1
|
Wang H. Endogenous and environmental signals in regulating vascular development and secondary growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1369241. [PMID: 38628366 PMCID: PMC11018896 DOI: 10.3389/fpls.2024.1369241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Huanzhong Wang
- Department of Plant Science & Landscape Architecture, University of Connecticut, Storrs, CT, United States
- Institute for System Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Cheng DX, Wang XH, Wang CL, Li XY, Ye ZL, Li WF. Cambium Reactivation Is Closely Related to the Cell-Cycle Gene Configuration in Larix kaempferi. Int J Mol Sci 2024; 25:3578. [PMID: 38612390 PMCID: PMC11011626 DOI: 10.3390/ijms25073578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Dormancy release and reactivation in temperate trees are mainly controlled by temperature and are affected by age, but the underlying molecular mechanisms are still unclear. In this study, we explored the effects of low temperatures in winter and warm temperatures in spring on dormancy release and reactivation in Larix kaempferi. Further, we established the relationships between cell-cycle genes and cambium cell division. The results showed that chilling accelerated L. kaempferi bud break overall, and the longer the duration of chilling is, the shorter the bud break time is. After dormancy release, warm temperatures induced cell-cycle gene expression; when the configuration value of the cell-cycle genes reached 4.97, the cambium cells divided and L. kaempferi reactivated. This study helps to predict the impact of climate change on wood production and provides technical support for seedling cultivation in greenhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (D.-X.C.); (X.-H.W.); (C.-L.W.); (X.-Y.L.); (Z.-L.Y.)
| |
Collapse
|
3
|
Guo Y, Xu H, Wu H, Shen W, Lin J, Zhao Y. Seasonal changes in cambium activity from active to dormant stage affect the formation of secondary xylem in Pinus tabulaeformis Carr. TREE PHYSIOLOGY 2022; 42:585-599. [PMID: 34505153 DOI: 10.1093/treephys/tpab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding the changing patterns of vascular cambium during seasonal cycles is crucial to reveal the mechanisms that control cambium activity and wood formation, but this area has been underexplored, especially in conifers. Here, we quantified the changing cellular morphology patterns of cambial zones during the active, transition and dormant stages. With the help of toluidine blue and periodic acid-Schiff staining to visualize cell walls and identify their constituents, we observed decreasing cambial cell layers, thickening of newly formed xylem cell walls and increased polysaccharide granules in phloem from June to the following March over the course of our collecting period. Pectin immunofluorescence showed that dormant-stage cambium can produce highly abundant de-esterified homogalacturonan and (1-4)-β-d-galactan epitopes, whereas active cambium can strong accumulate high methylesterified homogalacturonan. Calcofluor white staining and confocal Raman spectroscopy analysis revealed regular changes in the chemical composition of cell walls, such as relative lower cellulose deposition in transition stage in vascular cambium, and higher lignin accumulation was found in dormant stage in secondary xylem. Moreover, real-time quantitative polymerase chain reaction analysis suggested that various IAA (Aux/IAA protein), CesA, CslA and HDZ genes, as well as NAC, PME3 and PME4, may be involved in cambium activities and secondary xylem formation. Taken together, these findings provide new information about cambium activity and cell differentiation in the formation, structure and chemistry in conifers during the active-dormant transition.
Collapse
Affiliation(s)
- Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongyang Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Weiwei Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuanyuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
4
|
Xu H, Chen B, Zhao Y, Guo Y, Liu G, Li R, Zeisler-Diehl VV, Chen Y, He X, Schreiber L, Lin J. Non-Coding RNA Analyses of Seasonal Cambium Activity in Populus tomentosa. Cells 2022; 11:640. [PMID: 35203291 PMCID: PMC8869787 DOI: 10.3390/cells11040640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNA, known as long non-coding RNA (lncRNA), circular RNA (circRNA) and microRNA (miRNA), are taking part in the multiple developmental processes in plants. However, the roles of which played during the cambium activity periodicity of woody plants remain poorly understood. Here, lncRNA/circRNA-miRNA-mRNA regulatory networks of the cambium activity periodicity in Populus tomentosa was constructed, combined with morphologic observation and transcriptome profiling. Light microscopy and Periodic Acid Schiff (PAS) staining revealed that cell walls were much thicker and number of cell layers was increased during the active-dormant stage, accompanied by abundant change of polysaccharides. The novel lncRNAs and circRNAs were investigated, and we found that 2037 lncRNAs and 299 circRNAs were differentially expression during the vascular cambium period, respectively. Moreover, 1046 genes were identified as a target gene of 2037 novel lncRNAs, and 89 of which were the miRNA precursors or targets. By aligning miRNA precursors to the 7655 lncRNAs, 21 lncRNAs were identified as precursors tof 19 known miRNAs. Furthermore, the target mRNA of lncRNA/circRNA-miRNA network mainly participated in phytohormone, cell wall alteration and chlorophyll metabolism were analyzed by GO enrichment and KEGG pathway. Especially, circRNA33 and circRNA190 taking part in the phytohormone signal pathway were down-regulated during the active-dormant transition. Xyloglucan endotransglucosylase/hydrolase protein 24-like and UDP-glycosyltransferase 85A1 involved in the cell wall modification were the targets of lncRNA MSTRG.11198.1 and MSTRG.1050.1. Notably, circRNA103 and MSTRG.10851.1 regulate the cambium periodicity may interact with the miR482. These results give a new light into activity-dormancy regulation, associated with transcriptional dynamics and non-coding RNA networks of potential targets identification.
Collapse
Affiliation(s)
- Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (H.X.); (Y.C.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
- College of Life Sciences, Peking University, Beijing 100871, China;
| | - Bo Chen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yayu Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Guijun Liu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China;
| | - Ruili Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
| | - Viktoria V. Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.V.Z.-D.); (L.S.)
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (H.X.); (Y.C.)
| | - Xinqiang He
- College of Life Sciences, Peking University, Beijing 100871, China;
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.V.Z.-D.); (L.S.)
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Li Z, Lathe RS, Li J, He H, Bhalerao RP. Towards understanding the biological foundations of perenniality. TRENDS IN PLANT SCIENCE 2022; 27:56-68. [PMID: 34561180 DOI: 10.1016/j.tplants.2021.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China.
| | - Rahul S Lathe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jinping Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Hong He
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
6
|
Li WF, Kang Y, Zhang Y, Zang QL, Qi LW. Concerted control of the LaRAV1-LaCDKB1;3 module by temperature during dormancy release and reactivation of larch. TREE PHYSIOLOGY 2021; 41:1918-1937. [PMID: 33847364 PMCID: PMC8498939 DOI: 10.1093/treephys/tpab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Dormancy release and reactivation of temperate-zone trees involve the temperature-modulated expression of cell-cycle genes. However, information on the detailed regulatory mechanism is limited. Here, we compared the transcriptomes of the stems of active and dormant larch trees, emphasizing the expression patterns of cell-cycle genes and transcription factors and assessed their relationships and responses to temperatures. Twelve cell-cycle genes and 31 transcription factors were strongly expressed in the active stage. Promoter analysis suggested that these 12 genes might be regulated by transcription factors from 10 families. Altogether, 73 cases of regulation between 16 transcription factors and 12 cell-cycle genes were predicted, while the regulatory interactions between LaMYB20 and LaCYCB1;1, and LaRAV1 and LaCDKB1;3 were confirmed by yeast one-hybrid and dual-luciferase assays. Last, we found that LaRAV1 and LaCDKB1;3 had almost the same expression patterns during dormancy release and reactivation induced naturally or artificially by temperature, indicating that the LaRAV1-LaCDKB1;3 module functions in the temperature-modulated dormancy release and reactivation of larch trees. These results provide new insights into the link between temperature and cell-cycle gene expression, helping to understand the temperature control of tree growth and development in the context of climate change.
