm of 6VS·6AL was actually composed of a large distal segment of 6VS, a small proximal segment of 6AS and the centromere of 6A, while the collinear region in 6VS corresponding to 230-260 Mb of 6AS-Ta was deleted when the recombination between 6VS and 6AS occurred. In addition to the molecular mechanism of the increased grain weight and enhanced spike length produced by the translocation chromosome, it may be correlated with missing GW2-V and an evolved NRT-V cluster. Moreover, a fine physical bin map of 6VS was constructed by the high-throughput developed 6VS-specific InDel markers and a series of newly identified small fragment translocation lines involving 6VS. This study will provide essential information for mining of new alien genes carried by the 6VS·6AL translocation chromosome.
Collapse
Affiliation(s)
- Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Lu Yuan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Zengshuai Lv
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Qiang Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Chunhong Yin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Zhenpu Huang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Jiaqian Liu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Shuqi Cao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Ruiqi Zhang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Peidu Chen
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| |
Collapse
|
9
|
Assessment of genetic diversity of cultivated and wild Iranian grape germplasm using retrotransposon-microsatellite amplified polymorphism (REMAP) markers and pomological traits. Mol Biol Rep 2020; 47:7593-7606. [PMID: 32949305 DOI: 10.1007/s11033-020-05827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Understanding the genetic diversity and relationships between genotypes is an effective step in designing effective breeding programs. Insertional polymorphisms of retrotransposons were studied in 75 cultivated and wild grape genotypes using retrotransposon-microsatellite amplified polymorphism (REMAP) technique. In the morphological part of work, seven pomological traits with a high breeding interest were also analyzed in the cultivated genotypes. A total of 328 markers were produced by 42 primer pairs, out of which 313 markers (95.43%) were polymorphic. Number of markers ranged from 4 in loci Tvv1Fa-873, Vine1-811, Gret1Ra-855 and Tvv1Fa-890 to 12 in locus Vine1Ra-841 with an average value of 7.45. Similarity values based on Dice's coefficient among all 75 grapevine genotypes varied from 0.41 to 0.77. Classification of genotypes using unweighted pair-group method using complete-linkage clustering led to six distinct groups. Some wild and cultivated varieties placed in the same groups. It seems there are close relationship between wild and cultivated genotypes and maybe wild genotypes are ancestor of native grapevines. Grouping of grapevine genotypes based on molecular marker data was not in agreement with clustering by agro-morphological data indicating that the most of multiplied sequences are confined to the non-coding regions of transposon elements. Results showed a substantial level of genetic diversity at molecular and pomological level and the potential of this diversity for future grape breeding programs.
Collapse
|
10
|
Yepuri V, Jalali S, Kancharla N, Reddy VB, Arockiasamy S. Development of genome wide transposable elements based repeat junction markers in Jatropha (Jatropha curcas L.). Mol Biol Rep 2020; 47:5091-5099. [PMID: 32562173 DOI: 10.1007/s11033-020-05579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/10/2020] [Indexed: 11/29/2022]
Abstract
Jatropha curcas is a potential biodiesel crop and a highly adaptable species to various agro-climatic conditions. In this study, we have utilized transposable elements' (TE) repeat junctions (RJs) which are an important constituent of the genome, used to form a genome-wide molecular marker platform owing to its use in genomic studies of plants. We screened our previously generated Jatropha hybrid genome assembly of size 265 Mbp using RJPrimers pipeline software and identified a total of 1274 TE junctions. For the predicted RJs, we designed 2868 polymerase chain reaction (PCR) based RJ markers (RJMs) flanking the junction regions. In addition to marker design, the identified RJs were utilized to detect 225,517 TEs across the genome. The different types of transposable repeat elements mainly were scattered into Retro, LTR, Copia and Gypsy categories. The efficacy of the designed markers was tested by utilizing a subset of RJMs selected randomly. We have validated 96 randomly selected RJ primers in a group of 32 J. curcas genotypes and more than 90% of the markers effectively intensified as amplicons. Of these, 10 primers were shown to be polymorphic in estimating genetic diversity among the 32 Jatropha lines. UPGMA cluster analysis revealed the formation of two clusters such as A and B exhibiting 85.5% and 87% similarity coefficient respectively. The various RJMs identified in this study could be utilized as a significant asset in Jatropha functional genomics including genome determination, mapping and marker-assisted selection.
Collapse
Affiliation(s)
- Vijay Yepuri
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Saakshi Jalali
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Nagesh Kancharla
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - V B Reddy
- AgriGenome Labs Private Limited, Hyderabad, 500078, India
| | - S Arockiasamy
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India.
| |
Collapse
|
11
|
Zwyrtková J, Němečková A, Čížková J, Holušová K, Kapustová V, Svačina R, Kopecký D, Till BJ, Doležel J, Hřibová E. Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC PLANT BIOLOGY 2020; 20:280. [PMID: 32552738 PMCID: PMC7302162 DOI: 10.1186/s12870-020-02495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Alžběta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Veronika Kapustová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Radim Svačina
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Bradley John Till
- Centro de Genómica Nutricional Agroacuícola, Las Heras 350, Temuco, Chile
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| |
Collapse
|
12
|
Kaushik M, Rai S, Venkadesan S, Sinha SK, Mohan S, Mandal PK. Transcriptome Analysis Reveals Important Candidate Genes Related to Nutrient Reservoir, Carbohydrate Metabolism, and Defence Proteins during Grain Development of Hexaploid Bread Wheat and Its Diploid Progenitors. Genes (Basel) 2020; 11:E509. [PMID: 32380773 PMCID: PMC7290843 DOI: 10.3390/genes11050509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Wheat grain development after anthesis is an important biological process, in which major components of seeds are synthesised, and these components are further required for germination and seed vigour. We have made a comparative RNA-Seq analysis between hexaploid wheat and its individual diploid progenitors to know the major differentially expressed genes (DEGs) involved during grain development. Two libraries from each species were generated with an average of 55.63, 55.23, 68.13, and 103.81 million reads, resulting in 79.3K, 113.7K, 90.6K, and 121.3K numbers of transcripts in AA, BB, DD, and AABBDD genome species respectively. Number of expressed genes in hexaploid wheat was not proportional to its genome size, but marginally higher than that of its diploid progenitors. However, to capture all the transcripts in hexaploid wheat, sufficiently higher number of reads was required. Functional analysis of DEGs, in all the three comparisons, showed their predominance in three major classes of genes during grain development, i.e., nutrient reservoirs, carbohydrate metabolism, and defence proteins; some of them were subsequently validated through real time quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Further, developmental stage-specific gene expression showed most of the defence protein genes expressed during initial developmental stages in hexaploid contrary to the diploids at later stages. Genes related to carbohydrates anabolism expressed during early stages, whereas catabolism genes expressed at later stages in all the species. However, no trend was observed in case of different nutrient reservoirs gene expression. This data could be used to study the comparative gene expression among the three diploid species and homeologue-specific expression in hexaploid.
