1
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int J Mol Sci 2022; 23:ijms232415553. [PMID: 36555194 PMCID: PMC9779068 DOI: 10.3390/ijms232415553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.
Collapse
|
3
|
Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. THE NEW PHYTOLOGIST 2022; 233:2185-2202. [PMID: 34931304 DOI: 10.1111/nph.17930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Pollen tubes require a tightly regulated pectin secretion machinery to sustain the cell wall plasticity required for polar tip growth. Involved in this regulation at the apical plasma membrane are proteins and signaling molecules, including phosphoinositides and phosphatidic acid (PA). However, the contribution of diacylglycerol kinases (DGKs) is not clear. We transiently expressed tobacco DGKs in pollen tubes to identify a plasma membrane (PM)-localized isoform, and then to study its effect on pollen tube growth, pectin secretion and lipid signaling. In order to potentially downregulate DGK5 function, we overexpressed an inactive variant. Only one of eight DGKs displayed a confined localization at the apical PM. We could demonstrate its enzymatic activity and that a kinase-dead variant was inactive. Overexpression of either variant led to differential perturbations including misregulation of pectin secretion. One mode of regulation could be that DGK5-formed PA regulates phosphatidylinositol 4-phosphate 5-kinases, as overexpression of the inactive DGK5 variant not only led to a reduction of PA but also of phosphatidylinositol 4,5-bisphosphate levels and suppressed related growth phenotypes. We conclude that DGK5 is an additional player of polar tip growth that regulates pectin secretion probably in a common pathway with PI4P 5-kinases.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Max Fernkorn
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Katharina Blersch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, 48143, Germany
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1000 BE, the Netherlands
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, 48143, Germany
| |
Collapse
|
4
|
Cao L, Wang W, Zhang W, Staiger CJ. Lipid Signaling Requires ROS Production to Elicit Actin Cytoskeleton Remodeling during Plant Innate Immunity. Int J Mol Sci 2022; 23:ijms23052447. [PMID: 35269589 PMCID: PMC8910749 DOI: 10.3390/ijms23052447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
In terrestrial plants a basal innate immune system, pattern-triggered immunity (PTI), has evolved to limit infection by diverse microbes. The remodeling of actin cytoskeletal arrays is now recognized as a key hallmark event during the rapid host cellular responses to pathogen attack. Several actin binding proteins have been demonstrated to fine tune the dynamics of actin filaments during this process. However, the upstream signals that stimulate actin remodeling during PTI signaling remain poorly characterized. Two second messengers, reactive oxygen species (ROS) and phosphatidic acid (PA), are elevated following pathogen perception or microbe-associated molecular pattern (MAMP) treatment, and the timing of signaling fluxes roughly correlates with actin cytoskeletal rearrangements. Here, we combined genetic analysis, chemical complementation experiments, and quantitative live-cell imaging experiments to test the role of these second messengers in actin remodeling and to order the signaling events during plant immunity. We demonstrated that PHOSPHOLIPASE Dβ (PLDβ) isoforms are necessary to elicit actin accumulation in response to flg22-associated PTI. Further, bacterial growth experiments and MAMP-induced apoplastic ROS production measurements revealed that PLDβ-generated PA acts upstream of ROS signaling to trigger actin remodeling through inhibition of CAPPING PROTEIN (CP) activity. Collectively, our results provide compelling evidence that PLDβ/PA functions upstream of RBOHD-mediated ROS production to elicit actin rearrangements during the innate immune response in Arabidopsis.
Collapse
Affiliation(s)
- Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (L.C.); (C.J.S.)
| | - Wenyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (L.C.); (C.J.S.)
| |
Collapse
|
5
|
Pacheco R, Quinto C. Phospholipase Ds in plants: Their role in pathogenic and symbiotic interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:76-86. [PMID: 35101797 DOI: 10.1016/j.plaphy.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/05/2023]
Abstract
Phospholipase Ds (PLDs) are a heterogeneous group of enzymes that are widely distributed in organisms. These enzymes hydrolyze the structural phospholipids of the plasma membrane, releasing phosphatidic acid (PA), an important secondary messenger. Plant PLDs play essential roles in several biological processes, including growth and development, abiotic stress responses, and plant-microbe interactions. Although the roles of PLDs in plant-pathogen interactions have been extensively studied, their roles in symbiotic relationships are not well understood. The establishment of the best-studied symbiotic interactions, those between legumes and rhizobia and between most plants and mycorrhizae, requires the regulation of several physiological, cellular, and molecular processes. The roles of PLDs in hormonal signaling, lipid metabolism, and cytoskeletal dynamics during rhizobial symbiosis were recently explored. However, to date, the roles of PLDs in mycorrhizal symbiosis have not been reported. Here, we present a critical review of the participation of PLDs in the interactions of plants with pathogens, nitrogen-fixing bacteria, and arbuscular mycorrhizal fungi. We describe how PLDs regulate rhizobial and mycorrhizal symbiosis by modulating reactive oxygen species levels, hormonal signaling, cytoskeletal rearrangements, and G-protein activity.
Collapse
Affiliation(s)
- Ronal Pacheco
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
6
|
Jia Q, Zhang S, Lin Y, Zhang J, Li L, Chen H, Zhang Q. Phospholipase Dδ regulates pollen tube growth by modulating actin cytoskeleton organization in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1915610. [PMID: 33853512 PMCID: PMC8205101 DOI: 10.1080/15592324.2021.1915610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 05/19/2023]
Abstract
The actin cytoskeleton plays pivotal roles in pollen tube growth by regulating organelle movement, cytoplasmic streaming, and vesicle trafficking. Previous studies have reported that plasma membrane-localized phospholipase Dδ (PLDδ) binds to cortical microtubules and negatively regulates plant stress tolerance. However, it remains unknown whether or how PLDδ regulates microfilament organization. In this study, we found that loss of PLDδ function led to a significant increase in pollen tube growth, whereas PLDδ overexpression resulted in pollen tube growth inhibition. We also found that wild-type PLDδ, rather than Arg 622-mutated PLDδ, complemented the pldδ phenotype in pollen tubes. In vitro biochemical assays demonstrated that PLDδ binds directly to F-actin, and immunofluorescence assays revealed that PLDδ in pollen tubes influences actin organization. Together, these results suggest that PLDδ participates in the development of pollen tube growth by organizing actin filaments.
