1
|
Mueller KK, Pfeifer L, Schuldt L, Szövényi P, de Vries S, de Vries J, Johnson KL, Classen B. Fern cell walls and the evolution of arabinogalactan proteins in streptophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:875-894. [PMID: 36891885 DOI: 10.1111/tpj.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.
Collapse
Affiliation(s)
- Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lina Schuldt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zurich, Switzerland
- Zurich-Basel Plant Science Center (PSC), ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtsr. 1, 37077, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Kim L Johnson
- Department of Animal, Plant and Soil Science, La Trobe Institute for Agriculture & Food, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| |
Collapse
|
2
|
Derba-Maceluch M, Mitra M, Hedenström M, Liu X, Gandla ML, Barbut FR, Abreu IN, Donev EN, Urbancsok J, Moritz T, Jönsson LJ, Tsang A, Powlowski J, Master ER, Mellerowicz EJ. Xylan glucuronic acid side chains fix suberin-like aliphatic compounds to wood cell walls. THE NEW PHYTOLOGIST 2023; 238:297-312. [PMID: 36600379 DOI: 10.1111/nph.18712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular interactions among these compounds are not fully understood. We have targeted the expression of a fungal α-glucuronidase to the wood cell wall of aspen (Populus tremula L. × tremuloides Michx.) and Arabidopsis (Arabidopsis thaliana (L.) Heynh), to decrease contents of the 4-O-methyl glucuronopyranose acid (mGlcA) substituent of xylan, to elucidate mGlcA's functions. The enzyme affected the content of aliphatic insoluble cell wall components having composition similar to suberin, which required mGlcA for binding to cell walls. Such suberin-like compounds have been previously identified in decayed wood, but here, we show their presence in healthy wood of both hardwood and softwood species. By contrast, γ-ester bonds between mGlcA and lignin were insensitive to cell wall-localized α-glucuronidase, supporting the intracellular formation of these bonds. These findings challenge the current view of the wood cell wall composition and reveal a novel function of mGlcA substituent of xylan in fastening of suberin-like compounds to cell wall. They also suggest an intracellular initiation of lignin-carbohydrate complex assembly.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Madhusree Mitra
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | | | - Xiaokun Liu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | | | - Félix R Barbut
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Ilka N Abreu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Evgeniy N Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - János Urbancsok
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Justin Powlowski
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
3
|
Begum RA, Messenger DJ, Fry SC. Making and breaking of boron bridges in the pectic domain rhamnogalacturonan-II at apoplastic pH in vivo and in vitro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1310-1329. [PMID: 36658763 PMCID: PMC10952590 DOI: 10.1111/tpj.16112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Cross-linking of the cell-wall pectin domain rhamnogalacturonan-II (RG-II) via boron bridges between apiose residues is essential for normal plant growth and development, but little is known about its mechanism or reversibility. We characterized the making and breaking of boron bridges in vivo and in vitro at 'apoplastic' pH. RG-II (13-26 μm) was incubated in living Rosa cell cultures and cell-free media with and without 1.2 mm H3 BO3 and cationic chaperones (Ca2+ , Pb2+ , polyhistidine, or arabinogalactan-protein oligopeptides). The cross-linking status of RG-II was monitored electrophoretically. Dimeric RG-II was stable at pH 2.0-7.0 in vivo and in vitro. In-vitro dimerization required a 'catalytic' cation at all pHs tested (1.75-7.0); thus, merely neutralizing the negative charge of RG-II (at pH 1.75) does not enable boron bridging. Pb2+ (20-2500 μm) was highly effective at pH 1.75-4.0, but not 4.75-7.0. Cationic peptides were effective at approximately 1-30 μm; higher concentrations caused less dimerization, probably because two RG-IIs then rarely bonded to the same peptide molecule. Peptides were ineffective at pH 1.75, their pH optimum being 2.5-4.75. d-Apiose (>40 mm) blocked RG-II dimerization in vitro, but did not cleave existing boron bridges. Rosa cells did not take up d-[U-14 C]apiose; therefore, exogenous apiose would block only apoplastic RG-II dimerization in vivo. In conclusion, apoplastic pH neither broke boron bridges nor prevented their formation. Thus boron-starved cells cannot salvage boron from RG-II, and 'acid growth' is not achieved by pH-dependent monomerization of RG-II. Divalent metals and cationic peptides catalyse RG-II dimerization via co-ordinate and ionic bonding respectively (possible and impossible, respectively, at pH 1.75). Exogenous apiose may be useful to distinguish intra- and extra-protoplasmic dimerization.
Collapse
Affiliation(s)
- Rifat Ara Begum
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant Sciences, The University of EdinburghDaniel Rutherford Building, The King's Buildings, Max Born CrescentEdinburghEH9 3BFUK
- Present address:
Department of Biochemistry and Molecular Biology, Faculty of Biological SciencesUniversity of DhakaCurzon HallDhaka1000Bangladesh
| | - David J. Messenger
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant Sciences, The University of EdinburghDaniel Rutherford Building, The King's Buildings, Max Born CrescentEdinburghEH9 3BFUK
- Present address:
Unilever U.K. Central Resources LimitedColworth Science ParkSharnbrookMK44 1LQUK
| | - Stephen C. Fry
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant Sciences, The University of EdinburghDaniel Rutherford Building, The King's Buildings, Max Born CrescentEdinburghEH9 3BFUK
| |
Collapse
|
4
|
Warner J, Pöhnl T, Steingass CB, Bogarín D, Carle R, Jiménez VM. Pectins, hemicellulose and lignocellulose profiles vary in leaves among different aromatic Vanilla species (Orchidaceae). CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
5
|
Nazipova A, Gorshkov O, Eneyskaya E, Petrova N, Kulminskaya A, Gorshkova T, Kozlova L. Forgotten Actors: Glycoside Hydrolases During Elongation Growth of Maize Primary Root. FRONTIERS IN PLANT SCIENCE 2022; 12:802424. [PMID: 35222452 PMCID: PMC8866823 DOI: 10.3389/fpls.2021.802424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Plant cell enlargement is coupled to dynamic changes in cell wall composition and properties. Such rearrangements are provided, besides the differential synthesis of individual cell wall components, by enzymes that modify polysaccharides in muro. To reveal enzymes that may contribute to these modifications and relate them to stages of elongation growth in grasses, we carried out a transcriptomic study of five zones of the primary maize root. In the initiation of elongation, significant changes occur with xyloglucan: once synthesized in the meristem, it can be linked to other polysaccharides through the action of hetero-specific xyloglucan endotransglycosidases, whose expression boosts at this stage. Later, genes for xyloglucan hydrolases are upregulated. Two different sets of enzymes capable of modifying glucuronoarabinoxylans, mainly bifunctional α-arabinofuranosidases/β-xylosidases and β-xylanases, are expressed in the maize root to treat the xylans of primary and secondary cell walls, respectively. The first set is highly pronounced in the stage of active elongation, while the second is at elongation termination. Genes encoding several glycoside hydrolases that are able to degrade mixed-linkage glucan are downregulated specifically at the active elongation. It indicates the significance of mixed-linkage glucans for the cell elongation process. The possibility that many glycoside hydrolases act as transglycosylases in muro is discussed.
Collapse
Affiliation(s)
- Alsu Nazipova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Elena Eneyskaya
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, Gatchina, Russia
| | - Natalia Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Anna Kulminskaya
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, Gatchina, Russia
- Kurchatov Genome Center - PNPI, Gatchina, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Liudmila Kozlova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
6
|
Hrmova M, Stratilová B, Stratilová E. Broad Specific Xyloglucan:Xyloglucosyl Transferases Are Formidable Players in the Re-Modelling of Plant Cell Wall Structures. Int J Mol Sci 2022; 23:ijms23031656. [PMID: 35163576 PMCID: PMC8836008 DOI: 10.3390/ijms23031656] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Plant xyloglucan:xyloglucosyl transferases, known as xyloglucan endo-transglycosylases (XETs) are the key players that underlie plant cell wall dynamics and mechanics. These fundamental roles are central for the assembly and modifications of cell walls during embryogenesis, vegetative and reproductive growth, and adaptations to living environments under biotic and abiotic (environmental) stresses. XET enzymes (EC 2.4.1.207) have the β-sandwich architecture and the β-jelly-roll topology, and are classified in the glycoside hydrolase family 16 based on their evolutionary history. XET enzymes catalyse transglycosylation reactions with xyloglucan (XG)-derived and other than XG-derived donors and acceptors, and this poly-specificity originates from the structural plasticity and evolutionary diversification that has evolved through expansion and duplication. In phyletic groups, XETs form the gene families that are differentially expressed in organs and tissues in time- and space-dependent manners, and in response to environmental conditions. Here, we examine higher plant XET enzymes and dissect how their exclusively carbohydrate-linked transglycosylation catalytic function inter-connects complex plant cell wall components. Further, we discuss progress in technologies that advance the knowledge of plant cell walls and how this knowledge defines the roles of XETs. We construe that the broad specificity of the plant XETs underscores their roles in continuous cell wall restructuring and re-modelling.
Collapse
Affiliation(s)
- Maria Hrmova
- Jiangsu Collaborative Innovation Centre for Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
- Correspondence: ; Tel.: +61-8-8313-0775
| | - Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia; (B.S.); (E.S.)