Collapse
Affiliation(s)
- Megha Kaushik
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
- Amity Institute of Biotechnology (AIB), Amity University, Sector 125, Noida, Uttar Pradesh 201313, India;
| | - Shubham Rai
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
| | - Sureshkumar Venkadesan
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
| | - Subodh Kumar Sinha
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
| | - Sumedha Mohan
- Amity Institute of Biotechnology (AIB), Amity University, Sector 125, Noida, Uttar Pradesh 201313, India;
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research -National Institute on Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi-110012, India; (M.K.); (S.R.); (S.V.); (S.K.S.)
| |
Collapse
|
13
|
Divashuk MG, Karlov GI, Kroupin PY. Copy Number Variation of Transposable Elements in Thinopyrum intermedium and Its Diploid Relative Species. PLANTS (BASEL, SWITZERLAND) 2019; 9:E15. [PMID: 31877707 PMCID: PMC7020174 DOI: 10.3390/plants9010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Diploid and polyploid wild species of Triticeae have complex relationships, and the understanding of their evolution and speciation could help to increase the usability of them in wheat breeding as a source of genetic diversity. The diploid species Pseudoroegneria spicata (St), Thinopyrum bessarabicum (Jb), Dasypyrum villosum (V) derived from a hypothetical common ancestor are considered to be possible subgenome donors in hexaploid species Th. intermedium (JrJvsSt, where indices r, v, and s stand for the partial relation to the genomes of Secale, Dasypyrum, and Pseudoroegneria, respectively). We quantified 10 families of transposable elements (TEs) in P. spicata, Th. bessarabicum, D. villosum (per one genome), and Th. intermedium (per one average subgenome) using the quantitative real time PCR assay and compared their abundance within the studied genomes as well as between them. Sabrina was the most abundant among all studied elements in P. spicata, D. villosum, and Th. intermedium, and among Ty3/Gypsy elements in all studied species. Among Ty1/Copia elements, Angela-A and WIS-A showed the highest and close abundance with the exception of D. villosum, and comprised the majority of all studied elements in Th. bessarabicum. Sabrina, BAGY2, and Angela-A showed similar abundance among diploids and in Th. intermedium hexaploid; Latidu and Barbara demonstrated sharp differences between diploid genomes. The relationships between genomes of Triticeae species based on the studied TE abundance and the role of TEs in speciation and polyploidization in the light of the current phylogenetic models is discussed.
Collapse
Affiliation(s)
- Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Pavel Yu. Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| |
Collapse
|
14
|
Jouanin A, Borm T, Boyd LA, Cockram J, Leigh F, Santos BA, Visser RG, Smulders MJ. Development of the GlutEnSeq capture system for sequencing gluten gene families in hexaploid bread wheat with deletions or mutations induced by γ-irradiation or CRISPR/Cas9. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Transposable Elements in the Organization and Diversification of the Genome of Aegilops speltoides Tausch (Poaceae, Triticeae). Int J Genomics 2018; 2018:4373089. [PMID: 30356408 PMCID: PMC6178165 DOI: 10.1155/2018/4373089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/19/2018] [Indexed: 12/31/2022] Open
Abstract
Repetitive DNA-specifically, transposable elements (TEs)-is a prevailing genomic fraction in cereals that underlies extensive genome reshuffling and intraspecific diversification in the wild. Although large amounts of data have been accumulated, the effect of TEs on the genome architecture and functioning is not fully understood. Here, plant genome organization was addressed by means of cloning and sequencing TE fragments of different types, which compose the largest portion of the Aegilops speltoides genome. Individual genotypes were analyzed cytogenetically using the cloned TE fragments as the DNA probes for fluorescence in situ hybridization (FISH). The obtained TE sequences of the Ty1-copia, Ty3-gypsy, LINE, and CACTA superfamilies showed the relatedness of the Ae. speltoides genome to the Triticeae tribe and similarities to evolutionarily distant species. A significant number of clones consisted of intercalated fragments of TEs of various types, in which Fatima (Ty3-gypsy) sequences predominated. At the chromosomal level, different TE clones demonstrated sequence-specific patterning, emphasizing the effect of the TE fraction on the Ae. speltoides genome architecture and intraspecific diversification. Altogether, the obtained data highlight the current species-specific organization and patterning of the mobile element fraction and point to ancient evolutionary events in the genome of Ae. speltoides.
Collapse
|
16
|
Inpactor, Integrated and Parallel Analyzer and Classifier of LTR Retrotransposons and Its Application for Pineapple LTR Retrotransposons Diversity and Dynamics. BIOLOGY 2018; 7:biology7020032. [PMID: 29799487 PMCID: PMC6022998 DOI: 10.3390/biology7020032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Abstract
One particular class of Transposable Elements (TEs), called Long Terminal Repeats (LTRs), retrotransposons, comprises the most abundant mobile elements in plant genomes. Their copy number can vary from several hundreds to up to a few million copies per genome, deeply affecting genome organization and function. The detailed classification of LTR retrotransposons is an essential step to precisely understand their effect at the genome level, but remains challenging in large-sized genomes, requiring the use of optimized bioinformatics tools that can take advantage of supercomputers. Here, we propose a new tool: Inpactor, a parallel and scalable pipeline designed to classify LTR retrotransposons, to identify autonomous and non-autonomous elements, to perform RT-based phylogenetic trees and to analyze their insertion times using High Performance Computing (HPC) techniques. Inpactor was tested on the classification and annotation of LTR retrotransposons in pineapple, a recently-sequenced genome. The pineapple genome assembly comprises 44% of transposable elements, of which 23% were classified as LTR retrotransposons. Exceptionally, 16.4% of the pineapple genome assembly corresponded to only one lineage of the Gypsy superfamily: Del, suggesting that this particular lineage has undergone a significant increase in its copy numbers. As demonstrated for the pineapple genome, Inpactor provides comprehensive data of LTR retrotransposons’ classification and dynamics, allowing a fine understanding of their contribution to genome structure and evolution. Inpactor is available at https://github.com/simonorozcoarias/Inpactor.
Collapse
|
17
|
Buerstmayr M, Steiner B, Wagner C, Schwarz P, Brugger K, Barabaschi D, Volante A, Valè G, Cattivelli L, Buerstmayr H. High-resolution mapping of the pericentromeric region on wheat chromosome arm 5AS harbouring the Fusarium head blight resistance QTL Qfhs.ifa-5A. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1046-1056. [PMID: 29024288 PMCID: PMC5902775 DOI: 10.1111/pbi.12850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/17/2017] [Accepted: 10/08/2017] [Indexed: 05/24/2023]
Abstract
The Qfhs.ifa-5A allele, contributing to enhanced Fusarium head blight resistance in wheat, resides in a low-recombinogenic region of chromosome 5A close to the centromere. A near-isogenic RIL population segregating for the Qfhs.ifa-5A resistance allele was developed and among 3650 lines as few as four recombined within the pericentromeric C-5AS1-0.40 bin, yielding only a single recombination point. Genetic mapping of the pericentromeric region using a recombination-dependent approach was thus not successful. To facilitate fine-mapping the physically large Qfhs.ifa-5A interval, two gamma-irradiated deletion panels were generated: (i) seeds of line NIL3 carrying the Qfhs.ifa-5A resistance allele in an otherwise susceptible background were irradiated and plants thereof were selfed to obtain deletions in homozygous state and (ii) a radiation hybrid panel was produced using irradiated pollen of the wheat line Chinese Spring (CS) for pollinating the CS-nullisomic5Atetrasomic5B. In total, 5157 radiation selfing and 276 radiation hybrid plants were screened for deletions on 5AS and plants containing deletions were analysed using 102 5AS-specific markers. Combining genotypic information of both panels yielded an 817-fold map improvement (cR/cM) for the centromeric bin and was 389-fold increased across the Qfhs.ifa-5A interval compared to the genetic map, with an average map resolution of 0.77 Mb/cR. We successfully proved that the RH mapping technique can effectively resolve marker order in low-recombining regions, including pericentromeric intervals, and simultaneously allow developing an in vivo panel of sister lines differing for induced deletions across the Qfhs.ifa-5A interval that can be used for phenotyping.