Collapse
Affiliation(s)
- Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Shujuan Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Yaoxi Lin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Jixiu Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, P.R.China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, P.R.China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
- CONTACT Qun Zhang College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing Weigang Road 1, College of Life Sciences #48, 210095, Nanjing, Jiangsu Province, P.R.China.
| |
Collapse
|
7
|
Deepika D, Singh A. Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application. Crit Rev Biotechnol 2021; 42:106-124. [PMID: 34167393 DOI: 10.1080/07388551.2021.1924113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phospholipases D (PLDs) are important membrane lipid-modifying enzymes in eukaryotes. Phosphatidic acid, the product of PLD activity, is a vital signaling molecule. PLD-mediated lipid signaling has been the subject of extensive research leading to discovery of its crystal structure. PLDs are involved in the pathophysiology of several human diseases, therefore, viewed as promising targets for drug design. The availability of a eukaryotic PLD crystal structure will encourage PLD targeted drug designing. PLDs have been implicated in plants response to biotic and abiotic stresses. However, the molecular mechanism of response is not clear. Recently, several novel findings have shown that PLD mediated modulation of structural and developmental processes, such as: stomata movement, root growth and microtubule organization are crucial for plants adaptation to environmental stresses. Involvement of PLDs in regulating membrane remodeling, auxin mediated alteration of root system architecture and nutrient uptake to combat nitrogen and phosphorus deficiencies and magnesium toxicity is established. PLDs via vesicle trafficking modulate cytoskeleton and exocytosis to regulate self-incompatibility (SI) signaling in flowering plants, thereby contributes to plants hybrid vigor and diversity. In addition, the important role of PLDs has been recognized in biotechnologically important functions, including oil/TAG synthesis and maintenance of seed quality. In this review, we describe the crystal structure of a plant PLD and discuss the molecular mechanism of catalysis and activity regulation. Further, the role of PLDs in regulating plant development under biotic and abiotic stresses, nitrogen and phosphorus deficiency, magnesium ion toxicity, SI signaling and pollen tube growth and in important biotechnological applications has been discussed.
Collapse
Affiliation(s)
- Deepika Deepika
- National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
8
|
Song P, Jia Q, Xiao X, Tang Y, Liu C, Li W, Li T, Li L, Chen H, Zhang W, Zhang Q. HSP70-3 Interacts with Phospholipase Dδ and Participates in Heat Stress Defense. PLANT PHYSIOLOGY 2021; 185:1148-1165. [PMID: 33793918 PMCID: PMC8133648 DOI: 10.1093/plphys/kiaa083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/04/2020] [Indexed: 05/04/2023]
Abstract
Heat shock proteins (HSPs) function as molecular chaperones and are key components responsible for protein folding, assembly, translocation, and degradation under stress conditions. However, little is known about how HSPs stabilize proteins and membranes in response to different hormonal or environmental cues in plants. Here, we combined molecular, biochemical, and genetic approaches to elucidate the involvement of cytosolic HSP70-3 in plant stress responses and the interplay between HSP70-3 and plasma membrane (PM)-localized phospholipase Dδ (PLDδ) in Arabidopsis (Arabidopsis thaliana). Analysis using pull-down, coimmunoprecipitation, and bimolecular fluorescence complementation revealed that HSP70-3 specifically interacted with PLDδ. HSP70-3 bound to microtubules, such that it stabilized cortical microtubules upon heat stress. We also showed that heat shock induced recruitment of HSP70-3 to the PM, where HSP70-3 inhibited PLDδ activity to mediate microtubule reorganization, phospholipid metabolism, and plant thermotolerance, and this process depended on the HSP70-3-PLDδ interaction. Our results suggest a model whereby the interplay between HSP70-3 and PLDδ facilitates the re-establishment of cellular homeostasis during plant responses to external stresses and reveal a regulatory mechanism in regulating membrane lipid metabolism.
Collapse
Affiliation(s)
- Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xingkai Xiao
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yiwen Tang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chengjian Liu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wenyan Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Teng Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Li Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, P.R. China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Author for communication: (Q.Z.)
| |
Collapse
|
9
|
Zhang G, Yang J, Chen X, Zhao D, Zhou X, Zhang Y, Wang X, Zhao J. Phospholipase D- and phosphatidic acid-mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (Glycine max). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:142-158. [PMID: 33377234 DOI: 10.1111/tpj.15152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Symbiotic rhizobium-legume interactions, such as root hair curling, rhizobial invasion, infection thread expansion, cell division and proliferation of nitrogen-fixing bacteroids, and nodule formation, involve extensive membrane synthesis, lipid remodeling and cytoskeleton dynamics. However, little is known about these membrane-cytoskeleton interfaces and related genes. Here, we report the roles of a major root phospholipase D (PLD), PLDα1, and its enzymatic product, phosphatidic acid (PA), in rhizobium-root interaction and nodulation. PLDα1 was activated and the PA content transiently increased in roots after rhizobial infection. Levels of PLDα1 transcript and PA, as well as actin and tubulin cytoskeleton-related gene expression, changed markedly during root-rhizobium interactions and nodule development. Pre-treatment of the roots of soybean seedlings with n-butanol suppressed the generation of PLD-derived PA, the expression of early nodulation genes and nodule numbers. Overexpression or knockdown of GmPLDα1 resulted in changes in PA levels, glycerolipid profiles, nodule numbers, actin cytoskeleton dynamics, early nodulation gene expression and hormone levels upon rhizobial infection compared with GUS roots. The transcript levels of cytoskeleton-related genes, such as GmACTIN, GmTUBULIN, actin capping protein 1 (GmCP1) and microtubule-associating protein (GmMAP1), were modified in GmPLDα1-altered hairy roots compared with those of GUS roots. Phosphatidic acid physically bound to GmCP1 and GmMAP1, which could be related to cytoskeletal changes in rhizobium-infected GmPLDα1 mutant roots. These data suggest that PLDα1 and PA play important roles in soybean-rhizobium interaction and nodulation. The possible underlying mechanisms, including PLDα1- and PA-mediated lipid signaling, membrane remodeling, cytoskeleton dynamics and related hormone signaling, are discussed herein.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangli Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dandan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St Louis, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
10
|
Lian N, Wang X, Jing Y, Lin J. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:241-250. [PMID: 33274838 DOI: 10.1111/jipb.13046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 05/24/2023]
Abstract
The plant cytoskeleton undergoes dynamic remodeling in response to diverse developmental and environmental cues. Remodeling of the cytoskeleton coordinates growth in plant cells, including trafficking and exocytosis of membrane and wall components during cell expansion, and regulation of hypocotyl elongation in response to light. Cytoskeletal remodeling also has key functions in disease resistance and abiotic stress responses. Many stimuli result in altered activity of cytoskeleton-associated proteins, microtubule-associated proteins (MAPs) and actin-binding proteins (ABPs). MAPs and ABPs are the main players determining the spatiotemporally dynamic nature of the cytoskeleton, functioning in a sensory hub that decodes signals to modulate plant cytoskeletal behavior. Moreover, MAP and ABP activities and levels are precisely regulated during development and environmental responses, but our understanding of this process remains limited. In this review, we summarize the evidence linking multiple signaling pathways, MAP and ABP activities and levels, and cytoskeletal rearrangements in plant cells. We highlight advances in elucidating the multiple mechanisms that regulate MAP and ABP activities and levels, including calcium and calmodulin signaling, ROP GTPase activity, phospholipid signaling, and post-translational modifications.