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, SK-84215 Bratislava, Slovakia
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia; (B.S.); (E.S.)
| |
Collapse
|
7
|
Franková L, Fry SC. Hemicellulose-remodelling transglycanase activities from charophytes: towards the evolution of the land-plant cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:7-28. [PMID: 34547150 DOI: 10.1111/tpj.15500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Transglycanases remodel cell-wall polymers, having a critical impact on many physiological processes. Unlike xyloglucan endotransglucosylase (XET) activity, widely studied in land plants, very little is known about charophyte wall-modifying enzymes - information that would promote our understanding of the 'primordial' wall, revealing how the wall matrix is remodelled in the closest living algal relatives of land plants, and what changed during terrestrialisation. We conducted various in-vitro assays for wall-remodelling transglycosylases, monitoring either (a) polysaccharide-to-[3 H]oligosaccharide transglycosylation or (b) non-radioactive oligosaccharide-to-oligosaccharide transglycosylation. We screened a wide collection of enzyme extracts from charophytes (and early-diverging land plants for comparison) and discovered several homo- and hetero-transglycanase activities. In contrast to most land plants, charophytes possess high trans-β-1,4-mannanase activity, suggesting that land plants' algal ancestors prioritised mannan remodelling. Trans-β-1,4-xylanase activity was also found, most abundantly in Chara, Nitella and Klebsormidium. Exo-acting transglycosidase activities (trans-β-1,4-xylosidase and trans-β-1,4-mannosidase) were also detected. In addition, charophytes exhibited homo- and hetero-trans-β-glucanase activities (XET, mixed-linkage glucan [MLG]:xyloglucan endotransglucosylase and cellulose:xyloglucan endotransglucosylase) despite the paucity or lack of land-plant-like xyloglucan and MLG as potential donor substrates in their cell walls. However, trans-α-xylosidase activity (which remodels xyloglucan in angiosperms) was absent in charophytes and early-diverging land plants. Transglycanase action was also found in situ, acting on endogenous algal polysaccharides as donor substrates and fluorescent xyloglucan oligosaccharides as acceptor substrates. We conclude that trans-β-mannanase and trans-β-xylanase activities are present and thus may play key roles in charophyte walls (most of which possess little or no xyloglucan and MLG, but often contain abundant β-mannans and β-xylans), comparable to the roles of XET in xyloglucan-rich land plants.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
8
|
Saha P, Lin F, Thibivilliers S, Xiong Y, Pan C, Bartley LE. Phenylpropanoid Biosynthesis Gene Expression Precedes Lignin Accumulation During Shoot Development in Lowland and Upland Switchgrass Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:640930. [PMID: 34434200 PMCID: PMC8380989 DOI: 10.3389/fpls.2021.640930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Efficient conversion of lignocellulosic biomass into biofuels is influenced by biomass composition and structure. Lignin and other cell wall phenylpropanoids, such as para-coumaric acid (pCA) and ferulic acid (FA), reduce cell wall sugar accessibility and hamper biochemical fuel production. Toward identifying the timing and key parameters of cell wall recalcitrance across different switchgrass genotypes, this study measured cell wall composition and lignin biosynthesis gene expression in three switchgrass genotypes, A4 and AP13, representing the lowland ecotype, and VS16, representing the upland ecotype, at three developmental stages [Vegetative 3 (V3), Elongation 4 (E4), and Reproductive 3 (R3)] and three segments (S1-S3) of the E4 stage under greenhouse conditions. A decrease in cell wall digestibility and an increase in phenylpropanoids occur across development. Compared with AP13 and A4, VS16 has significantly less lignin and greater cell wall digestibility at the V3 and E4 stages; however, differences among genotypes diminish by the R3 stage. Gini correlation analysis across all genotypes revealed that lignin and pCA, but also pectin monosaccharide components, show the greatest negative correlations with digestibility. Lignin and pCA accumulation is delayed compared with expression of phenylpropanoid biosynthesis genes, while FA accumulation coincides with expression of these genes. The different cell wall component accumulation profiles and gene expression correlations may have implications for system biology approaches to identify additional gene products with cell wall component synthesis and regulation functions.
Collapse
Affiliation(s)
- Prasenjit Saha
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Fan Lin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Sandra Thibivilliers
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- School of Computer Science, University of Oklahoma, Norman, OK, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Research Institute for the Sustainable Humanosphere, Kyoto University, Kyoto, Japan
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Xin A, Fry SC. Cutin:xyloglucan transacylase (CXT) activity covalently links cutin to a plant cell-wall polysaccharide. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153446. [PMID: 34051591 DOI: 10.1016/j.jplph.2021.153446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 05/26/2023]
Abstract
The shoot epidermal cell wall in land-plants is associated with a polyester, cutin, which controls water loss and possibly organ expansion. Covalent bonds between cutin and its neighbouring cell-wall polysaccharides have long been proposed. However, the lack of biochemical evidence makes cutin-polysaccharide linkages largely conjectural. Here we optimised a portfolio of radiochemical assays to look for cutin-polysaccharide ester bonds in the epidermis of pea epicotyls, ice-plant leaves and tomato fruits, based on the hypothesis that a transacylase remodels cutin in a similar fashion to cutin synthase and cutin:cutin transacylase activities. Through in-situ enzyme assays and chemical degradations coupled with chromatographic analysis of the 3H-labelled products, we observed that among several wall-related oligosaccharides tested, only a xyloglucan oligosaccharide ([3H]XXXGol) could acquire ester-bonds from endogenous cutin, suggesting a cutin:xyloglucan transacylase (CXT). CXT activity was heat-labile, time-dependent, and maximal at near-neutral pH values. In-situ CXT activity peaked in nearly fully expanded tomato fruits and ice-plant leaves. CXT activity positively correlated with organ growth rate, suggesting that it contributes to epidermal integrity during rapid expansion. This study uncovers hitherto unappreciated re-structuring processes in the plant epidermis and provides a step towards the identification of CXT and its engineering for biotechnological applications.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
10
|
Ancient origin of fucosylated xyloglucan in charophycean green algae. Commun Biol 2021; 4:754. [PMID: 34140625 PMCID: PMC8211770 DOI: 10.1038/s42003-021-02277-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
The charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.
Collapse
|
11
|
Herburger K, Franková L, Pičmanová M, Xin A, Meulewaeter F, Hudson A, Fry SC. Defining natural factors that stimulate and inhibit cellulose:xyloglucan hetero-transglucosylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1549-1565. [PMID: 33314395 PMCID: PMC8611796 DOI: 10.1111/tpj.15131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Certain transglucanases can covalently graft cellulose and mixed-linkage β-glucan (MLG) as donor substrates onto xyloglucan as acceptor substrate and thus exhibit cellulose:xyloglucan endotransglucosylase (CXE) and MLG:xyloglucan endotransglucosylase (MXE) activities in vivo and in vitro. However, missing information on factors that stimulate or inhibit these hetero-transglucosylation reactions limits our insight into their biological functions. To explore factors that influence hetero-transglucosylation, we studied Equisetum fluviatile hetero-trans-β-glucanase (EfHTG), which exhibits both CXE and MXE activity, exceeding its xyloglucan:xyloglucan homo-transglucosylation (XET) activity. Enzyme assays employed radiolabelled and fluorescently labelled oligomeric acceptor substrates, and were conducted in vitro and in cell walls (in situ). With whole denatured Equisetum cell walls as donor substrate, exogenous EfHTG (extracted from Equisetum or produced in Pichia) exhibited all three activities (CXE, MXE, XET) in competition with each other. Acting on pure cellulose as donor substrate, the CXE action of Pichia-produced EfHTG was up to approximately 300% increased by addition of methanol-boiled Equisetum extracts; there was no similar effect when the same enzyme acted on soluble donors (MLG or xyloglucan). The methanol-stable factor is proposed to be expansin-like, a suggestion supported by observations of pH dependence. Screening numerous low-molecular-weight compounds for hetero-transglucanase inhibition showed that cellobiose was highly effective, inhibiting the abundant endogenous CXE and MXE (but not XET) action in Equisetum internodes. Furthermore, cellobiose retarded Equisetum stem elongation, potentially owing to its effect on hetero-transglucosylation reactions. This work provides insight and tools to further study the role of cellulose hetero-transglucosylation in planta by identifying factors that govern this reaction.
Collapse
Affiliation(s)
- Klaus Herburger
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Present address:
Section for Plant GlycobiologyDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg1871Denmark
| | - Lenka Franková
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| | - Martina Pičmanová
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| | - Anzhou Xin
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| | - Frank Meulewaeter
- BBCC Innovation Center Gent – Trait ResearchBASFGent (Zwijnaarde)9052Belgium
| | - Andrew Hudson
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| | - Stephen C. Fry
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
12
|
Stratilová B, Kozmon S, Stratilová E, Hrmova M. Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant. Molecules 2020; 25:E5619. [PMID: 33260399 PMCID: PMC7729885 DOI: 10.3390/molecules25235619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plant xyloglucan xyloglucosyl transferases or xyloglucan endo-transglycosylases (XET; EC 2.4.1.207) catalogued in the glycoside hydrolase family 16 constitute cell wall-modifying enzymes that play a fundamental role in the cell wall expansion and re-modelling. Over the past thirty years, it has been established that XET enzymes catalyse homo-transglycosylation reactions with xyloglucan (XG)-derived substrates and hetero-transglycosylation reactions with neutral and charged donor and acceptor substrates other than XG-derived. This broad specificity in XET isoforms is credited to a high degree of structural and catalytic plasticity that has evolved ubiquitously in algal, moss, fern, basic Angiosperm, monocot, and eudicot enzymes. These XET isoforms constitute gene families that are differentially expressed in tissues in time- and space-dependent manners during plant growth and development, and in response to biotic and abiotic stresses. Here, we discuss the current state of knowledge of broad specific plant XET enzymes and how their inherently carbohydrate-based transglycosylation reactions tightly link with structural diversity that underlies the complexity of plant cell walls and their mechanics. Based on this knowledge, we conclude that multi- or poly-specific XET enzymes are widespread in plants to allow for modifications of the cell wall structure in muro, a feature that implements the multifaceted roles in plant cells.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Maria Hrmova
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
13
|
Herburger K, Franková L, Sanhueza D, Roig-Sanchez S, Meulewaeter F, Hudson A, Thomson A, Laromaine A, Budtova T, Fry SC. Enzymically attaching oligosaccharide-linked 'cargoes' to cellulose and other commercial polysaccharides via stable covalent bonds. Int J Biol Macromol 2020; 164:4359-4369. [PMID: 32918959 DOI: 10.1016/j.ijbiomac.2020.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
The Equisetum enzyme hetero-trans-β-glucanase (HTG) covalently grafts native plant cellulose (donor-substrate) to xyloglucan (acceptor-substrate), potentially offering a novel 'green' method of cellulose functionalisation. However, the range of cellulosic and non-cellulosic donor substrates that can be utilised by HTG is unknown, limiting our insight into its biotechnological potential. Here we show that HTG binds all celluloses tested (papers, tissues, hydrogels, bacterial cellulose) to radioactively- or fluorescently-labelled xyloglucan-heptasaccharide (XXXGol; acceptor-substrate). Glycol-chitin, glycol-chitosan and chitosan also acted as donor substrates but less effectively than cellulose. Cellulose-XXXGol conjugates were formed throughout the volume of a block of hydrogel, demonstrating penetration. Plant-derived celluloses (cellulose Iβ) became more effective donor-substrates after 'mercerisation' in ≥3 M NaOH; the opposite was true for bacterial cellulose Iα. Cellulose-XXXGol bonds resisted boiling 6 M NaOH, demonstrating strong glycosidic bonding. In conclusion, HTG stably grafts native and processed celluloses to xyloglucan-oligosaccharides, which may carry valuable 'cargoes', exemplified by sulphorhodamine. We thus demonstrate HTG's biotechnological potential to modify various cellulose-based substrates such as textiles, pulps, papers, packaging, sanitary products and hydrogels.