Collapse
Affiliation(s)
- Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yanhui Kang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Qiao-Lu Zang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Li-Wang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| |
Collapse
|
7
|
Sun X, Wen C, Xu J, Wang Y, Zhu J, Zhang Y. The apple columnar gene candidate MdCoL and the AP2/ERF factor MdDREB2 positively regulate ABA biosynthesis by activating the expression of MdNCED6/9. TREE PHYSIOLOGY 2021; 41:1065-1076. [PMID: 33238313 DOI: 10.1093/treephys/tpaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
MdCoL, which encodes a putative 2OG-Fe(II) oxygenase, is a strong candidate gene for control of the columnar growth phenotype in apple. However, the mechanism by which MdCoL produces the columnar trait is unclear. Here, we show that MdCoL influences abscisic acid (ABA) biosynthesis through its interactions with the MdDREB2 transcription factor. Expression analyses and transgenic tobacco studies have confirmed that MdCoL is likely a candidate for control of the columnar phenotype. Furthermore, the ABA level in columnar apple trees is significantly higher than that in standard apple trees. A protein interaction experiment has showed that MdCoL interacts with MdDREB2. Transient expression and electrophoretic mobility shift assays have demonstrated that MdDREB2 binds directly to the DRE motif in the MdNCED6 and MdNCED9 (MdNCED6/9) gene promoters, thereby activating the transcription of these ABA biosynthesis genes. In addition, a higher ABA content has been detected following co-overexpression of MdCoL-MdDREB2 when compared with the overexpression of MdCoL or MdDREB2 alone. Taken together, our results indicate that an interaction between MdCoL and MdDREB2 promotes the expression of MdNCED6/9 and increases ABA levels, a phenomenon that may underlie the columnar growth phenotype in apple.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Cuiping Wen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Yihe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| |
Collapse
|
8
|
Chen B, Xu H, Guo Y, Grünhofer P, Schreiber L, Lin J, Li R. Transcriptomic and epigenomic remodeling occurs during vascular cambium periodicity in Populus tomentosa. HORTICULTURE RESEARCH 2021; 8:102. [PMID: 33931595 PMCID: PMC8087784 DOI: 10.1038/s41438-021-00535-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/20/2021] [Accepted: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Trees in temperate regions exhibit evident seasonal patterns, which play vital roles in their growth and development. The activity of cambial stem cells is the basis for regulating the quantity and quality of wood, which has received considerable attention. However, the underlying mechanisms of these processes have not been fully elucidated. Here we performed a comprehensive analysis of morphological observations, transcriptome profiles, the DNA methylome, and miRNAs of the cambium in Populus tomentosa during the transition from dormancy to activation. Anatomical analysis showed that the active cambial zone exhibited a significant increase in the width and number of cell layers compared with those of the dormant and reactivating cambium. Furthermore, we found that differentially expressed genes associated with vascular development were mainly involved in plant hormone signal transduction, cell division and expansion, and cell wall biosynthesis. In addition, we identified 235 known miRNAs and 125 novel miRNAs. Differentially expressed miRNAs and target genes showed stronger negative correlations than other miRNA/target pairs. Moreover, global methylation and transcription analysis revealed that CG gene body methylation was positively correlated with gene expression, whereas CHG exhibited the opposite trend in the downstream region. Most importantly, we observed that the number of CHH differentially methylated region (DMR) changes was the greatest during cambium periodicity. Intriguingly, the genes with hypomethylated CHH DMRs in the promoter were involved in plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interactions during vascular cambium development. These findings improve our systems-level understanding of the epigenomic diversity that exists in the annual growth cycle of trees.
Collapse
Affiliation(s)
- Bo Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Paul Grünhofer
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
10
|
Agustí J, Blázquez MA. Plant vascular development: mechanisms and environmental regulation. Cell Mol Life Sci 2020; 77:3711-3728. [PMID: 32193607 PMCID: PMC11105054 DOI: 10.1007/s00018-020-03496-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.
Collapse
Affiliation(s)
- Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
11
|
Han X, An Y, Zhou Y, Liu C, Yin W, Xia X. Comparative transcriptome analyses define genes and gene modules differing between two Populus genotypes with contrasting stem growth rates. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:139. [PMID: 32782475 PMCID: PMC7415184 DOI: 10.1186/s13068-020-01758-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/29/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Wood provides an important biomass resource for biofuel production around the world. The radial growth of tree stems is central to biomass production for forestry and biofuels, but it is challenging to dissect genetically because it is a complex trait influenced by many genes. In this study, we adopted methods of physiology, transcriptomics and genetics to investigate the regulatory mechanisms of tree radial growth and wood development. RESULTS Physiological comparison showed that two Populus genotypes presented different rates of radial growth of stems and accumulation of woody biomass. A comparative transcriptional network approach was used to define and characterize functional differences between two Populus genotypes. Analyses of transcript profiles from wood-forming tissue of the two genotypes showed that 1542, 2295 and 2110 genes were differentially expressed in the pre-growth, fast-growth and post-growth stages, respectively. The co-expression analyses identified modules of co-expressed genes that displayed distinct expression profiles. Modules were further characterized by correlating transcript levels with genotypes and physiological traits. The results showed enrichment of genes that participated in cell cycle and division, whose expression change was consistent with the variation of radial growth rates. Genes related to secondary vascular development were up-regulated in the faster-growing genotype in the pre-growth stage. We characterized a BEL1-like (BELL) transcription factor, PeuBELL15, which was up-regulated in the faster-growing genotype. Analyses of transgenic Populus overexpressing as well as CRISPR/Cas9-induced mutants for BELL15 showed that PeuBELL15 improved accumulation of glucan and lignin, and it promoted secondary vascular growth by regulating the expression of genes relevant for cellulose synthases and lignin biosynthesis. CONCLUSIONS This study illustrated that active division and expansion of vascular cambium cells and secondary cell wall deposition of xylem cells contribute to stem radial increment and biomass accumulation, and it identified relevant genes for these complex growth traits, including a BELL transcription factor gene PeuBELL15. This provides genetic resources for improving and breeding elite genotypes with fast growth and high wood biomass.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Yi An
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
12
|
Khalil-Ur-Rehman M, Wang W, Zheng H, Faheem M, Iqbal S, Shen ZG, Tao J. Role of hydrogen cyanamide (HC) in grape bud dormancy release: proteomic approach. 3 Biotech 2020; 10:229. [PMID: 32399379 DOI: 10.1007/s13205-020-02194-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 01/23/2023] Open
Abstract
In the present study, we identified changes in protein expression patterns of grapevine buds when treated with hydrogen cyanamide (HC). HC induced a shift of more than 2-folds in the expression of 1250 proteins out of approximately 7000 detected proteins. The majority of the differentially expressed proteins (DEPs) were localized in the chloroplast (419) and cytoplasm (347). Most of the detected DEPs were linked with energy metabolism, redox activity, hormone, and stress signaling. Particularly, the DEPs associated with defense and sugar metabolism showed significantly higher expression in HC-treated buds. Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed significant enrichment for circadian rhythm, ribosome, and metabolic pathways. Moreover, the antioxidant activity of peroxidase (POD) increased at initial stages but declined at later stages (18 days post-treatment). This study identified several dormancy-related proteins that regulated signaling, as well as metabolic pathways upon HC application. The outcome of this study provides insights into the role of HC in dormancy release for grapevine production, hence useful to alleviate yield losses in mild winter regions.
Collapse
Affiliation(s)
- Muhammad Khalil-Ur-Rehman
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- 2College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wu Wang
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huan Zheng
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Muhammad Faheem
- 3The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shahid Iqbal
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhen Guo Shen
- 2College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianmin Tao
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
13
|
Rodrigues AM, Ribeiro-Barros AI, António C. Experimental Design and Sample Preparation in Forest Tree Metabolomics. Metabolites 2019; 9:E285. [PMID: 31766588 PMCID: PMC6950530 DOI: 10.3390/metabo9120285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Appropriate experimental design and sample preparation are key steps in metabolomics experiments, highly influencing the biological interpretation of the results. The sample preparation workflow for plant metabolomics studies includes several steps before metabolite extraction and analysis. These include the optimization of laboratory procedures, which should be optimized for different plants and tissues. This is particularly the case for trees, whose tissues are complex matrices to work with due to the presence of several interferents, such as oleoresins, cellulose. A good experimental design, tree tissue harvest conditions, and sample preparation are crucial to ensure consistency and reproducibility of the metadata among datasets. In this review, we discuss the main challenges when setting up a forest tree metabolomics experiment for mass spectrometry (MS)-based analysis covering all technical aspects from the biological question formulation and experimental design to sample processing and metabolite extraction and data acquisition. We also highlight the importance of forest tree metadata standardization in metabolomics studies.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
| | - Ana I. Ribeiro-Barros
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
- Plant Stress and Biodiversity Laboratory, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa (ISA/ULisboa), 1349-017 Lisboa, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
| |
Collapse
|
14
|
Xin H, Zhang Y, Wang X, Liu C, Feng W, Gai S. Morphological, anatomical and DNA methylation changes of tree peony buds during chilling induced dormancy release. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:64-72. [PMID: 31561199 DOI: 10.1016/j.plaphy.2019.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 05/27/2023]
Abstract
Bud endodormancy in tree peony is a growth cessation-like state, and sufficient chilling perception is necessary to break it. In this study, 120 plants were subjected to 0-4 °C climate chamber for 0-28 d with a weekly interval, morphology and structure changes of buds were studied with a scanning electron microscope (SEM) and paraffin sections during the dormancy process. Dormancy status was evaluated after being transferred to greenhouse for 30 d. Results showed that the diameter of the buds gradually expanded, along with continuous elongation of sepals, petals, stamens and carpels in the chilling accumulation process. Notably, dormancy release was marked with the establishment of xylem vessels in lateral vein of the petal. Meanwhile, DNA methylation was detected by HPLC and immunochemical technology, aimed to illuminate the role of DNA methylation in the dormancy release, we found that 5 mC level fell from 39.4% to 24.2% after exposed to 28 d chilling. These results were consistent with the immunochemical analysis, and inversely related to the sprouting rate after being moved to greenhouse for 30 d. Exogenous application of 5azaC (5-azacytidine) decreased DNA methylation level, accompanied by an improved bud sprouting capacity, while the effect of SAM (S-adenosylmethionine) was the opposite. In summary, prolonged chilling was accompanied by further differentiation and development of the compound bud, which resulted in DNA hypomethylation and promoted dormancy release in tree peony.