Collapse
Affiliation(s)
- Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
11
|
Leontovyčová H, Kalachova T, Janda M. Disrupted actin: a novel player in pathogen attack sensing? THE NEW PHYTOLOGIST 2020; 227:1605-1609. [PMID: 32259281 DOI: 10.1111/nph.16584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The actin cytoskeleton is widely involved in plant immune responses. The majority of studies show that chemical disruption of the actin cytoskeleton increases plant susceptibility to pathogen infection. Similarly, several pathogens have adopted this as a virulence strategy and produce effectors that affect cytoskeleton integrity. Such effectors either exhibit actin-depolymerizing activity themselves or prevent actin polymerization. Is it thus possible for plants to recognize the actin's status and launch a counterattack? Recently we showed that chemical depolymerization of actin filaments can trigger resistance to further infection via the specific activation of salicylic acid (SA) signalling. This is accompanied by several defence-related, but SA-independent, effects (e.g. callose deposition, gene expression), relying on vesicular trafficking and phospholipid metabolism. These data suggest that the role of actin in plant-pathogen interactions is more complex than previously believed. It raises the question of whether plants have evolved a mechanism of sensing pathological actin disruption that eventually triggers defence responses. If so, what is the molecular basis of it? Otherwise, why does actin depolymerization specifically influence SA content but not any other phytohormone? Here we propose an updated model of actin's role in plant-microbe interactions and suggest some future directions of research to be conducted in this area.
Collapse
Affiliation(s)
- Hana Leontovyčová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 44, Prague 2, Czech Republic
| | - Tetiana Kalachova
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Martin Janda
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
- Faculty of Biology, Biocenter, Department Genetics, Ludwig-Maximilians-University of Munich (LMU), Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
| |
Collapse
|
12
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
13
|
Pejchar P, Sekereš J, Novotný O, Žárský V, Potocký M. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:212-226. [PMID: 32064689 DOI: 10.1111/tpj.14720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Phosphatidic acid (PA), an important signalling and metabolic phospholipid, is predominantly localized in the subapical plasma membrane (PM) of growing pollen tubes. PA can be produced from structural phospholipids by phospholipase D (PLD), but the isoforms responsible for production of PM PA were not identified yet and their functional roles remain unknown. Following genome-wide bioinformatic analysis of the PLD family in tobacco, we focused on the pollen-overrepresented PLDδ class. Combining live-cell imaging, gene overexpression, lipid-binding and structural bioinformatics, we characterized five NtPLDδ isoforms. Distinct PLDδ isoforms preferentially localize to the cytoplasm or subapical PM. Using fluorescence recovery after photobleaching, domain deletion and swapping analyses we show that membrane-bound PLDδs are tightly bound to PM, primarily via the central catalytic domain. Overexpression analyses suggested isoform PLDδ3 as the most important member of the PLDδ subfamily active in pollen tubes. Moreover, only PLDδ3 shows significant constitutive PLD activity in vivo and, in turn, PA promotes binding of PLDδ3 to the PM. This forms a positive feedback loop leading to PA accumulation and the formation of massive PM invaginations. Tightly controlled production of PA generated by PLDδ3 at the PM is important for maintaining the balance between various membrane trafficking processes that are crucial for plant cell tip growth.
Collapse
Affiliation(s)
- Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Juraj Sekereš
- Institute of Experimental Botany of the Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Ondřej Novotný
- Institute of Experimental Botany of the Czech Academy of Sciences, 16502, Prague 6, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 16628, Prague 6, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of Sciences, 16502, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Charles University, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| |
Collapse
|
14
|
Li SJ, Xie XL, Liu SC, Chen KS, Yin XR. Auto- and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening. Food Chem 2019; 299:125163. [PMID: 31319344 DOI: 10.1016/j.foodchem.2019.125163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
Citrus fruit postharvest degreening is a critical stage in marketing, carried out by exposure to ethylene or ethephon. Genome-wide screening of the AP2/ERF superfamily indicated that a novel ERF-II (CitERF6) was shown to trans-activate the CitPPH promoter. Expression of CitERF6 is associated with both developmental and postharvest degreening in citrus fruit. Transient and stable over-expression of CitERF6 in Nicotiana tabacum leaves and 'Ponkan' fruit also results in rapid chlorophyll degradation. Auto- and mutual-regulation was also found between CitERF6 and the previously characterized CitERF13 using the dual-luciferase and yeast one-hybrid assays. Moreover, substitution of the 35S promoter for endogenous promoters showed that both pCitERF6::CitERF6 and pCitERF13::CitERF13 were effective in trans-activating their promoters or triggering chlorophyll degradation. It is proposed that ethylene is one of the triggers activating promoters of CitERF6 and CitERF13, and subsequent auto- and mutual-regulation between CitERF6 and CitERF13 might facilitate the effect of ethylene, leading to fruit degreening.
Collapse
Affiliation(s)
- Shao-Jia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xiu-Lan Xie
- College of Life Science, Sichuan Agricultural University, Ya'an Campus, Ya'an 625014, PR China.
| | - Sheng-Chao Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Kun-Song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China.
| |
Collapse
|
15
|
Caillaud MC. Anionic Lipids: A Pipeline Connecting Key Players of Plant Cell Division. FRONTIERS IN PLANT SCIENCE 2019; 10:419. [PMID: 31110508 PMCID: PMC6499208 DOI: 10.3389/fpls.2019.00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/19/2019] [Indexed: 05/23/2023]
Abstract
How cells position their division plane is a critical component of cell division. Indeed, it defines whether the two daughter cells divide symmetrically (with equal volumes) or not, and as such is critical for cell differentiation and lineage specification across eukaryotes. However, oriented cell divisions are of special significance for organisms with cell walls, such as plants, because their cells are embedded and cannot relocate. Correctly positioning the division plane is therefore of prevailing importance in plants, as it controls not only the occurrence of asymmetric cell division, but also tissue morphogenesis and organ integrity. While cytokinesis is executed in radically different manners in animals and plants, they both rely on the dynamic interplay between the cytoskeleton and membrane trafficking to precisely deliver molecular components to the future site of cell division. Recent research has shown that strict regulation of the levels and distribution of anionic lipids, which are minor components of the cell membrane's lipids, is required for successful cytokinesis in non-plant organisms. This review focused on the recent evidence pointing to whether such signaling lipids have roles in plant cell division.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| |
Collapse
|
16
|
Takáč T, Novák D, Šamaj J. Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:362. [PMID: 31024579 PMCID: PMC6459882 DOI: 10.3389/fpls.2019.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.
Collapse
Affiliation(s)
| | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
17
|
Potocký M, Bezvoda R, Pejchar P. Antisense Oligodeoxynucleotide-Mediated Gene Knockdown in Pollen Tubes. Methods Mol Biol 2019; 1992:359-365. [PMID: 31148051 DOI: 10.1007/978-1-4939-9469-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Specific gene knockdown mediated by the antisense oligodeoxynucleotides (AODNs) strategy emerged as a rapid and effective tool for probing gene role in plant cells, particularly tip-growing pollen tubes. Here, we describe the protocol for the successful employment of AODN technique in growing tobacco pollen tubes, covering AODN design, application, and analysis of the results. We also discuss the advantages and drawbacks of this method.