Collapse
Affiliation(s)
- Klaus Herburger
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Dayan Sanhueza
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Soledad Roig-Sanchez
- Institut de Ciència de Materials de Barcelona (ICMAB), Campus UAB, Bellaterra, Catalonia E-08193, Spain
| | - Frank Meulewaeter
- BASF, BBCC Innovation Center Gent - Trait Research, 9052 Gent (Zwijnaarde), Belgium
| | - Andrew Hudson
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Axel Thomson
- Edinburgh Innovations, The University of Edinburgh, Murchison House, King's Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona (ICMAB), Campus UAB, Bellaterra, Catalonia E-08193, Spain
| | - Tatiana Budtova
- MINES ParisTech, PSL Research University, CEMEF - Center for Materials Forming, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
14
|
Tu B, Zhang T, Wang Y, Hu L, Li J, Zheng L, Zhou Y, Li J, Xue F, Zhu X, Yuan H, Chen W, Qin P, Ma B, Li S. Membrane-associated xylanase-like protein OsXYN1 is required for normal cell wall deposition and plant development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4797-4811. [PMID: 32337581 DOI: 10.1093/jxb/eraa200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/22/2020] [Indexed: 05/22/2023]
Abstract
The rice (Oryza sativa) genome encodes 37 putative β-1,4-xylanase proteins, but none of them has been characterized at the genetic level. In this work, we report the isolation of slim stem (ss) mutants with pleiotropic defects, including dwarfism, leaf tip necrosis, and withered and rolled leaves under strong sunlight. Map-based cloning of the ss1 mutant identified the candidate gene as OsXyn1 (LOC_03g47010), which encodes a xylanase-like protein belonging to the glycoside hydrolase 10 (GH10) family. OsXyn1 was found to be widely expressed, especially in young tissues. Subcellular localization analysis showed that OsXyn1 encodes a membrane-associated protein. Physiological analysis of ss1 and the allelic ss2 mutant revealed that water uptake was partially compromised in these mutants. Consistently, the plant cell wall of the mutants exhibited middle lamella abnormalities or deficiencies. Immunogold assays revealed an unconfined distribution of xylan in the mutant cell walls, which may have contributed to a slower rate of plant cell wall biosynthesis and delayed plant growth. Additionally, water deficiency caused abscisic acid accumulation and triggered drought responses in the mutants. The findings that OsXyn1 is involved in plant cell wall deposition and the regulation of plant growth and development help to shed light on the functions of the rice GH10 family.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Tao Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Yuping Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Li Hu
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Jin Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Ling Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
- Hybrid Rice Research Center, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan, China
| | - Yi Zhou
- Collage of Life Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Jialian Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Fengyin Xue
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu Wenjiang, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| |
Collapse
|
15
|
Holland C, Simmons TJ, Meulewaeter F, Hudson A, Fry SC. Three highly acidic Equisetum XTHs differ from hetero-trans-β-glucanase in donor substrate specificity and are predominantly xyloglucan homo-transglucosylases. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153210. [PMID: 32544741 DOI: 10.1016/j.jplph.2020.153210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 05/27/2023]
Abstract
Transglycanases are enzymes that remodel the primary cell wall in plants, potentially loosening and/or strengthening it. Xyloglucan endotransglucosylase (XET; EC 2.4.1.207), ubiquitous in land plants, is a homo-transglucanase activity (donor, xyloglucan; acceptor, xyloglucan) exhibited by XTH (xyloglucan endotransglucosylase/hydrolase) proteins. By contrast, hetero-trans-β-glucanase (HTG) is the only known enzyme that is preferentially a hetero-transglucanase. Its two main hetero-transglucanase activities are MLG : xyloglucan endotransglucosylase (MXE) and cellulose : xyloglucan endotransglucosylase (CXE). HTG is highly acidic and found only in the evolutionarily isolated genus of fern-allies, Equisetum. We now report genes for three new highly acidic HTG-related XTHs in E. fluviatile (EfXTH-A, EfXTH-H and EfXTH-I). We expressed them heterologously in Pichia and tested the encoded proteins' enzymic activities to determine whether their acidity and/or their Equisetum-specific sequences might confer high hetero-transglucanase activity. Untransformed Pichia was found to secrete MLG-degrading enzyme(s), which had to be removed for reliable MXE assays. All three acidic EfXTHs exhibited very predominantly XET activity, although low but measurable hetero-transglucanase activities (MXE and CXE) were also detected in EfXTH-H and EfXTH-I. We conclude that the extremely high hetero-transglucanase activities of Equisetum HTG are not emulated by similarly acidic Equisetum XTHs that share up to 55.5% sequence identity with HTG.
Collapse
Affiliation(s)
- Claire Holland
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Frank Meulewaeter
- BASF Innovation Center Gent- Trait Research, Technologiepark-Zwijnaarde, 9052 Gent, Belgium
| | - Andrew Hudson
- Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
16
|
Herburger K, Franková L, Pičmanová M, Loh JW, Valenzuela-Ortega M, Meulewaeter F, Hudson AD, French CE, Fry SC. Hetero-trans-β-Glucanase Produces Cellulose-Xyloglucan Covalent Bonds in the Cell Walls of Structural Plant Tissues and Is Stimulated by Expansin. MOLECULAR PLANT 2020; 13:1047-1062. [PMID: 32376294 PMCID: PMC7339142 DOI: 10.1016/j.molp.2020.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 05/19/2023]
Abstract
Current cell-wall models assume no covalent bonding between cellulose and hemicelluloses such as xyloglucan or mixed-linkage β-d-glucan (MLG). However, Equisetum hetero-trans-β-glucanase (HTG) grafts cellulose onto xyloglucan oligosaccharides (XGOs) - and, we now show, xyloglucan polysaccharide - in vitro, thus exhibiting CXE (cellulose:xyloglucan endotransglucosylase) activity. In addition, HTG also catalyzes MLG-to-XGO bonding (MXE activity). In this study, we explored the CXE action of HTG in native plant cell walls and tested whether expansin exposes cellulose to HTG by disrupting hydrogen bonds. To quantify and visualize CXE and MXE action, we assayed the sequential release of HTG products from cell walls pre-labeled with substrate mimics. We demonstrated covalent cellulose-xyloglucan bonding in plant cell walls and showed that CXE and MXE action was up to 15% and 60% of total transglucanase action, respectively, and peaked in aging, strengthening tissues: CXE in xylem and cells bordering intercellular canals and MXE in sclerenchyma. Recombinant bacterial expansin (EXLX1) strongly augmented CXE activity in vitro. CXE and MXE action in living Equisetum structural tissues potentially strengthens stems, while expansin might augment the HTG-catalyzed CXE reaction, thereby allowing efficient CXE action in muro. Our methods will enable surveys for comparable reactions throughout the plant kingdom. Furthermore, engineering similar hetero-polymer formation into angiosperm crop plants may improve certain agronomic traits such as lodging tolerance.
Collapse
Affiliation(s)
- Klaus Herburger
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Martina Pičmanová
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Jia Wooi Loh
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcos Valenzuela-Ortega
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Frank Meulewaeter
- BASF, BBCC Innovation Center Gent - Trait Research, 9052 Gent (Zwijnaarde), Belgium
| | - Andrew D Hudson
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Christopher E French
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, Zhejiang University, Haining, Zhejiang 314400, China
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
17
|
Holland C, Ryden P, Edwards CH, Grundy MML. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods 2020; 9:E201. [PMID: 32079083 PMCID: PMC7074226 DOI: 10.3390/foods9020201] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described.
