1
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39853950 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Tianjun Cao
- School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaobo Li
- School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, 311231, China
| |
Collapse
|
2
|
Poirier MC, Fugard K, Cvetkovska M. Light quality affects chlorophyll biosynthesis and photosynthetic performance in Antarctic Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2025; 163:9. [PMID: 39832016 DOI: 10.1007/s11120-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species. Chlamydomonas priscui is found exclusively in the deep photic zone where it receives very low light levels biased in the blue part of the spectrum (400-500 nm). In contrast, Chlamydomonas sp. ICE-MDV is represented at various depths within the water column (including the bright surface waters), and it receives a broad range of light levels and spectral wavelengths. The psychrophilic character of both species makes them an ideal system to study the effects of light quality and quantity on chlorophyll biosynthesis and photosynthetic performance in extreme conditions. We show that the shade-adapted C. priscui exhibits a decreased ability to accumulate chlorophyll and severe photoinhibition when grown under red light compared to blue light. These effects are particularly pronounced under red light of higher intensity, suggesting a loss of capability to acclimate to varied light conditions. In contrast, ICE-MDV has retained the ability to synthesize chlorophyll and maintain photosynthetic efficiency under a broader range of light conditions. Our findings provide insights into the mechanisms of photosynthesis under extreme conditions and have implications on algal survival in changing conditions of Antarctic ice-covered lakes.
Collapse
Affiliation(s)
- Mackenzie C Poirier
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Kassandra Fugard
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Fu D, Zhou H, Grimm B, Wang P. The BCM1-EGY1 module balances chlorophyll biosynthesis and breakdown to confer chlorophyll homeostasis in land plants. MOLECULAR PLANT 2025; 18:76-94. [PMID: 39628053 DOI: 10.1016/j.molp.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Chlorophyll metabolism has evolved during plant evolution. The strictly light-dependent nature of chlorophyll biosynthesis found in angiosperms requires tight coordination of chlorophyll biosynthesis and breakdown to achieve chlorophyll homeostasis. However, the specific control mechanisms remain largely unclear. Here, we demonstrate that the scaffold protein BALANCE OF CHLOROPHYLL METABOLISM1 (BCM1) has co-evolved with the carboxy-terminal domains of specific enzymes involved in chlorophyll biosynthesis and breakdown, including GENOMES UNCOUPLED 4 (GUN4) and Mg-dechelatase 1 (SGR1). We found that the land plant-specific interaction of BCM1 with the carboxy-terminal domains of GUN4 and SGR1 is indispensable for concurrent stimulation of chlorophyll biosynthesis and suppression of chlorophyll breakdown. The land plant-specific carboxy-terminal domain is essential for the membrane docking and turnover of GUN4, whereas it is key for proteolysis of SGR1. More importantly, we identified the metallopeptidase Gravitropism-deficient and Yellow-green 1 (EGY1) as the proteolytic machinery responsible for BCM1-mediated proteolysis of SGR1. In summary, this study reveals the BCM1-EGY1 module has evolved to maintain chlorophyll homeostasis by the post-translational control of the balance between chlorophyll biosynthesis and breakdown. This mechanism thus represents an evolutionary response to the metabolic demands imposed on plants in terrestrial environments.
Collapse
Affiliation(s)
- Dali Fu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hanlin Zhou
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstrasse13, Building 12, 10115 Berlin, Germany.
| | - Peng Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China; Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstrasse13, Building 12, 10115 Berlin, Germany; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
4
|
Biswal AK, Pattanayak GK, Ruhil K, Kandoi D, Mohanty SS, Leelavati S, Reddy VS, Govindjee G, Tripathy BC. Reduced expression of chlorophyllide a oxygenase (CAO) decreases the metabolic flux for chlorophyll synthesis and downregulates photosynthesis in tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1-16. [PMID: 38435853 PMCID: PMC10901765 DOI: 10.1007/s12298-023-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01395-5.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Gopal K. Pattanayak
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kamal Ruhil
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Life Sciences, Sharda University, Greater Noida, UP, India
| | - Sushree S. Mohanty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sadhu Leelavati
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Vanga S. Reddy
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Govindjee Govindjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Biotechnology, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
5
|
Wang Q, Zhang H, Wei L, Guo R, Liu X, Zhang M, Fan J, Liu S, Liao J, Huang Y, Wang Z. Yellow-Green Leaf 19 Encoding a Specific and Conservative Protein for Photosynthetic Organisms Affects Tetrapyrrole Biosynthesis, Photosynthesis, and Reactive Oxygen Species Metabolism in Rice. Int J Mol Sci 2023; 24:16762. [PMID: 38069084 PMCID: PMC10706213 DOI: 10.3390/ijms242316762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Chlorophyll is the main photosynthetic pigment and is crucial for plant photosynthesis. Leaf color mutants are widely used to identify genes involved in the synthesis or metabolism of chlorophyll. In this study, a spontaneous mutant, yellow-green leaf 19 (ygl19), was isolated from rice (Oryza sativa). This ygl19 mutant showed yellow-green leaves and decreased chlorophyll level and net photosynthetic rate. Brown necrotic spots appeared on the surface of ygl19 leaves at the tillering stage. And the agronomic traits of the ygl19 mutant, including the plant height, tiller number per plant, and total number of grains per plant, were significantly reduced. Map-based cloning revealed that the candidate YGL19 gene was LOC_Os03g21370. Complementation of the ygl19 mutant with the wild-type CDS of LOC_Os03g21370 led to the restoration of the mutant to the normal phenotype. Evolutionary analysis revealed that YGL19 protein and its homologues were unique for photoautotrophs, containing a conserved Ycf54 functional domain. A conserved amino acid substitution from proline to serine on the Ycf54 domain led to the ygl19 mutation. Sequence analysis of the YGL19 gene in 4726 rice accessions found that the YGL19 gene was conserved in natural rice variants with no resulting amino acid variation. The YGL19 gene was mainly expressed in green tissues, especially in leaf organs. And the YGL19 protein was localized in the chloroplast for function. Gene expression analysis via qRT-PCR showed that the expression levels of tetrapyrrole synthesis-related genes and photosynthesis-related genes were regulated in the ygl19 mutant. Reactive oxygen species (ROS) such as superoxide anions and hydrogen peroxide accumulated in spotted leaves of the ygl19 mutant at the tillering stage, accompanied by the regulation of ROS scavenging enzyme-encoding genes and ROS-responsive defense signaling genes. This study demonstrates that a novel yellow-green leaf gene YGL19 affects tetrapyrrole biosynthesis, photosynthesis, and ROS metabolism in rice.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxia Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rong Guo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuanzhi Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (M.Z.)
| | - Miao Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (M.Z.)
| | - Jiangmin Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Siyi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
6
|
Geng R, Pang X, Li X, Shi S, Hedtke B, Grimm B, Bock R, Huang J, Zhou W. PROGRAMMED CELL DEATH8 interacts with tetrapyrrole biosynthesis enzymes and ClpC1 to maintain homeostasis of tetrapyrrole metabolites in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:2545-2560. [PMID: 36967598 DOI: 10.1111/nph.18906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/19/2023] [Indexed: 05/19/2023]
Abstract
Tetrapyrrole biosynthesis (TBS) is a dynamically and strictly regulated process. Disruptions in tetrapyrrole metabolism influence many aspects of plant physiology, including photosynthesis, programmed cell death (PCD), and retrograde signaling, thus affecting plant growth and development at multiple levels. However, the genetic and molecular basis of TBS is not fully understood. We report here PCD8, a newly identified thylakoid-localized protein encoded by an essential gene in Arabidopsis. PCD8 knockdown causes a necrotic phenotype due to excessive chloroplast damage. A burst of singlet oxygen that results from overaccumulated tetrapyrrole intermediates upon illumination is suggested to be responsible for cell death in the knockdown mutants. Genetic and biochemical analyses revealed that PCD8 interacts with ClpC1 and a number of TBS enzymes, such as HEMC, CHLD, and PORC of TBS. Taken together, our findings uncover the function of chloroplast-localized PCD8 and provide a new perspective to elucidate molecular mechanism of how TBS is finely regulated in plants.