Collapse
Affiliation(s)
- Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Shot-Gun Proteomic Analysis on Roots of Arabidopsis pldα1 Mutants Suggesting the Involvement of PLDα1 in Mitochondrial Protein Import, Vesicular Trafficking and Glucosinolate Biosynthesis. Int J Mol Sci 2018; 20:ijms20010082. [PMID: 30587782 PMCID: PMC6337374 DOI: 10.3390/ijms20010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Phospholipase Dα1 (PLDα1) belongs to phospholipases, a large phospholipid hydrolyzing protein family. PLDα1 has a substrate preference for phosphatidylcholine leading to enzymatic production of phosphatidic acid, a lipid second messenger with multiple cellular functions. PLDα1 itself is implicated in biotic and abiotic stress responses. Here, we present a shot-gun differential proteomic analysis on roots of two Arabidopsis pldα1 mutants compared to the wild type. Interestingly, PLDα1 deficiency leads to altered abundances of proteins involved in diverse processes related to membrane transport including endocytosis and endoplasmic reticulum-Golgi transport. PLDα1 may be involved in the stability of attachment sites of endoplasmic reticulum to the plasma membrane as suggested by increased abundance of synaptotagmin 1, which was validated by immunoblotting and whole-mount immunolabelling analyses. Moreover, we noticed a robust abundance alterations of proteins involved in mitochondrial import and electron transport chain. Notably, the abundances of numerous proteins implicated in glucosinolate biosynthesis were also affected in pldα1 mutants. Our results suggest a broader biological involvement of PLDα1 than anticipated thus far, especially in the processes such as endomembrane transport, mitochondrial protein import and protein quality control, as well as glucosinolate biosynthesis.
Collapse
|
19
|
van Wijk R, Zhang Q, Zarza X, Lamers M, Marquez FR, Guardia A, Scuffi D, García-Mata C, Ligterink W, Haring MA, Laxalt AM, Munnik T. Role for Arabidopsis PLC7 in Stomatal Movement, Seed Mucilage Attachment, and Leaf Serration. FRONTIERS IN PLANT SCIENCE 2018; 9:1721. [PMID: 30542361 PMCID: PMC6278229 DOI: 10.3389/fpls.2018.01721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 05/24/2023]
Abstract
Phospholipase C (PLC) has been suggested to play important roles in plant stress and development. To increase our understanding of PLC signaling in plants, we have started to analyze knock-out (KO), knock-down (KD) and overexpression mutants of Arabidopsis thaliana, which contains nine PLCs. Earlier, we characterized PLC2, PLC3 and PLC5. Here, the role of PLC7 is functionally addressed. Promoter-GUS analyses revealed that PLC7 is specifically expressed in the phloem of roots, leaves and flowers, and is also present in trichomes and hydathodes. Two T-DNA insertion mutants were obtained, i.e., plc7-3 being a KO- and plc7-4 a KD line. In contrast to earlier characterized phloem-expressed PLC mutants, i.e., plc3 and plc5, no defects in primary- or lateral root development were found for plc7 mutants. Like plc3 mutants, they were less sensitive to ABA during stomatal closure. Double-knockout plc3 plc7 lines were lethal, but plc5 plc7 (plc5/7) double mutants were viable, and revealed several new phenotypes, not observed earlier in the single mutants. These include a defect in seed mucilage, enhanced leaf serration, and an increased tolerance to drought. Overexpression of PLC7 enhanced drought tolerance too, similar to what was earlier found for PLC3-and PLC5 overexpression. In vivo 32Pi-labeling of seedlings and treatment with sorbitol to mimic drought stress, revealed stronger PIP2 responses in both drought-tolerant plc5/7 and PLC7-OE mutants. Together, these results show novel functions for PLC in plant stress and development. Potential molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Ringo van Wijk
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Qianqian Zhang
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Xavier Zarza
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Mart Lamers
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
| | | | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Michel A. Haring
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
| | - Ana M. Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Hong Y, Yuan S, Sun L, Wang X, Hong Y. Cytidinediphosphate-diacylglycerol synthase 5 is required for phospholipid homeostasis and is negatively involved in hyperosmotic stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1038-1050. [PMID: 29604140 DOI: 10.1111/tpj.13916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Cytidinediphosphate diacylglycerol synthase (CDS) uses phosphatidic acid (PA) and cytidinetriphosphate to produce cytidinediphosphate-diacylglycerol, an intermediate for phosphatidylglycerol (PG) and phosphatidylinositol (PI) synthesis. This study shows that CDS5, one of the five CDSs of the Oryza sativa (rice) genome, has multifaceted effects on plant growth and stress responses. The loss of CDS5 resulted in a decrease in PG and PI levels, defective thylakoid membranes, pale leaves in seedlings and growth retardation. In addition, the loss of CDS5 led to an elevated PA level and enhanced hyperosmotic tolerance. The inhibition of phospholipase D (PLD)-derived PA formation in cds5 restored the hyperosmotic stress tolerance of the mutant phenotype to that of the wild type, suggesting that CDS5 functions as a suppressor in PLD-derived PA signaling and negatively affects hyperosmotic stress tolerance.
Collapse
Affiliation(s)
- Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linxiao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
21
|
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. FRONTIERS IN PLANT SCIENCE 2018; 9:991. [PMID: 30050548 PMCID: PMC6052134 DOI: 10.3389/fpls.2018.00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/08/2023]
Abstract
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- *Correspondence: Petra Junková, ;
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jitka Brouzdová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Enric Zelazny
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS–CEA–Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
22
|
Zhang Q, Song P, Qu Y, Wang P, Jia Q, Guo L, Zhang C, Mao T, Yuan M, Wang X, Zhang W. Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:2220-2235. [PMID: 28710795 DOI: 10.1111/pce.13023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 05/20/2023]
Abstract
The pattern of cortical microtubule arrays plays an important role in plant growth and adaptation in response to hormonal and environmental changes. Cortical microtubules are connected with the plasma membrane (PM); however, how the membrane affects cortical microtubule organization is not well understood. Here, we showed that phospholipase Dδ (PLDδ) was associated with the PM and co-localized with microtubules in cells. In vitro analysis revealed that PLDδ bound to microtubules, resulting in microtubule disorganization. Site-specific mutations that decreased PLDδ enzymatic activity impaired its effects on destabilizing microtubule organization. Heat shock transiently activated PLDδ, without any change of its PM localization, triggering microtubule dissociation from PM and depolymerization and seedling death in Arabidopsis, but these effects were alleviated in pldδ knockout mutants. Complementation of pldδ with wild-type PLDδ, but not mutated PLDδ, restored the phenotypes of microtubules and seedling survival to those of wild-type Arabidopsis. Thus, we conclude that the PM-associated PLDδ negatively regulates plant thermotolerance via destabilizing cortical microtubules, in an activity-dependent manner, rather than its subcellular translocation.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanpeng Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tonglin Mao
- College of Biology, China Agricultural University, Beijing, 100083, China
| | - Ming Yuan
- College of Biology, China Agricultural University, Beijing, 100083, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Tolmie F, Poulet A, McKenna J, Sassmann S, Graumann K, Deeks M, Runions J. The cell wall of Arabidopsis thaliana influences actin network dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4517-4527. [PMID: 28981774 DOI: 10.1093/jxb/erx269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In plant cells, molecular connections link the cell wall-plasma membrane-actin cytoskeleton to form a continuum. It is hypothesized that the cell wall provides stable anchor points around which the actin cytoskeleton remodels. Here we use live cell imaging of fluorescently labelled marker proteins to quantify the organization and dynamics of the actin cytoskeleton and to determine the impact of disrupting connections within the continuum. Labelling of the actin cytoskeleton with green fluorescent protein (GFP)-fimbrin actin-binding domain 2 (FABD2) resulted in a network composed of fine filaments and thicker bundles that appeared as a highly dynamic remodelling meshwork. This differed substantially from the GFP-Lifeact-labelled network that appeared much more sparse with thick bundles that underwent 'simple movement', in which the bundles slightly change position, but in such a manner that the structure of the network was not substantially altered during the time of observation. Label-dependent differences in actin network morphology and remodelling necessitated development of two new image analysis techniques. The first of these, 'pairwise image subtraction', was applied to measurement of the more rapidly remodelling actin network labelled with GFP-FABD2, while the second, 'cumulative fluorescence intensity', was used to measure bulk remodelling of the actin cytoskeleton when labelled with GFP-Lifeact. In each case, these analysis techniques show that the actin cytoskeleton has a decreased rate of bulk remodelling when the cell wall-plasma membrane-actin continuum is disrupted either by plasmolysis or with isoxaben, a drug that specifically inhibits cellulose deposition. Changes in the rate of actin remodelling also affect its functionality, as observed by alteration in Golgi body motility.