Collapse
Affiliation(s)
- Claire Holland
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| | - Peter Ryden
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Myriam M.-L. Grundy
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| |
Collapse
|
18
|
Abstract
Transglycanases (endotransglycosylases) are enzymes that "cut and paste" polysaccharide chains. Several transglycanase activities have been discovered which can cut (i.e., use as donor substrate) each of the major hemicelluloses [xyloglucan, mannans, xylans, and mixed-linkage β-glucan (MLG)], and, as a recent addition, cellulose. These enzymes may play interesting roles in adjusting the wall's physical properties, influencing cell expansion, stem strengthening, and fruit softening.Activities discussed include the homotransglycanases XET (xyloglucan endotransglucosylase, i.e., xyloglucan-xyloglucan endotransglycosylase), trans-β-mannanase (mannan -mannan endotransglycosylase), and trans-β-xylanase (xylan -xylan endotransglucosylase), plus the heterotransglycanases MXE (MLG -xyloglucan endotransglucosylase) and CXE (cellulose -xyloglucan endotransglucosylase).Transglycanases acting on polysaccharide donor substrates can utilize small, labeled oligosaccharides as acceptor substrates, generating easily recognizable polymeric labeled products. We present methods for extracting transglycanases from plant tissues and assaying them in vitro, either quantitatively in solution assays or by high-throughput dot-blot screens. Both radioactively and fluorescently labeled substrates are mentioned. A general procedure (glass-fiber blotting) is illustrated by which proposed novel transglycanase activities can be tested for.In addition, we describe strategies for detecting transglycanase action in vivo. These methods enable the quantification of, separately, XET and MXE action in Equisetum stems. Related methods enable the tissue distribution of transglycanase action to be visualized cytologically.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Dewhirst RA, Fry SC. Oxalyltransferase, a plant cell-wall acyltransferase activity, transfers oxalate groups from ascorbate metabolites to carbohydrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:743-757. [PMID: 29882267 PMCID: PMC6099474 DOI: 10.1111/tpj.13984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 05/07/2023]
Abstract
In the plant apoplast, ascorbate is oxidised, via dehydroascorbic acid, to O-oxalyl esters [oxalyl-l-threonate (OxT) and cyclic oxalyl-l-threonate (cOxT)]. We tested whether OxT and cOxT can donate the oxalyl group in transacylation reactions to form oxalyl-polysaccharides, potentially modifying the cell wall. [oxalyl-14 C]OxT was incubated with living spinach (Spinacia oleracea) and Arabidopsis cell-suspension cultures in the presence or absence of proposed acceptor substrates (carbohydrates). In addition, [14 C]OxT and [14 C]cOxT were incubated in vitro with cell-wall enzyme preparations plus proposed acceptor substrates. Radioactive products were monitored electrophoretically. Oxalyltransferase activity was detected. Living cells incorporated oxalate groups from OxT into cell-wall polymers via ester bonds. When sugars were added, [14 C]oxalyl-sugars were formed, in competition with OxT hydrolysis. Preferred acceptor substrates were carbohydrates possessing primary alcohols e.g. glucose. A model transacylation product, [14 C]oxalyl-glucose, was relatively stable in vivo (half-life >24 h), whereas [14 C]OxT underwent rapid turnover (half-life ~6 h). Ionically wall-bound enzymes catalysed similar transacylation reactions in vitro with OxT or cOxT as oxalyl donor substrates and any of a range of sugars or hemicelluloses as acceptor substrates. Glucosamine was O-oxalylated, not N-oxalylated. We conclude that plants possess apoplastic acyltransferase (oxalyltransferase) activity that transfers oxalyl groups from ascorbate catabolites to carbohydrates, forming relatively long-lived O-oxalyl-carbohydrates. The findings increase the range of known metabolites whose accumulation in vivo indicates vitamin C catabolism. Possible signalling roles of the resulting oxalyl-sugars can now be investigated, as can the potential ability of polysaccharide oxalylation to modify the wall's physical properties.
Collapse
Affiliation(s)
- Rebecca A. Dewhirst
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Present address:
wildFIRE labHatherly LaboratoriesPrince of Wales RoadUniversity of ExeterExeterUK
| | - Stephen C. Fry
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
20
|
Herburger K, Ryan LM, Popper ZA, Holzinger A. Localisation and substrate specificities of transglycanases in charophyte algae relate to development and morphology. J Cell Sci 2018; 131:jcs203208. [PMID: 28827406 PMCID: PMC5722204 DOI: 10.1242/jcs.203208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
Cell wall-modifying enzymes have been previously investigated in charophyte green algae (CGA) in cultures of uniform age, giving limited insight into their roles. Therefore, we investigated the in situ localisation and specificity of enzymes acting on hemicelluloses in CGA genera of different morphologies and developmental stages. In vivo transglycosylation between xyloglucan and an endogenous donor in filamentous Klebsormidium and Zygnema was observed in longitudinal cell walls of young (1 month) but not old cells (1 year), suggesting that it has a role in cell growth. By contrast, in parenchymatous Chara, transglycanase action occurred in all cell planes. In Klebsormidium and Zygnema, the location of enzyme action mainly occurred in regions where xyloglucans and mannans, and to a lesser extent mixed-linkage β-glucan (MLG), were present, indicating predominantly xyloglucan:xyloglucan endotransglucosylase (XET) activity. Novel transglycosylation activities between xyloglucan and xylan, and xyloglucan and galactomannan were identified in vitro in both genera. Our results show that several cell wall-modifying enzymes are present in CGA, and that differences in morphology and cell age are related to enzyme localisation and specificity. This indicates an evolutionary significance of cell wall modifications, as similar changes are known in their immediate descendants, the land plants. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Klaus Herburger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 16, 6020 Innsbruck, Austria
| | - Louise M Ryan
- Botany and Plant Science and Ryan Institute for Environmental, Marine, and Energy Research, School of Natural Sciences, National University of Ireland, Galway, University Road, H91 TK33 Galway, Ireland
| | - Zoë A Popper
- Botany and Plant Science and Ryan Institute for Environmental, Marine, and Energy Research, School of Natural Sciences, National University of Ireland, Galway, University Road, H91 TK33 Galway, Ireland
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 16, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Wan JX, Zhu XF, Wang YQ, Liu LY, Zhang BC, Li GX, Zhou YH, Zheng SJ. Xyloglucan Fucosylation Modulates Arabidopsis Cell Wall Hemicellulose Aluminium binding Capacity. Sci Rep 2018; 8:428. [PMID: 29323145 PMCID: PMC5765015 DOI: 10.1038/s41598-017-18711-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/16/2017] [Indexed: 01/08/2023] Open
Abstract
Although xyloglucan (XyG) is reported to bind Aluminium (Al), the influence of XyG fucosylation on the cell wall Al binding capacity and plant Al stress responses is unclear. We show that Arabidopsis T-DNA insertion mutants with reduced AXY3 (XYLOSIDASE1) function and consequent reduced levels of fucosylated XyG are more sensitive to Al than wild-type Col-0 (WT). In contrast, T-DNA insertion mutants with reduced AXY8 (FUC95A) function and consequent increased levels of fucosylated XyG are more Al resistant. AXY3 transcript levels are strongly down regulated in response to 30 min Al treatment, whilst AXY8 transcript levels also repressed until 6 h following treatment onset. Mutants lacking AXY3 or AXY8 function exhibit opposing effects on Al contents of root cell wall and cell wall hemicellulose components. However, there was no difference in the amount of Al retained in the pectin components between mutants and WT. Finally, whilst the total sugar content of the hemicellulose fraction did not change, the altered hemicellulose Al content of the mutants is shown to be a likely consequence of their different XyG fucosylation levels. We conclude that variation in XyG fucosylation levels influences the Al sensitivity of Arabidopsis by affecting the Al-binding capacity of hemicellulose.
Collapse
Affiliation(s)
- Jiang-Xue Wan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yu-Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin-Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gui-Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shao-Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Barnes WJ, Anderson CT. Release, Recycle, Rebuild: Cell-Wall Remodeling, Autodegradation, and Sugar Salvage for New Wall Biosynthesis during Plant Development. MOLECULAR PLANT 2018; 11:31-46. [PMID: 28859907 DOI: 10.1016/j.molp.2017.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 05/20/2023]
Abstract
Plant cell walls contain elaborate polysaccharide networks and regulate plant growth, development, mechanics, cell-cell communication and adhesion, and defense. Despite conferring rigidity to support plant structures, the cell wall is a dynamic extracellular matrix that is modified, reorganized, and degraded to tightly control its properties during growth and development. Far from being a terminal carbon sink, many wall polymers can be degraded and recycled by plant cells, either via direct re-incorporation by transglycosylation or via internalization and metabolic salvage of wall-derived sugars to produce new precursors for wall synthesis. However, the physiological and metabolic contributions of wall recycling to plant growth and development are largely undefined. In this review, we discuss long-standing and recent evidence supporting the occurrence of cell-wall recycling in plants, make predictions regarding the developmental processes to which wall recycling might contribute, and identify outstanding questions and emerging experimental tools that might be used to address these questions and enhance our understanding of this poorly characterized aspect of wall dynamics and metabolism.
Collapse
Affiliation(s)
- William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
23
|
Hassan AS, Houston K, Lahnstein J, Shirley N, Schwerdt JG, Gidley MJ, Waugh R, Little A, Burton RA. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain. PLoS One 2017; 12:e0182537. [PMID: 28771585 PMCID: PMC5542645 DOI: 10.1371/journal.pone.0182537] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain.
Collapse
Affiliation(s)
- Ali Saleh Hassan
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Jelle Lahnstein
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Neil Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Julian G. Schwerdt
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Michael J. Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Invergowrie, Dundee, Scotland
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Rachel A. Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- * E-mail:
| |
Collapse
|
24
|
Simmons TJ, Fry SC. Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase. Biochem J 2017; 474:1055-1070. [PMID: 28108640 PMCID: PMC5341106 DOI: 10.1042/bcj20160935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022]
Abstract
Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood - details that would promote understanding of MXE's role in vivo and enable its full technological exploitation. We investigated HTG's site of attack on one of its donor substrates, mixed-linkage (1→3),(1→4)-β-d-glucan (MLG), with radioactive oligosaccharides of xyloglucan as the acceptor substrate. Comparing three different MLG preparations, we showed that the enzyme favours those with a high content of cellotetraose blocks. The reaction products were analysed by enzymic digestion, thin-layer chromatography (TLC), high-pressure liquid chromatography (HPLC) and gel-permeation chromatography (GPC). Equisetum HTG consistently cleaved the MLG at the third consecutive β-(1→4)-bond following (towards the reducing terminus) a β-(1→3)-bond. It then formed a β-(1→4)-bond between the MLG and the non-reducing terminal glucose residue of the xyloglucan oligosaccharide, consistent with its xyloglucan endotransglucosylase/hydrolase subfamily membership. Using size-homogeneous barley MLG as the donor substrate, we showed that HTG does not favour any particular region of the MLG chain relative to the polysaccharide's reducing and non-reducing termini; rather, it selects its target cellotetraosyl unit stochastically along the MLG molecule. This work improves our understanding of how enzymes can exhibit promiscuous substrate specificities and provides the foundations to explore strategies for engineering novel substrate specificities into transglycanases.