Collapse
Affiliation(s)
- Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Pang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shanshan Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato. Int J Mol Sci 2023; 24:ijms24043377. [PMID: 36834789 PMCID: PMC9961381 DOI: 10.3390/ijms24043377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Tomato (Solanum lycopersicum Mill.) is one of the widely cultured vegetables under protected cultivation, in which insufficient light is one of the major factors that limit its growth, yield, and quality. Chlorophyll b (Chl b) is exclusively present in the light-harvesting complex (LHC) of photosystems, while its synthesis is strictly regulated in response to light conditions in order to control the antenna size. Chlorophyllide a oxygenase (CAO) is the sole enzyme that converts Chl a to Chl b for Chl b biosynthesis. Previous studies have shown that overexpressing CAO without the regulating domain (A domain) in Arabidopsis overproduced Chl b. However, the growth characteristics of the Chl b overproduced plants under different light environmental conditions are not well studied. Considering tomatoes are light-loving plants and sensitive to low light stress, this study aimed to uncover the growth character of tomatoes with enhanced production of Chl b. The A domain deleted Arabidopsis CAO fused with the FLAG tag (BCF) was overexpressed in tomatoes. The BCF overexpressed plants accumulated a significantly higher Chl b content, resulting in a significantly lower Chl a/b ratio than WT. Additionally, BCF plants possessed a lower maximal photochemical efficiency of photosystem II (Fv/Fm) and anthocyanin content than WT plants. The growth rate of BCF plants was significantly faster than WT plants under low-light (LL) conditions with light intensity at 50-70 µmol photons m-2 s-1, while BCF plants grew slower than WT plants under high-light (HL) conditions. Our results revealed that Chl b overproduced tomato plants could better adapt to LL conditions by absorbing more light for photosynthesis but adapt poorly to excess light conditions by accumulating more ROS and fewer anthocyanins. Enhanced production of Chl b is able to improve the growth rate of tomatoes that are grown under LL conditions, indicating the prospect of employing Chl b overproduced light-loving crops and ornamental plants for protected or indoor cultivation.
Collapse
|
8
|
Chloroplasts Protein Quality Control and Turnover: A Multitude of Mechanisms. Int J Mol Sci 2022; 23:ijms23147760. [PMID: 35887108 PMCID: PMC9319218 DOI: 10.3390/ijms23147760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
As the organelle of photosynthesis and other important metabolic pathways, chloroplasts contain up to 70% of leaf proteins with uniquely complex processes in synthesis, import, assembly, and turnover. Maintaining functional protein homeostasis in chloroplasts is vitally important for the fitness and survival of plants. Research over the past several decades has revealed a multitude of mechanisms that play important roles in chloroplast protein quality control and turnover under normal and stress conditions. These mechanisms include: (i) endosymbiotically-derived proteases and associated proteins that play a vital role in maintaining protein homeostasis inside the chloroplasts, (ii) the ubiquitin-dependent turnover of unimported chloroplast precursor proteins to prevent their accumulation in the cytosol, (iii) chloroplast-associated degradation of the chloroplast outer-membrane translocon proteins for the regulation of chloroplast protein import, (iv) chloroplast unfolded protein response triggered by accumulated unfolded and misfolded proteins inside the chloroplasts, and (v) vesicle-mediated degradation of chloroplast components in the vacuole. Here, we provide a comprehensive review of these diverse mechanisms of chloroplast protein quality control and turnover and discuss important questions that remain to be addressed in order to better understand and improve important chloroplast functions.
Collapse
|
9
|
Research Progress in the Interconversion, Turnover and Degradation of Chlorophyll. Cells 2021; 10:cells10113134. [PMID: 34831365 PMCID: PMC8621299 DOI: 10.3390/cells10113134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Chlorophylls (Chls, Chl a and Chl b) are tetrapyrrole molecules essential for photosynthetic light harvesting and energy transduction in plants. Once formed, Chls are noncovalently bound to photosynthetic proteins on the thylakoid membrane. In contrast, they are dismantled from photosystems in response to environmental changes or developmental processes; thus, they undergo interconversion, turnover, and degradation. In the last twenty years, fruitful research progress has been achieved on these Chl metabolic processes. The discovery of new metabolic pathways has been accompanied by the identification of enzymes associated with biochemical steps. This article reviews recent progress in the analysis of the Chl cycle, turnover and degradation pathways and the involved enzymes. In addition, open questions regarding these pathways that require further investigation are also suggested.
Collapse
|
10
|
Li M, Guo G, Pidon H, Melzer M, Prina AR, Börner T, Stein N. ATP-Dependent Clp Protease Subunit C1, HvClpC1, Is a Strong Candidate Gene for Barley Variegation Mutant luteostrians as Revealed by Genetic Mapping and Genomic Re-sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:664085. [PMID: 33936155 PMCID: PMC8086601 DOI: 10.3389/fpls.2021.664085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Implementation of next-generation sequencing in forward genetic screens greatly accelerated gene discovery in species with larger genomes, including many crop plants. In barley, extensive mutant collections are available, however, the causative mutations for many of the genes remains largely unknown. Here we demonstrate how a combination of low-resolution genetic mapping, whole-genome resequencing and comparative functional analyses provides a promising path toward candidate identification of genes involved in plastid biology and/or photosynthesis, even if genes are located in recombination poor regions of the genome. As a proof of concept, we simulated the prediction of a candidate gene for the recently cloned variegation mutant albostrians (HvAST/HvCMF7) and adopted the approach for suggesting HvClpC1 as candidate gene for the yellow-green variegation mutant luteostrians.
Collapse
Affiliation(s)
- Mingjiu Li
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Alberto R. Prina
- Institute of Genetics ‘Ewald A. Favret’ (IGEAF), INTA CICVyA/Argentina, Hurlingham, Buenos Aires, Argentina
| | - Thomas Börner
- Molecular Genetics, Institute of Biology, Humboldt University, Berlin, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
11
|
Light-Mediated Regulation of Leaf Senescence. Int J Mol Sci 2021; 22:ijms22073291. [PMID: 33804852 PMCID: PMC8037705 DOI: 10.3390/ijms22073291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 01/21/2023] Open
Abstract
Light is the primary regulator of various biological processes during the plant life cycle. Although plants utilize photosynthetically active radiation to generate chemical energy, they possess several photoreceptors that perceive light of specific wavelengths and then induce wavelength-specific responses. Light is also one of the key determinants of the initiation of leaf senescence, the last stage of leaf development. As the leaf photosynthetic activity decreases during the senescence phase, chloroplasts generate a variety of light-mediated retrograde signals to alter the expression of nuclear genes. On the other hand, phytochrome B (phyB)-mediated red-light signaling inhibits the initiation of leaf senescence by repressing the phytochrome interacting factor (PIF)-mediated transcriptional regulatory network involved in leaf senescence. In recent years, significant progress has been made in the field of leaf senescence to elucidate the role of light in the regulation of nuclear gene expression at the molecular level during the senescence phase. This review presents a summary of the current knowledge of the molecular mechanisms underlying light-mediated regulation of leaf senescence.
Collapse
|
12
|
Compensation Mechanism of the Photosynthetic Apparatus in Arabidopsis thaliana ch1 Mutants. Int J Mol Sci 2020; 22:ijms22010221. [PMID: 33379339 PMCID: PMC7794896 DOI: 10.3390/ijms22010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions.