Collapse
Affiliation(s)
- Hua Xin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China; University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China.
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China; University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China.
| | - Xueting Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China; University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China.
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China; University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China.
| | - Weirong Feng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China; University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China.
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China; University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China.
| |
Collapse
|
15
|
Kjaer KH, Winde J, Petersen KK, Yde CC, Pagter M. Cold deacclimation mechanisms and reacclimation potential in flower buds of blackcurrant (Ribes nigrum). PHYSIOLOGIA PLANTARUM 2019; 167:111-126. [PMID: 30421426 DOI: 10.1111/ppl.12873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/26/2018] [Accepted: 06/08/2018] [Indexed: 05/22/2023]
Abstract
As a consequence of global climate change, cold acclimation and deacclimation cycles are becoming increasingly frequent during winter in temperate regions. However, little is known about plant deacclimation and in particular reacclimation mechanisms, although deacclimation resistance and the ability to reacclimate may have wide-ranging consequences regarding plant productivity in a changing climate. Here, we report time-dependent responses of freezing tolerance, respiration rates, metabolite contents (high-resolution magic angle spinning NMR) and fatty acid levels (gas chromatography) in flower buds of two ecodormant Ribes nigrum cultivars exposed to three different deacclimation temperatures followed by a reacclimation treatment at 4°C. The data reveal that despite differences in the progression of deacclimation, the capacity of blackcurrant flower buds to reharden in late winter is virtually non-existing, implying that increasingly irregular temperature patterns is critical for blackcurrant fruit yield. The early phase of deacclimation is associated with a transient increase in respiration and decreasing contents of amino acids, tricarboxylic acid (TCA) cycle intermediates and sugars, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. Decreasing sugar levels may additionally cause loss of freezing tolerance. Deacclimation also involves desaturation of membrane lipids, which likely also contributes to decreased freezing tolerance but may also reflect biosynthesis of signaling molecules stimulating growth and floral organ differentiation. These data provide new insights into the under-researched deacclimation mechanisms and the ability of blackcurrant to reacclimate following different advancements of deacclimation and contribute to our understanding of plant responses to increasingly irregular temperature patterns.
Collapse
Affiliation(s)
- Katrine H Kjaer
- Department of Food Science, Aarhus University, DK-5792, Aarslev, Denmark
| | - Jacob Winde
- Department of Food Science, Aarhus University, DK-5792, Aarslev, Denmark
| | - Karen K Petersen
- Department of Food Science, Aarhus University, DK-5792, Aarslev, Denmark
| | - Christian C Yde
- Department of Food Science, Aarhus University, DK-5792, Aarslev, Denmark
| | - Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, DK-9220, Aalborg East, Denmark
| |
Collapse
|
16
|
What Makes the Wood? Exploring the Molecular Mechanisms of Xylem Acclimation in Hardwoods to an Ever-Changing Environment. FORESTS 2019. [DOI: 10.3390/f10040358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wood, also designated as secondary xylem, is the major structure that gives trees and other woody plants stability for upright growth and maintains the water supply from the roots to all other plant tissues. Over recent decades, our understanding of the cellular processes of wood formation (xylogenesis) has substantially increased. Plants as sessile organisms face a multitude of abiotic stresses, e.g., heat, drought, salinity and limiting nutrient availability that require them to adjust their wood structure to maintain stability and water conductivity. Because of global climate change, more drastic and sudden changes in temperature and longer periods without precipitation are expected to impact tree productivity in the near future. Thus, it is essential to understand the process of wood formation in trees under stress. Many traits, such as vessel frequency and size, fiber thickness and density change in response to different environmental stimuli. Here, we provide an overview of our current understanding of how abiotic stress factors affect wood formation on the molecular level focussing on the genes that have been identified in these processes.
Collapse
|
17
|
Grimberg Å, Lager I, Street NR, Robinson KM, Marttila S, Mähler N, Ingvarsson PK, Bhalerao RP. Storage lipid accumulation is controlled by photoperiodic signal acting via regulators of growth cessation and dormancy in hybrid aspen. THE NEW PHYTOLOGIST 2018; 219:619-630. [PMID: 29761498 DOI: 10.1111/nph.15197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 05/24/2023]
Abstract
The signalling pathways that control seasonal modulation of carbon metabolism in perennial plants are poorly understood. Using genetic, metabolic and natural variation approaches, we identify factors mediating photoperiodic control of storage lipid accumulation in the model tree hybrid aspen (Populus tremula × tremuloides). We characterized lipid accumulation in transgenic hybrid aspen with impaired photoperiodic and hormonal responses. Genome-wide association mapping was performed in Swedish aspen (P. tremula) genotypes to determine genetic loci associated with genotype variation in lipid content. Our data show that the storage lipid triacylglycerol (TAG) accumulates in cambial meristem and pith rays of aspen in response to photoperiodic signal controlling growth cessation and dormancy induction. We show that photoperiodic control of TAG accumulation is mediated by the FLOWERING LOCUS T/CONSTANS module, which also controls the induction of growth cessation. Hormonal and chromatin remodelling pathways also contribute to TAG accumulation by photoperiodic signal. Natural variation exists in lipid accumulation that is controlled by input from multiple loci. Our data shed light on how the control of storage metabolism is temporally coordinated with growth cessation and dormancy by photoperiodic signal, and reveals that storage lipid accumulation between seeds and perennating organs of trees may involve distinct regulatory circuits.
Collapse
Affiliation(s)
- Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Kathryn M Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Salla Marttila
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 75007, Uppsala, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183, Umeå, Sweden
| |
Collapse
|
18
|
Guillaume C, Isabelle C, Marc B, Thierry A. Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks. PLANT, CELL & ENVIRONMENT 2018; 41:1008-1021. [PMID: 28185293 DOI: 10.1111/pce.12935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 05/08/2023]
Abstract
Frost damages develop when exposure overtakes frost vulnerability. Frost risk assessment therefore needs dynamic simulation of frost hardiness using temperature and photoperiod in interaction with developmental stage. Two models, including or not the effect of photoperiod, were calibrated using five years of frost hardiness monitoring (2007-2012), in two locations (low and high elevation) for three walnut genotypes with contrasted phenology and maximum hardiness (Juglans regia cv Franquette, J. regia × nigra 'Early' and 'Late'). The photothermal model predicted more accurate values for all genotypes (efficiency = 0.879; Root Mean Standard Error Predicted (RMSEP) = 2.55 °C) than the thermal model (efficiency = 0.801; RMSEP = 3.24 °C). Predicted frost damages were strongly correlated to minimum temperature of the freezing events (ρ = -0.983) rather than actual frost hardiness (ρ = -0.515), or ratio of phenological stage completion (ρ = 0.336). Higher frost risks are consequently predicted during winter, at high elevation, whereas spring is only risky at low elevation in early genotypes exhibiting faster dehardening rate. However, early frost damages, although of lower value, may negatively affect fruit production the subsequent year (R2 = 0.381, P = 0.057). These results highlight the interacting pattern between frost exposure and vulnerability at different scales and the necessity of intra-organ studies to understand the time course of frost vulnerability in flower buds along the winter.