Collapse
Affiliation(s)
- Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K.
| |
Collapse
|
25
|
Airianah OB, Vreeburg RAM, Fry SC. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method. ANNALS OF BOTANY 2016; 117:441-55. [PMID: 26865506 PMCID: PMC4765547 DOI: 10.1093/aob/mcv192] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. METHODS We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. KEY RESULTS Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. CONCLUSIONS GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides is thus predominantly a feature of ovary-wall tissue.
Collapse
Affiliation(s)
- Othman B Airianah
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Robert A M Vreeburg
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
26
|
Chormova D, Fry SC. Boron bridging of rhamnogalacturonan-II is promoted in vitro by cationic chaperones, including polyhistidine and wall glycoproteins. THE NEW PHYTOLOGIST 2016; 209:241-51. [PMID: 26301520 PMCID: PMC4973674 DOI: 10.1111/nph.13596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 05/02/2023]
Abstract
Dimerization of rhamnogalacturonan-II (RG-II) via boron cross-links contributes to the assembly and biophysical properties of the cell wall. Pure RG-II is efficiently dimerized by boric acid (B(OH)3 ) in vitro only if nonbiological agents for example Pb(2+) are added. By contrast, newly synthesized RG-II domains dimerize very rapidly in vivo. We investigated biological agents that might enable this. We tested for three such agents: novel enzymes, borate-transferring ligands and cationic 'chaperones' that facilitate the close approach of two polyanionic RG-II molecules. Dimerization was monitored electrophoretically. Parsley shoot cell-wall enzymes did not affect RG-II dimerization in vitro. Borate-binding ligands (apiose, dehydroascorbic acid, alditols) and small organic cations (including polyamines) also lacked consistent effects. Polylysine bound permanently to RG-II, precluding electrophoretic analysis. However, another polycation, polyhistidine, strongly promoted RG-II dimerization by B(OH)3 without irreversible polyhistidine-RG-II complexation. Likewise, partially purified spinach extensins (histidine/lysine-rich cationic glycoproteins), strongly promoted RG-II dimerization by B(OH)3 in vitro. Thus certain polycations, including polyhistidine and wall glycoproteins, can chaperone RG-II, manoeuvring this polyanionic polysaccharide domain such that boron-bridging is favoured. These chaperones dissociate from RG-II after facilitating its dimerization, indicating that they act catalytically rather than stoichiometrically. We propose a natural role for extensin-RG-II interaction in steering cell-wall assembly.
Collapse
Affiliation(s)
- Dimitra Chormova
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghThe King's BuildingsMayfield RoadEdinburghEH9 3JHUK
| | - Stephen C. Fry
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghThe King's BuildingsMayfield RoadEdinburghEH9 3JHUK
| |
Collapse
|
27
|
Simmons TJ, Mohler KE, Holland C, Goubet F, Franková L, Houston DR, Hudson AD, Meulewaeter F, Fry SC. Hetero-trans-β-glucanase, an enzyme unique to Equisetum plants, functionalizes cellulose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:753-69. [PMID: 26185964 PMCID: PMC4950035 DOI: 10.1111/tpj.12935] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/12/2015] [Accepted: 06/24/2015] [Indexed: 05/18/2023]
Abstract
Cell walls are metabolically active components of plant cells. They contain diverse enzymes, including transglycanases (endotransglycosylases), enzymes that 'cut and paste' certain structural polysaccharide molecules and thus potentially remodel the wall during growth and development. Known transglycanase activities modify several cell-wall polysaccharides (xyloglucan, mannans, mixed-linkage β-glucan and xylans); however, no transglycanases were known to act on cellulose, the principal polysaccharide of biomass. We now report the discovery and characterization of hetero-trans-β-glucanase (HTG), a transglycanase that targets cellulose, in horsetails (Equisetum spp., an early-diverging genus of monilophytes). HTG is also remarkable in predominantly catalysing hetero-transglycosylation: its preferred donor substrates (cellulose or mixed-linkage β-glucan) differ qualitatively from its acceptor substrate (xyloglucan). HTG thus generates stable cellulose-xyloglucan and mixed-linkage β-glucan-xyloglucan covalent bonds, and may therefore strengthen ageing Equisetum tissues by inter-linking different structural polysaccharides of the cell wall. 3D modelling suggests that only three key amino acid substitutions (Trp → Pro, Gly → Ser and Arg → Leu) are responsible for the evolution of HTG's unique specificity from the better-known xyloglucan-acting homo-transglycanases (xyloglucan endotransglucosylase/hydrolases; XTH). Among land plants, HTG appears to be confined to Equisetum, but its target polysaccharides are widespread, potentially offering opportunities for enhancing crop mechanical properties, such as wind resistance. In addition, by linking cellulose to xyloglucan fragments previously tagged with compounds such as dyes or indicators, HTG may be useful biotechnologically for manufacturing stably functionalized celluloses, thereby potentially offering a commercially valuable 'green' technology for industrially manipulating biomass.
Collapse
Affiliation(s)
- Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Kyle E Mohler
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Claire Holland
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Florence Goubet
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Gent, Belgium
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Douglas R Houston
- Institute of Structural and Molecular Biology, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | - Andrew D Hudson
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Frank Meulewaeter
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Gent, Belgium
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
28
|
Chormova D, Franková L, Defries A, Cutler SR, Fry SC. Discovery of small molecule inhibitors of xyloglucan endotransglucosylase (XET) activity by high-throughput screening. PHYTOCHEMISTRY 2015; 117:220-236. [PMID: 26093490 PMCID: PMC4560162 DOI: 10.1016/j.phytochem.2015.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 05/23/2023]
Abstract
Small molecules (xenobiotics) that inhibit cell-wall-localised enzymes are valuable for elucidating the enzymes' biological roles. We applied a high-throughput fluorescent dot-blot screen to search for inhibitors of Petroselinum xyloglucan endotransglucosylase (XET) activity in vitro. Of 4216 xenobiotics tested, with cellulose-bound xyloglucan as donor-substrate, 18 inhibited XET activity and 18 promoted it (especially anthraquinones and flavonoids). No compounds promoted XET in quantitative assays with (cellulose-free) soluble xyloglucan as substrate, suggesting that promotion was dependent on enzyme-cellulose interactions. With cellulose-free xyloglucan as substrate, we found 22 XET-inhibitors - especially compounds that generate singlet oxygen ((1)O2) e.g., riboflavin (IC50 29 μM), retinoic acid, eosin (IC50 27 μM) and erythrosin (IC50 36 μM). The riboflavin effect was light-dependent, supporting (1)O2 involvement. Other inhibitors included tannins, sulphydryl reagents and triphenylmethanes. Some inhibitors (vulpinic acid and brilliant blue G) were relatively specific to XET, affecting only two or three, respectively, of nine other wall-enzyme activities tested; others [e.g. (-)-epigallocatechin gallate and riboflavin] were non-specific. In vivo, out of eight XET-inhibitors bioassayed, erythrosin (1 μM) inhibited cell expansion in Rosa and Zea cell-suspension cultures, and 40 μM mycophenolic acid and (-)-epigallocatechin gallate inhibited Zea culture growth. Our work showcases a general high-throughput strategy for discovering wall-enzyme inhibitors, some being plant growth inhibitors potentially valuable as physiological tools or herbicide leads.
Collapse
Affiliation(s)
- Dimitra Chormova
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Andrew Defries
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Department of Chemistry (CFM), University of California, 5451 Boyce Hall, Riverside, CA 92521, USA
| | - Sean R Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Department of Chemistry (CFM), University of California, 5451 Boyce Hall, Riverside, CA 92521, USA
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
29
|
Glucuronic acid in Arabidopsis thaliana xylans carries a novel pentose substituent. Int J Biol Macromol 2015; 79:807-12. [DOI: 10.1016/j.ijbiomac.2015.05.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/23/2015] [Accepted: 05/30/2015] [Indexed: 01/15/2023]
|
30
|
Chong SL, Derba-Maceluch M, Koutaniemi S, Gómez LD, McQueen-Mason SJ, Tenkanen M, Mellerowicz EJ. Active fungal GH115 α-glucuronidase produced in Arabidopsis thaliana affects only the UX1-reactive glucuronate decorations on native glucuronoxylans. BMC Biotechnol 2015; 15:56. [PMID: 26084671 PMCID: PMC4472178 DOI: 10.1186/s12896-015-0154-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Expressing microbial polysaccharide-modifying enzymes in plants is an attractive approach to custom tailor plant lignocellulose and to study the importance of wall structures to plant development. Expression of α-glucuronidases in plants to modify the structures of glucuronoxylans has not been yet attempted. Glycoside hydrolase (GH) family 115 α-glucuronidases cleave the internal α-D-(4-O-methyl)glucopyranosyluronic acid ((Me)GlcA) from xylans or xylooligosaccharides. In this work, a GH115 α-glucuronidase from Schizophyllum commune, ScAGU115, was expressed in Arabidopsis thaliana and targeted to apoplast. The transgene effects on native xylans’ structures, plant development, and lignocellulose saccharification were evaluated and compared to those of knocked out glucuronyltransferases AtGUX1 and AtGUX2. Results The ScAGU115 extracted from cell walls of Arabidopsis was active on the internally substituted aldopentaouronic acid (XUXX). The transgenic plants did not show any change in growth or in lignocellulose saccharification. The cell wall (Me)GlcA and other non-cellulosic sugars, as well as the lignin content, remained unchanged. In contrast, the gux1gux2 double mutant showed a 70% decrease in (Me)GlcA to xylose molar ratio, and, interestingly, a 60% increase in the xylose content. Whereas ScAGU115-expressing plants exhibited a decreased signal in native secondary walls from the monoclonal antibody UX1 that recognizes (Me)GlcA on non-acetylated xylan, the signal was not affected after wall deacetylation. In contrast, gux1gux2 mutant was lacking UX1 signals in both native and deacetylated cell walls. This indicates that acetyl substitution on the xylopyranosyl residue carrying (Me)GlcA or on the neighboring xylopyranosyl residues may restrict post-synthetic modification of xylans by ScAGU115 in planta. Conclusions Active GH115 α-glucuronidase has been produced for the first time in plants. The cell wall–targeted ScAGU115 was shown to affect those glucuronate substitutions of xylan, which are accessible to UX1 antibody and constitute a small fraction in Arabidopsis, whereas majority of (Me)GlcA substitutions were resistant, most likely due to the shielding by acetyl groups. Plants expressing ScAGU115 did not show any defects under laboratory conditions indicating that the UX1 epitope of xylan is not essential under these conditions. Moreover the removal of the UX1 xylan epitope does not affect lignocellulose saccharification. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0154-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sun-Li Chong
- Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland.