Collapse
Affiliation(s)
- Maria Buerstmayr
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Barbara Steiner
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Christian Wagner
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Petra Schwarz
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Klaus Brugger
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Delfina Barabaschi
- Council for Agricultural Research and Economics (CREA)Genomics Research CentreFiorenzuola d'ArdaItaly
| | - Andrea Volante
- Council for Agricultural Research and Economics (CREA)Research Centre for Cereal and Industrial CropsVercelliItaly
| | - Giampiero Valè
- Council for Agricultural Research and Economics (CREA)Research Centre for Cereal and Industrial CropsVercelliItaly
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA)Genomics Research CentreFiorenzuola d'ArdaItaly
| | - Hermann Buerstmayr
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| |
Collapse
|
18
|
High throughput SNP discovery and genotyping in hexaploid wheat. PLoS One 2018; 13:e0186329. [PMID: 29293495 PMCID: PMC5749704 DOI: 10.1371/journal.pone.0186329] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/13/2017] [Indexed: 12/03/2022] Open
Abstract
Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.
Collapse
|
19
|
Partier A, Gay G, Tassy C, Beckert M, Feuillet C, Barret P. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome. PLANT CELL REPORTS 2017; 36:1547-1559. [PMID: 28667403 DOI: 10.1007/s00299-017-2173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.
Collapse
Affiliation(s)
- A Partier
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - G Gay
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - C Tassy
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - M Beckert
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - C Feuillet
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - P Barret
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France.
| |
Collapse
|
20
|
Markova DN, Mason-Gamer RJ. Transcriptional activity of PIF and Pong-like Class II transposable elements in Triticeae. BMC Evol Biol 2017; 17:178. [PMID: 28774284 PMCID: PMC5543537 DOI: 10.1186/s12862-017-1028-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Transposable elements are major contributors to genome size and variability, accounting for approximately 70–80% of the maize, barley, and wheat genomes. PIF and Pong-like elements belong to two closely-related element families within the PIF/Harbinger superfamily of Class II (DNA) transposons. Both elements contain two open reading frames; one encodes a transposase (ORF2) that catalyzes transposition of the functional elements and their related non-autonomous elements, while the function of the second is still debated. In this work, we surveyed for PIF- and Pong-related transcriptional activity in 13 diploid Triticeae species, all of which have been previously shown to harbor extensive within-genome diversity of both groups of elements. Results The results revealed that PIF elements have considerable transcriptional activity in Triticeae, suggesting that they can escape the initial levels of plant cell control and are regulated at the post-transcriptional level. Phylogenetic analysis of 156 PIF cDNA transposase fragments along with 240 genomic partial transposase sequences showed that most, if not all, PIF clades are transcriptionally competent, and that multiple transposases coexisting within a single genome have the potential to act simultaneously. In contrast, we did not detect any transcriptional activity of Pong elements in any sample. Conclusions The lack of Pong element transcription shows that even closely related transposon families can exhibit wide variation in their transposase transcriptional activity within the same genome. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1028-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dragomira N Markova
- Department of Biological Sciences, University of Illinois at Chicago, M/C 067 840 West Taylor Street, Chicago, IL, 60607, USA. .,Present address: Department of Plant Sciences (mail stop 3), 151 Asmundson Hall, University of California, Davis, CA, 95616, USA.
| | - Roberta J Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, M/C 067 840 West Taylor Street, Chicago, IL, 60607, USA
| |
Collapse
|
21
|
Adonina IG, Leonova IN, Badaeva ED, Salina EA. Genotyping of hexaploid wheat varieties from different Russian regions. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Patterns of Evolutionary Trajectories and Domestication History within the Genus Hordeum Assessed by REMAP Markers. J Mol Evol 2017; 84:116-128. [PMID: 28168328 DOI: 10.1007/s00239-016-9779-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
The patterns of genetic diversity related to the taxonomy and domestication history of 85 accessions representing the main four species of the genus Hordeum were examined by retrotransposon-microsatellite amplified polymorphism (REMAP) markers based on the retrotransposon BARE-1. A substantial level of genetic polymorphisms at among- and within-species level was observed showing that this retrotransposon family and its adjacent genomic regions has been a target for genome dynamics during the evolution and domestication of barley. The obtained data are consistent with the current taxonomic status within the genus Hordeum. Similar level of genetic diversity was observed between the wild and the domesticated barley accessions suggesting that transposable elements` activity and accumulation may counteract the decrease of genome-wide diversity following domestication. In addition, eco-geographical sub-genome pools of the cultivated barley were identified in support to the theory of multiple origins of domestication within the genus Hordeum. We also provide conclusions about the relationship between accessions of different species and the putative routes of barley domestication. In conclusion, the retrotransposon BARE-1 stands as a reliable and perspective DNA marker for the assessment of the phylogenetic and domestication history in the genus Hordeum and other crop species.
Collapse
|
23
|
Balcárková B, Frenkel Z, Škopová M, Abrouk M, Kumar A, Chao S, Kianian SF, Akhunov E, Korol AB, Doležel J, Valárik M. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A. FRONTIERS IN PLANT SCIENCE 2017; 7:2063. [PMID: 28119729 PMCID: PMC5222868 DOI: 10.3389/fpls.2016.02063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/26/2016] [Indexed: 05/18/2023]
Abstract
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.
Collapse
Affiliation(s)
- Barbora Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Zeev Frenkel
- Institute of Evolution, University of HaifaHaifa, Israel
| | - Monika Škopová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, FargoND, USA
| | - Shiaoman Chao
- Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service, FargoND, USA
| | - Shahryar F. Kianian
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, University of Minnesota, St. PaulMN, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, ManhattanKS, USA
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| |
Collapse
|
24
|
Kaur P, Gaikwad K. From Genomes to GENE-omes: Exome Sequencing Concept and Applications in Crop Improvement. FRONTIERS IN PLANT SCIENCE 2017; 8:2164. [PMID: 29312405 PMCID: PMC5742236 DOI: 10.3389/fpls.2017.02164] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/08/2017] [Indexed: 05/13/2023]
Abstract
Exome sequencing represents targeted capture and sequencing of 1-2% of 'high-value genomic regions' (subset of the genome) which are enriched for functional variants and harbors low level of repetitive regions. We discuss here an overview of exome sequencing, ways to approach plant exomes, and advantages and applicability of this powerful approach in deciphering functional regions of genomes. Though initially this approach was developed as an alternative to whole genome sequencing (WGS), but the multitude of benefits conferred by sequence capture via hybridization approaches created a niche for itself to solve many of biological riddles, particularly for resolving phylogenetic distances. The technique has also proved to be successful in understanding the basis of natural and induced molecular variation, marker development and developing genomic resources for complex, wild and non-model species, which are still intractable for WGS efforts. Thus, with profound applications of this powerful sequencing strategy, near future is expected to witness a collective expansion of both techniques, i.e., sequence capture via hybridization for evolutionary and ecological research and WGS approaches for its universal accessibility.