Collapse
Affiliation(s)
- Charrier Guillaume
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France
- Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33140, Villenave d'Ornon, France
- BIOGECO, INRA, Univ. Bordeaux, 33610, Cestas, France
| | - Chuine Isabelle
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR CEFE CNRS 5175, 1919 route de Mende, 34293, Montpellier cedex 05, France
| | - Bonhomme Marc
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France
| | - Améglio Thierry
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France
| |
Collapse
|
19
|
Yue C, Cao H, Hao X, Zeng J, Qian W, Guo Y, Ye N, Yang Y, Wang X. Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. PLANT CELL REPORTS 2018; 37:425-441. [PMID: 29214380 DOI: 10.1007/s00299-017-2238-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 05/20/2023]
Abstract
Thirty genes involved in GA and ABA metabolism and signalling were identified, and the expression profiles indicated that they play crucial roles in the bud activity-dormancy transition in tea plants. Gibberellin (GA) and abscisic acid (ABA) are fundamental phytohormones that extensively regulate plant growth and development, especially bud dormancy and sprouting transition in perennial plants. However, there is little information on GA- and ABA-related genes and their expression profiles during the activity-dormancy transition in tea plants. In the present study, 30 genes involved in the metabolism and signalling pathways of GA and ABA were first identified, and their expression patterns in different tissues were assessed. Further evaluation of the expression patterns of selected genes in response to GA3 and ABA application showed that CsGA3ox, CsGA20ox, CsGA2ox, CsZEP and CsNCED transcripts were differentially expressed after exogenous treatment. The expression profiles of the studied genes during winter dormancy and spring sprouting were investigated, and somewhat diverse expression patterns were found for GA- and ABA-related genes. This diversity was associated with the bud activity-dormancy cycle of tea plants. These results indicate that the genes involved in the metabolism and signalling of GA and ABA are important for regulating the bud activity-dormancy transition in tea plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Hongli Cao
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinyuan Hao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Jianming Zeng
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Wenjun Qian
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yuqiong Guo
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Naixing Ye
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yajun Yang
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| | - Xinchao Wang
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|
20
|
Pagter M, Yde CC, Kjær KH. Metabolic Fingerprinting of Dormant and Active Flower Primordia of Ribes nigrum Using High-Resolution Magic Angle Spinning NMR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10123-10130. [PMID: 29083175 DOI: 10.1021/acs.jafc.7b03788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Global warming may modify the timing of dormancy release and spring growth of buds of temperate fruit crops. Environmental regulation of the activity-dormancy cycle in perennial plants remains poorly understood at the metabolic level. Especially, the fine-scale metabolic dynamics in the meristematic zone within buds has received little attention. In this work we performed metabolic profiling of intact floral primordia of Ribes nigrum isolated from buds differing in dormancy status using high-resolution magic angle spinning (HR-MAS) NMR. The technique proved useful in monitoring different groups of metabolites, e.g., carbohydrates and amino acids, in floral primordia and allowed metabolic separation of primordia from endo- and ecodormant buds. In addition, due to its nondestructive character, HR-MAS NMR may provide novel insights into cellular compartmentation of individual biomolecules that cannot be obtained using liquid-state NMR. Out results show that HR-MAS NMR may be an important method for metabolomics of intact plant structures.
Collapse
Affiliation(s)
- Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers vej 7H, DK-9220, Aalborg East, Denmark
| | - Christian Clement Yde
- Department of Food Science, Aarhus University , Kirstinebjergvej 10, DK-5792 Aarslev, Denmark
- DuPont Nutrition Biosciences ApS, Edwin Rahrs vej 38, DK-8220 Brabrand, Denmark
| | - Katrine Heinsvig Kjær
- Department of Food Science, Aarhus University , Kirstinebjergvej 10, DK-5792 Aarslev, Denmark
- Danish Technological Institute, Gregersensvej 1, DK-2630 Taastrup, Denmark
| |
Collapse
|
21
|
Maurya JP, Bhalerao RP. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. ANNALS OF BOTANY 2017; 120:351-360. [PMID: 28605491 PMCID: PMC5591416 DOI: 10.1093/aob/mcx061] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees. SCOPE This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees. CONCLUSION The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees.
Collapse
Affiliation(s)
- Jay P Maurya
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
- For correspondence. E-mail
| |
Collapse
|
22
|
Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2017; 160:312-327. [PMID: 28369972 DOI: 10.1111/ppl.12549] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 05/22/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are involved in a wide range of developmental processes and in response to biotic and abiotic stresses. They represent one of the biggest families of transcription factors but only few of them have been functionally characterized. Here we report the characterization of AtbHLH68 and show that, although the knock out mutant did not have an obvious development phenotype, it was slightly more sensitive to drought stress than the Col-0, and AtbHLH68 overexpressing lines displayed defects in lateral root (LR) formation and a significant increased tolerance to drought stress, likely related to an enhanced sensitivity to abscisic acid (ABA) and/or increased ABA content. AtbHLH68 was expressed in the vascular system of Arabidopsis and its expression was modulated by exogenously applied ABA in an organ-specific manner. We showed that the expression of genes involved in ABA metabolism [AtAAO3 (AtALDEHYDE OXIDASE 3) and AtCYP707A3 (AtABSCISIC ACID 8'HYDROXYLASE 3)], in ABA-related response to drought-stress (AtMYC2, AtbHLH122 and AtRD29A) or during LRs development (AtMYC2 and AtABI3) was de-regulated in the overexpressing lines. We propose that AtbHLH68 has a function in the regulation of LR elongation, and in the response to drought stress, likely through an ABA-dependent pathway by regulating directly or indirectly components of ABA signaling and/or metabolism.
Collapse
Affiliation(s)
- Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Mathieu Castelain
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Dipankar Chakraborti
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 90183, Sweden
| |
Collapse
|
23
|
Matoušek J, Siglová K, Jakše J, Radišek S, Brass JRJ, Tsushima T, Guček T, Duraisamy GS, Sano T, Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.). JOURNAL OF PLANT PHYSIOLOGY 2017; 213:166-177. [PMID: 28395198 DOI: 10.1016/j.jplph.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
The hop metabolome important for the brewing industry and for medical purposes is endangered worldwide due to multiple viroid infections affecting hop physiology. Combinatorial biolistic hop inoculation with Citrus bark cracking viroid (CBCVd), Apple fruit crinkle viroid (AFCVd), Hop latent viroid, and Hop stunt viroid (HSVd) showed a low CBCVd compatibility with HSVd, while all other viroid combinations were highly compatible. Unlike to other viroids, single CBCVd propagation showed a significant excess of (-) over (+) strands in hop, tomato, and Nicotiana benthamiana, but not in citruses. Inoculation of hop with all viroids led to multiple infections with unstable viroid levels in individual plants in the pre- and post-dormancy periods, and to high plant mortality and morphological disorders. Hop isolates of CBCVd and AFCVd were highly stable, only minor quasispecies were detected. CBCVd caused a strong suppression of some crucial mRNAs related to the hop prenylflavonoid biosynthesis pathway, while AFCVd-caused effects were moderate. According to mRNA degradome analysis, this suppression was not caused by a direct viroid-specific small RNA-mediated degradation. CBCVd infection led to a strong induction of two hop transcription factors from WRKY family and to a disbalance of WRKY/WDR1 complexes important for activation of lupulin genes.
Collapse
Affiliation(s)
- J Matoušek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - K Siglová
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J Jakše
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - S Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - Joseph R J Brass
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| | - T Tsushima
- Faculty of Agriculture and Life Science, Hirosaki University, Bubkyo-cho, Hirosaki 036-8561, Japan
| | - T Guček
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - G S Duraisamy
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - T Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bubkyo-cho, Hirosaki 036-8561, Japan
| | - G Steger
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany.
| |
Collapse
|
24
|
Jin F, Li J, Ding Q, Wang QS, He XQ. Proteomic analysis provides insights into changes in the central metabolism of the cambium during dormancy release in poplar. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:26-39. [PMID: 27889518 DOI: 10.1016/j.jplph.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 05/22/2023]
Abstract
Seasonal cycling of growth and dormancy is an important feature for the woody plants growing in temperate zone, and dormancy is an effective strategy for surviving the winter stress. But the mechanisms of dormancy maintenance and its release are still not clear, especially little information is available with regard to the changes of proteome during the process. A better understanding in the function of proteins and their related metabolic pathways would expand our knowledge of the mechanisms of dormancy maintenance and its release in trees. In this study, we employed the isobaric tags for relative and absolute quantification (iTRAQ) approach with LC-MS/MS analysis to investigate the protein profile changes during dormancy release in poplar. In addition, the change of lipid, total insoluble carbohydrates and starch granules in the cambium was investigated by histochemical methods. A total of 3789 proteins were identified in poplar cambial tissues, 1996 of them were significantly altered during the dormancy release. Most of the altered proteins involved in signaling, phytohormone, energy metabolism, stress and secondary metabolism by functional analysis. Our data shows that the lipid metabolism proteins changed significantly both in the release stage of eco- and endodormancy, while the changes of carbohydrate metabolism proteins were mainly in endo-dormancy release stage. Moreover, histochemical results were consistent with the proteomic data. Our results reveal diverse stage-specific metabolism changes during the dormancy-release process induced by chilling in poplar, which provided new information regarding the regulation mechanisms of dormancy maintenance and its release in trees.