| | - Marta Derba-Maceluch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901-83, Sweden.
| | - Sanna Koutaniemi
- Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland.
| | - Leonardo D Gómez
- Center for Novel Agricultural Products Department of Biology, University of York, York, YO10 5DD, UK.
| | - Simon J McQueen-Mason
- Center for Novel Agricultural Products Department of Biology, University of York, York, YO10 5DD, UK.
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland.
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901-83, Sweden.
| |
Collapse
|
31
|
Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 2015; 467:17-35. [PMID: 25793417 DOI: 10.1042/bj20141412] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbohydrates are ubiquitous in Nature and play vital roles in many biological systems. Therefore the synthesis of carbohydrate-based compounds is of considerable interest for both research and commercial purposes. However, carbohydrates are challenging, due to the large number of sugar subunits and the multiple ways in which these can be linked together. Therefore, to tackle the challenge of glycosynthesis, chemists are increasingly turning their attention towards enzymes, which are exquisitely adapted to the intricacy of these biomolecules. In Nature, glycosidic linkages are mainly synthesized by Leloir glycosyltransferases, but can result from the action of non-Leloir transglycosylases or phosphorylases. Advantageously for chemists, non-Leloir transglycosylases are glycoside hydrolases, enzymes that are readily available and exhibit a wide range of substrate specificities. Nevertheless, non-Leloir transglycosylases are unusual glycoside hydrolases in as much that they efficiently catalyse the formation of glycosidic bonds, whereas most glycoside hydrolases favour the mechanistically related hydrolysis reaction. Unfortunately, because non-Leloir transglycosylases are almost indistinguishable from their hydrolytic counterparts, it is unclear how these enzymes overcome the ubiquity of water, thus avoiding the hydrolytic reaction. Without this knowledge, it is impossible to rationally design non-Leloir transglycosylases using the vast diversity of glycoside hydrolases as protein templates. In this critical review, a careful analysis of literature data describing non-Leloir transglycosylases and their relationship to glycoside hydrolase counterparts is used to clarify the state of the art knowledge and to establish a new rational basis for the engineering of glycoside hydrolases.
Collapse
|
32
|
Franková L, Fry SC. A general method for assaying homo- and hetero-transglycanase activities that act on plant cell-wall polysaccharides. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:411-428. [PMID: 25641334 DOI: 10.1111/jipb.12337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Transglycanases (endotransglycosylases) cleave a polysaccharide (donor-substrate) in mid-chain, and then transfer a portion onto another poly- or oligosaccharide (acceptor-substrate). Such enzymes contribute to plant cell-wall assembly and/or re-structuring. We sought a general method for revealing novel homo- and hetero-transglycanases, applicable to diverse polysaccharides and oligosaccharides, separating transglycanase-generated (3)H-polysaccharides from unreacted (3)H-oligosaccharides--the former immobilized (on filter-paper, silica-gel or glass-fiber), the latter eluted. On filter-paper, certain polysaccharides [e.g. (1→3, 1→4)-β-D-glucans] remained satisfactorily adsorbed when water-washed; others (e.g. pectins) were partially lost. Many oligosaccharides (e.g. arabinan-, galactan-, xyloglucan-based) were successfully eluted in appropriate solvents, but others (e.g. [(3)H]xylohexaitol, [(3)H]mannohexaitol [(3)H]cellohexaitol) remained immobile. On silica-gel, all (3)H-oligosaccharides left an immobile 'ghost' spot (contaminating any (3)H-polysaccharides), which was diminished but not prevented by additives e.g. sucrose or Triton X-100. The best stratum was glass-fiber (GF), onto which the reaction-mixture was dried then washed in 75% ethanol. Washing led to minimal loss or lateral migration of (3)H-polysaccharides if conducted by slow percolation of acidified ethanol. The effectiveness of GF-blotting was well demonstrated for Chara vulgaris trans-β-mannanase. In conclusion, our novel GF-blotting technique efficiently frees transglycanase-generated (3)H-polysaccharides from unreacted (3)H-oligosaccharides, enabling high-throughput screening of multiple postulated transglycanase activities utilising chemically diverse donor- and acceptor-substrates.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
33
|
Shi YZ, Zhu XF, Miller JG, Gregson T, Zheng SJ, Fry SC. Distinct catalytic capacities of two aluminium-repressed Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in Pichia. PHYTOCHEMISTRY 2015; 112:160-169. [PMID: 25446234 DOI: 10.1016/j.phytochem.2014.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Xyloglucan plays an important structural role in primary cell walls, possibly tethering adjacent microfibrils and restraining cell expansion. There is therefore considerable interest in understanding the role of xyloglucan endotransglucosylase/hydrolases (XTHs), which are encoded in Arabidopsis by a 33-member gene family. We compared the key catalytic properties of two very different Arabidopsis XTHs (heterologously produced in Pichia), both of which are aluminium-repressed. Reductively tritiated oligosaccharides of xyloglucan were used as model acceptor substrates. Untransformed Pichia produced no xyloglucan-acting enzymes; therefore purification of the XTHs was unnecessary. XTH15, a classical group-I/II XTH, had high XET and undetectable XEH activity in vitro; its XET Km values were 31 μM XXXGol (acceptor substrate) and 2.9 mg/ml xyloglucan (donor substrate). In contrast, XTH31, a group-III-A XTH, showed predominant XEH activity and only slight XET activity in vitro; its XET Km was 86μM XXXGol (acceptor), indicating a low affinity of this predominantly hydrolytic protein for a transglycosylation acceptor substrate. The Km of XTH31's XEH activity was 1.6 mg/ml xyloglucan. For both proteins, the preferred XET acceptor substrate, among five cellotetraitol-based oligosaccharides tested, was XXXGol. XTH31's XET activity was strongly compromised when the second Xyl residue was galactosylated. XTH15's XET activity, in contrast, tolerated substitution at the second Xyl residue. The two enzymes also showed different pH preferences, XTH31 exhibiting an unusually low pH optimum and XTH15 an unusually broad optimum. XTH31's hydrolase activity increased almost linearly with decreasing pH in the apoplastic range, 6.2-4.5, consistent with a possible role in 'acid growth'. In conclusion, these two Al(3+)-repressed XTHs differ, in several important enzymic features, from other members of the Arabidopsis XTH family.
Collapse
Affiliation(s)
- Yuan Zhi Shi
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiao Fang Zhu
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Janice G Miller
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Timothy Gregson
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Shao Jian Zheng
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Stephen C Fry
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK.
| |
Collapse
|
34
|
Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, Busse-Wicher M, Kosik O, Tanaka R, Winzéll A, Kallas Å, Leśniewska J, Berthold F, Immerzeel P, Teeri TT, Ezcurra I, Dupree P, Serimaa R, Mellerowicz EJ. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. THE NEW PHYTOLOGIST 2015; 205:666-81. [PMID: 25307149 DOI: 10.1111/nph.13099] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 05/02/2023]
Abstract
Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Paque S, Mouille G, Grandont L, Alabadí D, Gaertner C, Goyallon A, Muller P, Primard-Brisset C, Sormani R, Blázquez MA, Perrot-Rechenmann C. AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling, and cell expansion in arabidopsis. THE PLANT CELL 2014; 26:280-95. [PMID: 24424095 PMCID: PMC3963575 DOI: 10.1105/tpc.113.120048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall-related genes, especially cell wall remodeling genes, mainly via an SCF(TIR/AFB)-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion.
Collapse
Affiliation(s)
- Sébastien Paque
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Laurie Grandont
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Planta, Consejo Superior de Investigaciones Científicas, Universitat Politécnica de Valencia, 46022 Valencia, Spain
| | - Cyril Gaertner
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Arnaud Goyallon
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Philippe Muller
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Catherine Primard-Brisset
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Rodnay Sormani
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Planta, Consejo Superior de Investigaciones Científicas, Universitat Politécnica de Valencia, 46022 Valencia, Spain
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
- Address correspondence to
| |
Collapse
|
36
|
Rennie EA, Scheller HV. Xylan biosynthesis. Curr Opin Biotechnol 2013; 26:100-7. [PMID: 24679265 DOI: 10.1016/j.copbio.2013.11.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/05/2013] [Accepted: 11/28/2013] [Indexed: 12/24/2022]
Abstract
Plant cells are surrounded by a rigid wall made up of cellulose microfibrils, pectins, hemicelluloses, and lignin. This cell wall provides structure and protection for plant cells. In grasses and in dicot secondary cell walls, the major hemicellulose is a polymer of β-(1,4)-linked xylose units called xylan. Unlike cellulose--which is synthesized by large complexes at the plasma membrane--xylan is synthesized by enzymes in the Golgi apparatus. Xylan synthesis thus requires the coordinated action and regulation of these synthetic enzymes as well as others that synthesize and transport substrates into the Golgi. Recent research has identified several genes involved in xylan synthesis, some of which have already been used in engineering efforts to create plants that are better suited for biofuel production.
