1
|
Hmidi D, Muraya F, Fizames C, Véry A, Roelfsema MRG. Potassium extrusion by plant cells: evolution from an emergency valve to a driver of long-distance transport. THE NEW PHYTOLOGIST 2025; 245:69-87. [PMID: 39462778 PMCID: PMC11617655 DOI: 10.1111/nph.20207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 10/29/2024]
Abstract
The ability to accumulate nutrients is a hallmark for living creatures and plants evolved highly effective nutrient transport systems, especially for the uptake of potassium (K+). However, plants also developed mechanisms that enable the rapid extrusion of K+ in combination with anions. The combined release of K+ and anions is probably an ancient extrusion system, as it is found in the Characeae that are closely related to land plants. We postulate that the ion extrusion mechanisms have developed as an emergency valve, which enabled plant cells to rapidly reduce their turgor, and prevent them from bursting. Later in evolution, seed plants adapted this system for various responses, such as the closure of stomata, long-distance stress waves, dropping of leaves by pulvini, and loading of xylem vessels. We discuss the molecular nature of the transport proteins that are involved in ion extrusion-based functions of plants and describe the functions that they obtained during evolution.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - Florence Muraya
- Molecular Plant Physiology and Biophysics, Julius‐von‐Sachs Institute for Biosciences, BiocenterWürzburg UniversityJulius‐von‐Sachs‐Platz 2D‐97082WürzburgGermany
| | - Cécile Fizames
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - Anne‐Aliénor Véry
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - M. Rob G. Roelfsema
- Molecular Plant Physiology and Biophysics, Julius‐von‐Sachs Institute for Biosciences, BiocenterWürzburg UniversityJulius‐von‐Sachs‐Platz 2D‐97082WürzburgGermany
| |
Collapse
|
2
|
Hua Y, Pei M, Song H, Liu Y, Zhou T, Chao H, Yue C, Huang J, Qin G, Feng Y. Boron confers salt tolerance through facilitating BnaA2.HKT1-mediated root xylem Na + unloading in rapeseed (Brassica napus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1326-1342. [PMID: 39453388 DOI: 10.1111/tpj.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Boron (B) is an important limiting factor for plant growth and yield in saline soils, but the underlying molecular mechanisms remain poorly understood. In this study, we found that appropriate B supply obviously complemented rapeseed (Brassica napus L.) growth under salinity accompanied by higher biomass production and less reactive oxygen species accumulation. Determination of Na+ content in shoots and roots indicated that B significantly repressed root-to-shoot Na+ translocation, and non-invasive micro-tests of root xylem sap demonstrated that B increased xylem Na+ unloading in the roots of rapeseed plants under salinity. Comparative transcriptomic profiling revealed that B strongly upregulated BnaHKT1s expression, especially BnaA2.HKT1, in rapeseed roots exposed to salinity. In situ hybridizations analysis showed that BnaA2.HKT1 was significantly induced in root stelar tissues by high B (HB) under salinity. Green fluorescent protein and yeast heterologous expression showed that BnaA2.HKT1 functioned as a plasma membrane-localized Na+ transporter. Knockout of BnaA2.HKT1 by CRISPR/Cas9 resulted in hypersensitive of rapeseed plants to salinity even under HB condition, with higher shoot Na+ accumulation and lower biomass production. By contrast, overexpression of BnaA2.HKT1 ameliorated salinity-induced growth inhibition under B deficiency and salinity. Overall, our results proposed that B functioned as a positive regulator for the rapeseed growth and seed production under salt stress through facilitating BnaA2.HKT1-mediated root xylem Na+ unloading. This study may also provide an alternative strategy for the improvement of crop growth and development in saline soils.
Collapse
Affiliation(s)
- Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Minnan Pei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haili Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Liu
- School of Biological Engineering, Xinxiang Institute of Engineering, Xinxiang, 453700, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Caipeng Yue
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingna Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Garcia-Daga S, Roy SJ, Gilliham M. Redefining the role of sodium exclusion within salt tolerance. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00270-X. [PMID: 39462719 DOI: 10.1016/j.tplants.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Salt contamination of soils and irrigation water is a significant environmental concern for crop production. Leaf sodium (Na+) exclusion is commonly proposed to be a key subtrait of salt tolerance for many crop plants. High-Affinity Potassium (K+) Transporter 1 (HKT1) proteins have previously been identified as major controllers of leaf Na+ exclusion across diverse species. However, leaf Na+ exclusion does not always correlate with salt tolerance. We discuss literature which shows leaf Na+ accumulation can, in some circumstances, be tolerated without a detrimental effect on yield when HKT1 still functions to exclude Na+ from reproductive tissues. We conclude that, by having an ultimate role in the protection of reproductive performance, HKT1s' role in adaptation to salinity warrants redefinition.
Collapse
Affiliation(s)
- Sebastian Garcia-Daga
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; School of Biosciences, University of Nottingham, Sutton Bonnington, LE12 5RD, UK; ARC Centre of Excellence in Plants for Space, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Stuart J Roy
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Industrial Transformation Training Centre for Future Crops Development, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Centre of Excellence in Plants for Space, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Industrial Transformation Training Centre for Future Crops Development, University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
4
|
Liu L, Luo S, Ma L, Zhang Y, Wang T, Wang J, Liang X, Xue S. Analysis of Ion Transport Properties of Glycine max HKT Transporters and Identifying a Regulation of GmHKT1;1 by the Non-Functional GmHKT1;4. PLANT & CELL PHYSIOLOGY 2024; 65:1399-1413. [PMID: 38978103 DOI: 10.1093/pcp/pcae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
High-affinity potassium transporters (HKTs) play an important role in plants responding to salt stress, but the transport properties of the soybean HKT transporters at the molecular level are still unclear. Here, using Xenopus oocyte as a heterologous expression system and two-electrode voltage-clamp technique, we identified four HKT transporters, GmHKT1;1, GmHKT1;2, GmHKT1;3 and GmHKT1;4, all of which belong to type I subfamily, but have distinct ion transport properties. While GmHKT1;1, GmHKT1;2 and GmHKT1;3 function as Na+ transporters, GmHKT1;1 is less selective against K+ than the two other transporters. Astonishingly, GmHKT1;4, which lacks transmembrane segments and has no ion permeability, is significantly expressed, and its gene expression pattern is different from the other three GmHKTs under salt stress. Interestingly, GmHKT1;4 reduced the Na+/K+ currents mediated by GmHKT1;1. Further study showed that the transport ability of GmHKT1;1 regulated by GmHKT1;4 was related to the structural differences in the first intracellular domain and the fourth repeat domain. Overall, we have identified one unique GmHKT member, GmHKT1;4, which modulates the Na+ and K+ transport ability of GmHKT1;1 via direct interaction. Thus, we have revealed a new type of HKT interaction model for altering their ion transport properties.