Collapse
|
25
|
Si Z, Du B, Huo J, He S, Liu Q, Zhai H. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition. BMC Genomics 2016; 17:945. [PMID: 27871234 PMCID: PMC5117676 DOI: 10.1186/s12864-016-3302-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 11/15/2016] [Indexed: 11/14/2022] Open
Abstract
Background Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. Results The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93–10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. Conclusions The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum. These resources as a robust platform will be used in high-resolution mapping, gene cloning, assembly of genome sequences, comparative genomics and evolution for sweetpotato. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3302-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zengzhi Si
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Bing Du
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jinxi Huo
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Hong Zhai
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
Liu M, Stiller J, Holušová K, Vrána J, Liu D, Doležel J, Liu C. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat. Sci Rep 2016; 6:36398. [PMID: 27821854 PMCID: PMC5099574 DOI: 10.1038/srep36398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
The hexaploid wheat genotype Chinese Spring (CS) has been used worldwide as the reference base for wheat genetics and genomics, and significant resources have been used by the international community to generate a reference wheat genome based on this genotype. By sequencing flow-sorted 3B chromosome from a hexaploid wheat genotype CRNIL1A and comparing the obtained sequences with those available for CS, we detected that a large number of sequences in the former were missing in the latter. If the distribution of such sequences in the hexaploid wheat genome is random, CRNILA sequences missing in CS could be as much as 159.3 Mb even if only fragments of 50 bp or longer were considered. Analysing RNA sequences available in the public domains also revealed that dispensable genes are common in hexaploid wheat. Together with those extensive intra- and interchromosomal rearrangements in CS, the existence of such dispensable genes is another factor highlighting potential issues with the use of reference genomes in various studies. Strong deviation in distributions of these dispensable sequences among genotypes with different geographical origins provided the first evidence indicating that they could be associated with adaptation in wheat.
Collapse
Affiliation(s)
- Miao Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiri Stiller
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Kateřina Holušová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia
- School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
27
|
Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat. PLoS One 2016; 11:e0154609. [PMID: 27171472 PMCID: PMC4865223 DOI: 10.1371/journal.pone.0154609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/15/2016] [Indexed: 11/19/2022] Open
Abstract
Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays.
Collapse
|
28
|
Chandra S, Singh D, Pathak J, Kumari S, Kumar M, Poddar R, Balyan HS, Gupta PK, Prabhu KV, Mukhopadhyay K. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection. PLoS One 2016; 11:e0148453. [PMID: 26840746 PMCID: PMC4739524 DOI: 10.1371/journal.pone.0148453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/17/2016] [Indexed: 11/20/2022] Open
Abstract
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Dharmendra Singh
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Jyoti Pathak
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Supriya Kumari
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Raju Poddar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Puspendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Kumble Vinod Prabhu
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
29
|
Markova DN, Mason-Gamer RJ. The Role of Vertical and Horizontal Transfer in the Evolutionary Dynamics of PIF-Like Transposable Elements in Triticeae. PLoS One 2015; 10:e0137648. [PMID: 26355747 PMCID: PMC4565680 DOI: 10.1371/journal.pone.0137648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
PIF-like transposable elements are members of the PIF/Harbinger superfamily of DNA transposons found in the genomes of many plants, animals, and fungi. The evolution of the gene that encodes the transposase responsible for mobilizing PIF-like elements has been studied in both plants and animals, but the elements' history in flowering plants remains poorly known. In this work, we describe the phylogenetic distribution and evolution of PIF-like elements in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of PIF elements in plant genomes. A phylogenetic analysis of 240 PIF sequences based on the conserved region of the transposase domain revealed at least four main transposase lineages. Their complex evolutionary history can be best explained by a combination of vertical transmission with differential evolutionary success among lineages, and occasional horizontal transfer between phylogenetically distant Triticeae genera. In addition, we identified 127 potentially functional transposase sequences indicating possible recent activity of PIF.
Collapse
Affiliation(s)
- Dragomira N. Markova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Roberta J. Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
30
|
Kobayashi F, Wu J, Kanamori H, Tanaka T, Katagiri S, Karasawa W, Kaneko S, Watanabe S, Sakaguchi T, Hanawa Y, Fujisawa H, Kurita K, Abe C, Iehisa JCM, Ohno R, Šafář J, Šimková H, Mukai Y, Hamada M, Saito M, Ishikawa G, Katayose Y, Endo TR, Takumi S, Nakamura T, Sato K, Ogihara Y, Hayakawa K, Doležel J, Nasuda S, Matsumoto T, Handa H. A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics 2015; 16:595. [PMID: 26265254 PMCID: PMC4534020 DOI: 10.1186/s12864-015-1803-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 07/31/2015] [Indexed: 11/10/2022] Open
Abstract
Background A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat. Results We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91 % of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87 % of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B. Conclusions We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1803-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuminori Kobayashi
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Jianzhong Wu
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan. .,Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hiroyuki Kanamori
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Tsuyoshi Tanaka
- Bioinformatics Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Satoshi Katagiri
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Wataru Karasawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Satoko Kaneko
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Shota Watanabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Toyotaka Sakaguchi
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yumiko Hanawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hiroko Fujisawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Kanako Kurita
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Chikako Abe
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., Tsukuba, 300-2611, Japan.
| | - Julio C M Iehisa
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| | - Ryoko Ohno
- Core Research Division, Organization of Advanced Science and Technology, Kobe University, Kobe, 657-8501, Japan.
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Yoshiyuki Mukai
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Masao Hamada
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Mika Saito
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Goro Ishikawa
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Yuichi Katayose
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Takashi R Endo
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| | - Toshiki Nakamura
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| | - Yasunari Ogihara
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., Tsukuba, 300-2611, Japan.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Takashi Matsumoto
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hirokazu Handa
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| |
Collapse
|
31
|
Abstract
Pong-like elements are members of the PIF/Harbinger superfamily of DNA transposons that has been described in many plants, animals, and fungi. Most Pong elements contain two open reading frames (ORFs). One encodes a transposase (ORF2) that catalyzes transposition of Pong and related non-autonomous elements, while the function of the second is unknown. Little is known about the evolutionary history of Pong elements in flowering plants. In this work, we present the first comprehensive analysis of the diversity, abundance, and evolution of the Pong-like transposase gene in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of nuclear-encoded Pong elements in any organism. A phylogenetic analysis of nearly 300 Pong sequences based on a conserved region of the transposase domain revealed a complex evolutionary history of Pong elements that can be best explained by ancestral polymorphism, followed by differential evolutionary success of some transposase lineages, and by occasional horizontal transfer between phylogenetically distant genera. In addition, we used transposon display to estimate the abundance of the transposase gene within Triticeae genomes, and our results revealed varying levels of Pong proliferation, with numbers of transposase copies ranging from 22 to 92. Comparisons of Pong transposase abundance to flow cytometry estimates of genome size revealed that larger Triticeae genome size was not correlated with transposase abundance.