Collapse
|
13
|
Zhao X, Jia T, Hu X. HCAR Is a Limitation Factor for Chlorophyll Cycle and Chlorophyll b Degradation in Chlorophyll- b-Overproducing Plants. Biomolecules 2020; 10:E1639. [PMID: 33291365 PMCID: PMC7762049 DOI: 10.3390/biom10121639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
The chlorophyll (Chl) cycle is the metabolic pathway for Chl a and Chl b inter-conversion. In this pathway, Chl b is synthesized from Chl a by the catalyzing action of chlorophyllide a oxygenase (CAO). In contrast, Chl b is firstly reduced to produce 7-hydroxymethyl Chl (HMChl) a, which is catalyzed by two isozymes of Chl b reductase (CBR), non-yellow coloring 1 (NYC1) and NYC1-like (NOL). Subsequently, HMChl a is reduced to Chl a by HMChl a reductase (HCAR). CAO plays a pivotal role in Chl a/b ratio regulation and plants over-accumulate Chl b in CAO-overexpressing plants. NYC1 is more accumulated in Chl-b-overproducing plants, while HCAR is not changed. To investigate the role of HCAR in Chl cycle regulation, the Chl metabolites of Chl-b-overproducing plants were analyzed. The results showed that HMChl a accumulated in these plants, and it decreased and the Chl a/b ratio increased by overexpressing HCAR, implying HCAR is insufficient for Chl cycle in Chl-b-overproducing plants. Furthermore, during dark-induced senescence, the non-programmed cell death symptoms (leaves dehydrated with green color retained) of Chl-b-overproducing plants were obviously alleviated, and the content of HM pheophorbide (HMPheide) a and Pheide b were sharply decreased by overexpressing HCAR. These results imply that HCAR is also insufficient for Chl degradation in Chl-b-overproducing plants during senescence, thus causing the accumulation of Chl metabolites and non-programmed cell death of leaves. With these results taken together, we conclude that HCAR is not well regulated and it is a limiting factor for Chl cycle and Chl b degradation in Chl-b-overproducing plants.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Ali MS, Baek KH. Co-Suppression of NbClpC1 and NbClpC2, Encoding Clp Protease Chaperons, Elicits Significant Changes in the Metabolic Profile of Nicotiana benthamiana. PLANTS 2020; 9:plants9020259. [PMID: 32085404 PMCID: PMC7076384 DOI: 10.3390/plants9020259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/30/2022]
Abstract
Metabolites in plants are the products of cellular metabolic processes, and their differential amount can be regarded as the final responses of plants to genetic, epigenetic, or environmental stresses. The Clp protease complex, composed of the chaperonic parts and degradation proteases, is the major degradation system for proteins in plastids. ClpC1 and ClpC2 are the two chaperonic proteins for the Clp protease complex and share more than 90% nucleotide and amino acid sequence similarities. In this study, we employed virus-induced gene silencing to simultaneously suppress the expression of ClpC1 and ClpC2 in Nicotiana benthamiana (NbClpC1/C2). The co-suppression of NbClpC1/C2 in N. benthamiana resulted in aberrant development, with severely chlorotic leaves and stunted growth. A comparison of the control and NbClpC1/C2 co-suppressed N. benthamiana metabolomes revealed a total of 152 metabolites identified by capillary electrophoresis time-of-flight mass spectrometry. The co-suppression of NbClpC1/C2 significantly altered the levels of metabolites in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and the purine biosynthetic pathway, as well as polyamine and antioxidant metabolites. Our results show that the simultaneous suppression of ClpC1 and ClpC2 leads to aberrant morphological changes in chloroplasts and that these changes are related to changes in the contents of major metabolites acting in cellular metabolism and biosynthetic pathways.
Collapse
|
15
|
Lim H, Tanaka A, Tanaka R, Ito H. In Vitro Enzymatic Activity Assays Implicate the Existence of the Chlorophyll Cycle in Chlorophyll b-Containing Cyanobacteria. PLANT & CELL PHYSIOLOGY 2019; 60:2672-2683. [PMID: 31392311 DOI: 10.1093/pcp/pcz157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In plants, chlorophyll (Chl) a and b are interconvertible by the action of three enzymes-chlorophyllide a oxygenase, Chl b reductase (CBR) and 7-hydroxymethyl chlorophyll a reductase (HCAR). These reactions are collectively referred to as the Chl cycle. In plants, this cyclic pathway ubiquitously exists and plays essential roles in acclimation to different light conditions at various developmental stages. By contrast, only a limited number of cyanobacteria species produce Chl b, and these include Prochlorococcus, Prochloron, Prochlorothrix and Acaryochloris. In this study, we investigated a possible existence of the Chl cycle in Chl b synthesizing cyanobacteria by testing in vitro enzymatic activities of CBR and HCAR homologs from Prochlorothrix hollandica and Acaryochloris RCC1774. All of these proteins show respective CBR and HCAR activity in vitro, indicating that both cyanobacteria possess the potential to complete the Chl cycle. It is also found that CBR and HCAR orthologs are distributed only in the Chl b-containing cyanobacteria that habitat shallow seas or freshwater, where light conditions change dynamically, whereas they are not found in Prochlorococcus species that usually habitat environments with fixed lighting. Taken together, our results implicate a possibility that the Chl cycle functions for light acclimation in Chl b-containing cyanobacteria.
Collapse
Affiliation(s)
- HyunSeok Lim
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| |
Collapse
|
16
|
Krupinska K, Braun S, Nia MS, Schäfer A, Hensel G, Bilger W. The nucleoid-associated protein WHIRLY1 is required for the coordinate assembly of plastid and nucleus-encoded proteins during chloroplast development. PLANTA 2019; 249:1337-1347. [PMID: 30631956 DOI: 10.1007/s00425-018-03085-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
Chloroplasts deficient in the major chloroplast nucleoid-associated protein WHIRLY1 have an enhanced ratio of LHCs to reaction centers, indicating that WHIRLY1 is required for a coordinate assembly of the photosynthetic apparatus during chloroplast development. Chloroplast development was found to be delayed in barley plants with an RNAi-mediated knockdown of WHIRLY1 encoding a major nucleoid-associated protein of chloroplasts. The plastids of WHIRLY1 deficient plants had a reduced ribosome content. Accordingly, plastid-encoded proteins of the photosynthetic apparatus showed delayed accumulation during chloroplast development coinciding with a delayed increase in photosystem II efficiency measured by chlorophyll fluorescence. In contrast, light harvesting complex proteins being encoded in the nucleus had a high abundance as in the wild type. The unbalanced assembly of the proteins of the photosynthetic apparatus in WHIRLY1-deficient plants coincided with the enhanced contents of chlorophyll b and xanthophylls. The lack of coordination was most obvious at the early stages of development. Overaccumulation of LHC proteins in comparison to reaction center proteins at the early stages of chloroplast development did not correlate with enhanced expression levels of the corresponding genes in the nucleus. This work revealed that WHIRLY1 does not influence LHC abundance at the transcriptional level. Rather, WHIRLY1 in association with nucleoids might play a structural role for both the assembly of ribosomes and the complexes of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Susanne Braun
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Monireh Saeid Nia
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anke Schäfer
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
17
|
Rodriguez-Concepcion M, D'Andrea L, Pulido P. Control of plastidial metabolism by the Clp protease complex. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2049-2058. [PMID: 30576524 DOI: 10.1093/jxb/ery441] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 05/23/2023]
Abstract
Plant metabolism is strongly dependent on plastids. Besides hosting the photosynthetic machinery, these endosymbiotic organelles synthesize starch, fatty acids, amino acids, nucleotides, tetrapyrroles, and isoprenoids. Virtually all enzymes involved in plastid-localized metabolic pathways are encoded by the nuclear genome and imported into plastids. Once there, protein quality control systems ensure proper folding of the mature forms and remove irreversibly damaged proteins. The Clp protease is the main machinery for protein degradation in the plastid stroma. Recent work has unveiled an increasing number of client proteins of this proteolytic complex in plants. Notably, a substantial proportion of these substrates are required for normal chloroplast metabolism, including enzymes involved in the production of essential tetrapyrroles and isoprenoids such as chlorophylls and carotenoids. The Clp protease complex acts in coordination with nuclear-encoded plastidial chaperones for the control of both enzyme levels and proper folding (i.e. activity). This communication involves a retrograde signaling pathway, similarly to the unfolded protein response previously characterized in mitochondria and endoplasmic reticulum. Coordinated Clp protease and chaperone activities appear to further influence other plastid processes, such as the differentiation of chloroplasts into carotenoid-accumulating chromoplasts during fruit ripening.