Collapse
Affiliation(s)
- Liu Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Sheng Luo
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Longfei Ma
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Yanli Zhang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Tiantian Wang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Jicheng Wang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Xiushuo Liang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| |
Collapse
|
5
|
Zhu J, Sun C, Zhang Y, Zhang M, Zhao C, Lv C, Guo B, Wang F, Zhou M, Xu R. Functional analysis on the role of HvHKT1.4 in barley (Hordeum vulgare L.) salinity tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109061. [PMID: 39182425 DOI: 10.1016/j.plaphy.2024.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
High-affinity potassium transporters (HKTs) are well known proteins that govern the partitioning of Na+ between roots and shoots. Six HvHKTs were identified in barley and designated as HvHKT1.1, HvHKT1.3, HvHKT1.4, HvHKT1.5, HvHKT2.1 and HvHKT2.2 according to their similarity to previously reported OsHKTs. Among these HvHKTs, HvHKT1.4 was highly up-regulated under salinity stress in both leaves and roots of Golden Promise. Subcellular localization analysis showed that HvHKT1.4 is a plasma-membrane-localized protein. The knockout mutants of HvHKT1.4 showed greater salinity sensitivity and higher Na+ concentration in leaves than wild-type plants. Haplotype analysis of HvHKT1.4 in 344 barley accessions showed 15 single nucleotide substitutions in the CDS region, belonging to five haplotypes. Significant differences in mean salinity damage scores, leaf Na+ contents and Na+/K+ were found between Hap5 and other haplotypes with Hap5 showing better salinity tolerance. The results indicated that HvHKT1.4 can be an effective target in improving salinity tolerance through ion homeostasis.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chengqun Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Wang X, Zhang Z, Li J, Wang Y. Genome‑wide analysis of the GT8 gene family in apple and functional identification of MhGolS2 in saline-alkali tolerance. PLANT MOLECULAR BIOLOGY 2024; 114:103. [PMID: 39316185 DOI: 10.1007/s11103-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Members of the glycosyltransferase 8 (GT8) family play an important role in regulating gene expression in response to many kinds of biotic and abiotic stress. In this study, 56 members of the apple GT8 family were identified, and their gene structure, phylogenetic relationships, chromosomal localization, and promoter cis-acting elements were comprehensively analyzed. Subsequently, 20 genes were randomly selected from the evolutionary tree for qRT-PCR detection, and it was found that MhGolS2 was significantly overexpressed under stress conditions. MhGolS2 was isolated from M.halliana and transgenic Arabidopsis thaliana, tobacco and apple callus tissues were successfully obtained. The transgenic plants grew better under stress conditions with higher polysaccharide, chlorophyll and proline content, lower conductivity and MDA content, significant increase in antioxidant enzyme activities (SOD, POD, CAT) and maintenance of low Na+/K+ as compared to the wild type. Meanwhile, the expression levels of reactive oxygen species-related genes (AtSOD, AtPOD, and AtCAT), Na+ transporter genes (AtCAX5, AtSOS1, and AtHKT1), H+-ATPase genes (AtAHA2 and AtAHA8), and raffinose synthesis-related genes (AtSTS, AtRFS1, and AtMIPS) were significantly up-regulated, while the expression levels of K+ transporter genes (AtSKOR, AtHAK5) were reduced. Finally, the Y2H experiment confirmed the interaction between MhGolS2 and MhbZIP23, MhMYB1R1, MhbHLH60, and MhNAC1 proteins. The above results indicate that MhGolS2 can improve plant saline-alkali tolerance by promoting polysaccharide synthesis, scavenging reactive oxygen species, and increasing the activity of antioxidant enzymes. This provides excellent stress resistance genes for the stress response regulatory network in apple.
Collapse
Affiliation(s)
- Xiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - ZhongXing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - JuanLi Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - YanXiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Coskun D. SPOTLIGHT: TaSPL6-D, a transcriptional repressor of TaHKT1;5-D in bread wheat (Triticum aestivum L.) and a novel target for improving salt tolerance in crops. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154351. [PMID: 39299160 DOI: 10.1016/j.jplph.2024.154351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Canada.
| |
Collapse
|
8
|
Chen S, Du T, Huang Z, He K, Yang M, Gao S, Yu T, Zhang H, Li X, Chen S, Liu C, Li H. The Spartina alterniflora genome sequence provides insights into the salt-tolerance mechanisms of exo-recretohalophytes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2558-2574. [PMID: 38685729 PMCID: PMC11331799 DOI: 10.1111/pbi.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Spartina alterniflora is an exo-recretohalophyte Poaceae species that is able to grow well in seashore, but the genomic basis underlying its adaptation to salt tolerance remains unknown. Here, we report a high-quality, chromosome-level genome assembly of S. alterniflora constructed through PacBio HiFi sequencing, combined with high-throughput chromosome conformation capture (Hi-C) technology and Illumina-based transcriptomic analyses. The final 1.58 Gb genome assembly has a contig N50 size of 46.74 Mb. Phylogenetic analysis suggests that S. alterniflora diverged from Zoysia japonica approximately 21.72 million years ago (MYA). Moreover, whole-genome duplication (WGD) events in S. alterniflora appear to have expanded gene families and transcription factors relevant to salt tolerance and adaptation to saline environments. Comparative genomics analyses identified numerous species-specific genes, significantly expanded genes and positively selected genes that are enriched for 'ion transport' and 'response to salt stress'. RNA-seq analysis identified several ion transporter genes including the high-affinity K+ transporters (HKTs), SaHKT1;2, SaHKT1;3 and SaHKT1;8, and high copy number of Salt Overly Sensitive (SOS) up-regulated under high salt conditions, and the overexpression of SaHKT2;4 in Arabidopsis thaliana conferred salt tolerance to the plant, suggesting specialized roles for S. alterniflora to adapt to saline environments. Integrated metabolomics and transcriptomics analyses revealed that salt stress activate glutathione metabolism, with differential expressions of several genes such as γ-ECS, GSH-S, GPX, GST and PCS in the glutathione metabolism. This study suggests several adaptive mechanisms that could contribute our understanding of evolutional basis of the halophyte.
Collapse
Affiliation(s)
- Shoukun Chen
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
- Hainan Seed Industry LaboratorySanyaHainanChina
| | - Tingting Du
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Kunhui He
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Maogeng Yang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
- Key Laboratory of Plant Molecular & Developmental BiologyCollege of Life Sciences, Yantai UniversityYantaiShandongChina
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Tingxi Yu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Hao Zhang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| | - Xiang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Shihua Chen
- Key Laboratory of Plant Molecular & Developmental BiologyCollege of Life Sciences, Yantai UniversityYantaiShandongChina
| | - Chun‐Ming Liu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of SciencesBeijingChina
- School of Advanced Agricultural Sciences, Peking UniversityBeijingChina
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Nanfan Research Institute, CAASSanyaHainanChina
| |
Collapse
|
9
|
Luo M, Chu J, Wang Y, Chang J, Zhou Y, Jiang X. A high-affinity potassium transporter (MeHKT1) from cassava (Manihot esculenta) negatively regulates the response of transgenic Arabidopsis to salt stress. BMC PLANT BIOLOGY 2024; 24:372. [PMID: 38714917 PMCID: PMC11075273 DOI: 10.1186/s12870-024-05084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.
Collapse
Affiliation(s)
- Minghua Luo
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Jing Chu
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yu Wang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Jingyan Chang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| | - Xingyu Jiang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Wang X, Shen X, Qu Y, Zhang H, Wang C, Yang F, Shen H. Structural insights into ion selectivity and transport mechanisms of Oryza sativa HKT2;1 and HKT2;2/1 transporters. NATURE PLANTS 2024; 10:633-644. [PMID: 38570642 DOI: 10.1038/s41477-024-01665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Plant high-affinity K+ transporters (HKTs) play a pivotal role in maintaining the balance of Na+ and K+ ions in plants, thereby influencing plant growth under K+-depleted conditions and enhancing tolerance to salinity stress. Here we report the cryo-electron microscopy structures of Oryza sativa HKT2;1 and HKT2;2/1 at overall resolutions of 2.5 Å and 2.3 Å, respectively. Both transporters adopt a dimeric assembly, with each protomer enclosing an ion permeation pathway. Comparison between the selectivity filters of the two transporters reveals the critical roles of Ser88/Gly88 and Val243/Gly243 in determining ion selectivity. A constriction site along the ion permeation pathway is identified, consisting of Glu114, Asn273, Pro392, Pro393, Arg525, Lys517 and the carboxy-terminal Trp530 from the neighbouring protomer. The linker between domains II and III adopts a stable loop structure oriented towards the constriction site, potentially participating in the gating process. Electrophysiological recordings, yeast complementation assays and molecular dynamics simulations corroborate the functional importance of these structural features. Our findings provide crucial insights into the ion selectivity and transport mechanisms of plant HKTs, offering valuable structural templates for developing new salinity-tolerant cultivars and strategies to increase crop yields.