Collapse
Affiliation(s)
- Frances Tolmie
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Axel Poulet
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Joseph McKenna
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Stefan Sassmann
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Michael Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - John Runions
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| |
Collapse
|
24
|
Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3071-3089. [PMID: 28899081 DOI: 10.1093/jxb/erx127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.
Collapse
Affiliation(s)
- Eun Hyang Han
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Dominic P Petrella
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC Metabolite Analysis Cluster (OMAC), The Ohio State University/OARDC, Wooster, OH, USA
| |
Collapse
|
25
|
Zhang Q, Qu Y, Wang Q, Song P, Wang P, Jia Q, Guo J. Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. JOURNAL OF PLANT RESEARCH 2017; 130:193-202. [PMID: 27864640 DOI: 10.1007/s10265-016-0870-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/21/2023]
Abstract
Phospholipase D (PLD) and its product phosphatidic acid (PA) are emerging as essential regulators of cytoskeleton organization in plants. However, the underlying molecular mechanisms of PA-mediated microtubule reorganization in plants remain largely unknown. In this study, we used pharmacological and genetic approaches to analyze the function of Arabidopsis thaliana PLDα1 in the regulation of microtubule organization and cell development in response to microtubule-affecting drugs. Treatment with the microtubule-stabilizing drug paclitaxel resulted in less growth inhibition and decreased rightward slant of roots, longitudinal alignment of microtubules, and enhanced length of hypocotyl epidermal cells in the pldα1 mutant, the phenotype of which was rescued by exogenous application of PA. Moreover, the pldα1 mutant was sensitive to the microtubule-disrupting drugs oryzalin and propyzamide in terms of seedling survival ratio, left-skewing angle of roots and microtubule organization. In addition, both disruption and stabilization of microtubules induced by drugs activated PLDα1 activity. Our findings demonstrate that in A. thaliana, PLDα1/PA might regulate cell development by modulating microtubule organization in an activity-dependent manner.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qing Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinhe Guo
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
26
|
Functional Characterization of the N-Terminal C2 Domain from Arabidopsis thaliana Phospholipase D α and D β. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2721719. [PMID: 28101506 PMCID: PMC5215601 DOI: 10.1155/2016/2721719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022]
Abstract
Most of plant phospholipases D (PLD) exhibit a C2-lipid binding domain of around 130 amino acid residues at their N-terminal region, involved in their Ca2+-dependent membrane binding. In this study, we expressed and partially purified catalytically active PLDα from Arabidopsis thaliana (AtPLDα) in the yeast Pichia pastoris. The N-terminal amino acid sequence of the recombinant AtPLDα was found to be NVEETIGV and thus to lack the first 35 amino acid belonging to the C2 domain, as found in other recombinant or plant purified PLDs. To investigate the impact of such a cleavage on the functionality of C2 domains, we expressed, in E. coli, purified, and refolded the mature-like form of the C2 domain of the AtPLDα along with its equivalent C2 domain of the AtPLDβ, for the sake of comparison. Using Förster Resonance Energy Transfer and dot-blot assays, both C2 domains were shown to bind phosphatidylglycerol in a Ca2+-independent manner while phosphatidic acid and phosphatidylserine binding were found to be enhanced in the presence of Ca2+. Amino acid sequence alignment and molecular modeling of both C2 domains with known C2 domain structures revealed the presence of a novel Ca2+-binding site within the C2 domain of AtPLDα.
Collapse
|
27
|
Jiang Y, Sverdlov MS, Toth PT, Huang LS, Du G, Liu Y, Natarajan V, Minshall RD. Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells. J Biol Chem 2016; 291:20729-38. [PMID: 27510034 DOI: 10.1074/jbc.m116.752485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
Caveolae are the primary route for internalization and transendothelial transport of macromolecules, such as insulin and albumin. Caveolae-mediated endocytosis is activated by Src-dependent caveolin-1 (Cav-1) phosphorylation and subsequent recruitment of dynamin-2 and filamin A (FilA), which facilitate vesicle fission and trafficking, respectively. Here, we tested the role of RalA and phospholipase D (PLD) signaling in the regulation of caveolae-mediated endocytosis and trafficking. The addition of albumin to human lung microvascular endothelial cells induced the activation of RalA within minutes, and siRNA-mediated down-regulation of RalA abolished fluorescent BSA uptake. Co-immunoprecipitation studies revealed that albumin induced the association between RalA, Cav-1, and FilA; however, RalA knockdown with siRNA did not affect FilA recruitment to Cav-1, suggesting that RalA was not required for FilA and Cav-1 complex formation. Rather, RalA probably facilitates caveolae-mediated endocytosis by activating downstream effectors. PLD2 was shown to be activated by RalA, and inhibition of PLD2 abolished Alexa-488-BSA uptake, indicating that phosphatidic acid (PA) generated by PLD2 may facilitate caveolae-mediated endocytosis. Furthermore, using a PA biosensor, GFP-PASS, we observed that BSA induced an increase in PA co-localization with Cav-1-RFP, which could be blocked by a dominant negative PLD2 mutant. Total internal reflection fluorescence microscopy studies of Cav-1-RFP also showed that fusion of caveolae with the basal plasma membrane was dependent on PLD2 activity. Thus, our results suggest that the small GTPase RalA plays an important role in promoting invagination and trafficking of caveolae, not by potentiating the association between Cav-1 and FilA but by stimulating PLD2-mediated generation of phosphatidic acid.
Collapse
Affiliation(s)
- Ying Jiang
- From the School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China, the Departments of Anesthesiology
| | | | | | - Long Shuang Huang
- Pharmacology, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Guangwei Du
- the Departments of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030
| | - Yiyao Liu
- From the School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Viswanathan Natarajan
- Pharmacology, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | | |
Collapse
|
28
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
29
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
30
|
Zhang Q, Zhang W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein Cell 2016; 7:81-8. [PMID: 26687389 PMCID: PMC4742386 DOI: 10.1007/s13238-015-0233-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/31/2015] [Indexed: 12/16/2022] Open
Abstract
Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Liu Z, Persson S, Zhang Y. The connection of cytoskeletal network with plasma membrane and the cell wall. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:330-40. [PMID: 25693826 PMCID: PMC4405036 DOI: 10.1111/jipb.12342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/14/2015] [Indexed: 05/18/2023]
Abstract
The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.