Collapse
Affiliation(s)
- Feng Jin
- Northeast Agricultural University, Harbin 150040, China
| | - Jing Li
- Northeast Agricultural University, Harbin 150040, China
| | - Qi Ding
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing-Song Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP. Photoperiod- and temperature-mediated control of phenology in trees - a molecular perspective. THE NEW PHYTOLOGIST 2017; 213:511-524. [PMID: 27901272 DOI: 10.1111/nph.14346] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/07/2016] [Indexed: 05/17/2023]
Abstract
Contents 511 I. 511 II. 512 III. 513 IV. 513 V. 517 VI. 517 VII. 521 VIII. 521 Acknowledgements 521 References 521 SUMMARY: Trees growing in boreal and temperate regions synchronize their growth with seasonal climatic changes in adaptive responses that are essential for their survival. These trees cease growth before the winter and establish a dormant state during which growth cessation is maintained by repression of responses to growth-promotive signals. Reactivation of growth in the spring follows the release from dormancy promoted by prolonged exposure to low temperature during the winter. The timing of the key events and regulation of the molecular programs associated with the key stages of the annual growth cycle are controlled by two main environmental cues: photoperiod and temperature. Recently, key components mediating photoperiodic control of growth cessation and bud set have been identified, and striking similarities have been observed in signaling pathways controlling growth cessation in trees and floral transition in Arabidopsis. Although less well understood, the regulation of bud dormancy and bud burst may involve cell-cell communication and chromatin remodeling. Here, we discuss current knowledge of the molecular-level regulation of the annual growth cycle of woody trees in temperate and boreal regions, and identify key questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83, Umeå, Sweden
| | - Tetiana Svystun
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62, Lund, Sweden
| | - Badr AlDahmash
- College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Anna Maria Jönsson
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62, Lund, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83, Umeå, Sweden
- College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Brunner AM, Varkonyi-Gasic E, Jones RC. Phase Change and Phenology in Trees. COMPARATIVE AND EVOLUTIONARY GENOMICS OF ANGIOSPERM TREES 2017. [DOI: 10.1007/7397_2016_30] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Kim H, Kojima M, Choi D, Park S, Matsui M, Sakakibara H, Hwang I. Overexpression of INCREASED CAMBIAL ACTIVITY, a putative methyltransferase, increases cambial activity and plant growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:874-889. [PMID: 27322968 DOI: 10.1111/jipb.12486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Cambial activity is a prerequisite for secondary growth in plants; however, regulatory factors controlling the activity of the secondary meristem in radial growth remain elusive. Here, we identified INCREASED CAMBIAL ACTIVITY (ICA), a gene encoding a putative pectin methyltransferase, which could function as a modulator for the meristematic activity of fascicular and interfascicular cambium in Arabidopsis. An overexpressing transgenic line, 35S::ICA, showed accelerated stem elongation and radial thickening, resulting in increased accumulation of biomass, and increased levels of cytokinins (CKs) and gibberellins (GAs). Expression of genes encoding pectin methylesterases involved in pectin modification together with pectin methyltransferases was highly induced in 35S::ICA, which might contribute to an increase of methanol emission as a byproduct in 35S::ICA. Methanol treatment induced the expression of GA- or CK-responsive genes and stimulated plant growth. Overall, we propose that ectopic expression of ICA increases cambial activity by regulating CK and GA homeostasis, and methanol emission, eventually leading to stem elongation and radial growth in the inflorescence stem.
Collapse
Affiliation(s)
- Hyunsook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Mikiko Kojima
- Riken Center for Sustainable Resource Science (CSRS), Tsurumi, Yokohama 230-0045, Japan
| | - Daeseok Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Soyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Research Cooperation Division (BMEP), RIKEN Center for Sustainable Resource Science (CSRS), Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- Riken Center for Sustainable Resource Science (CSRS), Tsurumi, Yokohama 230-0045, Japan
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
28
|
Zhang Y, Han X, Sang J, He X, Liu M, Qiao G, Zhuo R, He G, Hu J. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. PeerJ 2016; 4:e2097. [PMID: 27330860 PMCID: PMC4906661 DOI: 10.7717/peerj.2097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Background.Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y) generating 68.71 million reads (13.88 Gbp). A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp) were obtained via de novo assembly. Of these, 27,427 unigenes (19.52%) were further annotated by comparison to public protein databases. A total of 5,331 (3.79%) unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Differentially expressed genes (DEG) analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications.
Collapse
Affiliation(s)
- Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Institute of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xuelian He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guiping He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
29
|
Wu H, Xu H, Li H, Wei D, Lin J, Li X. Seasonal development of cambial activity in relation to xylem formation in Chinese fir. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:23-30. [PMID: 26986869 DOI: 10.1016/j.jplph.2015.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/05/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
The vascular cambium is a lateral meristem which can differentiate into secondary phloem and xylem. The secondary growth of woody plants resulting from vascular cambium activity has been a focus of considerable attention, but the quantitative relationships between cambial activity and secondary xylem formation have been little studied. Our analysis of cytological changes in the cambium of Chinese fir (Cunninghamia lanceolata), revealed a significant positive correlation between vascular cambium cell numbers and cambium zone width through the seasonal cycle. Cambium cell numbers and the cambium cell radial diameter were closely related to xylem formation. Immuno-labeling showed that de-esterified homogalacturonan and (1-4)-β-d-galactan epitopes were highly abundant in cell walls of dormant-stage cambium, whereas high methylesterified homogalacturonan was strongly labeled in the active stage. Raman spectroscopy detected significant changes in the chemical composition of cell walls during the active-dormant stage transition. More pectin and less monolignols occurred in radial cell walls than in tangential walls during the dormant stage, but no significant changes were found in other stages, indicating that pectin accumulation facilitates cell wall expansion, with cambium activity transition. Our quantitative analysis of the relationship between cambial activity and xylem formation, as well as the cell wall modification during the active stage provides useful information about cambial characteristics and xylogenesis.
Collapse
Affiliation(s)
- Hongyang Wu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Hanyin Li
- Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Dongmei Wei
- School of Life Science, Taizhou University, Zhejiang 318000, PR China
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Xiaojuan Li
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
30
|
Prislan P, Gričar J, de Luis M, Novak K, Martinez del Castillo E, Schmitt U, Koch G, Štrus J, Mrak P, Žnidarič MT, Čufar K. Annual Cambial Rhythm in Pinus halepensis and Pinus sylvestris as Indicator for Climate Adaptation. FRONTIERS IN PLANT SCIENCE 2016; 7:1923. [PMID: 28082994 PMCID: PMC5183617 DOI: 10.3389/fpls.2016.01923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/05/2016] [Indexed: 05/08/2023]
Abstract
To understand better the adaptation strategies of intra-annual radial growth in Pinus halepensis and Pinus sylvestris to local environmental conditions, we examined the seasonal rhythm of cambial activity and cell differentiation at tissue and cellular levels. Two contrasting sites differing in temperature and amount of precipitation were selected for each species, one typical for their growth and the other represented border climatic conditions, where the two species coexisted. Mature P. halepensis trees from Mediterranean (Spain) and sub-Mediterranean (Slovenia) sites, and P. sylvestris from sub-Mediterranean (Slovenia) and temperate (Slovenia) sites were selected. Repeated sampling was performed throughout the year and samples were prepared for examination with light and transmission electron microscopes. We hypothesized that cambial rhythm in trees growing at the sub-Mediterranean site where the two species co-exist will be similar as at typical sites for their growth. Cambium in P. halepensis at the Mediterranean site was active throughout the year and was never truly dormant, whereas at the sub-Mediterranean site it appeared to be dormant during the winter months. In contrast, cambium in P. sylvestris was clearly dormant at both sub-Mediterranean and temperate sites, although the dormant period seemed to be significantly longer at the temperate site. Thus, the hypothesis was only partly confirmed. Different cambial and cell differentiation rhythms of the two species at the site where both species co-exist and typical sites for their growth indicate their high but different adaptation strategies in terms of adjustment of radial growth to environmental heterogeneity, crucial for long-term tree performance and survival.