Collapse
Affiliation(s)
- Xiaohui Wang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoshuai Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yannan Qu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Heng Zhang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Chu Wang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fan Yang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - Huaizong Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
11
|
Liang X, Li J, Yang Y, Jiang C, Guo Y. Designing salt stress-resilient crops: Current progress and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:303-329. [PMID: 38108117 DOI: 10.1111/jipb.13599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
Collapse
Affiliation(s)
- Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100194, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Lindberg S, Premkumar A. Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops. PLANTS (BASEL, SWITZERLAND) 2023; 13:46. [PMID: 38202354 PMCID: PMC10780558 DOI: 10.3390/plants13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
High concentrations of sodium (Na+), chloride (Cl-), calcium (Ca2+), and sulphate (SO42-) are frequently found in saline soils. Crop plants cannot successfully develop and produce because salt stress impairs the uptake of Ca2+, potassium (K+), and water into plant cells. Different intracellular and extracellular ionic concentrations change with salinity, including those of Ca2+, K+, and protons. These cations serve as stress signaling molecules in addition to being essential for ionic homeostasis and nutrition. Maintaining an appropriate K+:Na+ ratio is one crucial plant mechanism for salt tolerance, which is a complicated trait. Another important mechanism is the ability for fast extrusion of Na+ from the cytosol. Ca2+ is established as a ubiquitous secondary messenger, which transmits various stress signals into metabolic alterations that cause adaptive responses. When plants are under stress, the cytosolic-free Ca2+ concentration can rise to 10 times or more from its resting level of 50-100 nanomolar. Reactive oxygen species (ROS) are linked to the Ca2+ alterations and are produced by stress. Depending on the type, frequency, and intensity of the stress, the cytosolic Ca2+ signals oscillate, are transient, or persist for a longer period and exhibit specific "signatures". Both the influx and efflux of Ca2+ affect the length and amplitude of the signal. According to several reports, under stress Ca2+ alterations can occur not only in the cytoplasm of the cell but also in the cell walls, nucleus, and other cell organelles and the Ca2+ waves propagate through the whole plant. Here, we will focus on how wheat and other important crops absorb Na+, K+, and Cl- when plants are under salt stress, as well as how Ca2+, K+, and pH cause intracellular signaling and homeostasis. Similar mechanisms in the model plant Arabidopsis will also be considered. Knowledge of these processes is important for understanding how plants react to salinity stress and for the development of tolerant crops.
Collapse
Affiliation(s)
- Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Albert Premkumar
- Bharathiyar Group of Institutes, Guduvanchery 603202, Tamilnadu, India;
| |
Collapse
|
13
|
Irulappan V, Park HW, Han SY, Kim MH, Kim JS. Genome-wide identification of a novel Na + transporter from Bienertia sinuspersici and overexpression of BsHKT1;2 improved salt tolerance in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2023; 14:1302315. [PMID: 38192689 PMCID: PMC10773568 DOI: 10.3389/fpls.2023.1302315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Salt stress is an ever-increasing stressor that affects both plants and humans. Therefore, developing strategies to limit the undesirable effects of salt stress is essential. Sodium ion exclusion is well known for its efficient salt-tolerance mechanism. The High-affinity K+ Transporter (HKT) excludes excess Na+ from the transpiration stream. This study identified and characterized the HKT protein family in Bienertia sinuspersici, a single-cell C4 plant. The HKT and Salt Overly Sensitive 1 (SOS1) expression levels were examined in B. sinuspersici and Arabidopsis thaliana leaves under four different salt stress conditions: 0, 100, 200, and 300 mM NaCl. Furthermore, BsHKT1;2 was cloned, thereby producing stable transgenic Brassica rapa. Our results showed that, compared to A. thaliana as a glycophyte, the HKT family is expanded in B. sinuspersici as a halophyte with three paralogs. The phylogenetic analysis revealed three paralogs belonging to the HKT subfamily I. Out of three copies, the expression of BsHKT1;2 was higher in Bienertia under control and salt stress conditions than in A. thaliana. Stable transgenic plants overexpressing 35S::BsHKT1;2 showed higher salt tolerance than non-transgenic plants. Higher biomass and longer roots were observed in the transgenic plants under salt stress than in non-transgenic plants. This study demonstrates the evolutionary and functional differences in HKT proteins between glycophytes and halophytes and associates the role of BsHKT1;2 in imparting salt tolerance and productivity.
Collapse
Affiliation(s)
| | | | | | | | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| |
Collapse
|
14
|
Lian W, Geng A, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of Potassium Absorption, Transport, and Utilization in Rice. Int J Mol Sci 2023; 24:16682. [PMID: 38069005 PMCID: PMC10705939 DOI: 10.3390/ijms242316682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Potassium is essential for plant growth and development and stress adaptation. The maintenance of potassium homeostasis involves a series of potassium channels and transporters, which promote the movement of potassium ions (K+) across cell membranes and exhibit complex expression patterns and regulatory mechanisms. Rice is a major food crop in China. The low utilization rate of potassium fertilizer limits the yield and quality of rice. Elucidating the molecular mechanisms of potassium absorption, transport, and utilization is critical in improving potassium utilization efficiency in rice. Although some K+ transporter genes have been identified from rice, research on the regulatory network is still in its infancy. Therefore, this review summarizes the relevant information on K+ channels and transporters in rice, covering the absorption of K+ in the roots, transport to the shoots, the regulation pathways, the relationship between K+ and the salt tolerance of rice, and the synergistic regulation of potassium, nitrogen, and phosphorus signals. The related research on rice potassium nutrition has been comprehensively reviewed, the existing research foundation and the bottleneck problems to be solved in this field have been clarified, and the follow-up key research directions have been pointed out to provide a theoretical framework for the cultivation of potassium-efficient rice.
Collapse
Affiliation(s)
- Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
15
|
Yang M, Chen S, Huang Z, Gao S, Yu T, Du T, Zhang H, Li X, Liu CM, Chen S, Li H. Deep learning-enabled discovery and characterization of HKT genes in Spartina alterniflora. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:690-705. [PMID: 37494542 DOI: 10.1111/tpj.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Spartina alterniflora is a halophyte that can survive in high-salinity environments, and it is phylogenetically close to important cereal crops, such as maize and rice. It is of scientific interest to understand why S. alterniflora can live under such extremely stressful conditions. The molecular mechanism underlying its high-saline tolerance is still largely unknown. Here we investigated the possibility that high-affinity K+ transporters (HKTs), which function in salt tolerance and maintenance of ion homeostasis in plants, are responsible for salt tolerance in S. alterniflora. To overcome the imprecision and unstable of the gene screening method caused by the conventional sequence alignment, we used a deep learning method, DeepGOPlus, to automatically extract sequence and protein characteristics from our newly assemble S. alterniflora genome to identify SaHKTs. Results showed that a total of 16 HKT genes were identified. The number of S. alterniflora HKTs (SaHKTs) is larger than that in all other investigated plant species except wheat. Phylogenetically related SaHKT members had similar gene structures, conserved protein domains and cis-elements. Expression profiling showed that most SaHKT genes are expressed in specific tissues and are differentially expressed under salt stress. Yeast complementation expression analysis showed that type I members SaHKT1;2, SaHKT1;3 and SaHKT1;8 and type II members SaHKT2;1, SaHKT2;3 and SaHKT2;4 had low-affinity K+ uptake ability and that type II members showed stronger K+ affinity than rice and Arabidopsis HKTs, as well as most SaHKTs showed preference for Na+ transport. We believe the deep learning-based methods are powerful approaches to uncovering new functional genes, and the SaHKT genes identified are important resources for breeding new varieties of salt-tolerant crops.
Collapse
Affiliation(s)
- Maogeng Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Shoukun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Tingxi Yu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Tingting Du
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| | - Xiang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chun-Ming Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Shihua Chen
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, CAAS, Sanya, Hainan, China
| |
Collapse
|
16
|
Mulet JM, Porcel R, Yenush L. Modulation of potassium transport to increase abiotic stress tolerance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5989-6005. [PMID: 37611215 DOI: 10.1093/jxb/erad333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Potassium is the major cation responsible for the maintenance of the ionic environment in plant cells. Stable potassium homeostasis is indispensable for virtually all cellular functions, and, concomitantly, viability. Plants must cope with environmental changes such as salt or drought that can alter ionic homeostasis. Potassium fluxes are required to regulate the essential process of transpiration, so a constraint on potassium transport may also affect the plant's response to heat, cold, or oxidative stress. Sequencing data and functional analyses have defined the potassium channels and transporters present in the genomes of different species, so we know most of the proteins directly participating in potassium homeostasis. The still unanswered questions are how these proteins are regulated and the nature of potential cross-talk with other signaling pathways controlling growth, development, and stress responses. As we gain knowledge regarding the molecular mechanisms underlying regulation of potassium homeostasis in plants, we can take advantage of this information to increase the efficiency of potassium transport and generate plants with enhanced tolerance to abiotic stress through genetic engineering or new breeding techniques. Here, we review current knowledge of how modifying genes related to potassium homeostasis in plants affect abiotic stress tolerance at the whole plant level.
Collapse
Affiliation(s)
- Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
17
|
Karunarathne S, Walker E, Sharma D, Li C, Han Y. Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance. J Zhejiang Univ Sci B 2023; 24:1069-1092. [PMID: 38057266 PMCID: PMC10710907 DOI: 10.1631/jzus.b2200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 07/11/2023]
Abstract
Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate resilience.
Collapse
Affiliation(s)
- Sakura Karunarathne
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Darshan Sharma
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia.