Collapse
Affiliation(s)
- Zengyu Liu
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville, 3010, Victoria, Australia
| | - Yi Zhang
- Max-Planck Institute for Molecular Plant Physiology14476 Potsdam, Germany
| |
Collapse
|
32
|
Zhao J. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1721-36. [PMID: 25680793 PMCID: PMC4669553 DOI: 10.1093/jxb/eru540] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 05/05/2023]
Abstract
Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
33
|
Wang P, Hussey PJ. Interactions between plant endomembrane systems and the actin cytoskeleton. FRONTIERS IN PLANT SCIENCE 2015; 6:422. [PMID: 26106403 PMCID: PMC4460326 DOI: 10.3389/fpls.2015.00422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/25/2015] [Indexed: 05/04/2023]
Abstract
Membrane trafficking, organelle movement, and morphogenesis in plant cells are mainly controlled by the actin cytoskeleton. Not all proteins that regulate the cytoskeleton and membrane dynamics in animal systems have functional homologs in plants, especially for those proteins that form the bridge between the cytoskeleton and membrane; the membrane-actin adaptors. Their nature and function is only just beginning to be elucidated and this field has been greatly enhanced by the recent identification of the NETWORKED (NET) proteins, which act as membrane-actin adaptors. In this review, we will summarize the role of the actin cytoskeleton and its regulatory proteins in their interaction with endomembrane compartments and where they potentially act as platforms for cell signaling and the coordination of other subcellular events.
Collapse
Affiliation(s)
| | - Patrick J. Hussey
- *Correspondence: Patrick J. Hussey, School of Biological and Biomedical Science, Durham University, South Road, Durham DH1 3LE, UK,
| |
Collapse
|
34
|
Abstract
Advances in microscopy techniques applied to living cells have dramatically transformed our view of the actin cytoskeleton as a framework for cellular processes. Conventional fluorescence imaging and static analyses are useful for quantifying cellular architecture and the network of filaments that support vesicle trafficking, organelle movement, and response to biotic stress. However, new imaging techniques have revealed remarkably dynamic features of individual actin filaments and the mechanisms that underpin their construction and turnover. In this review, we briefly summarize knowledge about actin and actin-binding proteins in plant systems. We focus on the quantitative properties of the turnover of individual actin filaments, highlight actin-binding proteins that participate in actin dynamics, and summarize the current genetic evidence that has been used to dissect specific aspects of the stochastic dynamics model. Finally, we describe some signaling pathways in which recent data implicate changes in actin filament dynamics and the associated cytoplasmic responses.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and
| | | | | |
Collapse
|
35
|
McDowell SC, López-Marqués RL, Cohen T, Brown E, Rosenberg A, Palmgren MG, Harper JF. Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane. FRONTIERS IN PLANT SCIENCE 2015; 6:197. [PMID: 25954280 PMCID: PMC4404812 DOI: 10.3389/fpls.2015.00197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 05/19/2023]
Abstract
Members of the P4 subfamily of P-type ATPases are thought to create and maintain lipid asymmetry in biological membranes by flipping specific lipids between membrane leaflets. In Arabidopsis, 7 of the 12 Aminophospholipid ATPase (ALA) family members are expressed in pollen. Here we show that double knockout of ALA6 and ALA7 (ala6/7) results in siliques with a ~2-fold reduction in seed set with a high frequency of empty seed positions near the bottom. Seed set was reduced to near zero when plants were grown under a hot/cold temperature stress. Reciprocal crosses indicate that the ala6/7 reproductive deficiencies are due to a defect related to pollen transmission. In-vitro growth assays provide evidence that ala6/7 pollen tubes are short and slow, with ~2-fold reductions in both maximal growth rate and overall length relative to wild-type. Outcrosses show that when ala6/7 pollen are in competition with wild-type pollen, they have a near 0% success rate in fertilizing ovules near the bottom of the pistil, consistent with ala6/7 pollen having short and slow growth defects. The ala6/7 phenotypes were rescued by the expression of either an ALA6-YFP or GFP-ALA6 fusion protein, which showed localization to both the plasma membrane and highly-mobile endomembrane structures. A mass spectrometry analysis of mature pollen grains revealed significant differences between ala6/7 and wild-type, both in the relative abundance of lipid classes and in the average number of double bonds present in acyl side chains. A change in the properties of the ala6/7 plasma membrane was also indicated by a ~10-fold reduction of labeling by lipophilic FM-dyes relative to wild-type. Together, these results indicate that ALA6 and ALA7 provide redundant activities that function to directly or indirectly change the distribution and abundance of lipids in pollen, and support a model in which ALA6 and ALA7 are critical for pollen fitness under normal and temperature-stress conditions.
Collapse
Affiliation(s)
- Stephen C. McDowell
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Rosa L. López-Marqués
- Centre for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Danish National Research FoundationFrederiksberg, Denmark
| | - Taylor Cohen
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Alexa Rosenberg
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Danish National Research FoundationFrederiksberg, Denmark
| | - Jeffrey F. Harper
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
- *Correspondence: Jeffrey F. Harper, Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St - MS330, Reno, NV 89557, USA
| |
Collapse
|
36
|
Janda M, Šašek V, Chmelařová H, Andrejch J, Nováková M, Hajšlová J, Burketová L, Valentová O. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:59. [PMID: 25741350 PMCID: PMC4332306 DOI: 10.3389/fpls.2015.00059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/22/2015] [Indexed: 05/05/2023]
Abstract
Phytohormone salicylic acid (SA) is a crucial component of plant-induced defense against biotrophic pathogens. Although the key players of the SA pathway are known, there are still gaps in the understanding of the molecular mechanism and the regulation of particular steps. In our previous research, we showed in Arabidopsis suspension cells that n-butanol, which specifically modulates phospholipase D activity, significantly suppresses the transcription of the pathogenesis related (PR-1) gene, which is generally accepted as the SA pathway marker. In the presented study, we have investigated the site of n-butanol action in the SA pathway. We were able to show in Arabidopsis plants treated with SA that n-butanol inhibits the transcription of defense genes (PR-1, WRKY38). Fluorescence microscopy of Arabidopsis thaliana mutants expressing 35S::NPR1-GFP (nonexpressor pathogenesis related 1) revealed significantly decreased nuclear localization of NPR1 in the presence of n-butanol. On the other hand, n-butanol did not decrease the nuclear localization of NPR1 in 35S::npr1C82A-GFP and 35S::npr1C216A-GFP mutants constitutively expressing NPR1 monomers. Mass spectrometric analysis of plant extracts showed that n-butanol significantly changes the metabolic fingerprinting while t-butanol had no effect. We found groups of the plant metabolites, influenced differently by SA and n-butanol treatment. Thus, we proposed several metabolites as markers for n-butanol action.