Collapse
Affiliation(s)
- Emilie A Rennie
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Henrik Vibe Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
37
|
Leroux O, Eeckhout S, Viane RLL, Popper ZA. Ceratopteris richardii (C-fern): a model for investigating adaptive modification of vascular plant cell walls. FRONTIERS IN PLANT SCIENCE 2013; 4:367. [PMID: 24065974 PMCID: PMC3779834 DOI: 10.3389/fpls.2013.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/29/2013] [Indexed: 05/22/2023]
Abstract
Plant cell walls are essential for most aspects of plant growth, development, and survival, including cell division, expansive cell growth, cell-cell communication, biomechanical properties, and stress responses. Therefore, characterizing cell wall diversity contributes to our overall understanding of plant evolution and development. Recent biochemical analyses, concomitantly with whole genome sequencing of plants located at pivotal points in plant phylogeny, have helped distinguish between homologous characters and those which might be more derived. Most plant lineages now have at least one fully sequenced representative and although genome sequences for fern species are in progress they are not yet available for this group. Ferns offer key advantages for the study of developmental processes leading to vascularisation and complex organs as well as the specific differences between diploid sporophyte tissues and haploid gametophyte tissues and the interplay between them. Ceratopteris richardii has been well investigated building a body of knowledge which combined with the genomic and biochemical information available for other plants will progress our understanding of wall diversity and its impact on evolution and development.
Collapse
Affiliation(s)
- Olivier Leroux
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of IrelandGalway, Ireland
- Department of Biology, Research Group Pteridology, Ghent UniversityGhent, Belgium
| | - Sharon Eeckhout
- Department of Biology, Research Group Pteridology, Ghent UniversityGhent, Belgium
| | - Ronald L. L. Viane
- Department of Biology, Research Group Pteridology, Ghent UniversityGhent, Belgium
| | - Zoë A. Popper
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of IrelandGalway, Ireland
| |
Collapse
|
38
|
Franková L, Fry SC. Biochemistry and physiological roles of enzymes that 'cut and paste' plant cell-wall polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3519-50. [PMID: 23956409 DOI: 10.1093/jxb/ert201] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant cell-wall matrix is equipped with more than 20 glycosylhydrolase activities, including both glycosidases and glycanases (exo- and endo-hydrolases, respectively), which between them are in principle capable of hydrolysing most of the major glycosidic bonds in wall polysaccharides. Some of these enzymes also participate in the 'cutting and pasting' (transglycosylation) of sugar residues-enzyme activities known as transglycosidases and transglycanases. Their action and biological functions differ from those of the UDP-dependent glycosyltransferases (polysaccharide synthases) that catalyse irreversible glycosyl transfer. Based on the nature of the substrates, two types of reaction can be distinguished: homo-transglycosylation (occurring between chemically similar polymers) and hetero-transglycosylation (between chemically different polymers). This review focuses on plant cell-wall-localized glycosylhydrolases and the transglycosylase activities exhibited by some of these enzymes and considers the physiological need for wall polysaccharide modification in vivo. It describes the mechanism of transglycosylase action and the classification and phylogenetic variation of the enzymes. It discusses the modulation of their expression in plants at the transcriptional and translational levels, and methods for their detection. It also critically evaluates the evidence that the enzyme proteins under consideration exhibit their predicted activity in vitro and their predicted action in vivo. Finally, this review suggests that wall-localized glycosylhydrolases with transglycosidase and transglycanase abilities are widespread in plants and play important roles in the mechanism and control of plant cell expansion, differentiation, maturation, and wall repair.
Collapse
Affiliation(s)
- Lenka Franková
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
39
|
Simmons TJ. Considerations in the search for mixed-linkage (1→3),(1→4)-β-D-glucan-active endotransglycosylases. PLANT SIGNALING & BEHAVIOR 2013; 8:e23835. [PMID: 23425852 PMCID: PMC7030212 DOI: 10.4161/psb.23835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xyloglucan endotransglucosylase, catalyzed by XTH subfamily members, is thought to play crucial roles in plant cell wall physiology. Recent discovery of endotransglycosylases active on other hemicelluloses extend our understanding of the physiological scope of endotransglycosylation in general. Discovery in Poaceaen XTHs of endotransglycosylases which act on Poaceaen-prevalent hemicelluloses, such as MLG, could reconcile the apparent incongruence between the large size of Poaceaen putative XTH families and the low xyloglucan content of their cell walls. Here, I speculate on hypothetical MLG-active endotransglycosylases and highlight potential hindrances to their discovery. It is suggested that because the location of β-(1→3) bonds within MLG oligosaccharides (MLGOs) could define their ability to act as endotranglycosylase acceptor substrates: a) thorough probing of substrate specificities necessitates the use of MLGOs created using different endo-glycanases; and b) endogenous plant exo-glycosidases, which can hinder endotranglycosylase assays by degrading acceptor substrates, might prove particularly troublesome where MLGOs are concerned.
Collapse
Affiliation(s)
- Thomas J. Simmons
- The Edinburgh Cell Wall Group; Institute of Molecular Plant Sciences; School of Biological Sciences; The University of Edinburgh; Edinburgh, U.K
| |
Collapse
|
40
|
Mohler KE, Simmons TJ, Fry SC. Mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) re-models hemicelluloses in Equisetum shoots but not in barley shoots or Equisetum callus. THE NEW PHYTOLOGIST 2013; 197:111-122. [PMID: 23078260 DOI: 10.1111/j.1469-8137.2012.04371.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 05/09/2023]
Abstract
Among land-plant hemicelluloses, xyloglucan is ubiquitous, whereas mixed-linkage (1→3),(1→4)-β-D-glucan (MLG) is confined to the Poales (e.g. cereals) and Equisetales (horsetails). The enzyme MLG:xyloglucan endotransglucosylase (MXE) grafts MLG to xyloglucan. In Equisetum, MXE often exceeds extractable xyloglucan endotransglucosylase (XET) activity; curiously, cereals lack extractable MXE. We investigated whether barley possesses inextractable MXE. Grafting of endogenous MLG or xyloglucan onto exogenous [(3)H]xyloglucan oligosaccharides in vivo indicated MXE and XET action, respectively. Extractable MXE and XET activities were assayed in vitro. MXE and XET actions were both detectable in living Equisetum fluviatile shoots, the MXE : XET ratio increasing with age. However, only XET action was observed in barley coleoptiles, leaves and roots (which all contained MLG) and in E. fluviatile intercalary meristems and callus (which lacked MLG). In E. fluviatile, extractable MXE activity was high in mature shoots, but extremely low in callus and young shoots; in E. arvense strobili, it was undetectable. Barley possesses neither extractable nor inextractable MXE, despite containing both of its substrates and high XET activity. As the Poales are xyloglucan-poor, the role of their abundant endotransglucosylases remains enigmatic. The distribution of MXE action and activity within Equisetum suggests a strengthening role in ageing tissues.
Collapse
Affiliation(s)
- Kyle E Mohler
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| | - Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| |
Collapse
|
41
|
Johnston SL, Prakash R, Chen NJ, Kumagai MH, Turano HM, Cooney JM, Atkinson RG, Paull RE, Cheetamun R, Bacic A, Brummell DA, Schröder R. An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls. PLANTA 2013; 237:173-87. [PMID: 23001197 DOI: 10.1007/s00425-012-1766-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
Heteroxylans in the plant cell wall have been proposed to have a role analogous to that of xyloglucans or heteromannans, forming growth-restraining networks by interlocking cellulose microfibrils. A xylan endotransglycosylase has been identified that can transglycosylate heteroxylan polysaccharides in the presence of xylan-derived oligosaccharides. High activity was detected in ripe fruit of papaya (Carica papaya), but activity was also found in a range of other fruits, imbibed seeds and rapidly growing seedlings of cereals. Xylan endotransglycosylase from ripe papaya fruit used a range of heteroxylans, such as wheat arabinoxylan, birchwood glucuronoxylan and various heteroxylans from dicotyledonous primary cell walls purified from tomato and papaya fruit, as donor molecules. As acceptor molecules, the enzyme preferentially used xylopentaitol over xylohexaitol or shorter-length acceptors. Xylan endotransglycosylase was active over a broad pH range and could perform transglycosylation reactions up to 55 °C. Xylan endotransglycosylase activity was purified from ripe papaya fruit by ultrafiltration and cation exchange chromatography. Highest endotransglycosylase activity was identified in fractions that also contained high xylan hydrolase activity and correlated with the presence of the endoxylanase CpaEXY1. Recombinant CpaEXY1 protein transiently over-expressed in Nicotiana benthamiana leaves showed both endoxylanase and xylan endotransglycosylase activities in vitro, suggesting that CpaEXY1 is a single enzyme with dual activity in planta. Purified native CpaEXY1 showed two- to fourfold higher endoxylanase than endotransglycosylase activity, suggesting that CpaEXY1 may act primarily as a hydrolase. We propose that xylan endotransglycosylase activity (like xyloglucan and mannan endotransglycosylase activities) could be involved in remodelling or re-arrangement of heteroxylans of the cellulose-non-cellulosic cell wall framework.
Collapse
Affiliation(s)
- Sarah L Johnston
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Markakis MN, De Cnodder T, Lewandowski M, Simon D, Boron A, Balcerowicz D, Doubbo T, Taconnat L, Renou JP, Höfte H, Verbelen JP, Vissenberg K. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2012; 12:208. [PMID: 23134674 PMCID: PMC3502322 DOI: 10.1186/1471-2229-12-208] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/18/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone). Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. RESULTS Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. CONCLUSIONS ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream signaling cascade, these are converged to a 'common pathway'. Furthermore, several potential keyplayers, such as transcription factors and auxin-responsive genes, were identified by the microarray analysis. They await further analysis to reveal their exact role in the control of cell elongation.