Collapse
Affiliation(s)
| | - Lucio D'Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
18
|
Zhang S, Zhang H, Xia Y, Xiong L. The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts. BMC PLANT BIOLOGY 2018; 18:192. [PMID: 30208840 PMCID: PMC6136230 DOI: 10.1186/s12870-018-1396-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 08/27/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Homeostasis of the proteome is critical to the development of chloroplasts and also affects the expression of certain nuclear genes. CLPC1 facilitates the translocation of chloroplast pre-proteins and mediates protein degradation. RESULTS We found that proteins involved in photosynthesis are dramatically decreased in their abundance in the clpc1 mutant, whereas many proteins involved in chloroplast transcription and translation were increased in the mutant. Expression of the full-length CLPC1 protein, but not of the N-terminus-deleted CLPC1 (ΔN), in the clpc1 mutant background restored the normal levels of most of these proteins. Interestingly, the ΔN complementation line could also restore some proteins affected by the mutation to normal levels. We also found that that the clpc1 mutation profoundly affects transcript levels of chloroplast genes. Sense transcripts of many chloroplast genes are up-regulated in the clpc1 mutant. The level of SVR7, a PPR protein, was affected by the clpc1 mutation. We showed that SVR7 might be a target of CLPC1 as CLPC1-SVR7 interaction was detected through co-immunoprecipitation. CONCLUSION Our study indicates that in addition to its role in maintaining proteome homeostasis, CLPC1 and likely the CLP proteasome complex also play a role in transcriptome homeostasis through its functions in maintaining proteome homeostasis.
Collapse
Affiliation(s)
- Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region China
| | - Huoming Zhang
- Core labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Shatin, Hong Kong SAR, China
- Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Liming Xiong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
- Texas A&M AgriLife Research Center, Dallas, TX 75252 USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
19
|
Yamatani H, Kohzuma K, Nakano M, Takami T, Kato Y, Hayashi Y, Monden Y, Okumoto Y, Abe T, Kumamaru T, Tanaka A, Sakamoto W, Kusaba M. Impairment of Lhca4, a subunit of LHCI, causes high accumulation of chlorophyll and the stay-green phenotype in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1027-1035. [PMID: 29304198 PMCID: PMC6019047 DOI: 10.1093/jxb/erx468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
Chlorophyll is an essential molecule for acquiring light energy during photosynthesis. Mutations that result in chlorophyll retention during leaf senescence are called 'stay-green' mutants. One of the several types of stay-green mutants, Type E, accumulates high levels of chlorophyll in the pre-senescent leaves, resulting in delayed yellowing. We isolated delayed yellowing1-1 (dye1-1), a rice mutant whose yellowing is delayed in the field. dye1-1 accumulated more chlorophyll than the wild-type in the pre-senescent and senescent leaves, but did not retain leaf functionality in the 'senescent green leaves', suggesting that dye1-1 is a Type E stay-green mutant. Positional cloning revealed that DYE1 encodes Lhca4, a subunit of the light-harvesting complex I (LHCI). In dye1-1, amino acid substitution occurs at the location of a highly conserved amino acid residue involved in pigment binding; indeed, a severely impaired structure of the PSI-LHCI super-complex in dye1-1 was observed in a blue native PAGE analysis. Nevertheless, the biomass and carbon assimilation rate of dye1-1 were comparable to those in the wild-type. Interestingly, Lhcb1, a trimeric LHCII protein, was highly accumulated in dye1-1, in the chlorophyll-protein complexes. The high accumulation of LHCII in the LHCI mutant dye1 suggests a novel functional interaction between LHCI and LHCII.
Collapse
Affiliation(s)
- Hiroshi Yamatani
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaori Kohzuma
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Michiharu Nakano
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yoriko Hayashi
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama, Japan
| | - Yuki Monden
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama, Japan
| | | | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
20
|
Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting. FORESTS 2018. [DOI: 10.3390/f9020074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Welsch R, Zhou X, Yuan H, Álvarez D, Sun T, Schlossarek D, Yang Y, Shen G, Zhang H, Rodriguez-Concepcion M, Thannhauser TW, Li L. Clp Protease and OR Directly Control the Proteostasis of Phytoene Synthase, the Crucial Enzyme for Carotenoid Biosynthesis in Arabidopsis. MOLECULAR PLANT 2018; 11:149-162. [PMID: 29155321 DOI: 10.1016/j.molp.2017.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/01/2017] [Accepted: 11/10/2017] [Indexed: 05/17/2023]
Abstract
Phytoene synthase (PSY) is the crucial plastidial enzyme in the carotenoid biosynthetic pathway. However, its post-translational regulation remains elusive. Likewise, Clp protease constitutes a central part of the plastid protease network, but its substrates for degradation are not well known. In this study, we report that PSY is a substrate of the Clp protease. PSY was uncovered to physically interact with various Clp protease subunits (i.e., ClpS1, ClpC1, and ClpD). High levels of PSY and several other carotenogenic enzyme proteins overaccumulate in the clpc1, clpp4, and clpr1-2 mutants. The overaccumulated PSY was found to be partially enzymatically active. Impairment of Clp activity in clpc1 results in a reduced rate of PSY protein turnover, further supporting the role of Clp protease in degrading PSY protein. On the other hand, the ORANGE (OR) protein, a major post-translational regulator of PSY with holdase chaperone activity, enhances PSY protein stability and increases the enzymatically active proportion of PSY in clpc1, counterbalancing Clp-mediated proteolysis in maintaining PSY protein homeostasis. Collectively, these findings provide novel insights into the quality control of plastid-localized proteins and establish a hitherto unidentified post-translational regulatory mechanism of carotenogenic enzymes in modulating carotenoid biosynthesis in plants.
Collapse
Affiliation(s)
- Ralf Welsch
- University of Freiburg, Faculty of Biology II, 79104 Freiburg, Germany.
| | - Xiangjun Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Álvarez
- University of Freiburg, Faculty of Biology II, 79104 Freiburg, Germany
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Nishimura K, Kato Y, Sakamoto W. Essentials of Proteolytic Machineries in Chloroplasts. MOLECULAR PLANT 2017; 10:4-19. [PMID: 27585878 DOI: 10.1016/j.molp.2016.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 05/22/2023]
Abstract
Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic processes, including photosynthesis. For optimal photosynthetic activity, the chloroplast proteome must be properly shaped and maintained through regulated proteolysis and protein quality control mechanisms. Enzymatic functions and activities are conferred by protein maturation processes involving consecutive proteolytic reactions. Protein abundances are optimized by the balanced protein synthesis and degradation, which is depending on the metabolic status. Malfunctioning proteins are promptly degraded. Twenty chloroplast proteolytic machineries have been characterized to date. Specifically, processing peptidases and energy-driven processive proteases are the major players in chloroplast proteome biogenesis, remodeling, and maintenance. Recently identified putative proteases are potential regulators of photosynthetic functions. Here we provide an updated, comprehensive overview of chloroplast protein degradation machineries and discuss their importance for photosynthesis. Wherever possible, we also provide structural insights into chloroplast proteases that implement regulated proteolysis of substrate proteins/peptides.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
23
|
Kunugi M, Satoh S, Ihara K, Shibata K, Yamagishi Y, Kogame K, Obokata J, Takabayashi A, Tanaka A. Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems. PLANT & CELL PHYSIOLOGY 2016; 57:1231-43. [PMID: 27057002 DOI: 10.1093/pcp/pcw071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.