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia.
| |
Collapse
|
18
|
Banik S, Dutta D. Membrane Proteins in Plant Salinity Stress Perception, Sensing, and Response. J Membr Biol 2023; 256:109-124. [PMID: 36757456 DOI: 10.1007/s00232-023-00279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different terrestrial crops. Proteins at the plant's cell wall and membrane mediate different physiological roles owing to their critical positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters, accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with potential applications to developing salt tolerance in crops.
Collapse
Affiliation(s)
- Sanhita Banik
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
19
|
Bowerman AF, Byrt CS, Roy SJ, Whitney SM, Mortimer JC, Ankeny RA, Gilliham M, Zhang D, Millar AA, Rebetzke GJ, Pogson BJ. Potential abiotic stress targets for modern genetic manipulation. THE PLANT CELL 2023; 35:139-161. [PMID: 36377770 PMCID: PMC9806601 DOI: 10.1093/plcell/koac327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 05/06/2023]
Abstract
Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.
Collapse
Affiliation(s)
- Andrew F Bowerman
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Caitlin S Byrt
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stuart John Roy
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Spencer M Whitney
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jenny C Mortimer
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rachel A Ankeny
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Humanities, University of Adelaide, North Terrace, South Australia, Australia
| | - Matthew Gilliham
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Anthony A Millar
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Greg J Rebetzke
- CSIRO Agriculture & Food, Canberra, Australian Capital Territory, Australia
| | - Barry J Pogson
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
20
|
Rahman MU, Zulfiqar S, Raza MA, Ahmad N, Zhang B. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing. Cells 2022; 11:3590. [PMID: 36429019 PMCID: PMC9688763 DOI: 10.3390/cells11223590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental abiotic stresses challenge food security by depressing crop yields often exceeding 50% of their annual production. Different methods, including conventional as well as genomic-assisted breeding, mutagenesis, and genetic engineering have been utilized to enhance stress resilience in several crop species. Plant breeding has been partly successful in developing crop varieties against abiotic stresses owning to the complex genetics of the traits as well as the narrow genetic base in the germplasm. Irrespective of the fact that genetic engineering can transfer gene(s) from any organism(s), transgenic crops have become controversial mainly due to the potential risk of transgene-outcrossing. Consequently, the cultivation of transgenic crops is banned in certain countries, particularly in European countries. In this scenario, the discovery of the CRISPR tool provides a platform for producing transgene-free genetically edited plants-similar to the mutagenized crops that are not extensively regulated such as genetically modified organisms (GMOs). Thus, the genome-edited plants without a transgene would likely go into the field without any restriction. Here, we focused on the deployment of CRISPR for the successful development of abiotic stress-tolerant crop plants for sustaining crop productivity under changing environments.
Collapse
Affiliation(s)
- Mehboob-ur Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Ahmad Raza
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Niaz Ahmad
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
21
|
Thorne SJ, Maathuis FJM. Reducing potassium deficiency by using sodium fertilisation. STRESS BIOLOGY 2022; 2:45. [PMID: 37676370 PMCID: PMC10441835 DOI: 10.1007/s44154-022-00070-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2023]
Abstract
Potassium (K) is the most abundant cation in the vast majority of plants. It is required in large quantities which, in an agronomic context, typically necessitates application of K in the form of potash or other K fertilisers. Recently, the price of K fertiliser has risen dramatically, a situation that is paralleled by increasing K deficiency of soils around the globe. A potential solution to this problem is to reduce crop K fertiliser dependency by replacing it with sodium (Na) fertiliser which carries a much smaller price tag. In this paper we discuss the physiological roles of K and Na and the implications of Na fertilisation for crop cultivation and soil management. By using greenhouse growth assays we show distinct growth promotion after Na fertilisation in wheat, tomato, oilseed and sorghum. Our results also show that up to 60% of tissue K can be substituted by Na without growth penalty. Based on these data, simple economic models suggest that (part) replacement of K fertiliser with Na fertiliser leads to considerable savings.
Collapse
Affiliation(s)
- Sarah J. Thorne
- Department of Biology, University of Sheffield, Sheffield, S10 2TN UK
| | | |
Collapse
|
22
|
Li C, Sun Y, Li J, Zhang T, Zhou F, Song Q, Liu Y, Brestic M, Chen TH, Yang X. ScCBF1 plays a stronger role in cold, salt and drought tolerance than StCBF1 in potato (Solanum tuberosum). JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153806. [PMID: 36115270 DOI: 10.1016/j.jplph.2022.153806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Solanum tuberosum (St) and Solanum commersonii (Sc) are two potato varieties with different freezing tolerance. Among them, St is a freezing-sensitive variety and. Sc is a cold-resistant wild potato. CBF/DREB family members mainly function in response to freezing stress. In order to explore the different roles of St C-Repeat Binding Factor1 (StCBF1) and Sc C-Repeat Binding Factor1 (ScCBF1) in potato plants (Solanum tuberosum) under stress conditions, two kinds of potato lines were obtained with ScCBF1 and StCBF1 overexpressing respectively. Phenotypes analysis showed that both overexpressing ScCBF1 and StCBF1 caused smaller leaves, and reduced tuber yield. While the limited phenotypes of StCBF1 lines were more severe than that of ScCBF lines. After freezing treatment, StCBF1 over expression plants grown better than WT plants and worse than ScCBF1 over expression plants. Specifically, compared with wild-type lines, overexpressing ScCBF1 could up-regulate fatty acid desaturase genes, key enzyme of Calvin cycle genes, and antioxidant enzyme genes. Both ScCBF1 and StCBF1 lines showed higher PSII activity, thus maintaining a higher photosynthetic rate under cold stress. In addition, we also found that overexpression ScCBF1 and StCBF1 could also enhance the drought and salt tolerance in potato. In summary, ScCBF1 plays a stronger role in cold, salt, and drought tolerance than StCBF1 in potato (Solanum tuberosum).
Collapse
Affiliation(s)
- Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yalu Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Jian Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Fengli Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Tony Hh Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR, 97331, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
23
|
Kahraman N, Pehlivan N. Harboured cation/proton antiporters modulate stress response to integrated heat and salt via up-regulating KIN1 and GOLS1 in double transgenic Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1070-1084. [PMID: 36031594 DOI: 10.1071/fp21334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Recent research has pointed to improved salt tolerance by co-overexpression of Arabidopsis thaliana NHX1 (Na+ /H+ antiporter) and SOS1 (Salt Overly Sensitive1). However, functionality under salt stress accompanying heat is less understood in double transgenics. To further advance possible co-operational interactions of AtNHX1 (N) and AtSOS1 (S) under combined stress, modulation of osmolyte, redox, energy, and abscisic acid metabolism genes was analysed. The expression of the target BIP3 , KIN1 , GOLS1 , OHP2 , and CYCA3;2 in transgenic Arabidopsis seedlings were significantly regulated towards a dramatic suppression by ionic, osmotic, and heat stresses. AtNHX1 and AtSOS1 co-overexpression (NS) outpaced the single transgenics and control in terms of membrane disorganisation and the electrolyte leakage of the cell damage caused by heat and salt stress in seedlings. While NaCl slightly induced CYCA3;2 in transgenics, combined stress up-regulated KIN1 and GOLS1 , not other genes. Single N and S transgenics overexpressing AtNHX1 and AtSOS1 only appeared similar in their growth and development; however, different to WT and NS dual transgenics under heat+salt stress. Seed germination, cotyledon survival, and hypocotyl length were less influenced by combined stress in NS double transgenic lines than in single N and S and wild type. Stress combination caused significant reprogramming of gene expression profiles, mainly towards downregulation, possibly as a trade-off strategy. Analysing phenotypic, cellular, and transcriptional responses regulating growth facets of tolerant transgenic genotypes may support the ongoing efforts to achieve combined salt and heat tolerance.