Collapse
Affiliation(s)
- Peter Prislan
- Slovenian Forestry Institute, University of LjubljanaLjubljana, Slovenia
- *Correspondence: Peter Prislan,
| | - Jožica Gričar
- Slovenian Forestry Institute, University of LjubljanaLjubljana, Slovenia
| | - Martin de Luis
- Department of Geography and Regional Planning, University of ZaragozaZaragoza, Spain
| | - Klemen Novak
- Department of Geography and Regional Planning, University of ZaragozaZaragoza, Spain
- Department of Ecology, University of AlicanteAlicante, Spain
| | | | - Uwe Schmitt
- Johann Heinrich von Thünen Institute – Thünen Institute of Wood ResearchHamburg, Germany
| | - Gerald Koch
- Johann Heinrich von Thünen Institute – Thünen Institute of Wood ResearchHamburg, Germany
| | - Jasna Štrus
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Polona Mrak
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Magda T. Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, University of LjubljanaLjubljana, Slovenia
| | - Katarina. Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
31
|
Matrosova A, Bogireddi H, Mateo-Peñas A, Hashimoto-Sugimoto M, Iba K, Schroeder JI, Israelsson-Nordström M. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2 -induced stomatal movement responses. THE NEW PHYTOLOGIST 2015; 208:1126-37. [PMID: 26192339 DOI: 10.1111/nph.13566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/11/2015] [Indexed: 05/26/2023]
Abstract
The question of whether red light-induced stomatal opening is mediated by a photosynthesis-derived reduction in intercellular [CO2 ] (Ci ) remains controversial and genetic analyses are needed. The Arabidopsis thaliana protein kinase HIGH TEMPERATURE 1 (HT1) is a negative regulator of [CO2 ]-induced stomatal closing and ht1-2 mutant plants do not show stomatal opening to low [CO2 ]. The protein kinase mutant ost1-3 exhibits slowed stomatal responses to CO2 . The functions of HT1 and OPEN STOMATA 1 (OST1) to changes in red, blue light or [CO2 ] were analyzed. For comparison we assayed recessive ca1ca4 carbonic anhydrase double mutant plants, based on their slowed stomatal response to CO2 . Here, we report a strong impairment in ht1 in red light-induced stomatal opening whereas blue light was able to induce stomatal opening. The effects on photosynthetic performance in ht1 were restored when stomatal limitation of CO2 uptake, by control of [Ci ], was eliminated. HT1 was found to interact genetically with OST1 both during red light- and low [CO2 ]-induced stomatal opening. Analyses of ca1ca4 plants suggest that more than a low [Ci ]-dependent pathway may function in red light-induced stomatal opening. These results demonstrate that HT1 is essential for red light-induced stomatal opening and interacts genetically with OST1 during stomatal responses to red light and altered [CO2 ].
Collapse
Affiliation(s)
- Anastasia Matrosova
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Hanumakumar Bogireddi
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Alfonso Mateo-Peñas
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | | | - Koh Iba
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA, 92093-0116, USA
| | - Maria Israelsson-Nordström
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
32
|
Grimberg Å, Carlsson AS, Marttila S, Bhalerao R, Hofvander P. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues. BMC PLANT BIOLOGY 2015; 15:192. [PMID: 26253704 PMCID: PMC4528408 DOI: 10.1186/s12870-015-0579-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/23/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. RESULTS All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though effect on starch content could not be observed. CONCLUSIONS This data gives for the first time a general view on the transcriptional transitions in leaf tissue upon induction of oil synthesis by WRI1. This yields important information about what effects WRI1 may exert on global gene expression during seed and embryo development. The results suggest why high oil content in leaf tissue cannot be achieved by solely transcriptional activation by WRI1, which can be essential knowledge in the development of new high-yielding oil crops.
Collapse
Affiliation(s)
- Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden.
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden.
| | - Salla Marttila
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Rishikesh Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden.
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden.
| |
Collapse
|
33
|
Saito T, Tuan PA, Katsumi-Horigane A, Bai S, Ito A, Sekiyama Y, Ono H, Moriguchi T. Development of flower buds in the Japanese pear (Pyrus pyrifolia) from late autumn to early spring. TREE PHYSIOLOGY 2015; 35:653-62. [PMID: 26063707 DOI: 10.1093/treephys/tpv043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/09/2015] [Indexed: 05/03/2023]
Abstract
We periodically investigated the lateral flower bud morphology of 1-year shoots of 'Kosui' pears (Pyrus pyrifolia Nakai) in terms of dormancy progression, using magnetic resonance imaging. The size of flower buds did not change significantly during endodormancy, but rapid enlargement took place at the end of the ecodormancy stage. To gain insight into the physiological status during this period, we analyzed gene expression related to cell cycle-, cell expansion- and water channel-related genes, namely cyclin (CYC), expansin (EXPA), tonoplast intrinsic proteins (TIP) and plasma membrane intrinsic proteins (PIP). Constant but low expression of pear cyclin genes (PpCYCD3s) was observed in the transition phase from endodormancy to ecodormancy. The expression levels of PpCYCD3s were consistent with few changes in flower bud size, but up-regulated before the sprouting stage. In contrast, the expression of pear expansin and water channel-related genes (PpEXPA2, PpPIP2A, PpPIP2B, PpIδTIP1A and PpIδTIP1B) were low until onset of the rapid enlargement stage of flower buds. However, expression of these genes rapidly increased during sprouting along with a gradual increase of free water content in the floral primordia of buds. Taken together, these results suggest that flower bud size tends to stay constant until the endodormancy phase transition. Rapid enlargement of flower buds observed in March is partly due to the enhancement of the cell cycle. Then, sprouting takes place concomitant with the increase in cell expansion and free water movement.
Collapse
Affiliation(s)
- Takanori Saito
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Pham Anh Tuan
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Akemi Katsumi-Horigane
- National Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Songling Bai
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Akiko Ito
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Yasuyo Sekiyama
- National Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroshi Ono
- National Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
34
|
Estiarte M, Peñuelas J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. GLOBAL CHANGE BIOLOGY 2015; 21:1005-17. [PMID: 25384459 DOI: 10.1111/gcb.12804] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/29/2014] [Indexed: 05/07/2023]
Abstract
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.
Collapse
Affiliation(s)
- Marc Estiarte
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | | |
Collapse
|
35
|
Abstract
SIGNIFICANCE We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. RECENT ADVANCES Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. CRITICAL ISSUES The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. FUTURE DIRECTIONS The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.
Collapse
Affiliation(s)
- Michael J Considine
- 1 School of Plant Biology and Institute of Agriculture, University of Western Australia , Crawley, Australia
| | | |
Collapse
|
36
|
Paul A, Jha A, Bhardwaj S, Singh S, Shankar R, Kumar S. RNA-seq-mediated transcriptome analysis of actively growing and winter dormant shoots identifies non-deciduous habit of evergreen tree tea during winters. Sci Rep 2014; 4:5932. [PMID: 25090269 PMCID: PMC4123203 DOI: 10.1038/srep05932] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023] Open
Abstract
Tea [Camellia sinensis (L.) O. Kuntze] is a perennial tree which undergoes winter dormancy and unlike deciduous trees, the species does not shed its leaves during winters. The present work dissected the molecular processes operating in the leaves during the period of active growth and winter dormancy through transcriptome analysis to understand a long-standing question: why should tea be a non-deciduous species? Analyses of 24,700 unigenes obtained from 57,767 primarily assembled transcripts showed (i) operation of mechanisms of winter tolerance, (ii) down-regulation of genes involved in growth, development, protein synthesis and cell division, and (iii) inhibition of leaf abscission due to modulation of senescence related processes during winter dormancy in tea. These senescence related processes exhibited modulation to favour leaf abscission (i) in deciduous Populustremula during winters, and (ii) also in tea but under osmotic stress during which leaves also abscise. These results validated the relevance of the identified senescence related processes for leaf abscission and suggested their operation when in need in tea.
Collapse
Affiliation(s)
- Asosii Paul
- 1] Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India [2] [3]
| | - Ashwani Jha
- 1] Studio of Computational Biology &Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India [2]
| | - Shruti Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Sewa Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Ravi Shankar
- Studio of Computational Biology &Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| |
Collapse
|
37
|
Huang JG, Deslauriers A, Rossi S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. THE NEW PHYTOLOGIST 2014; 203:831-41. [PMID: 24861414 DOI: 10.1111/nph.12859] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/17/2014] [Indexed: 05/09/2023]
Abstract
Primary (budburst, foliage and shoot) growth and secondary (cambium and xylem) growth of plants play a vital role in sequestering atmospheric carbon. However, their potential relationships have never been mathematically quantified and the underlying physiological mechanisms are unclear. We monitored primary and secondary growth in Picea mariana and Abies balsamea on a weekly basis from 2010 to 2013 at four sites over an altitudinal gradient (25-900 m) in the eastern Canadian boreal forest. We determined the timings of onset and termination through the fitted functions and their first derivative. We quantified the potential relationships between primary growth and secondary growth using the mixed-effects model. We found that xylem formation of boreal conifers can be modeled as a function of cambium activity, bud phenology, and shoot and needle growth, as well as species- and site-specific factors. Our model reveals that there may be an optimal mechanism to simultaneously allocate the photosynthetic products and stored nonstructural carbon to growth of different organs at different times in the growing season. This mathematical link can bridge phenological modeling, forest ecosystem productivity and carbon cycle modeling, which will certainly contribute to an improved prediction of ecosystem productivity and carbon equilibrium.