Collapse
|
32
|
|
33
|
Akpinar BA, Magni F, Yuce M, Lucas SJ, Šimková H, Šafář J, Vautrin S, Bergès H, Cattonaro F, Doležel J, Budak H. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics 2015; 16:453. [PMID: 26070810 PMCID: PMC4465308 DOI: 10.1186/s12864-015-1641-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Federica Magni
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Meral Yuce
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Stuart J Lucas
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Sonia Vautrin
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Hélène Bergès
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Hikmet Budak
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
34
|
Garbus I, Romero JR, Valarik M, Vanžurová H, Karafiátová M, Cáccamo M, Doležel J, Tranquilli G, Helguera M, Echenique V. Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. BMC Genomics 2015; 16:375. [PMID: 25962417 PMCID: PMC4440537 DOI: 10.1186/s12864-015-1579-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Background The number and complexity of repetitive elements varies between species, being in general most represented in those with larger genomes. Combining the flow-sorted chromosome arms approach to genome analysis with second generation DNA sequencing technologies provides a unique opportunity to study the repetitive portion of each chromosome, enabling comparisons among them. Additionally, different sequencing approaches may produce different depth of insight to repeatome content and structure. In this work we analyze and characterize the repetitive sequences of Triticum aestivum cv. Chinese Spring homeologous group 4 chromosome arms, obtained through Roche 454 and Illumina sequencing technologies, hereinafter marked by subscripts 454 and I, respectively. Repetitive sequences were identified with the RepeatMasker software using the interspersed repeat database mips-REdat_v9.0p. The input sequences consisted of our 4DS454 and 4DL454 scaffolds and 4ASI, 4ALI, 4BSI, 4BLI, 4DSI and 4DLI contigs, downloaded from the International Wheat Genome Sequencing Consortium (IWGSC). Results Repetitive sequences content varied from 55% to 63% for all chromosome arm assemblies except for 4DLI, in which the repeat content was 38%. Transposable elements, small RNA, satellites, simple repeats and low complexity sequences were analyzed. SSR frequency was found one per 24 to 27 kb for all chromosome assemblies except 4DLI, where it was three times higher. Dinucleotides and trinucleotides were the most abundant SSR repeat units. (GA)n/(TC)n was the most abundant SSR except for 4DLI where the most frequently identified SSR was (CCG/CGG)n. Retrotransposons followed by DNA transposons were the most highly represented sequence repeats, mainly composed of CACTA/En-Spm and Gypsy superfamilies, respectively. This whole chromosome sequence analysis allowed identification of three new LTR retrotransposon families belonging to the Copia superfamily, one belonging to the Gypsy superfamily and two TRIM retrotransposon families. Their physical distribution in wheat genome was analyzed by fluorescent in situ hybridization (FISH) and one of them, the Carmen retrotransposon, was found specific for centromeric regions of all wheat chromosomes. Conclusion The presented work is the first deep report of wheat repetitive sequences analyzed at the chromosome arm level, revealing the first insight into the repeatome of T. aestivum chromosomes of homeologous group 4. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1579-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ingrid Garbus
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - José R Romero
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Miroslav Valarik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Hana Vanžurová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Mario Cáccamo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Gabriela Tranquilli
- Instituto Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Marcelo Helguera
- Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina.
| | - Viviana Echenique
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
35
|
Chen ZY, Guo XJ, Chen ZX, Chen WY, Liu DC, Zheng YL, Liu YX, Wei YM, Wang JR. Genome-wide characterization of developmental stage- and tissue-specific transcription factors in wheat. BMC Genomics 2015; 16:125. [PMID: 25766308 PMCID: PMC4344791 DOI: 10.1186/s12864-015-1313-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat (Triticum aestivum) is one of the most important cereal crops, providing food for humans and feed for other animals. However, its productivity is challenged by various biotic and abiotic stresses such as fungal diseases, insects, drought, salinity, and cold. Transcription factors (TFs) regulate gene expression in different tissues and at various developmental stages in plants and animals, and they can be identified and classified into families according to their structural and specialized DNA-binding domains (DBDs). Transcription factors are important regulatory components of the genome, and are the main targets for engineering stress tolerance. RESULTS In total, 2407 putative TFs were identified from wheat expressed sequence tags, and then classified into 63 families by using Hmm searches against hidden Markov model (HMM) profiles. In this study, 2407 TFs represented approximately 2.22% of all genes in the wheat genome, a smaller proportion than those reported for other cereals in PlantTFDB V3.0 (3.33%-5.86%) and PlnTFDB (4.30%-6.46%). We assembled information from the various databases for individual TFs, including annotations and details of their developmental stage- and tissue-specific expression patterns. Based on this information, we identified 1257 developmental stage-specific TFs and 1104 tissue-specific TFs, accounting for 52.22% and 45.87% of the 2407 wheat TFs, respectively. We identified 338, 269, 262, 175, 49, and 18 tissue-specific TFs in the flower, seed, root, leaf, stem, and crown, respectively. There were 100, 6, 342, 141, 390, and 278 TFs specifically expressed at the dormant seed, germinating seed, reproductive, ripening, seedling, and vegetative stages, respectively. We constructed a comprehensive database of wheat TFs, designated as WheatTFDB ( http://xms.sicau.edu.cn/wheatTFDB/ ). CONCLUSIONS Approximately 2.22% (2407 genes) of all genes in the wheat genome were identified as TFs, and were clustered into 63 TF families. We identified 1257 developmental stage-specific TFs and 1104 tissue-specific TFs, based on information about their developmental- and tissue-specific expression patterns obtained from publicly available gene expression databases. The 2407 wheat TFs and their annotations are summarized in our database, WheatTFDB. These data will be useful identifying target TFs involved in the stress response at a particular stage of development.
Collapse
Affiliation(s)
- Zhen-Yong Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- College of Life Science, China West Normal University, Nanchong, 637009, China.
| | - Xiao-Jiang Guo
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Zhong-Xu Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Wei-Ying Chen
- College of Life Science, China West Normal University, Nanchong, 637009, China.
| | - Deng-Cai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - You-Liang Zheng
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Yaan, Sichuan, 625014, China.
| | - Ya-Xi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
36
|
Abdollahi Mandoulakani B, Yaniv E, Kalendar R, Raats D, Bariana HS, Bihamta MR, Schulman AH. Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:211-9. [PMID: 25388968 DOI: 10.1007/s00122-014-2422-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/27/2014] [Indexed: 05/08/2023]
Abstract
Yr15 provides broad resistance to stripe rust, an important wheat disease. REMAP- and IRAP-derived co-dominant SCAR markers were developed and localize Yr15 to a 1.2 cM interval. They are reliable across many cultivars. Stripe rust [Pucinia striiformis f.sp. tritici (Pst)] is one of the most important fungal diseases of wheat, found on all continents and in over 60 countries. Wild emmer wheat (Triticum dicoccoides), which is the tetraploid progenitor of durum wheat, is a valuable source of novel stripe rust resistance genes for wheat breeding. T. dicoccoides accession G25 carries Yr15 on chromosome 1BS. Yr15 confers resistance to virtually all tested Pst isolates; it is effective in durum and bread wheat introgressions and their derivatives. Retrotransposons generate polymorphic insertions, which can be scored as Mendelian markers using techniques such as REMAP and IRAP. Six REMAP- and IRAP-derived SCAR markers were mapped using 1,256 F2 plants derived from crosses of the susceptible T. durum accession D447 (DW1) with its resistant BC3F9 and BC3F10 (B9 and B10) near isogenic lines, which carried Yr15 introgressed from G25. The nearest markers segregated 0.1 cM proximally and 1.1 cM distally to Yr15. These markers were also mapped and validated at the same position in another 500 independent F2 plants derived from crosses of B9 and B10 with the susceptible cultivar Langdon (LDN). SC2700 and SC790, defining Yr15 on an interval of 1.2 cM, were found to be reliable and robust co-dominant markers in a wide range of wheat lines and cultivars with and without Yr15. These markers are useful tags in marker-assisted wheat breeding programs that aim to incorporate Yr15 into elite wheat lines and cultivars for durable and broad-spectrum resistance to stripe rust.