Collapse
Affiliation(s)
- Nihal Kahraman
- Recep Tayyip Erdogan University, Biology Department, Rize, Turkey
| | - Necla Pehlivan
- Recep Tayyip Erdogan University, Biology Department, Rize, Turkey
| |
Collapse
|
24
|
Wang D, Yang N, Zhang C, He W, Ye G, Chen J, Wei X. Transcriptome analysis reveals molecular mechanisms underlying salt tolerance in halophyte Sesuvium portulacastrum. FRONTIERS IN PLANT SCIENCE 2022; 13:973419. [PMID: 36212287 PMCID: PMC9537864 DOI: 10.3389/fpls.2022.973419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity is an important environmental problem that seriously affects plant growth and crop productivity. Phytoremediation is a cost-effective solution for reducing soil salinity and potentially converting the soils for crop production. Sesuvium portulacastrum is a typical halophyte which can grow at high salt concentrations. In order to explore the salt tolerance mechanism of S. portulacastrum, rooted cuttings were grown in a hydroponic culture containing ½ Hoagland solution with or without addition of 400 mM Na for 21 days. Root and leaf samples were taken 1 h and 21 days after Na treatment, and RNA-Seq was used to analyze transcript differences in roots and leaves of the Na-treated and control plants. A large number of differentially expressed genes (DEGs) were identified in the roots and leaves of plants grown under salt stress. Several key pathways related to salt tolerance were identified through KEGG analysis. Combined with physiological data and expression analysis, it appeared that cyclic nucleotide gated channels (CNGCs) were implicated in Na uptake and Na+/H+ exchangers (NHXs) were responsible for the extrusion and sequestration of Na, which facilitated a balance between Na+ and K+ in S. portulacastrum under salt stress. Soluble sugar and proline were identified as important osmoprotectant in salt-stressed S. portulacastrum plants. Glutathione metabolism played an important role in scavenging reactive oxygen species. Results from this study show that S. portulacastrum as a halophytic species possesses a suite of mechanisms for accumulating and tolerating a high level of Na; thus, it could be a valuable plant species used for phytoremediation of saline soils.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Nan Yang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Chaoyue Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Weihong He
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Guiping Ye
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
25
|
Cope JE, Norton GJ, George TS, Newton AC. Evaluating Variation in Germination and Growth of Landraces of Barley ( Hordeum vulgare L.) Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:863069. [PMID: 35783948 PMCID: PMC9245355 DOI: 10.3389/fpls.2022.863069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance.
Collapse
Affiliation(s)
- Jonathan E. Cope
- The James Hutton Institute, Dundee, United Kingdom
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gareth J. Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | |
Collapse
|
26
|
Imran S, Oyama M, Horie R, Kobayashi NI, Costa A, Kumano R, Hirata C, Tran STH, Katsuhara M, Tanoi K, Kohchi T, Ishizaki K, Horie T. Distinct Functions of the Atypical Terminal Hydrophilic Domain of the HKT Transporter in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:802-816. [PMID: 35380735 DOI: 10.1093/pcp/pcac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
K+/Na+ homeostasis is important for land plants, particularly under salt stress. In this study, the structure and ion transport properties of the high-affinity K+ transporter (HKT) of the liverwort Marchantia polymorpha were investigated. Only one HKT gene, MpHKT1, was identified in the genome of M. polymorpha. Phylogenetic analysis of HKT proteins revealed that non-seed plants possess HKTs grouped into a clade independent of the other two clades including HKTs of angiosperms. A distinct long hydrophilic domain was found in the C-terminus of MpHKT1. Complementary DNA (cDNA) of truncated MpHKT1 (t-MpHKT1) encoding the MpHKT_Δ596-812 protein was used to examine the functions of the C-terminal domain. Both MpHKT1 transporters fused with enhanced green fluorescent protein at the N-terminus were localized to the plasma membrane when expressed in rice protoplasts. Two-electrode voltage clamp experiments using Xenopus laevis oocytes indicated that MpHKT1 mediated the transport of monovalent alkali cations with higher selectivity for Na+ and K+, but truncation of the C-terminal domain significantly reduced the transport activity with a decrease in the Na+ permeability. Overexpression of MpHKT1 or t-MpHKT1 in M. polymorpha conferred accumulation of higher Na+ levels and showed higher Na+ uptake rates, compared to those of wild-type plants; however, phenotypes with t-MpHKT1 were consistently weaker than those with MpHKT1. Together, these findings suggest that the hydrophilic C-terminal domain plays a unique role in the regulation of transport activity and ion selectivity of MpHKT1.
Collapse
Affiliation(s)
- Shahin Imran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
- Department of Agronomy, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Masumi Oyama
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Rie Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Natsuko I Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Alex Costa
- Department of Biosciences, University of Milan, Via Celoria 26, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| | - Ryosuke Kumano
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| | - Chiho Hirata
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501 Japan
| | - Sen Thi Huong Tran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, Hue, Thua Thien Hue 530000, Vietnam
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046 Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567 Japan
| |
Collapse
|
27
|
Zhou J, Nguyen TH, Hmidi D, Luu DT, Sentenac H, Véry AA. The outward shaker channel OsK5.2 improves plant salt tolerance by contributing to control of both leaf transpiration and K + secretion into xylem sap. PLANT, CELL & ENVIRONMENT 2022; 45:1734-1748. [PMID: 35297056 DOI: 10.1111/pce.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity constitutes a major environmental constraint to crop production worldwide. Leaf K+ /Na+ homoeostasis, which involves regulation of transpiration, and thus of the xylem sap flow, and control of the ionic composition of the ascending sap, is a key determinant of plant salt tolerance. Here, we show, using a reverse genetics approach, that the outwardly rectifying K+ -selective channel OsK5.2, which is involved in both K+ release from guard cells for stomatal closure in leaves and K+ secretion into the xylem sap in roots, is a strong determinant of rice salt tolerance (plant biomass production and shoot phenotype under saline constraint). OsK5.2 expression was upregulated in shoots from the onset of the saline treatment, and OsK5.2 activity in guard cells led to a fast decrease in transpirational water flow and, therefore, reduced Na+ translocation to shoots. In roots, upon saline treatment, OsK5.2 activity in xylem sap K+ loading was maintained, and even transiently increased, outperforming the negative effect on K+ translocation to shoots resulting from the reduction in xylem sap flow. Thus, the overall activity of OsK5.2 in shoots and roots, which both reduces Na+ translocation to shoots and benefits shoot K+ nutrition, strongly contributes to leaf K+ /Na+ homoeostasis.
Collapse
Affiliation(s)
- Jing Zhou
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, Montpellier, France
| | - Thanh-Hao Nguyen
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, Montpellier, France
| | - Dorsaf Hmidi
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, Montpellier, France
| | - Doan-Trung Luu
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, Montpellier, France
| | - Hervé Sentenac
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, Montpellier, France
| | - Anne-Aliénor Véry
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, Montpellier, France
| |
Collapse
|
28
|
Ceasar SA, Maharajan T, Hillary VE, Ajeesh Krishna TP. Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol Adv 2022; 59:107963. [PMID: 35452778 DOI: 10.1016/j.biotechadv.2022.107963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
We need to improve food production to feed the ever growing world population especially in a changing climate. Nutrient deficiency in soils is one of the primary bottlenecks affecting the crop production both in developed and developing countries. Farmers are forced to apply synthetic fertilizers to improve the crop production to meet the demand. Understanding the mechanism of nutrient transport is helpful to improve the nutrient-use efficiency of crops and promote the sustainable agriculture. Many transporters involved in the acquisition, export and redistribution of nutrients in plants are characterized. In these studies, heterologous systems like yeast and Xenopus were most frequently used to study the transport function of plant nutrient transporters. CRIPSR/Cas system introduced recently has taken central stage for efficient genome editing in diverse organisms including plants. In this review, we discuss the key nutrient transporters involved in the acquisition and redistribution of nutrients from soil. We draw insights on the possible application CRISPR/Cas system for improving the nutrient transport in plants by engineering key residues of nutrient transporters, transcriptional regulation of nutrient transport signals, engineering motifs in promoters and transcription factors. CRISPR-based engineering of plant nutrient transport not only helps to study the process in native plants with conserved regulatory system but also aid to develop non-transgenic crops with better nutrient use-efficiency. This will reduce the application of synthetic fertilizers and promote the sustainable agriculture strengthening the food and nutrient security.
Collapse
Affiliation(s)
| | | | - V Edwin Hillary
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
29
|
Dave A, Agarwal P, Agarwal PK. Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech 2022; 12:51. [PMID: 35127306 PMCID: PMC8795266 DOI: 10.1007/s13205-021-03092-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Glycophytic plants are susceptible to salinity and their growth is hampered in more than 40 mM of salt. Salinity not only affects crop yield but also limits available land for farming by decreasing its fertility. Presence of distinct traits in response to environmental conditions might result in evolutionary adaptations. A better understanding of salinity tolerance through a comprehensive study of how Na+ is transported will help in the development of plants with improved salinity tolerance and might lead to increased yield of crops growing in strenuous environment. Ion transporters play pivotal role in salt homeostasis and maintain low cytotoxic effect in the cell. High-affinity potassium transporters are the critical class of integral membrane proteins found in plants. It mainly functions to remove excess Na+ from the transpiration stream to prevent sodium toxicity in the salt-sensitive shoot and leaf tissues. However, there are large number of HKT proteins expressed in plants, and it is possible that these members perform in a wide range of functions. Understanding their mechanism and functions will aid in further manipulation and genetic transformation of different crops. This review focuses on current knowledge of ion selectivity and molecular mechanisms controlling HKT gene expression. The current review highlights the mechanism of different HKT transporters from different plant sources and how this knowledge could prove as a valuable tool to improve crop productivity.