Collapse
Affiliation(s)
- Motoshi Kunugi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Kensuke Shibata
- AIMEN Co., Ltd, 81-1 Takaoka-cho, Matsuyama, Ehime, 791-8036 Japan
| | - Yukimasa Yamagishi
- Faculty of Life Science and Biotechnology, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima, 729-0292 Japan
| | - Kazuhiro Kogame
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
24
|
Yu J, Zhang J, Zhao Q, Liu Y, Chen S, Guo H, Shi L, Dai S. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard" Leaves. Int J Mol Sci 2016; 17:346. [PMID: 27005614 PMCID: PMC4813207 DOI: 10.3390/ijms17030346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/09/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022] Open
Abstract
Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta "Gold Standard" is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta "Gold Standard", as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta "Gold Standard". For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.
Collapse
Affiliation(s)
- Juanjuan Yu
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China.
| | - Jinzheng Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yuelu Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Hongliang Guo
- Food Engineering College, Harbin University of Commerce, Harbin 150028, China.
| | - Lei Shi
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
25
|
Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P. GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:1427. [PMID: 27713755 PMCID: PMC5032792 DOI: 10.3389/fpls.2016.01427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/07/2016] [Indexed: 05/04/2023]
Abstract
The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple indicators of plastid developmental stage and altered plastid function, as part of chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms underlying signal integration by GUN1 have remained elusive, up until the recent identification of a set of GUN1-interacting proteins, by co-immunoprecipitation and mass-spectrometric analyses, as well as protein-protein interaction assays. Here, we review the molecular functions of the different GUN1 partners and propose a major role for GUN1 as coordinator of chloroplast translation, protein import, and protein degradation. This regulatory role is implemented through proteins that, in most cases, are part of multimeric protein complexes and whose precise functions vary depending on their association states. Within this framework, GUN1 may act as a platform to promote specific functions by bringing the interacting enzymes into close proximity with their substrates, or may inhibit processes by sequestering particular pools of specific interactors. Furthermore, the interactions of GUN1 with enzymes of the tetrapyrrole biosynthesis (TPB) pathway support the involvement of tetrapyrroles as signaling molecules in retrograde communication.
Collapse
Affiliation(s)
- Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Roberto Ferrari
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
- *Correspondence: Paolo Pesaresi
| |
Collapse
|
26
|
Sakuraba Y, Park SY, Paek NC. The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation. Mol Cells 2015; 38:390-5. [PMID: 25913011 PMCID: PMC4443279 DOI: 10.14348/molcells.2015.0039] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/06/2015] [Indexed: 12/25/2022] Open
Abstract
Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, staygreen1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a stay-green phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - So-Yon Park
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061-0331,
USA
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916,
Korea
| |
Collapse
|
27
|
Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J. Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1731-46. [PMID: 25699590 PMCID: PMC4378176 DOI: 10.1104/pp.15.00026] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/02/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) regulates multiple developmental events and stress responses in plants. A major biologically active species of NO is S-nitrosoglutathione (GSNO), which is irreversibly degraded by GSNO reductase (GSNOR). The major physiological effect of NO is protein S-nitrosylation, a redox-based posttranslational modification mechanism by covalently linking an NO molecule to a cysteine thiol. However, little is known about the mechanisms of S-nitrosylation-regulated signaling, partly due to limited S-nitrosylated proteins being identified. In this study, we identified 1,195 endogenously S-nitrosylated peptides in 926 proteins from the Arabidopsis (Arabidopsis thaliana) by a site-specific nitrosoproteomic approach, which, to date, is the largest data set of S-nitrosylated proteins among all organisms. Consensus sequence analysis of these peptides identified several motifs that contain acidic, but not basic, amino acid residues flanking the S-nitrosylated cysteine residues. These S-nitrosylated proteins are involved in a wide range of biological processes and are significantly enriched in chlorophyll metabolism, photosynthesis, carbohydrate metabolism, and stress responses. Consistently, the gsnor1-3 mutant shows the decreased chlorophyll content and altered photosynthetic properties, suggesting that S-nitrosylation is an important regulatory mechanism in these processes. These results have provided valuable resources and new clues to the studies on S-nitrosylation-regulated signaling in plants.
Collapse
Affiliation(s)
- Jiliang Hu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Xuwu Sun
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Congming Lu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Lixin Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| |
Collapse
|
28
|
Ali MS, Kim KW, Dhakal R, Choi D, Baek KH. Accumulation of high contents of free amino acids in the leaves of Nicotiana benthamiana by the co-suppression of NbClpC1 and NbClpC2 genes. PLANT CELL REPORTS 2015; 34:355-65. [PMID: 25433858 DOI: 10.1007/s00299-014-1714-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/29/2014] [Accepted: 11/20/2014] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE We report the significant increase of the content of free amino acids in Nicotiana benthamiana by the co-suppression of the ClpC1 and ClpC2 genes, which are translated to be the chaperonic part in the Clp protease at plastids. Clp protease with ClpC1 and ClpC2 proteins as the chaperonic part degrades denatured or improperly folded protein in plastids. Nicotiana benthamiana ClpC1 and ClpC2 genes (NbClpC1 and NbClpC2: NbClpC1/C2) share 93% similarities; therefore, co-suppression of the NbClpC1/C2 was possible using a single virus-induced silencing vector. Co-suppression of NbClpC1/C2 resulted in a pleiotropic phenotype including disappearance of apical dominance and formation of chlorotic leaves. NbClpC1/C2 co-suppressed leaves accumulated 11.9-fold more free amino acids than the GFP-silenced leaves. The co-suppression of NbClpC1/C2 did not change the expression levels of some selected genes in the biosynthetic pathways for the free amino acids, but reduced the total protein amounts to 32.5%, indicating that co-suppression affected the incorporation of free amino acids in proteins during translation. The loosely packed mesophyll cells and abnormal vascular bundles in the leaves suggested structural problems associated with translocation of free amino acids to sink tissues. NbClpC1/C2 co-suppression can offer a novel strategy for accumulation of free amino acids though it results in stunted growth.
Collapse
Affiliation(s)
- Md Sarafat Ali
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749, Korea
| | | | | | | | | |
Collapse
|
29
|
Jia T, Ito H, Hu X, Tanaka A. Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:586-596. [PMID: 25557327 DOI: 10.1111/tpj.12753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Chlorophyll a and chlorophyll b are interconverted in the chlorophyll cycle. The initial step in the conversion of chlorophyll b to chlorophyll a is catalyzed by the chlorophyll b reductases NON-YELLOW COLORING 1 (NYC1) and NYC1-like (NOL), which convert chlorophyll b to 7-hydroxymethyl chlorophyll a. This step is also the first stage in the degradation of the light-harvesting chlorophyll a/b protein complex (LHC). In this study, we examined the effect of chlorophyll b on the level of NYC1. NYC1 mRNA and NYC1 protein were in low abundance in green leaves, but their levels increased in response to dark-induced senescence. When the level of chlorophyll b was enhanced by the introduction of a truncated chlorophyllide a oxygenase gene and the leaves were incubated in the dark, the amount of NYC1 was greatly increased compared with that of the wild type; however, the amount of NYC1 mRNA was the same as in the wild type. In contrast, NYC1 did not accumulate in the mutant without chlorophyll b, even though the NYC1 mRNA level was high after incubation in the dark. Quantification of the LHC protein showed no strong correlation between the levels of NYC1 and LHC proteins. However, the level of chlorophyll fluorescence of the dark adapted plant (Fo ) was closely related to the accumulation of NYC1, suggesting that the NYC1 level is related to the energetically uncoupled LHC. These results and previous reports on the degradation of chlorophyllide a oxygenase suggest that the a feedforward and feedback network is included in chlorophyll cycle.