Collapse
Affiliation(s)
- Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology PraguePrague, Czech Republic
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CRPrague, Czech Republic
| | - Vladimír Šašek
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CRPrague, Czech Republic
| | - Hana Chmelařová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology PraguePrague, Czech Republic
| | - Jan Andrejch
- Department of Biochemistry and Microbiology, University of Chemistry and Technology PraguePrague, Czech Republic
| | - Miroslava Nováková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology PraguePrague, Czech Republic
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CRPrague, Czech Republic
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology PraguePrague, Czech Republic
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CRPrague, Czech Republic
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology PraguePrague, Czech Republic
- *Correspondence: Olga Valentová, CSc., Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 – Dejvice, 16628, Czech Republic e-mail:
| |
Collapse
|
37
|
Potocký M, Pleskot R, Pejchar P, Vitale N, Kost B, Žárský V. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. THE NEW PHYTOLOGIST 2014; 203:483-494. [PMID: 24750036 DOI: 10.1111/nph.12814] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/14/2014] [Indexed: 05/21/2023]
Abstract
Although phosphatidic acid (PA) is structurally the simplest membrane phospholipid, it has been implicated in the regulation of many cellular events, including cytoskeletal dynamics, membrane trafficking and stress responses. Plant PA shows rapid turnover but the information about its spatio-temporal distribution in plant cells is missing. Here we demonstrate the use of a lipid biosensor that enables us to monitor PA dynamics in plant cells. The biosensor consists of a PA-binding domain of yeast SNARE Spo20p fused to fluorescent proteins. Live-cell imaging of PA dynamics in transiently transformed tobacco (Nicotiana tabacum) pollen tubes was performed using confocal laser scanning microscopy. In growing pollen tubes, PA shows distinct annulus-like fluorescence pattern in the plasma membrane behind the extreme tip. Coexpression studies with markers for other plasmalemma signaling lipids phosphatidylinositol 4,5-bisphosphate and diacylglycerol revealed limited colocalization at the shoulders of the apex. PA distribution and concentrations show distinct responses to various lipid signaling inhibitors. Fluorescence recovery after photobleaching (FRAP) analysis suggests high PA turnover in the plasma membrane. Our data show that a biosensor based on the Spo20p-PA binding domain is suitable for live-cell imaging of PA also in plant cells. In tobacco pollen tubes, distinct subapical PA maximum corroborates its involvement in the regulation of endocytosis and actin dynamics.
Collapse
Affiliation(s)
- Martin Potocký
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, 16502, Prague 6, Czech Republic
| | - Roman Pleskot
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, 16502, Prague 6, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, 16502, Prague 6, Czech Republic
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Integratives, CNRS UPR3212 and Université de Strasbourg, Strasbourg, France
| | - Benedikt Kost
- Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Viktor Žárský
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, 16502, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44, Prague 2, Czech Republic
| |
Collapse
|
38
|
Matoušková J, Janda M, Fišer R, Sašek V, Kocourková D, Burketová L, Dušková J, Martinec J, Valentová O. Changes in actin dynamics are involved in salicylic acid signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:36-44. [PMID: 24767113 DOI: 10.1016/j.plantsci.2014.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/07/2014] [Accepted: 03/01/2014] [Indexed: 05/09/2023]
Abstract
Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented.
Collapse
Affiliation(s)
- Jindřiška Matoušková
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Janda
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Radovan Fišer
- Charles University in Prague, Faculty of Science, Albertov 2038/6, 128 00 Prague 2, Czech Republic
| | - Vladimír Sašek
- Institute of Experimental Botany, Academy of Science of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Daniela Kocourková
- Institute of Experimental Botany, Academy of Science of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Lenka Burketová
- Institute of Experimental Botany, Academy of Science of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Jiřina Dušková
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany, Academy of Science of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Olga Valentová
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
39
|
Mizuta Y, Higashiyama T. Antisense gene inhibition by phosphorothioate antisense oligonucleotide in Arabidopsis pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:516-26. [PMID: 24495108 DOI: 10.1111/tpj.12461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 05/18/2023]
Abstract
Sexual reproduction is an essential biological event for proliferation of plants. The pollen tube (PT) that contained male gametes elongates and penetrates into the pistils for successful fertilization. However, the molecular mechanisms of plant fertilization remain largely unknown. Here, we report a transient inhibition of gene function using phosphorothioate antisense oligodeoxynucleotides (AS-ODNs) without cytofectin, which is a simple way to study gene function in Arabidopsis thaliana PTs. The PTs treated with AS-ODNs against both ANX1 and ANX2 showed short, knotted, and ruptured morphology in vitro/semi-in vitro, whereas normal PT growth was shown in its sense control in vitro/semi-in vitro. PT growth was impaired in a manner dependent on the dose of AS-ODNs against both ANX1 and ANX2 above 10 μm. The treatment with AS-ODNs against ROP1 and CalS5 resulted in waving PTs and in short PTs with a few callose plugs, respectively. The expression levels of the target genes in PTs treated with their AS-ODNs were lower than or similar to those in the sense control, indicating that the inhibition was directly or indirectly related to the expression of each mRNA. The AS-ODN against fluorescent protein (sGFP) led to reduced sGFP expression, suggesting that the AS-ODN suppressed protein expression. This method will enable the identification of reproductively important genes in Arabidopsis PTs.
Collapse
Affiliation(s)
- Yoko Mizuta
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan; JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | | |
Collapse
|
40
|
Jiang Y, Wu K, Lin F, Qu Y, Liu X, Zhang Q. Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. PLANTA 2014; 239:565-75. [PMID: 24271006 DOI: 10.1007/s00425-013-1999-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/11/2013] [Indexed: 05/20/2023]
Abstract
Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca(2+) ([Ca(2+)]cyt) elevation was partially blocked, and exogenous Ca(2+)-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca(2+) increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca(2+), and microtubules are essential for ABA signaling.
Collapse
Affiliation(s)
- Yan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Pleskot R, Pejchar P, Staiger CJ, Potocký M. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:5. [PMID: 24478785 PMCID: PMC3899574 DOI: 10.3389/fpls.2014.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/04/2014] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins (ABPs) that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several ABPs, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | | | - Martin Potocký
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
42
|
Bezvoda R, Pleskot R, Zárský V, Potocký M. Antisense oligodeoxynucleotide-mediated gene knockdown in pollen tubes. Methods Mol Biol 2014; 1080:231-6. [PMID: 24132433 DOI: 10.1007/978-1-62703-643-6_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Specific gene knockdown mediated by the antisense oligodeoxynucleotides (AODNs) strategy recently emerged as a rapid and effective tool for probing gene role in plant cells, particularly tip-growing pollen tubes. Here, we describe the protocol for the successful employment of AODN technique in growing tobacco pollen tubes, covering AODN design, application, and analysis of the results. We also discuss the advantages and drawbacks of this method.
Collapse
Affiliation(s)
- Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of Science, Charles University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
43
|
|
44
|
Lin F, Qu Y, Zhang Q. Phospholipids: molecules regulating cytoskeletal organization in plant abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2014; 9:e28337. [PMID: 24589893 PMCID: PMC4091320 DOI: 10.4161/psb.28337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 05/08/2023]
Abstract
Cytoskeleton serves as structural, membrane-bound and highly nonlinear dynamics element that basically functions in abiotic and biotic stresses. The study of phospholipid-regulated cytoskeletal organization to strengthen plants against stresses is emerging. Phospholipids in lipid bilayers, as the main compound of cellular membranes, have roles in modulation of membrane curvature and anchoring, cross-linking or regulating particular cytoskeletal proteins to modulate cytoskeletal dynamics. In this review, we highlight the role of phospholipids and their metabolic enzymes through regulating cytoskeletal organization and dynamics in response to abiotic stresses, such as salt, drought and low/high temperature stresses.