Collapse
Affiliation(s)
- Ankita Dave
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
| | - Pradeep K. Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
30
|
Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. JOURNAL OF PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s00344-021-10338-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
31
|
Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira AM, Puthur JT, Abdi G, Sarraf M, Hasanuzzaman M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:56-69. [PMID: 35032888 DOI: 10.1016/j.plaphy.2022.01.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 01/02/2022] [Indexed: 05/14/2023]
Abstract
Potassium (K) is an essential element for the growth and development of plants; however, its scarcity or excessive level leads to distortion of numerous functions in plants. It takes part in the control of various significant functions in plant advancement. Because of the importance index, K is regarded second after nitrogen for whole plant growth. Approximately, higher than 60 enzymes are reliant on K for activation within the plant system, in which K plays a vital function as a regulator. Potassium provides assistance in plants against abiotic stress conditions in the environment. With this background, the present paper reviews the physiological functions of K in plants like stomatal regulation, photosynthesis and water uptake. The article also focuses upon the uptake and transport mechanisms of K along with its role in detoxification of reactive oxygen species and in conferring tolerance to plants against abiotic stresses. It also highlights the research progress made in the direction of K mediated signaling cascades.
Collapse
Affiliation(s)
- Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India
| | | | - Md Shahadat Hossen
- Independent Researcher, C/O: Prof. Mirza Hasanuzzaman, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban, 182144, Jammu and Kashmir, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Taliparamba, Kannur, Kerala, 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
32
|
Management of Salinity Stress by the Application of Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Sharmin S, Lipka U, Polle A, Eckert C. The influence of transpiration on foliar accumulation of salt and nutrients under salinity in poplar (Populus × canescens). PLoS One 2021; 16:e0253228. [PMID: 34166404 PMCID: PMC8224899 DOI: 10.1371/journal.pone.0253228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing salinity is one of the major drawbacks for plant growth. Besides the ion itself being toxic to plant cells, it greatly interferes with the supply of other macronutrients like potassium, calcium and magnesium. However, little is known about how sodium affects the translocation of these nutrients from the root to the shoot. The major driving force of this translocation process is thought to be the water flow through the xylem driven by transpiration. To dissect the effects of transpiration from those of salinity we compared salt stressed, ABA treated and combined salt- and ABA treated poplars with untreated controls. Salinity reduced the root content of major nutrients like K+, Ca2+ and Mg2+. Less Ca2+ and Mg2+ in the roots resulted in reduced leaf Ca2+ and leaf Mg2+ levels due to reduced stomatal conductance and reduced transpiration. Interestingly, leaf K+ levels were positively affected in leaves under salt stress although there was less K+ in the roots under salt. In response to ABA, transpiration was also decreased and Mg2+ and Ca2+ levels decreased comparably to the salt stress treatment, while K+ levels were not affected. Thus, our results suggest that loading and retention of leaf K+ is enhanced under salt stress compared to merely transpiration driven cation supply.
Collapse
Affiliation(s)
- Shayla Sharmin
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Ulrike Lipka
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
34
|
Dave A, Sanadhya P, Joshi PS, Agarwal P, Agarwal PK. Molecular cloning and characterization of high-affinity potassium transporter (AlHKT2;1) gene promoter from halophyte Aeluropus lagopoides. Int J Biol Macromol 2021; 181:1254-1264. [PMID: 33989688 DOI: 10.1016/j.ijbiomac.2021.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
HKT subfamily II functions as Na+- K+ co-transporter and prevents plants from salinity stress. A 760 bp promoter region of AlHKT2;1 was isolated, sequenced and cloned. The full length promoter D1, has many cis-regulatory elements like MYB, MBS, W box, ABRE etc. involved in abiotic stress responses. D1 and subsequent 5' deletions were cloned into pCAMBIA1301 and studied for its efficacy in stress conditions in heterologous system. Blue colour staining was observed in flower petals, anther lobe, and dehiscence slit of anther in T0 plants. The T1 seedlings showed staining in leaf veins, shoot vasculature and root except root tip. T1 seedlings were subjected to NaCl, KCl, NaCl + KCl and ABA stresses. GUS activity was quantified by 4-methylumbelliferyl glucuronide (4-MUG) assay under control and stress conditions. The smallest deletion- D4 also showed GUS expression but highest activity was observed in D2 as compared to full length promoter and other deletions. The electrophoretic mobility shift assay using stress-induced protein with different promoter deletions revealed more prominent binding in D2. These results suggest that AlHKT2;1 promoter is involved in abiotic stress response and deletion D2 might be sufficient to drive the stress-inducible expression of various genes involved in providing stress tolerance in plants.
Collapse
Affiliation(s)
- Ankita Dave
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Payal Sanadhya
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Priyanka S Joshi
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parinita Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Pradeep K Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
35
|
Kumari A, Bhatla SC. Regulation of salt-stressed sunflower (Helianthus annuus) seedling's water status by the coordinated action of Na +/K + accumulation, nitric oxide, and aquaporin expression. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:573-587. [PMID: 33487215 DOI: 10.1071/fp20334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
Among abiotic stresses, salt stress is a major threat to crop production all over the world. Present work demonstrates the profuse accumulation of Na+ in 2-day-old, dark-grown sunflower (Helianthus annuus L.) seedlings roots in response to salt stress (NaCl). The pattern of K+ accumulation in response to salt stress is similar to that of Na+ but on relatively lower scale. Application of nitric oxide (NO) donor (DETA) scales down Na+ accumulation in salt-stressed seedlings. The impact of NO donor on K+ accumulation is, however, different in control and salt-stressed seedling roots. In control seedlings, it enhances K+ accumulation, whereas, it gets reduced in salt-stressed seedlings. Specialised channels called 'aquaporins' (AQPs) play a major role maintaining the water status and transport across plant parts under salt-stress. Thus, accumulation of plasma-membrane intrinsic proteins (PIPs) and tonoplast-intrinsic proteins (TIPs), localised on plasma-membrane and vacuolar-membrane, respectively was undertaken in 2-day-old, dark-grown seedling roots. Salt stress increased the abundance of these isoforms, whereas, NO application resulted in decreased accumulation of PIP2 and TIP1. PIP1 and TIP2 isoforms remained undetectable. Present work thus, puts forward a correlation between AQP expression and ions (Na+ and K+) homeostasis in response to salt stress and NO.
Collapse
Affiliation(s)
- Archana Kumari
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi-11007, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi-11007, India; and Corresponding author.