Collapse
Affiliation(s)
- Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Département de Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, G7H 2B1, QC, Canada
| | | | | |
Collapse
|
38
|
Mishima K, Fujiwara T, Iki T, Kuroda K, Yamashita K, Tamura M, Fujisawa Y, Watanabe A. Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics 2014; 15:219. [PMID: 24649833 PMCID: PMC3999911 DOI: 10.1186/1471-2164-15-219] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Forest trees have ecological and economic importance, and Japanese cedar has highly valued wood attributes. Thus, studies of molecular aspects of wood formation offer practical information that may be used for screening and forward genetics approaches to improving wood quality. RESULTS After identifying expressed sequence tags in Japanese cedar tissue undergoing xylogenesis, we designed a custom cDNA microarray to compare expression of highly regulated genes throughout a growing season. This led to identification of candidate genes involved both in wood formation and later cessation of growth and dormancy. Based on homology to orthologous protein groups, the genes were assigned to functional classes. A high proportion of sequences fell into functional classes related to posttranscriptional modification and signal transduction, while transcription factors and genes involved in the metabolism of sugars, cell-wall synthesis and lignification, and cold hardiness were among other classes of genes identified as having a potential role in xylem formation and seasonal wood formation. CONCLUSIONS We obtained 55,051 unique sequences by next-generation sequencing of a cDNA library prepared from cambial meristem and derivative cells. Previous studies on conifers have identified unique sequences expressed in developing xylem, but this is the first comprehensive study utilizing a collection of expressed sequence tags for expression studies related to xylem formation in Japanese cedar, which belongs to a different lineage than the Pinaceae. Our characterization of these sequences should allow comparative studies of genome evolution and functional genetics of wood species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Atsushi Watanabe
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
39
|
Changes in metabolite profiles in Norway spruce shoot tips during short-day induced winter bud development and long-day induced bud flush. Metabolomics 2014. [PMID: 0 DOI: 10.1007/s11306-014-0646-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Trupiano D, Rocco M, Renzone G, Scaloni A, Rossi M, Viscosi V, Chiatante D, Scippa GS. Temporal analysis of poplar woody root response to bending stress. PHYSIOLOGIA PLANTARUM 2014; 150:174-193. [PMID: 23683290 DOI: 10.1111/ppl.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/27/2013] [Accepted: 05/03/2013] [Indexed: 06/02/2023]
Abstract
Temperate perennial woody plants use different environmental signals to coordinate their growth and development in relation to seasonal changes. Preliminary evidences suggest that, even during dormancy, plants maintain effective metabolic activities and molecular mechanisms ensuring them an eventual recording of mechanical loads during winter times. Despite their great importance for productivity and survival, plant biology investigations have poorly characterized the root growth cycle and its response to environmental stresses. In this study, we describe the proteomic changes occurring over the time in poplar root either in the absence or in response to a bending stress; corresponding expression of cell cycle regulator and auxin transporter genes was also evaluated by reverse transcription polymerase chain reaction analysis. Our results confirm previous evidences on the effect of the bending stress on the anticipation of root growth resumption, providing additional insights on a temporal modulation of various plant metabolic processes involved in dormancy break, growth resumption and stress response in the bent root; these events seem related to the differential compression and tension force distribution occurring over the plant taproot.
Collapse
Affiliation(s)
- Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 , Pesche, IS, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Brunner AM, Evans LM, Hsu CY, Sheng X. Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation? FRONTIERS IN PLANT SCIENCE 2014; 5:732. [PMID: 25566302 PMCID: PMC4269124 DOI: 10.3389/fpls.2014.00732] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/02/2014] [Indexed: 05/17/2023]
Abstract
Similarities have long been recognized between vernalization, the prolonged exposure to cold temperatures that promotes the floral transition in many plants, and the chilling requirement to release bud dormancy in woody plants of temperate climates. In both cases the extended chilling period occurring during winter is used to coordinate developmental events to the appropriate seasonal time. However, whether or not these processes share common regulatory components and molecular mechanisms remain largely unknown. Both gene function and association genetics studies in Populus are beginning to answer this question. In Populus, studies have revealed that orthologs of the antagonistic flowering time genes FT and CEN/TFL1 might have central roles in both processes. We review Populus seasonal shoot development related to dormancy release and the floral transition and evidence for FT/TFL1-mediated regulation of these processes to consider the question of regulatory overlap. In addition, we discuss the potential for and challenges to integrating functional and population genomics studies to uncover the regulatory mechanisms underpinning these processes in woody plant systems.
Collapse
Affiliation(s)
- Amy M. Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- *Correspondence: Amy M. Brunner, Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 20461, USA e-mail:
| | - Luke M. Evans
- Department of Biology, West Virginia UniversityMorgantown, WV, USA
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State UniversityStarkville, MS, USA
| | - Xiaoyan Sheng
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|
42
|
Shim D, Ko JH, Kim WC, Wang Q, Keathley DE, Han KH. A molecular framework for seasonal growth-dormancy regulation in perennial plants. HORTICULTURE RESEARCH 2014; 1:14059. [PMID: 26504555 PMCID: PMC4591672 DOI: 10.1038/hortres.2014.59] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/25/2014] [Accepted: 10/16/2014] [Indexed: 05/03/2023]
Abstract
The timing of the onset and release of dormancy impacts the survival, productivity and spatial distribution of temperate horticultural and forestry perennials and is mediated by at least three main regulatory programs involving signal perception and processing by phytochromes (PHYs) and PHY-interacting transcription factors (PIFs). PIF4 functions as a key regulator of plant growth in response to both external and internal signals. In poplar, the expression of PIF4 and PIF3-LIKE1 is upregulated in response to short days, while PHYA and PHYB are not regulated at the transcriptional level. Integration of light and environmental signals is achieved by gating the expression and transcriptional activity of PIF4. During this annual cycle, auxin promotes the degradation of Aux/IAA transcriptional repressors through the SKP-Cullin-F-boxTIR1 complex, relieving the repression of auxin-responsive genes by allowing auxin response factors (ARFs) to activate the transcription of auxin-responsive genes involved in growth responses. Analyses of transcriptome changes during dormancy transitions have identified MADS-box transcription factors associated with endodormancy induction. Previous studies show that poplar dormancy-associated MADS-box (DAM) genes PtMADS7 and PtMADS21 are differentially regulated during the growth-dormancy cycle. Endodormancy may be regulated by internal factors, which are specifically localized in buds. PtMADS7/PtMADS21 may function as an internal regulator in poplar. The control of flowering time shares certain regulatory hierarchies with control of the dormancy/growth cycle. However, the particularities of different stages of the dormancy/growth cycle warrant comprehensive approaches to identify the causative genes for the entire cycle. A growing body of knowledge also indicates epigenetic regulation plays a role in these processes in perennial horticultural and forestry plants. The increased knowledge contributes to better understanding of the dormancy process and consequently to precise manipulation of dormancy-related horticultural traits, such as flowering time.
Collapse
Affiliation(s)
- Donghwan Shim
- Schatz Center for Tree Molecular Genetics, Pennsylvania State University, University Park, PA16802, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Won-Chan Kim
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Qijun Wang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Konjac Research Center, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Daniel E Keathley
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
43
|
Zhong W, Gao Z, Zhuang W, Shi T, Zhang Z, Ni Z. Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot. PLANT MOLECULAR BIOLOGY 2013; 83:247-64. [PMID: 23756818 DOI: 10.1007/s11103-013-0086-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 06/01/2013] [Indexed: 05/08/2023]
Abstract
Dormancy is one of the most important adaptive mechanisms developed by perennial plants. To reveal the comprehensive mechanism of seasonal bud dormancy at four critical stages in Japanese apricot (Prunus persica), we applied Illumina sequencing to study differentially expressed genes (DEGs) at the transcriptional level. As a result, 19,759, 16,375, 19,749 and 20,800 tag-mapped genes were sequenced from libraries of paradormancy (R1), endodormancy (R2), ecodormancy (R3) and dormancy release (R4) stages based on the P. persica genome. Moreover, 6,199, 5,539, and 5,317 genes were differentially expressed in R1 versus R2, R2 versus R3, and R3 versus R4, respectively. Gene Ontology analysis of dormancy-related genes showed that these were mainly related to the cytoplasm, cytoplasmic part metabolism, intracellular metabolism and membrane-bound organelle metabolism. Pathway-enrichment annotation revealed that highly ranked genes were involved in ribosome pathways and protein processing in the endoplasmic reticulum. The results demonstrated that hormone response genes such as auxin, abscisic acid, ethylene and jasmonic acid, as well as zinc finger family protein genes are possibly involved in seasonal bud dormancy in Japanese apricot. The expression patterns of DEGs were verified using real-time quantitative RT-PCR. These results contribute to further understanding of the mechanism of bud dormancy in Japanese apricot.