Collapse
|
37
|
Hashmi U, Shafqat S, Khan F, Majid M, Hussain H, Kazi AG, John R, Ahmad P. Plant exomics: concepts, applications and methodologies in crop improvement. PLANT SIGNALING & BEHAVIOR 2015; 10:e976152. [PMID: 25482786 PMCID: PMC4622497 DOI: 10.4161/15592324.2014.976152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 05/17/2023]
Abstract
Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops.
Collapse
Key Words
- BAC, bacterial artificial chromosome
- BGR, bacterial grain rot
- CBOL, consortium for 860 the barcode of life
- ETI, effector-triggered immunity
- HPRT, hypoxanthineguanine phosphoribosyl transferase
- MMs, molecular markers
- NGS, next generation sequencing
- NITSR, nuclear internal transcribed spacer region
- OPC, open promoter complex
- QTL, quantitative trait locus
- SMRT, single molecule real time
- SNPs, single nucleotide poly-morphisms
- SOLiD, sequencing by oligonucleotide ligation and detection
- WES, whole exome sequencing
- WGS, whole genome sequencing
- WGS, whole genome shotgun
- biodiversity
- crop improvement
- dNMPs, deoxyribosenucleoside monophosphates
- exome sequencing
- plant biotechnology
- plant-host pathogen interactions
Collapse
Affiliation(s)
- Uzair Hashmi
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Samia Shafqat
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Faria Khan
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Misbah Majid
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Harris Hussain
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Alvina Gul Kazi
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Riffat John
- Department of Botany; University of Kashmir; Jammu and Kashmir, India
| | - Parvaiz Ahmad
- Department of Botany; S.P. College Srinagar; Jammu and Kashmir, India
- Correspondence to: Parvaiz Ahmad;
| |
Collapse
|
38
|
Lucas SJ, Akpınar BA, Šimková H, Kubaláková M, Doležel J, Budak H. Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics 2014; 15:1080. [PMID: 25487001 PMCID: PMC4298962 DOI: 10.1186/1471-2164-15-1080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/26/2014] [Indexed: 11/14/2022] Open
Abstract
Background The ~17 Gb hexaploid bread wheat genome is a high priority and a major technical challenge for genomic studies. In particular, the D sub-genome is relatively lacking in genetic diversity, making it both difficult to map genetically, and a target for introgression of agriculturally useful traits. Elucidating its sequence and structure will therefore facilitate wheat breeding and crop improvement. Results We generated shotgun sequences from each arm of flow-sorted Triticum aestivum chromosome 5D using 454 FLX Titanium technology, giving 1.34× and 1.61× coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. By a combination of sequence similarity and assembly-based methods, ~74% of the sequence reads were classified as repetitive elements, and coding sequence models of 1314 (5DS) and 2975 (5DL) genes were generated. The order of conserved genes in syntenic regions of previously sequenced grass genomes were integrated with physical and genetic map positions of 518 wheat markers to establish a virtual gene order for chromosome 5D. Conclusions The virtual gene order revealed a large-scale chromosomal rearrangement in the peri-centromeric region of 5DL, and a concentration of non-syntenic genes in the telomeric region of 5DS. Although our data support the large-scale conservation of Triticeae chromosome structure, they also suggest that some regions are evolving rapidly through frequent gene duplications and translocations. Sequence accessions EBI European Nucleotide Archive, Study no. ERP002330 Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1080) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, 34956 Tuzla, Istanbul, Turkey.
| |
Collapse
|
39
|
Cao W, Fu B, Wu K, Li N, Zhou Y, Gao Z, Lin M, Li G, Wu X, Ma Z, Jia H. Construction and characterization of three wheat bacterial artificial chromosome libraries. Int J Mol Sci 2014; 15:21896-912. [PMID: 25464379 PMCID: PMC4284684 DOI: 10.3390/ijms151221896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 11/29/2022] Open
Abstract
We have constructed three bacterial artificial chromosome (BAC) libraries of wheat cultivar Triticum aestivum Wangshuibai, germplasms T. monococcum TA2026 and TA2033. A total of 1,233,792,170,880 and 263,040 clones were picked and arrayed in 384-well plates. On the basis of genome sizes of 16.8 Gb for hexaploid wheat and 5.6 Gb for diploid wheat, the three libraries represented 9.05-, 2.60-, and 3.71-fold coverage of the haploid genomes, respectively. An improved descending pooling system for BAC libraries screening was established. This improved strategy can save 80% of the time and 68% of polymerase chain reaction (PCR) with the same successful rate as the universal 6D pooling strategy.
Collapse
Affiliation(s)
- Wenjin Cao
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bisheng Fu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kun Wu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Na Li
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yan Zhou
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhongxia Gao
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Musen Lin
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guoqiang Li
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xinyi Wu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhengqiang Ma
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haiyan Jia
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Zeng Q, Yuan F, Xu X, Shi X, Nie X, Zhuang H, Chen X, Wang Z, Wang X, Huang L, Han D, Kang Z. Construction and characterization of a bacterial artificial chromosome library for the hexaploid wheat line 92R137. BIOMED RESEARCH INTERNATIONAL 2014; 2014:845806. [PMID: 24895618 PMCID: PMC4026951 DOI: 10.1155/2014/845806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/26/2014] [Accepted: 04/18/2014] [Indexed: 11/18/2022]
Abstract
For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sublibraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was composed of total 765,696 clones, of which 390,144 were from the HindIII digestion and 375,552 from the BamHI digestion. Through pulsed-field gel electrophoresis (PFGE) analysis of 453 clones randomly selected from the HindIII sublibrary and 573 clones from the BamHI sublibrary, the average insert sizes were estimated as 129 and 113 kb, respectively. Thus, the HindIII sublibrary was estimated to have a 3.01-fold coverage and the BamHI sublibrary a 2.53-fold coverage based on the estimated hexaploid wheat genome size of 16,700 Mb. The 765,696 clones were arrayed in 1,994 384-well plates. All clones were also arranged into plate pools and further arranged into 5-dimensional (5D) pools. The probability of identifying a clone corresponding to any wheat DNA sequence (such as gene Yr26 for stripe rust resistance) from the library was estimated to be more than 99.6%. Through polymerase chain reaction screening the 5D pools with Xwe173, a marker tightly linked to Yr26, six BAC clones were successfully obtained. These results demonstrate that the BAC library is a valuable genomic resource for positional cloning of Yr26 and other genes of interest.