Collapse
Affiliation(s)
- Feng Lin
- College of Life Sciences; State Key Laboratory of Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; Nanjing, PR China
| | - Yana Qu
- College of Life Sciences; State Key Laboratory of Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; Nanjing, PR China
| | - Qun Zhang
- College of Life Sciences; State Key Laboratory of Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; Nanjing, PR China
| |
Collapse
|
45
|
Abstract
Phosphatidic acid (PA) is recognized as an important class of lipid messengers. The cellular PA levels are dynamic; PA is produced and metabolized by several enzymatic reactions, including different phospholipases, lipid kinases, and phosphatases. PA interacts with various proteins and the interactions may modulate enzyme catalytic activities and/or tether proteins to membranes. The PA-protein interactions are impacted by changes in cellular pH and other effectors, such as cations. PA is involved in a wide range of cellular processes, including vesicular trafficking, cytoskeletal organization, secretion, cell proliferation, and survival. Manipulations of different PA production reactions alter cellular and organismal response to a wide range of abiotic and biotic stresses. Further investigations of PA's function and mechanisms of action will advance not only the understanding of cell signaling networks but also may lead to biotechnological and pharmacological applications.
Collapse
|
46
|
Pleskot R, Li J, Zárský V, Potocký M, Staiger CJ. Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. TRENDS IN PLANT SCIENCE 2013; 18:496-504. [PMID: 23664415 DOI: 10.1016/j.tplants.2013.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 05/20/2023]
Abstract
Plants respond to diverse biotic and abiotic stimuli as well as to endogenous developmental cues. Many of these stimuli result in altered activity of phospholipase D (PLD), an enzyme that hydrolyzes structural phospholipids producing phosphatidic acid (PA). PA is a key signaling intermediate in animals, but its targets in plants are relatively uncharacterized. Recent studies have demonstrated that the cytoskeleton is a major target of PLD-PA signaling and identified a positive feedback loop between actin turnover and PLD activity. Moreover, two cytoskeletal proteins, capping protein and MAP65-1, have been identified as PA-binding proteins regulating actin and microtubule organization and dynamics. In this review, we highlight the role of the PLD-PA module as an important hub for housekeeping and stress-induced regulation of membrane-associated cytoskeletal dynamics.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
47
|
Durst S, Nick P, Maisch J. Nicotiana tabacum actin-depolymerizing factor 2 is involved in actin-driven, auxin-dependent patterning. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1057-66. [PMID: 23545293 DOI: 10.1016/j.jplph.2013.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 05/27/2023]
Abstract
Polar transport of auxin has been identified as a central element of pattern formation. To address the underlying cellular mechanisms, we use the tobacco cell line (Nicotiana tabacum L. cv. Bright Yellow 2; BY-2) as model. We showed previously that cell divisions within a cell file are synchronized by polar auxin flow, linked to the organization of actin filaments (AF) which, in turn, is modified via actin-binding proteins (ABPs). From a preparatory study for disturbed division synchrony in cell lines overexpressing different ABPs, we identified the actin depolymerizing factor 2 (ADF2). A cell line overexpressing GFP-NtADF2 was specifically affected in division synchrony. The cell division pattern could be rescued by addition of Phosphatidylinositol 4,5-bisphosphate (PIP2) or by phalloidin. These observations allow to draw first conclusions on the pathway linking auxin signalling via actin reorganization to synchronized cell division placing the regulation of cortical actin turnover by ADF2 into the focus.
Collapse
Affiliation(s)
- Steffen Durst
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | | | | |
Collapse
|
48
|
Li W, Guan Q, Wang ZY, Wang Y, Zhu J. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis. MOLECULAR PLANT 2013; 6:1344-54. [PMID: 23571490 DOI: 10.1093/mp/sst062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Salinity is an abiotic stress that substantially limits crop production worldwide. To identify salt stress tolerance determinants, we screened for Arabidopsis mutants that are hypersensitive to salt stress and designated these mutants as short root in salt medium (rsa). One of these mutants, rsa3-1, is hypersensitive to NaCl and LiCl but not to CsCl or to general osmotic stress. Reactive oxygen species (ROS) over-accumulate in rsa3-1 plants under salt stress. Gene expression profiling with Affymetrix microarray analysis revealed that RSA3 controls expression of many genes including genes encoding proteins for ROS detoxification under salt stress. Map-based cloning showed that RSA3 encodes a xyloglucan galactosyltransferase, which is allelic to a gene previously named MUR3/KAM1. The RSA3/MUR3/KAM1-encoded xylogluscan galactosyltransferase regulates actin microfilament organization (and thereby contributes to endomembrane distribution) and is also involved in cell wall biosynthesis. In rsa3-1, actin cannot assemble and form bundles as it does in the wild-type but instead aggregates in the cytoplasm. Furthermore, addition of phalloidin, which prevents actin depolymerization, can rescue salt hypersensitivity of rsa3-1. Together, these results suggest that RSA3/MUR3/KAM1 along with other cell wall-associated proteins plays a critical role in salt stress tolerance by maintaining the proper organization of actin microfilaments in order to minimize damage caused by excessive ROS.
Collapse
Affiliation(s)
- Wenbo Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
49
|
Janda M, Planchais S, Djafi N, Martinec J, Burketova L, Valentova O, Zachowski A, Ruelland E. Phosphoglycerolipids are master players in plant hormone signal transduction. PLANT CELL REPORTS 2013; 32:839-51. [PMID: 23471417 DOI: 10.1007/s00299-013-1399-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 05/18/2023]
Abstract
Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.
Collapse
Affiliation(s)
- Martin Janda
- Institute of Experimental Botany, Academy of Sciences of Czech Republic, 160 000 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu Q, Qiao F, Ismail A, Chang X, Nick P. The plant cytoskeleton controls regulatory volume increase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2111-20. [PMID: 23660128 DOI: 10.1016/j.bbamem.2013.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/28/2013] [Accepted: 04/30/2013] [Indexed: 01/08/2023]
Abstract
The ability to adjust cell volume is required for the adaptation to osmotic stress. Plant protoplasts can swell within seconds in response to hypoosmotic shock suggesting that membrane material is released from internal stores. Since the stability of plant membranes depends on submembraneous actin, we asked, whether this regulatory volume control depends on the cytoskeleton. As system we used two cell lines from grapevine which differ in their osmotic tolerance and observed that the cytoskeleton responded differently in these two cell lines. To quantify the ability for regulatory volume control, we used hydraulic conductivity (Lp) as readout and demonstrated a role of the cytoskeleton in protoplast swelling. Chelation of calcium, inhibition of calcium channels, or manipulation of membrane fluidity, did not significantly alter Lp, whereas direct manipulation of the cytoskeleton via specific chemical reagents, or indirectly, through the bacterial elicitor Harpin or activation of phospholipase D, was effective. By optochemical engineering of actin using a caged form of the phytohormone auxin we can break the symmetry of actin organisation resulting in a localised deformation of cell shape indicative of a locally increased Lp. We interpret our findings in terms of a model, where the submembraneous cytoskeleton controls the release of intracellular membrane stores during regulatory volume change.
Collapse
Affiliation(s)
- Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76128 Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|