Collapse
Affiliation(s)
- Ting Jia
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| | | | | | | |
Collapse
|
30
|
Tapken W, Kim J, Nishimura K, van Wijk KJ, Pilon M. The Clp protease system is required for copper ion-dependent turnover of the PAA2/HMA8 copper transporter in chloroplasts. THE NEW PHYTOLOGIST 2015; 205:511-7. [PMID: 25262970 DOI: 10.1111/nph.13093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/09/2014] [Indexed: 05/26/2023]
Abstract
The distribution of essential metal ions over subcellular compartments for use as cofactors requires control of membrane transporters. PAA2/HMA8 is a copper-transporting P1B -type ATPase in the thylakoid membrane, required for the maturation of plastocyanin. When copper is highly available to the plant this transporter is degraded, which implies the action of a protease. In order to identify the proteolytic machinery responsible for PAA2/HMA8 turnover in Arabidopsis, mutant lines defective in five different chloroplast protease systems were analyzed. Plants defective in the chloroplast caseinolytic protease (Clp) system were specifically impaired in PAA2/HMA8 protein turnover on media containing elevated copper concentrations. However, the abundance of a core Clp component was not directly affected by copper. Furthermore, the expression and activity of both cytosolic and chloroplast-localized superoxide dismutases (SODs), which are known to be dependent on copper, were not altered in the clp mutants, indicating that the loss of PAA2/HMA8 turnover in these lines was not caused by a lack of stromal copper. The results suggest that copper excess in the stroma triggers selection of the thylakoid-localized PAA2 transporter for degradation by the Clp protease, but not several other chloroplast proteases, and support a novel role for this proteolytic system in cellular copper homeostasis.
Collapse
Affiliation(s)
- Wiebke Tapken
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | | | | | | | | |
Collapse
|
31
|
Organization, function and substrates of the essential Clp protease system in plastids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:915-30. [PMID: 25482260 DOI: 10.1016/j.bbabio.2014.11.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Intra-plastid proteolysis is essential in plastid biogenesis, differentiation and plastid protein homeostasis (proteostasis). We provide a comprehensive review of the Clp protease system present in all plastid types and we draw lessons from structural and functional information of bacterial Clp systems. The Clp system plays a central role in plastid development and function, through selective removal of miss-folded, aggregated, or otherwise unwanted proteins. The Clp system consists of a tetradecameric proteolytic core with catalytically active ClpP and inactive ClpR subunits, hexameric ATP-dependent chaperones (ClpC,D) and adaptor protein(s) (ClpS1) enhancing delivery of subsets of substrates. Many structural and functional features of the plastid Clp system are now understood though extensive reverse genetics analysis combined with biochemical analysis, as well as large scale quantitative proteomics for loss-of-function mutants of Clp core, chaperone and ClpS1 subunits. Evolutionary diversification of Clp system across non-photosynthetic and photosynthetic prokaryotes and organelles is illustrated. Multiple substrates have been suggested based on their direct interaction with the ClpS1 adaptor or screening of different loss-of-function protease mutants. The main challenge is now to determine degradation signals (degrons) in Clp substrates and substrate delivery mechanisms, as well as functional interactions of Clp with other plastid proteases. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
32
|
Clarke AK. The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges. PHYSIOLOGIA PLANTARUM 2012; 145:235-44. [PMID: 22085372 DOI: 10.1111/j.1399-3054.2011.01541.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ATP-dependent Clp protease is by far the most intricate protease in chloroplasts of vascular plants. Structurally, it is particularly complex with a proteolytic core complex containing 11 distinct subunits along with three potential chaperone partners. The Clp protease is also essential for chloroplast development and overall plant viability. Over the past decade, many of the important characteristics of this crucial protease have been revealed in the model plant species Arabidopsis thaliana. Despite this, challenges still remain in fully resolving certain key features, in particular, how the assembly of this multisubunit protease is regulated, the full range of native protein substrates and how they are targeted for degradation and how this complicated enzyme might have developed from simpler bacterial forms. This article focuses upon the recent advances in revealing the details underlying these important features. It also take the opportunity to speculate upon many of these findings in the hope of stimulating further investigation.
Collapse
Affiliation(s)
- Adrian K Clarke
- Department of Plant and Environmental Sciences, Gothenburg University, 40530 Gothenburg, Sweden.
| |
Collapse
|
33
|
Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Govindjee, Tripathy BC. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. PLANT PHYSIOLOGY 2012; 159:433-49. [PMID: 22419827 PMCID: PMC3375976 DOI: 10.1104/pp.112.195859] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/13/2012] [Indexed: 05/19/2023]
Abstract
Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%-80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation.
Collapse
Affiliation(s)
| | | | - Shiv S. Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Sadhu Leelavathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Vanga S. Reddy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Govindjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| |
Collapse
|
34
|
Chu CC, Li HM. The amino-terminal domain of chloroplast Hsp93 is important for its membrane association and functions in vivo. PLANT PHYSIOLOGY 2012; 158:1656-65. [PMID: 22353577 PMCID: PMC3320176 DOI: 10.1104/pp.112.193300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/16/2012] [Indexed: 05/08/2023]
Abstract
Chloroplast 93-kD heat shock protein (Hsp93/ClpC), an Hsp100 family member, is suggested to have various functions in chloroplasts, including serving as the regulatory chaperone for the ClpP protease in the stroma and acting as a motor component of the protein translocon at the envelope. Indeed, although Hsp93 is a soluble stromal protein, a portion of it is associated with the inner envelope membrane. The mechanism and functional significance of this Hsp93 membrane association have not been determined. Here, we mapped the region important for Hsp93 membrane association by creating various deletion constructs and found that only the construct with the amino-terminal domain deleted, Hsp93-ΔN, had reduced membrane association. When transformed into Arabidopsis (Arabidopsis thaliana), most atHsp93V-ΔN proteins did not associate with membranes and atHsp93V-ΔΝ failed to complement the pale-green and protein import-defective phenotypes of an hsp93V knockout mutant. The residual atHsp93V-ΔN at the membranes had further reduced association with the central protein translocon component Tic110. However, the degradation of chloroplast glutamine synthetase, a potential substrate for the ClpP protease, was not affected in the hsp93V mutant or in the atHSP93V-ΔN transgenic plants. Hsp93-ΔN also had the same ATPase activity as that of full-length Hsp93. These data suggest that the association of Hsp93 with the inner envelope membrane through its amino-terminal domain is important for the functions of Hsp93 in vivo.
Collapse
Affiliation(s)
- Chiung-Chih Chu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
35
|
Czarnecki O, Grimm B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1675-87. [PMID: 22231500 DOI: 10.1093/jxb/err437] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tetrapyrrole biosynthetic pathway provides the vital cofactors and pigments for photoautotrophic growth (chlorophyll), several essential redox reactions in electron transport chains (haem), N- and S-assimilation (sirohaem), and photomorphogenic processes (phytochromobilin). While the biochemistry of the pathway is well understood and almost all genes encoding enzymes of tetrapyrrole biosynthesis have been identified in plants, the post-translational control and organization of the pathway remains to be clarified. Post-translational mechanisms controlling metabolic activities are of particular interest since tetrapyrrole biosynthesis needs adaptation to environmental challenges. This review surveys post-translational mechanisms that have been reported to modulate metabolic activities and organization of the tetrapyrrole biosynthesis pathway.
Collapse
Affiliation(s)
- Olaf Czarnecki
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115 Berlin, Germany
| | | |
Collapse
|
36
|
|
37
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
The roles of chloroplast proteases in the biogenesis and maintenance of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:239-46. [PMID: 21645493 DOI: 10.1016/j.bbabio.2011.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 12/28/2022]
Abstract
Photosystem II (PSII) catalyzes one of the key reactions of photosynthesis, the light-driven conversion of water into oxygen. Although the structure and function of PSII have been well documented, our understanding of the biogenesis and maintenance of PSII protein complexes is still limited. A considerable number of auxiliary and regulatory proteins have been identified to be involved in the regulation of this process. The carboxy-terminal processing protease CtpA, the serine-type protease DegP and the ATP-dependent thylakoid-bound metalloprotease FtsH are critical for the biogenesis and maintenance of PSII. Here, we summarize and discuss the structural and functional aspects of these chloroplast proteases in these processes. This article is part of a Special Issue entitled: SI: Photosystem II.