Collapse
Affiliation(s)
- Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- Wheat Genetics, Quality, Physiology, and Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
41
|
Diéguez MJ, Pergolesi MF, Velasquez SM, Ingala L, López M, Darino M, Paux E, Feuillet C, Sacco F. Fine mapping of LrSV2, a race-specific adult plant leaf rust resistance gene on wheat chromosome 3BS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1133-1141. [PMID: 24553966 DOI: 10.1007/s00122-014-2285-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
Fine mapping permits the precise positioning of genes within chromosomes, prerequisite for positional cloning that will allow its rational use and the study of the underlying molecular action mechanism. Three leaf rust resistance genes were identified in the durable leaf rust resistant Argentinean wheat variety Sinvalocho MA: the seedling resistance gene Lr3 on distal 6BL and two adult plant resistance genes, LrSV1 and LrSV2, on chromosomes 2DS and 3BS, respectively. To develop a high-resolution genetic map for LrSV2, 10 markers were genotyped on 343 F2 individuals from a cross between Sinvalocho MA and Gama6. The closest co-dominant markers on both sides of the gene (3 microsatellites and 2 STMs) were analyzed on 965 additional F2s from the same cross. Microsatellite marker cfb5010 cosegregated with LrSV2 whereas flanking markers were found at 1 cM distal and at 0.3 cM proximal to the gene. SSR markers designed from the sequences of cv Chinese Spring BAC clones spanning the LrSV2 genetic interval were tested on the recombinants, allowing the identification of microsatellite swm13 at 0.15 cM distal to LrSV2. This delimited an interval of 0.45 cM around the gene flanked by the SSR markers swm13 and gwm533 at the subtelomeric end of chromosome 3BS.
Collapse
Affiliation(s)
- M J Diéguez
- Instituto de Genética "Ewald A. Favret" CICVyA-INTA CC25 (1712) Castelar, Buenos Aires, Argentina,
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Leach LJ, Belfield EJ, Jiang C, Brown C, Mithani A, Harberd NP. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat. BMC Genomics 2014; 15:276. [PMID: 24726045 PMCID: PMC4023595 DOI: 10.1186/1471-2164-15-276] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/02/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.
Collapse
|
43
|
Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 2014; 15:546. [PMID: 25476263 PMCID: PMC4290129 DOI: 10.1186/s13059-014-0546-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The 17 Gb bread wheat genome has massively expanded through the proliferation of transposable elements (TEs) and two recent rounds of polyploidization. The assembly of a 774 Mb reference sequence of wheat chromosome 3B provided us with the opportunity to explore the impact of TEs on the complex wheat genome structure and evolution at a resolution and scale not reached so far. RESULTS We develop an automated workflow, CLARI-TE, for TE modeling in complex genomes. We delineate precisely 56,488 intact and 196,391 fragmented TEs along the 3B pseudomolecule, accounting for 85% of the sequence, and reconstruct 30,199 nested insertions. TEs have been mostly silent for the last one million years, and the 3B chromosome has been shaped by a succession of bursts that occurred between 1 to 3 million years ago. Accelerated TE elimination in the high-recombination distal regions is a driving force towards chromosome partitioning. CACTAs overrepresented in the high-recombination distal regions are significantly associated with recently duplicated genes. In addition, we identify 140 CACTA-mediated gene capture events with 17 genes potentially created by exon shuffling and show that 19 captured genes are transcribed and under selection pressure, suggesting the important role of CACTAs in the recent wheat adaptation. CONCLUSION Accurate TE modeling uncovers the dynamics of TEs in a highly complex and polyploid genome. It provides novel insights into chromosome partitioning and highlights the role of CACTA transposons in the high level of gene duplication in wheat.
Collapse
Affiliation(s)
- Josquin Daron
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Natasha Glover
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Lise Pingault
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Sébastien Theil
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Véronique Jamilloux
- />INRA-URGI, Centre de Versailles, Route de Saint Cyr, 78026 Versailles, France
| | - Etienne Paux
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Valérie Barbe
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Sophie Mangenot
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Adriana Alberti
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Patrick Wincker
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
- />CNRS UMR 8030, 2 rue Gaston Crémieux, 91000 Evry, France
- />Université d’Evry, P5706 Evry, France
| | - Hadi Quesneville
- />INRA-URGI, Centre de Versailles, Route de Saint Cyr, 78026 Versailles, France
| | - Catherine Feuillet
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Frédéric Choulet
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| |
Collapse
|
44
|
Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 2013; 14:R138. [PMID: 24359668 PMCID: PMC4053865 DOI: 10.1186/gb-2013-14-12-r138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Collapse
|
45
|
Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, Spielmeyer W, Šimková H, Šafář J, Cattonaro F, Scalabrin S, Magni F, Vautrin S, Bergès H, Paux E, Fahima T, Doležel J, Korol A, Feuillet C, Keller B. A physical map of the short arm of wheat chromosome 1A. PLoS One 2013; 8:e80272. [PMID: 24278269 PMCID: PMC3836966 DOI: 10.1371/journal.pone.0080272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022] Open
Abstract
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.
Collapse
Affiliation(s)
- James Breen
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Isabelle Bertin
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Romain Philippe
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | | | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | | | - Etienne Paux
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Catherine Feuillet
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
46
|
Kugler KG, Siegwart G, Nussbaumer T, Ametz C, Spannagl M, Steiner B, Lemmens M, Mayer KFX, Buerstmayr H, Schweiger W. Quantitative trait loci-dependent analysis of a gene co-expression network associated with Fusarium head blight resistance in bread wheat (Triticum aestivum L.). BMC Genomics 2013; 14:728. [PMID: 24152241 PMCID: PMC4007557 DOI: 10.1186/1471-2164-14-728] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/14/2013] [Indexed: 01/04/2023] Open
Abstract
Background Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe is one of the most prevalent diseases of wheat (Triticum aestivum L.) and other small grain cereals. Resistance against the fungus is quantitative and more than 100 quantitative trait loci (QTL) have been described. Two well-validated and highly reproducible QTL, Fhb1 and Qfhs.ifa-5A have been widely investigated, but to date the underlying genes have not been identified. Results We have investigated a gene co-expression network activated in response to F. graminearum using RNA-seq data from near-isogenic lines, harboring either the resistant or the susceptible allele for Fhb1 and Qfhs.ifa-5A. The network identified pathogen-responsive modules, which were enriched for differentially expressed genes between genotypes or different time points after inoculation with the pathogen. Central gene analysis identified transcripts associated with either QTL within the network. Moreover, we present a detailed gene expression analysis of four gene families (glucanases, NBS-LRR, WRKY transcription factors and UDP-glycosyltransferases), which take prominent roles in the pathogen response. Conclusions A combination of a network-driven approach and differential gene expression analysis identified genes and pathways associated with Fhb1 and Qfhs.ifa-5A. We find G-protein coupled receptor kinases and biosynthesis genes for jasmonate and ethylene earlier induced for Fhb1. Similarly, we find genes involved in the biosynthesis and metabolism of riboflavin more abundant for Qfhs.ifa-5A.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wolfgang Schweiger
- Institute for Biotechnology in Plant Production, IFA-Tulln, University of Natural Resources and Life Sciences, A-3430 Tulln, Austria.