Collapse
Affiliation(s)
- Marios Nektarios Markakis
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Tinne De Cnodder
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Michal Lewandowski
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Damien Simon
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Agnieszka Boron
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Daria Balcerowicz
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Thanaa Doubbo
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Ludivine Taconnat
- Unité Mixte de Recherche de Genomique Végétale, Institut National pour la Recherche Agronomique/Centre National pour la Recherche Scientifique, 2 rue Gaston Crémieux-CP 5708. F–91057, Evry Cedex, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences UMR1345 (INRA/Agrocampus-ouest/Université d’Angers), Centre Angers-Nantes/INRA-IRHS batiment B, 42 rue Georges Morel – BP 60057 49071, Beaucouzé cedex, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), F–78026, Versailles Cedex, France
| | - Jean-Pierre Verbelen
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Kris Vissenberg
- Biology Dept., Plant Growth and Development, Univ. Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| |
Collapse
|
43
|
Franková L, Fry SC. Trans-α-xylosidase and trans-β-galactosidase activities, widespread in plants, modify and stabilize xyloglucan structures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:45-60. [PMID: 22360414 DOI: 10.1111/j.1365-313x.2012.04966.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell-wall components are hydrolysed by numerous plant glycosidase and glycanase activities. We investigated whether plant enzymes also modify xyloglucan structures by transglycosidase activities. Diverse angiosperm extracts exhibited transglycosidase activities that progressively transferred single sugar residues between xyloglucan heptasaccharide (XXXG or its reduced form, XXXGol) molecules, at 16 μM and above, creating octa- to decasaccharides plus smaller products. We measured remarkably high transglycosylation:hydrolysis ratios under optimized conditions. To identify the transferred monosaccharide(s), we devised a dual-labelling strategy in which a neutral radiolabelled oligosaccharide (donor substrate) reacted with an amino-labelled non-radioactive oligosaccharide (acceptor substrate), generating radioactive cationic products. For example, 37 μM [Xyl-³H]XXXG plus 1 mM XXLG-NH₂ generated ³H-labelled cations, demonstrating xylosyl transfer, which exceeded xylosyl hydrolysis 1.6- to 7.3-fold, implying the presence of enzymes that favour transglycosylation. The transferred xylose residues remained α-linked but were relatively resistant to hydrolysis by plant enzymes. Driselase digestion of the products released a trisaccharide (α-[³H]xylosyl-isoprimeverose), indicating that a new xyloglucan repeat unit had been formed. In similar assays, [Gal-³H]XXLG and [Gal-³H]XLLG (but not [Fuc-³H]XXFG) yielded radioactive cations. Thus plants exhibit trans-α-xylosidase and trans-β-galactosidase (but not trans-α-fucosidase) activities that graft sugar residues from one xyloglucan oligosaccharide to another. Reconstructing xyloglucan oligosaccharides in this way may alter oligosaccharin activities or increase their longevity in vivo. Trans-α-xylosidase activity also transferred xylose residues from xyloglucan oligosaccharides to long-chain hemicelluloses (xyloglucan, water-soluble cellulose acetate, mixed-linkage β-glucan, glucomannan and arabinoxylan). With xyloglucan as acceptor substrate, such an activity potentially affects the polysaccharide's suitability as a substrate for xyloglucan endotransglucosylase action and thereby modulates cell expansion. We conclude that certain proteins annotated as glycosidases can function as transglycosidases.
Collapse
Affiliation(s)
- Lenka Franková
- Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
44
|
Franková L, Fry SC. Trans-α-xylosidase, a widespread enzyme activity in plants, introduces (1→4)-α-d-xylobiose side-chains into xyloglucan structures. PHYTOCHEMISTRY 2012; 78:29-43. [PMID: 22425285 DOI: 10.1016/j.phytochem.2012.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Angiosperms possess a retaining trans-α-xylosidase activity that catalyses the inter-molecular transfer of xylose residues between xyloglucan structures. To identify the linkage of the newly transferred α-xylose residue, we used [Xyl-(3)H]XXXG (xyloglucan heptasaccharide) as donor substrate and reductively-aminated xyloglucan oligosaccharides (XGO-NH(2)) as acceptor. Asparagus officinalis enzyme extracts generated cationic radioactive products ([(3)H]Xyl·XGO-NH(2)) that were Driselase-digestible to a neutral trisaccharide containing an α-[(3)H]xylose residue. After borohydride reduction, the trimer exhibited high molybdate-affinity, indicating xylobiosyl-(1→6)-glucitol rather than a di-xylosylated glucitol. Thus the trans-α-xylosidase had grafted an additional α-[(3)H]xylose residue onto the xylose of an isoprimeverose unit. The trisaccharide was rapidly acetolysed to an α-[(3)H]xylobiose, confirming the presence of an acetolysis-labile (1→6)-bond. The α-[(3)H]xylobiitol formed by reduction of this α-[(3)H]xylobiose had low molybdate-affinity, indicating a (1→2) or (1→4) linkage. In NaOH, the α-[(3)H]xylobiose underwent alkaline peeling at the moderate rate characteristic of a (1→4)-disaccharide. Finally, we synthesised eight non-radioactive xylobioses [α and β; (1↔1), (1→2), (1→3) and (1→4)] and found that the [(3)H]xylobiose co-chromatographed only with (1→4)-α-xylobiose. We conclude that Asparagus trans-α-xylosidase activity generates a novel xyloglucan building block, α-d-Xylp-(1→4)-α-d-Xylp-(1→6)-d-Glc (abbreviation: 'V'). Modifying xyloglucan structures in this way may alter oligosaccharin activities, or change their suitability as acceptor substrates for xyloglucan endotransglucosylase (XET) activity.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
45
|
Xue X, Fry SC. Evolution of mixed-linkage (1 -> 3, 1 -> 4)-β-D-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes. ANNALS OF BOTANY 2012; 109:873-86. [PMID: 22378839 PMCID: PMC3310500 DOI: 10.1093/aob/mcs018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/13/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Horsetails (Equisetopsida) diverged from other extant eusporangiate monilophytes in the Upper Palaeozoic. They are the only monilophytes known to contain the hemicellulose mixed-linkage (1 → 3, 1 → 4)-β-d-glucan (MLG), whereas all land plants possess xyloglucan. It has been reported that changes in cell-wall chemistry often accompanied major evolutionary steps. We explored changes in hemicelluloses occurring during Equisetum evolution. METHODS Hemicellulose from numerous monilophytes was treated with lichenase and xyloglucan endoglucanase. Lichenase digests MLG to di-, tri- and tetrasaccharide repeat-units, resolvable by thin-layer chromatography. KEY RESULTS Among monilophytes, MLG was confined to horsetails. Our analyses support a basal trichotomy of extant horsetails: MLG was more abundant in subgenus Equisetum than in subgenus Hippochaete, and uniquely the sister group E. bogotense yielded almost solely the tetrasaccharide repeat-unit (G4G4G3G). Other species also gave the disaccharide, whereas the trisaccharide was consistently very scarce. Tetrasaccharide : disaccharide ratios varied interspecifically, but with no consistent difference between subgenera. Xyloglucan was scarce in Psilotum and subgenus Equisetum, but abundant in subgenus Hippochaete and in the eusporangiate ferns Marattia and Angiopteris; leptosporangiate ferns varied widely. All monilophytes shared a core pattern of xyloglucan repeat-units, major XEG products co-chromatographing on thin-layer chromatography with non-fucosylated hepta-, octa- and nonasaccharides and fucose-containing nona- and decasaccharides. CONCLUSIONS G4G4G3G is the ancestral repeat-unit of horsetail MLG. Horsetail evolution was accompanied by quantitative and qualitative modification of MLG; variation within subgenus Hippochaete suggests that the structure and biosynthesis of MLG is evolutionarily plastic. Xyloglucan quantity correlates negatively with abundance of other hemicelluloses; but qualitatively, all monilophyte xyloglucans conform to a core pattern of repeat-unit sizes.
Collapse
Affiliation(s)
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| |
Collapse
|
46
|
Sampedro J, Gianzo C, Iglesias N, Guitián E, Revilla G, Zarra I. AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. PLANT PHYSIOLOGY 2012; 158:1146-57. [PMID: 22267505 PMCID: PMC3291251 DOI: 10.1104/pp.111.192195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. In Arabidopsis (Arabidopsis thaliana), a significant proportion of xyloglucan side chains contain β-galactose linked to α-xylose at O2. In this work, we identified AtBGAL10 (At5g63810) as the gene responsible for the majority of β-galactosidase activity against xyloglucan. Xyloglucan from bgal10 insertional mutants was found to contain a large proportion of unusual subunits, such as GLG and GLLG. These subunits were not detected in a bgal10 xyl1 double mutant, deficient in both β-galactosidase and α-xylosidase. Xyloglucan from bgal10 xyl1 plants was enriched instead in XXLG/XLXG and XLLG subunits. In both cases, changes in xyloglucan composition were larger in the endoglucanase-accessible fraction. These results suggest that glycosidases acting on nonreducing ends digest large amounts of xyloglucan in wild-type plants, while plants deficient in any of these activities accumulate partly digested subunits. In both bgal10 and bgal10 xyl1, siliques and sepals were shorter, a phenotype that could be explained by an excess of nonreducing ends leading to a reinforced xyloglucan network. Additionally, AtBGAL10 expression was examined with a promoter-reporter construct. Expression was high in many cell types undergoing wall extension or remodeling, such as young stems, abscission zones, or developing vasculature, showing good correlation with α-xylosidase expression.
Collapse
|