Collapse
|
39
|
Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:968-76. [PMID: 21216224 DOI: 10.1016/j.bbabio.2011.01.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/24/2010] [Accepted: 01/04/2011] [Indexed: 11/20/2022]
Abstract
Chlorophyll a and chlorophyll b are the major constituents of the photosynthetic apparatus in land plants and green algae. Chlorophyll a is essential in photochemistry, while chlorophyll b is apparently dispensable for their photosynthesis. Instead, chlorophyll b is necessary for stabilizing the major light-harvesting chlorophyll-binding proteins. Chlorophyll b is synthesized from chlorophyll a and is catabolized after it is reconverted to chlorophyll a. This interconversion system between chlorophyll a and chlorophyll b refers to the chlorophyll cycle. The chlorophyll b levels are determined by the activity of the three enzymes participating in the chlorophyll cycle, namely, chlorophyllide a oxygenase, chlorophyll b reductase, and 7-hydroxymethyl-chlorophyll reductase. This article reviews the recent progress on the analysis of the chlorophyll cycle and its enzymes. In particular, we emphasize the impact of genetic modification of chlorophyll cycle enzymes on the construction and destruction of the photosynthetic machinery. These studies reveal that plants regulate the construction and destruction of a specific subset of light-harvesting complexes through the chlorophyll cycle. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
40
|
Olinares PDB, Kim J, van Wijk KJ. The Clp protease system; a central component of the chloroplast protease network. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:999-1011. [PMID: 21167127 DOI: 10.1016/j.bbabio.2010.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
41
|
Singh A, Grover A. Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. PLANT MOLECULAR BIOLOGY 2010; 74:395-404. [PMID: 20811767 DOI: 10.1007/s11103-010-9682-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/20/2010] [Indexed: 05/21/2023]
Abstract
ClpB/Hsp100 proteins act as chaperones, mediating disaggregation of denatured proteins. Recent work shows that apart from cytoplasm, these proteins are localized to nuclei, chloroplasts, mitochondria and plasma membrane. While ClpB/Hsp100 genes are essentially stress-induced (mainly heat stress) in vegetative organs of the plant body, expression of ClpB/Hsp100 proteins is noted to be constitutive in plant reproductive structures like pollen grains, developing embryos, seeds etc. With global warming looming large on the horizon, ways to genetically engineer plants against high temperature stress are urgently needed. Yeast mutants unable to synthesize active ClpB/Hsp100 protein show a clear thermosensitive phenotype. ClpB/Hsp100 proteins are implicated in high temperature stress tolerance in plants. We herein highlight the selected important facets of this protein family in plants.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
42
|
Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. PHOTOSYNTHESIS RESEARCH 2010; 105:143-66. [PMID: 20582474 DOI: 10.1007/s11120-010-9568-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 05/30/2010] [Indexed: 05/03/2023]
Abstract
Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, Pázmány P. s. 1/C, 1117 Budapest, Hungary.
| | | |
Collapse
|
43
|
Sakuraba Y, Yokono M, Akimoto S, Tanaka R, Tanaka A. Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:1055-65. [PMID: 20403808 DOI: 10.1093/pcp/pcq050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chl b is one of the major light-harvesting pigments in land plants. The synthesis of Chl b is strictly regulated in response to light conditions in order to control the antenna size of photosystems. Regulation of Chl b also affects its distribution as it occurs preferentially in the peripheral antenna complexes. However, it has not been experimentally shown how plants respond to environmental conditions when they accumulate excess Chl b. Previously, we produced an Arabidopsis transgenic plant (referred to as the BC plant) in which Chl b biosynthesis was enhanced. In this study, we analyzed the photosynthetic properties and genome-wide gene expression in this plant under high light conditions in order to understand the effects of deregulated Chl b biosynthesis. The energy transfer rates between Chl a molecules in PSII decreased and H(2)O(2) accumulated extensively in the BC plant. Microarray analysis revealed that a group of genes involved in anthocyanin biosynthesis was down-regulated and that another group of genes, reported to be sensitive to H(2)O(2), was up-regulated in the BC plant. We also found that anthocyanin levels were low, which was consistent with the results of the microarray analysis. These results indicate that deregulation of Chl b caused severe photodamage and altered gene expression profiles under strong illumination. The importance of the regulation of Chl b synthesis is discussed in relation to the correct localization of Chl b and gene expression.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819 Japan
| | | | | | | | | |
Collapse
|
44
|
Wu H, Ji Y, Du J, Kong D, Liang H, Ling HQ. ClpC1, an ATP-dependent Clp protease in plastids, is involved in iron homeostasis in Arabidopsis leaves. ANNALS OF BOTANY 2010; 105:823-33. [PMID: 20382967 PMCID: PMC2859920 DOI: 10.1093/aob/mcq051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Iron (Fe) is necessary for plant growth and development. Although it is well known that Fe deficiency causes chlorosis in plants, it remains unclear how the Fe homeostasis is regulated in mesophyll cells. The aim of this work was to identify a gene related to Fe homeostasis in leaves. METHODS A spontaneous mutant irm1, which revealed typical Fe-deficiency chlorosis, was found from Arabidopsis thaliana. Using map-based cloning, the gene responsible for the altered phenotype of irm1 was cloned. The expression of genes was analysed using northern blot hybridization and multiplex RT-PCR analysis. Further, GUS staining with transgenic promoter-GUS lines and transient expression of the fusion protein with GFP were used for detecting the expression pattern of the gene in different tissues and at different developmental stages, and for the subcelluar localization of the gene product. KEY RESULTS A point mutation from G to A at nucleotide 2317 of ClpC1 on chromosome V of Arabidopsis is responsible for the irm1 phenotype. The leaf chlorosis of the mutant irm1 and clpc1 (a T-DNA-inserted null mutant of ClpC1) could be converted to green by watering the soil with Fe solution. The expression intensity of ferric reductase FRO8 in irm1 and clpc1 was disordered (significantly higher than that of wild type). CONCLUSIONS The glycine residue at amino acid 773 of ClpC1 is essential for its functions. In addition to its known functions reported previously, ClpC1 is involved in leaf Fe homeostasis, presumably via chloroplast translocation of some nuclear-encoded proteins which function in Fe transport.
Collapse
Affiliation(s)
- Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China
| | - Yanyan Ji
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China
| | - Juan Du
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Danyu Kong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hui Liang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China
- For correspondence. E-mail
| |
Collapse
|
45
|
Nagane T, Tanaka A, Tanaka R. Involvement of AtNAP1 in the regulation of chlorophyll degradation in Arabidopsis thaliana. PLANTA 2010; 231:939-49. [PMID: 20087600 DOI: 10.1007/s00425-010-1099-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/06/2010] [Indexed: 05/08/2023]
Abstract
In plants, chlorophyll is actively synthesized from glutamate in the developmental phase and is degraded into non-fluorescent chlorophyll catabolites during senescence. The chlorophyll metabolism must be strictly regulated because chlorophylls and their intermediate molecules generate reactive oxygen species. Many mechanisms have been proposed for the regulation of chlorophyll synthesis including gene expression, protein stability, and feedback inhibition. However, information on the regulation of chlorophyll degradation is limited. The conversion of chlorophyll b to chlorophyll a is the first step of chlorophyll degradation. In order to understand the regulatory mechanism of this reaction, we isolated a mutant which accumulates 7-hydroxymethyl chlorophyll a (HMChl), an intermediate molecule of chlorophyll b to chlorophyll a conversion, and designated the mutant hmc1. In addition to HMChl, hmc1 accumulated pheophorbide a, a chlorophyll degradation product, when chlorophyll degradation was induced by dark incubation. These results indicate that the activities of HMChl reductase (HAR) and pheophorbide a oxygenase (PaO) are simultaneously down-regulated in this mutant. We identified a mutation in the AtNAP1 gene, which encodes a subunit of the complex for iron-sulfur cluster formation. HAR and PaO use ferredoxin as a reducing power and PaO has an iron-sulfur center; however, there were no distinct differences in the protein levels of ferredoxin and PaO between wild type and hmc1. The concerted regulation of chlorophyll degradation is discussed in relation to the function of AtNAP1.