| |
Collapse
|
47
|
Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, Wu J, Simkova H, Nasuda S, Endo TR, Hayakawa K, Doležel J, Ogihara Y, Itoh T, Matsumoto T, Handa H. Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res 2013; 21:103-14. [PMID: 24086083 PMCID: PMC3989483 DOI: 10.1093/dnares/dst041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Common wheat (Triticum aestivum L.) is one of the most important cereals in the world. To improve wheat quality and productivity, the genomic sequence of wheat must be determined. The large genome size (∼17 Gb/1 C) and the hexaploid status of wheat have hampered the genome sequencing of wheat. However, flow sorting of individual chromosomes has allowed us to purify and separately shotgun-sequence a pair of telocentric chromosomes. Here, we describe a result from the survey sequencing of wheat chromosome 6B (914 Mb/1 C) using massively parallel 454 pyrosequencing. From the 4.94 and 5.51 Gb shotgun sequence data from the two chromosome arms of 6BS and 6BL, 235 and 273 Mb sequences were assembled to cover ∼55.6 and 54.9% of the total genomic regions, respectively. Repetitive sequences composed 77 and 86% of the assembled sequences on 6BS and 6BL, respectively. Within the assembled sequences, we predicted a total of 4798 non-repetitive gene loci with the evidence of expression from the wheat transcriptome data. The numbers and chromosomal distribution patterns of the genes for tRNAs and microRNAs in wheat 6B were investigated, and the results suggested a significant involvement of DNA transposon diffusion in the evolution of these non-protein-coding RNA genes. A comparative analysis of the genomic sequences of wheat 6B and monocot plants clearly indicated the evolutionary conservation of gene contents.
Collapse
Affiliation(s)
- Tsuyoshi Tanaka
- 1Bioinformatics Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dereeper A, Guyot R, Tranchant-Dubreuil C, Anthony F, Argout X, de Bellis F, Combes MC, Gavory F, de Kochko A, Kudrna D, Leroy T, Poulain J, Rondeau M, Song X, Wing R, Lashermes P. BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution. PLANT MOLECULAR BIOLOGY 2013; 83:177-189. [PMID: 23708951 DOI: 10.1007/s11103-013-0077-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Coffee is one of the world's most important agricultural commodities. Coffee belongs to the Rubiaceae family in the euasterid I clade of dicotyledonous plants, to which the Solanaceae family also belongs. Two bacterial artificial chromosome (BAC) libraries of a homozygous doubled haploid plant of Coffea canephora were constructed using two enzymes, HindIII and BstYI. A total of 134,827 high quality BAC-end sequences (BESs) were generated from the 73,728 clones of the two libraries, and 131,412 BESs were conserved for further analysis after elimination of chloroplast and mitochondrial sequences. This corresponded to almost 13 % of the estimated size of the C. canephora genome. 6.7 % of BESs contained simple sequence repeats, the most abundant (47.8 %) being mononucleotide motifs. These sequences allow the development of numerous useful marker sites. Potential transposable elements (TEs) represented 11.9 % of the full length BESs. A difference was observed between the BstYI and HindIII libraries (14.9 vs. 8.8 %). Analysis of BESs against known coding sequences of TEs indicated that 11.9 % of the genome corresponded to known repeat sequences, like for other flowering plants. The number of genes in the coffee genome was estimated at 41,973 which is probably overestimated. Comparative genome mapping revealed that microsynteny was higher between coffee and grapevine than between coffee and tomato or Arabidopsis. BESs constitute valuable resources for the first genome wide survey of coffee and provide new insights into the composition and evolution of the coffee genome.
Collapse
Affiliation(s)
- Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), UMR RPB (CIRAD, IRD, UM2), BP 64501, 34394, Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bassi FM, Kumar A, Zhang Q, Paux E, Huttner E, Kilian A, Dizon R, Feuillet C, Xu SS, Kianian SF. Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1977-1990. [PMID: 23715938 DOI: 10.1007/s00122-013-2111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/20/2013] [Indexed: 06/02/2023]
Abstract
Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for this locus. A total of 696 radiation hybrid lines were genotyped with a custom mini array of 140 DArT markers, selected to evenly span the whole 3B chromosome. The resulting map spanned 2,852 centi Ray with a calculated resolution of 0.384 Mb. Phenotyping for the occurrence of meiotic desynapsis was conducted by measuring the level of gametic sterility as seeds produced per spikelet and pollen viability at booting. Composite interval mapping revealed a single QTL with LOD of 16.2 and r (2) of 25.6 % between markers wmc326 and wPt-8983 on the long arm of chromosome 3B. By independent analysis, the location of the QTL was confirmed to be within the deletion bin 3BL7-0.63-1.00 and to correspond to a single gene located ~1.4 Mb away from wPt-8983. The meiotic behavior of lines lacking this gene was characterized cytogenetically to reveal striking similarities with mutants for the dy locus, located on the syntenic chromosome 3 of maize. This represents the first example to date of employing radiation hybrids for QTL analysis. The success achieved by this approach provides an ideal starting point for the final cloning of this interesting gene involved in meiosis of cereals.
Collapse
Affiliation(s)
- F M Bassi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rustgi S, Shafqat MN, Kumar N, Baenziger PS, Ali ML, Dweikat I, Campbell BT, Gill KS. Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: bridging gaps between QTLs and underlying genes. PLoS One 2013; 8:e70526. [PMID: 23894667 PMCID: PMC3722237 DOI: 10.1371/journal.pone.0070526] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
Earlier we identified wheat (Triticum aestivum L.) chromosome 3A as a major determinant of grain yield and its component traits. In the present study, a high-density genetic linkage map of 81 chromosome 3A-specific markers was developed to increase the precision of previously identified yield component QTLs, and to map QTLs for biomass-related traits. Many of the previously identified QTLs for yield and its component traits were confirmed and were localized to narrower intervals. Four novel QTLs one each for shoot biomass (Xcfa2262-Xbcd366), total biomass (wPt2740-Xcfa2076), kernels/spike (KPS) (Xwmc664-Xbarc67), and Pseudocercosporella induced lodging (PsIL) were also detected. The major QTLs identified for grain yield (GY), KPS, grain volume weight (GVWT) and spikes per square meter (SPSM) respectively explained 23.2%, 24.2%, 20.5% and 20.2% of the phenotypic variation. Comparison of the genetic map with the integrated physical map allowed estimation of recombination frequency in the regions of interest and suggested that QTLs for grain yield detected in the marker intervals Xcdo549-Xbarc310 and Xpsp3047-Xbarc356 reside in the high-recombination regions, thus should be amenable to map-based cloning. On the other hand, QTLs for KPS and SPSM flanked by markers Xwmc664 and Xwmc489 mapped in the low-recombination region thus are not suitable for map-based cloning. Comparisons with the rice (Oryza sativa L.) genomic DNA sequence identified 11 candidate genes (CGs) for yield and yield related QTLs of which chromosomal location of two (CKX2 and GID2-like) was confirmed using wheat aneuploids. This study provides necessary information to perform high-resolution mapping for map-based cloning and for CG-based cloning of yield QTLs.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Mustafa N. Shafqat
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Neeraj Kumar
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - M. Liakat Ali
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - B. Todd Campbell
- Agricultural Research Service, Coastal Plains Soil, Water, and Plant Research Center, Florence, South Carolina, United States of America
| | - Kulvinder Singh Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|