| |
Collapse
|
36
|
Ali A, Raddatz N, Pardo JM, Yun D. HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. PHYSIOLOGIA PLANTARUM 2021; 171:546-558. [PMID: 32652584 PMCID: PMC8048799 DOI: 10.1111/ppl.13166] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 05/10/2023]
Abstract
High salinity induces osmotic stress and often leads to sodium ion-specific toxicity, with inhibitory effects on physiological, biochemical and developmental pathways. To cope with increased Na+ in soil water, plants restrict influx, compartmentalize ions into vacuoles, export excess Na+ from the cell, and distribute ions between the aerial and root organs. In this review, we discuss our current understanding of how high-affinity K+ transporters (HKT) contribute to salinity tolerance, focusing on HKT1-like family members primarily involved in long-distance transport, and in the recent research in the model plant Arabidopsis and its halophytic counterparts of the Eutrema genus. Functional characterization of the salt overly sensitive (SOS) pathway and HKT1-type transporters in these species indicate that they utilize similar approaches to deal with salinity, regardless of their tolerance.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease ControlKonkuk UniversitySeoul05029South Korea
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Jose M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Dae‐Jin Yun
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| |
Collapse
|
37
|
Cebrián G, Iglesias-Moya J, García A, Martínez J, Romero J, Regalado JJ, Martínez C, Valenzuela JL, Jamilena M. Involvement of ethylene receptors in the salt tolerance response of Cucurbita pepo. HORTICULTURE RESEARCH 2021; 8:73. [PMID: 33790231 PMCID: PMC8012379 DOI: 10.1038/s41438-021-00508-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 05/07/2023]
Abstract
Abiotic stresses have a negative effect on crop production, affecting both vegetative and reproductive development. Ethylene plays a relevant role in plant response to environmental stresses, but the specific contribution of ethylene biosynthesis and signalling components in the salt stress response differs between Arabidopsis and rice, the two most studied model plants. In this paper, we study the effect of three gain-of-function mutations affecting the ethylene receptors CpETR1B, CpETR1A, and CpETR2B of Cucurbita pepo on salt stress response during germination, seedling establishment, and subsequent vegetative growth of plants. The mutations all reduced ethylene sensitivity, but enhanced salt tolerance, during both germination and vegetative growth, demonstrating that the three ethylene receptors play a positive role in salt tolerance. Under salt stress, etr1b, etr1a, and etr2b germinate earlier than WT, and the root and shoot growth rates of both seedlings and plants were less affected in mutant than in WT. The enhanced salt tolerance response of the etr2b plants was associated with a reduced accumulation of Na+ in shoots and leaves, as well as with a higher accumulation of compatible solutes, including proline and total carbohydrates, and antioxidant compounds, such as anthocyanin. Many membrane monovalent cation transporters, including Na+/H+ and K+/H+ exchangers (NHXs), K+ efflux antiporters (KEAs), high-affinity K+ transporters (HKTs), and K+ uptake transporters (KUPs) were also highly upregulated by salt in etr2b in comparison with WT. In aggregate, these data indicate that the enhanced salt tolerance of the mutant is led by the induction of genes that exclude Na+ in photosynthetic organs, while maintaining K+/Na+ homoeostasis and osmotic adjustment. If the salt response of etr mutants occurs via the ethylene signalling pathway, our data show that ethylene is a negative regulator of salt tolerance during germination and vegetative growth. Nevertheless, the higher upregulation of genes involved in Ca2+ signalling (CpCRCK2A and CpCRCK2B) and ABA biosynthesis (CpNCED3A and CpNCED3B) in etr2b leaves under salt stress likely indicates that the function of ethylene receptors in salt stress response in C. pepo can be mediated by Ca2+ and ABA signalling pathways.
Collapse
Affiliation(s)
- Gustavo Cebrián
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Alicia García
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Javier Martínez
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Jonathan Romero
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - José Javier Regalado
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Juan Luis Valenzuela
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Agri-food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
38
|
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: Story of Na +/K + balance and beyond. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:239-256. [PMID: 33524921 DOI: 10.1016/j.plaphy.2021.01.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan; Shanghai Center for Plant Stress Biology, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianqian Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naeem Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
39
|
Plant HKT Channels: An Updated View on Structure, Function and Gene Regulation. Int J Mol Sci 2021; 22:ijms22041892. [PMID: 33672907 PMCID: PMC7918770 DOI: 10.3390/ijms22041892] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
HKT channels are a plant protein family involved in sodium (Na+) and potassium (K+) uptake and Na+-K+ homeostasis. Some HKTs underlie salt tolerance responses in plants, while others provide a mechanism to cope with short-term K+ shortage by allowing increased Na+ uptake under K+ starvation conditions. HKT channels present a functionally versatile family divided into two classes, mainly based on a sequence polymorphism found in the sequences underlying the selectivity filter of the first pore loop. Physiologically, most class I members function as sodium uniporters, and class II members as Na+/K+ symporters. Nevertheless, even within these two classes, there is a high functional diversity that, to date, cannot be explained at the molecular level. The high complexity is also reflected at the regulatory level. HKT expression is modulated at the level of transcription, translation, and functionality of the protein. Here, we summarize and discuss the structure and conservation of the HKT channel family from algae to angiosperms. We also outline the latest findings on gene expression and the regulation of HKT channels.
Collapse
|
40
|
Nestrerenko EO, Krasnoperova OE, Isayenkov SV. Potassium Transport Systems and Their Role in Stress Response, Plant Growth, and Development. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
42
|
Neang S, Goto I, Skoulding NS, Cartagena JA, Kano-Nakata M, Yamauchi A, Mitsuya S. Tissue-specific expression analysis of Na + and Cl - transporter genes associated with salt removal ability in rice leaf sheath. BMC PLANT BIOLOGY 2020; 20:502. [PMID: 33143652 PMCID: PMC7607675 DOI: 10.1186/s12870-020-02718-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/25/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND A significant mechanism of salt-tolerance in rice is the ability to remove Na+ and Cl- in the leaf sheath, which limits the entry of these toxic ions into the leaf blade. The leaf sheath removes Na+ mainly in the basal parts, and Cl- mainly in the apical parts. These ions are unloaded from the xylem vessels in the peripheral part and sequestered into the fundamental parenchyma cells at the central part of the leaf sheath. RESULTS This study aimed to identify associated Na+ and Cl- transporter genes with this salt removal ability in the leaf sheath of rice variety FL 478. From 21 known candidate Na+ and Cl- transporter rice genes, we determined the salt responsiveness of the expression of these genes in the basal and apical parts, where Na+ or Cl- ions were highly accumulated under salinity. We also compared the expression levels of these transporter genes between the peripheral and central parts of leaf sheaths. The expression of 8 Na+ transporter genes and 3 Cl- transporter genes was up-regulated in the basal and apical parts of leaf sheaths under salinity. Within these genes, OsHKT1;5 and OsSLAH1 were expressed highly in the peripheral part, indicating the involvement of these genes in Na+ and Cl- unloading from xylem vessels. OsNHX2, OsNHX3, OsNPF2.4 were expressed highly in the central part, which suggests that these genes may function in sequestration of Na+ and Cl- in fundamental parenchyma cells in the central part of leaf sheaths under salinity. Furthermore, high expression levels of 4 candidate genes under salinity were associated with the genotypic variation of salt removal ability in the leaf sheath. CONCLUSIONS These results indicate that the salt removal ability in rice leaf sheath may be regulated by expressing various Na+ or Cl- transporter genes tissue-specifically in peripheral and central parts. Moreover, some genes were identified as candidates whose expression levels were associated with the genotypic variation of salt removal ability in the leaf sheath. These findings will enhance the understanding of the molecular mechanism of salt removal ability in rice leaf sheath, which is useful for breeding salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Sarin Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Itsuki Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | - Joyce A Cartagena
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
43
|
Li H, Shi J, Wang Z, Zhang W, Yang H. H 2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na +/K + homeostasis and oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:233-241. [PMID: 32977178 DOI: 10.1016/j.plaphy.2020.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H2S) plays an important role in the plant salt stress response. The main component of salt stress is neutral salt (NaCl); NaHCO3 and Na2CO3 play a key role in soil alkaline due to the influence of pH. Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) is a salt-sensitive apple rootstock. Seedlings of PYTC pretreated with NaHS (an H2S donor) were exposed to an alkaline salt solution, and then the plant growth, root architecture, oxidative damage, Na+/K+ homeostasis and gene expression of MhSOS1 and MhSKOR were investigated. The results showed that NaHS pretreatment increased the endogenous H2S content in seedlings, significantly alleviated the alkaline salt stress-induced growth inhibition and oxidative damage by inducing antioxidant enzymes activities, and sustained the root activity and root architecture of PYTC in the alkaline salt solution. NaHS pretreatment significantly decreased the root Na+ content and increased K+ content to maintain the homeostasis of Na+/K+, and effect the expression of MhSOS1 and MhSKOR at the transcription level in the presence of the alkaline salt. Our study reveals that application of H2S could mitigate the toxic effect of alkaline salt stress on Malus hupehensis seedlings, thus providing a foundation for improved plant tolerance to alkaline salt stress.