Collapse
Affiliation(s)
- Tomohiro Nagane
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo 060-0819, Japan
| | | | | |
Collapse
|
46
|
Komatsu T, Kawaide H, Saito C, Yamagami A, Shimada S, Nakazawa M, Matsui M, Nakano A, Tsujimoto M, Natsume M, Abe H, Asami T, Nakano T. The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:409-22. [PMID: 19919572 DOI: 10.1111/j.1365-313x.2009.04077.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brassinazole (Brz) is a specific inhibitor of the biosynthesis of brassinosteroids (BRs), which regulate plant organ and chloroplast development. We identified a recessive pale green Arabidopsis mutant, bpg2-1 (Brz-insensitive-pale green 2-1) that showed reduced sensitivity to chlorophyll accumulation promoted by Brz in the light. BPG2 encodes a chloroplast-localized protein with a zinc finger motif and four GTP-binding domains that are necessary for normal chloroplast biogenesis. BPG2-homologous genes are evolutionally conserved in plants, green algae and bacteria. Expression of BPG2 is induced by light and Brz. Chloroplasts of the bpg2-1 mutant have a decreased number of stacked grana thylakoids. In bpg2-1 and bpg2-2 mutants, there was no reduction in expression of rbcL and psbA, but there was abnormal accumulation of precursors of chloroplast 16S and 23S rRNA. Chloroplast protein accumulation induced by Brz was suppressed by the bpg2 mutation. These results indicate that BPG2 plays an important role in post-transcriptional and translational regulation in the chloroplast, and is a component of BR signaling.
Collapse
Affiliation(s)
- Tomoyuki Komatsu
- Plant Chemical Biology Research Unit, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zybailov B, Friso G, Kim J, Rudella A, Rodríguez VR, Asakura Y, Sun Q, van Wijk KJ. Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol Cell Proteomics 2010; 8:1789-1810. [PMID: 19423572 DOI: 10.1074/mcp.m900104-mcp200] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The clpr2-1 mutant is delayed in development due to reduction of the chloroplast ClpPR protease complex. To understand the role of Clp proteases in plastid biogenesis and homeostasis, leaf proteomes of young seedlings of clpr2-1 and wild type were compared using large scale mass spectrometry-based quantification using an LTQ-Orbitrap and spectral counting with significance determined by G-tests. Virtually only chloroplast-localized proteins were significantly affected, indicating that the molecular phenotype was confined to the chloroplast. A comparative chloroplast stromal proteome analysis of fully developed plants was used to complement the data set. Chloroplast unfoldase ClpB3 was strongly up-regulated in both young and mature leaves, suggesting widespread and persistent protein folding stress. The importance of ClpB3 in the clp2-1 mutant was demonstrated by the observation that a CLPR2 and CLPB3 double mutant was seedling-lethal. The observed up-regulation of chloroplast chaperones and protein sorting components further illustrated destabilization of protein homeostasis. Delayed rRNA processing and up-regulation of a chloroplast DEAD box RNA helicase and polynucleotide phosphorylase, but no significant change in accumulation of ribosomal subunits, suggested a bottleneck in ribosome assembly or RNA metabolism. Strong up-regulation of a chloroplast translational regulator TypA/BipA GTPase suggested a specific response in plastid gene expression to the distorted homeostasis. The stromal proteases PreP1,2 were up-regulated, likely constituting compensation for reduced Clp protease activity and possibly shared substrates between the ClpP and PreP protease systems. The thylakoid photosynthetic apparatus was decreased in the seedlings, whereas several structural thylakoid-associated plastoglobular proteins were strongly up-regulated. Two thylakoid-associated reductases involved in isoprenoid and chlorophyll synthesis were up-regulated reflecting feedback from rate-limiting photosynthetic electron transport. We discuss the quantitative proteomics data and the role of Clp proteolysis using a "systems view" of chloroplast homeostasis and metabolism and provide testable hypotheses and putative substrates to further determine the significance of Clp-driven proteolysis.
Collapse
Affiliation(s)
- Boris Zybailov
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
New Insights into the Types and Function of Proteases in Plastids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:185-218. [DOI: 10.1016/s1937-6448(10)80004-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Sakuraba Y, Tanaka R, Yamasato A, Tanaka A. Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. J Biol Chem 2009; 284:36689-36699. [PMID: 19843523 DOI: 10.1074/jbc.m109.008144] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorophyll b is one of the major photosynthetic pigments of plants. The regulation of chlorophyll b biosynthesis is important for plants in order to acclimate to changing environmental conditions. In the chloroplast, chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), a Rieske-type monooxygenase. The activity of this enzyme is regulated at the level of protein stability via a feedback mechanism through chlorophyll b. The Clp protease and the N-terminal domain (designated the A domain) of CAO are essential for the regulatory mechanism. In this study, we aimed to identify the specific amino acid residue or the sequence within the A domain that is essential for this regulation. To accomplish this goal, we randomly introduced base substitutions into the A domain and searched for potentially important residues by analyzing 1,000 transformants of Arabidopsis thaliana. However, none of the single amino acid substitutions significantly stabilized CAO. Therefore, we generated serial deletions in the A domain and expressed these deletions in the background of CAO-deficient Arabidopsis mutant. We found that the amino acid sequence (97)QDLLTIMILH(106) is essential for the regulation of the protein stability. We furthermore determined that this sequence induces the destabilization of green fluorescent protein. These results suggest that this sequence serves as a degradation signal that is recognized by proteases functioning in the chloroplast.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo 060-0819, Japan.
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo 060-0819, Japan
| | - Akihiro Yamasato
- Research Institute for Biological Sciences Okayama, Okayama 716-1241, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo 060-0819, Japan
| |
Collapse
|
50
|
Kim J, Rudella A, Ramirez Rodriguez V, Zybailov B, Olinares PDB, van Wijk KJ. Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis. THE PLANT CELL 2009; 21:1669-92. [PMID: 19525416 PMCID: PMC2714938 DOI: 10.1105/tpc.108.063784] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/06/2009] [Accepted: 05/18/2009] [Indexed: 05/21/2023]
Abstract
The plastid ClpPR protease complex in Arabidopsis thaliana consists of five catalytic ClpP and four noncatalytic ClpR subunits. An extensive analysis of the CLPR family and CLPP5 is presented to address this complexity. Null alleles for CLPR2 and CLPR4 showed delayed embryogenesis and albino embryos, with seedling development blocked in the cotyledon stage; this developmental block was overcome under heterotrophic conditions, and seedlings developed into small albino to virescent seedlings. By contrast, null alleles for CLPP5 were embryo lethal. Thus, the ClpPR proteins make different functional contributions. To further test for redundancies and functional differences between the ClpR proteins, we overexpressed full-length cDNAs for ClpR1, R2, R3, R4 in clpr1, clpr2 and clpr4 mutants. This showed that overexpression of ClpR3 can complement for the loss of ClpR1, but not for the loss of ClpR2 or ClpR4, indicating that ClpR3 can functionally substitute ClpR1. By contrast, ClpR1, R2 and R4 could not substitute each other. Double mutants of weak CLPR1 and 2 alleles were seedling lethal, showing that a minimum concentration of different ClpR proteins is essential for Clp function. Microscopy and large-scale comparative leaf proteome analyses of a CLPR4 null allele demonstrate a central role of Clp protease in chloroplast biogenesis and protein homeostasis; substrates are discussed. Lack of transcriptional and translational feedback regulation within the CLPPR gene family indicates that regulation of Clp activity occurs through Clp complex assembly and substrate delivery.
Collapse
Affiliation(s)
- Jitae Kim
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|