Collapse
Affiliation(s)
- Wenjun Zhong
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Qiu Z, Wan L, Chen T, Wan Y, He X, Lu S, Wang Y, Lin J. The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling. THE NEW PHYTOLOGIST 2013; 199:708-19. [PMID: 23638988 DOI: 10.1111/nph.12301] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/27/2013] [Indexed: 05/03/2023]
Abstract
Chinese fir (Cunninghamia lanceolata), a commercially important tree for the timber and pulp industry, is widely distributed in southern China and northern Vietnam, but its large and complex genome has hindered the development of genomic resources. Few efforts have focused on analysis of the modulation of transcriptional networks in vascular cambium during the transition from active growth to dormancy in conifers. Here, we used Illumina sequencing to analyze the global transcriptome alterations at the different stages of vascular cambium development in Chinese fir. By analyzing dynamic changes in the transcriptome of vascular cambium based on our RNA sequencing (RNA-Seq) data at the dormant, reactivating and active stages, many potentially interesting genes were identified that encoded putative regulators of cambial activity, cell division, cell expansion and cell wall biosynthesis and modification. In particular, the genes involved in transcriptional regulation and hormone signaling were highlighted to reveal their biological importance in the cambium development and wood formation. Our results reveal the dynamics of transcriptional networks and identify potential key components in the regulation of vascular cambium development in Chinese fir, which will contribute to the in-depth study of cambial differentiation and wood-forming candidate genes in conifers.
Collapse
Affiliation(s)
- Zongbo Qiu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cookson SJ, Clemente Moreno MJ, Hevin C, Nyamba Mendome LZ, Delrot S, Trossat-Magnin C, Ollat N. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2997-3008. [PMID: 23698628 PMCID: PMC3741690 DOI: 10.1093/jxb/ert144] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Grafting is particularly important to the cultivation of perennial crops such as grapevine (Vitis vinifera) because rootstocks can provide resistance to soil-borne pests and diseases as well as improve tolerance to some abiotic stresses. Successful grafting is a complex biochemical and structural process beginning with the adhesion of the two grafted partners, followed by callus formation and the establishment of a functional vascular system. At the molecular level, the sequence of events underlying graft union formation remains largely uncharacterized. The present study investigates the transcriptome of grapevine rootstock and graft interface tissues sampled 3 d and 28 d after grafting of over-wintering stems in the spring. Many genes were differentially expressed over time, from 3 d to 28 d after grafting, which could be related to the activation of stem growth and metabolic activity in the spring. This hypothesis is supported by the up-regulation of many genes associated with cell wall synthesis, and phloem and xylem development. Generally, there was an up-regulation of gene expression in the graft interface tissue compared with the rootstock, particularly genes involved in cell wall synthesis, secondary metabolism, and signalling. Although there was overlap between the genes differentially expressed over time (from 3 d to 28 d after grafting) with the gene differentially expressed between the rootstock and the graft interface, numerous graft interface-specific genes were identified.
Collapse
|
46
|
Sorce C, Giovannelli A, Sebastiani L, Anfodillo T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. PLANT CELL REPORTS 2013; 32:885-98. [PMID: 23553557 DOI: 10.1007/s00299-013-1431-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 05/21/2023]
Abstract
The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed.
Collapse
Affiliation(s)
- Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
47
|
Collakova E, Klumas C, Suren H, Myers E, Heath LS, Holliday JA, Grene R. Evidence for extensive heterotrophic metabolism, antioxidant action, and associated regulatory events during winter hardening in Sitka spruce. BMC PLANT BIOLOGY 2013; 13:72. [PMID: 23631437 PMCID: PMC3651351 DOI: 10.1186/1471-2229-13-72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/19/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cold acclimation in woody perennials is a metabolically intensive process, but coincides with environmental conditions that are not conducive to the generation of energy through photosynthesis. While the negative effects of low temperatures on the photosynthetic apparatus during winter have been well studied, less is known about how this is reflected at the level of gene and metabolite expression, nor how the plant generates primary metabolites needed for adaptive processes during autumn. RESULTS The MapMan tool revealed enrichment of the expression of genes related to mitochondrial function, antioxidant and associated regulatory activity, while changes in metabolite levels over the time course were consistent with the gene expression patterns observed. Genes related to thylakoid function were down-regulated as expected, with the exception of plastid targeted specific antioxidant gene products such as thylakoid-bound ascorbate peroxidase, components of the reactive oxygen species scavenging cycle, and the plastid terminal oxidase. In contrast, the conventional and alternative mitochondrial electron transport chains, the tricarboxylic acid cycle, and redox-associated proteins providing reactive oxygen species scavenging generated by electron transport chains functioning at low temperatures were all active. CONCLUSIONS A regulatory mechanism linking thylakoid-bound ascorbate peroxidase action with "chloroplast dormancy" is proposed. Most importantly, the energy and substrates required for the substantial metabolic remodeling that is a hallmark of freezing acclimation could be provided by heterotrophic metabolism.
Collapse
Affiliation(s)
- Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Curtis Klumas
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Haktan Suren
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elijah Myers
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
48
|
Chen Y, Yordanov YS, Ma C, Strauss S, Busov VB. DR5 as a reporter system to study auxin response in Populus. PLANT CELL REPORTS 2013; 32:453-63. [PMID: 23283559 DOI: 10.1007/s00299-012-1378-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
Collapse
Affiliation(s)
- Yiru Chen
- Michigan Technological University, School of Forest Research and Environmental Science, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | |
Collapse
|
49
|
Pagter M, Arora R. Winter survival and deacclimation of perennials under warming climate: physiological perspectives. PHYSIOLOGIA PLANTARUM 2013; 147:75-87. [PMID: 22583023 DOI: 10.1111/j.1399-3054.2012.01650.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Appropriate timing and rate of cold deacclimation and the ability to reacclimate are important components of winter survival of perennials in temperate and boreal zones. In association with the progressive increase in atmospheric CO₂, temperate and boreal winters are becoming progressively milder, and temperature patterns are becoming irregular with increasing risk of unseasonable warm spells during the colder periods of plants' annual cycle. Because deacclimation is mainly driven by temperature, these changes pose a risk for untimely/premature deacclimation, thereby rendering plant tissue vulnerable to freeze-injury by a subsequent frost. Research also indicates that elevated CO₂ may directly impact deacclimation. Hence, understanding the underlying cellular mechanisms of how deacclimation and reacclimation capacity are affected by changes in environmental conditions is important to ensure winter survival and the sustainability of plant sources under changing climate. Relative to cold acclimation, deacclimation is a little studied process, but the limited evidence points to specific changes occurring in the transcriptome and proteome during deacclimation. Loss of freezing tolerance is additionally associated with substantial changes in cell/tissue-water relations and carbohydrate metabolism; the latter also impacted by temperature-driven, altered respiratory metabolism. This review summarizes recent progress in understanding the physiological mechanisms of deacclimation and how they may be impacted by climate change.
Collapse
Affiliation(s)
- Majken Pagter
- Department of Food Science, Aarhus University, Aarslev, Denmark.
| | | |
Collapse
|
50
|
Wildhagen H, Bilela S, Rennenberg H. Low temperatures counteract short-day induced nitrogen storage, but not accumulation of bark storage protein transcripts in bark of grey poplar (Populus × canescens) trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:44-56. [PMID: 23279294 DOI: 10.1111/j.1438-8677.2012.00687.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/21/2012] [Indexed: 05/13/2023]
Abstract
According to climate change scenarios, the seasonal course of temperature will change in most regions of the world, raising the question of how this will influence seasonal nitrogen (N) storage in deciduous trees. The key to this question is a detailed understanding of the underlying regulatory mechanisms, which was addressed in this study by analysing (i) the effects of low temperatures (13-1 °C) on bark storage protein (BSP) transcription, BSP and total protein accumulation and amino acid metabolism; (ii) the effects of interactions between low temperatures and photoperiod on these processes; and (iii) the regulatory role of amino acids in the bark. For this purpose, we exposed grey poplar trees (Populus × canescens) to three different treatments of changing photoperiod at constant temperature, changing temperature at constant photoperiod, and both changing photoperiod and temperature. Under a shortened photoperiod, a substantial increase of BSP transcripts was observed that was correlated with the accumulation of bark proteins, indicating a metabolic shift to promote long-term N storage. Irrespective of the applied photoperiod, exposure to low temperatures (5 or 1 °C) caused a strong increase of BSP transcripts, which was not paralled by significant increases of BSP and total bark proteins. We conclude that the interaction between effects of photoperiod and temperature is dependent on the carbon status of the trees, and reflects a metabolic adjustment of reduced carbon consumption for BSP synthesis. These results demonstrate the differential temperature sensitivity of processes involved in seasonal N storage, implying vulnerability to changing environmental conditions.
Collapse
Affiliation(s)
- H Wildhagen
- Albert-Ludwigs-University Freiburg, Chair of Tree Physiology, Institute of Forest Botany and Tree Physiology, Freiburg, Germany
| | | | | |
Collapse
|