Collapse
Affiliation(s)
- Huan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong Street, Tai'an, Shandong, 271018, PR China
| | - Junyuan Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong Street, Tai'an, Shandong, 271018, PR China
| | - Zepeng Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong Street, Tai'an, Shandong, 271018, PR China
| | - Weiwei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong Street, Tai'an, Shandong, 271018, PR China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong Street, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
44
|
Huang HE, Ho MH, Chang H, Chao HY, Ger MJ. Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:136-146. [PMID: 32750653 DOI: 10.1016/j.plaphy.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 05/02/2023]
Abstract
High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway. Constitutive expression of plant ferrodoxin-like protein (PFLP) gene enhances pathogen-resistance activities and root-hair growth through promoting ROS generation. However, the function of PFLP in abiotic stress responses is unclear. In this study, PFLP-1 and PFLP-2-transgenic rice plants were generated to elucidate the role of PFLP under salinity stress. PFLP overexpression significantly increased salt tolerance in PFLP-transgenic rice plants compared with non-transgenic plants (Oryza sativa japonica cv. Tainung 67, designated as TNG67). In high-salinity conditions, PFLP-transgenic plants exhibited earlier ROS production, higher antioxidant enzyme activities, higher ABA accumulation, up-regulated expression of stress-related genes (OsRBOHa, Cu/Zn SOD, OsAPX, OsNCED2, OsSOS1, OsCIPK24, OsCBL4, and OsNHX2), and leaf sodium ion content was lower compared with TNG67 plant. In addition, transgenic lines maintained electron transport rates and contained lower malondialdhyde (MDA) content than TNG67 plant did under salt-stress conditions. Overall results indicated salinity tolerance was improved by PFLP overexpression in transgenic rice plant. The PFLP gene is a potential candidate for improving salinity tolerance for valuable agricultural crops.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan.
| | - Mei-Hsuan Ho
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsien-Yu Chao
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
45
|
Xu B, Hrmova M, Gilliham M. High affinity Na + transport by wheat HKT1;5 is blocked by K . PLANT DIRECT 2020; 4:e00275. [PMID: 33103046 PMCID: PMC7576878 DOI: 10.1002/pld3.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2020] [Indexed: 05/11/2023]
Abstract
The wheat sodium transporters TmHKT1;5-A and TaHKT1;5-D are encoded by genes underlying the major shoot Na+ exclusion loci Nax2 and Kna1 from Triticum monococcum (Tm) and Triticum aestivum (Ta), respectively. In contrast to HKT2 transporters that have been shown to exhibit high affinity K+-dependent Na+ transport, HKT1 proteins have, with one exception, only been shown to catalyze low affinity Na+ transport and no K+ transport. Here, using heterologous expression in Xenopus laevis oocytes we uncover a novel property of HKT1 proteins, that both TmHKT1;5-A and TaHKT1;5-D encode dual (high and low) affinity Na+-transporters with the high-affinity component being abolished when external K+ is in excess of external Na+. Three-dimensional structural modeling suggested that, compared to Na+, K+ is bound more tightly in the selectivity filter region by means of additional van der Waals forces, which is likely to explain the K+ block at the molecular level. The low-affinity component for Na+ transport of TmHKT1;5-A had a lower K m than that of TaHKT1;5-D and was less sensitive to external K+. We propose that these properties contribute towards the improvements in shoot Na+-exclusion and crop plant salt tolerance following the introgression of TmHKT1;5-A into diverse wheat backgrounds.
Collapse
Affiliation(s)
- Bo Xu
- Australian Research Council Centre of Excellence in Plant Energy BiologyUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Life ScienceHuaiyin Normal UniversityHuai’anChina
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy BiologyUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
| |
Collapse
|
46
|
Kawakami Y, Imran S, Katsuhara M, Tada Y. Na + Transporter SvHKT1;1 from a Halophytic Turf Grass Is Specifically Upregulated by High Na + Concentration and Regulates Shoot Na + Concentration. Int J Mol Sci 2020; 21:ijms21176100. [PMID: 32847126 PMCID: PMC7503356 DOI: 10.3390/ijms21176100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
We characterized an Na+ transporter SvHKT1;1 from a halophytic turf grass, Sporobolus virginicus. SvHKT1;1 mediated inward and outward Na+ transport in Xenopus laevis oocytes and did not complement K+ transporter-defective mutant yeast. SvHKT1;1 did not complement athkt1;1 mutant Arabidopsis, suggesting its distinguishable function from other typical HKT1 transporters. The transcript was abundant in the shoots compared with the roots in S. virginicus and was upregulated by severe salt stress (500 mM NaCl), but not by lower stress. SvHKT1;1-expressing Arabidopsis lines showed higher shoot Na+ concentrations and lower salt tolerance than wild type (WT) plants under nonstress and salt stress conditions and showed higher Na+ uptake rate in roots at the early stage of salt treatment. These results suggested that constitutive expression of SvHKT1;1 enhanced Na+ uptake in root epidermal cells, followed by increased Na+ transport to shoots, which led to reduced salt tolerance. However, Na+ concentrations in phloem sap of the SvHKT1;1 lines were higher than those in WT plants under salt stress. Based on this result, together with the induction of the SvHKT1;1 transcription under high salinity stress, it was suggested that SvHKT1;1 plays a role in preventing excess shoot Na+ accumulation in S. virginicus.
Collapse
Affiliation(s)
- Yuki Kawakami
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan;
| | - Shahin Imran
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan; (S.I.); (M.K.)
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan; (S.I.); (M.K.)
| | - Yuichi Tada
- School of Biosciences and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
- Correspondence:
| |
Collapse
|
47
|
Somasundaram S, Véry AA, Vinekar RS, Ishikawa T, Kumari K, Pulipati S, Kumaresan K, Corratgé-Faillie C, Sowdhamini R, Parida A, Shabala L, Shabala S, Venkataraman G. Homology Modeling Identifies Crucial Amino-Acid Residues That Confer Higher Na+ Transport Capacity of OcHKT1;5 from Oryza coarctata Roxb. PLANT & CELL PHYSIOLOGY 2020; 61:1321-1334. [PMID: 32379873 DOI: 10.1093/pcp/pcaa061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/28/2020] [Indexed: 05/20/2023]
Abstract
HKT1;5 loci/alleles are important determinants of crop salinity tolerance. HKT1;5s encode plasmalemma-localized Na+ transporters, which move xylem Na+ into xylem parenchyma cells, reducing shoot Na+ accumulation. Allelic variation in rice OsHKT1;5 sequence in specific landraces (Nona Bokra OsHKT1;5-NB/Nipponbare OsHKT1;5-Ni) correlates with variation in salt tolerance. Oryza coarctata, a halophytic wild rice, grows in fluctuating salinity at the seawater-estuarine interface in Indian and Bangladeshi coastal regions. The distinct transport characteristics of the shoots and roots expressing the O. coarctata OcHKT1;5 transporter are reported vis-à-vis OsHKT1;5-Ni. Yeast sodium extrusion-deficient cells expressing OcHKT1;5 are sensitive to increasing Na+ (10-100 mM). Electrophysiological measurements in Xenopus oocytes expressing O. coarctata or rice HKT1;5 transporters indicate that OcHKT1;5, like OsHKT1;5-Ni, is a Na+-selective transporter, but displays 16-fold lower affinity for Na+ and 3.5-fold higher maximal conductance than OsHKT1;5-Ni. For Na+ concentrations >10 mM, OcHKT1;5 conductance is higher than that of OsHKT1;5-Ni, indicating the potential of OcHKT1;5 for increasing domesticated rice salt tolerance. Homology modeling/simulation suggests that four key amino-acid changes in OcHKT1;5 (in loops on the extracellular side; E239K, G207R, G214R, L363V) account for its lower affinity and higher Na+ conductance vis-à-vis OsHKT1;5-Ni. Of these, E239K in OcHKT1;5 confers lower affinity for Na+ transport, as evidenced by Na+ transport assays of reciprocal site-directed mutants for both transporters (OcHKT1;5-K239E, OsHKT1;5-Ni-E270K) in Xenopus oocytes. Both transporters have likely analogous roles in xylem sap desalinization, and differences in xylem sap Na+ concentrations in both species are attributed to differences in Na+ transport affinity/conductance between the transporters.
Collapse
Affiliation(s)
- Suji Somasundaram
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - Rithvik S Vinekar
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Tetsuya Ishikawa
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Kavitha Kumaresan
- Krishi Vigyan Kendra, Thurupathisaram, Kanyakumari District, Tamil Nadu 629901, India
| | - Claire Corratgé-Faillie
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - R Sowdhamini
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Ajay Parida
- Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, Odisha 751023, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| |
Collapse
|
48
|
Tada Y, Ohnuma A. Comparative Functional Analysis of Class II Potassium Transporters, SvHKT2;1, SvHKT2;2, and HvHKT2;1, on Ionic Transport and Salt Tolerance in Transgenic Arabidopsis. PLANTS 2020; 9:plants9060786. [PMID: 32585860 PMCID: PMC7356169 DOI: 10.3390/plants9060786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023]
Abstract
Class II high-affinity potassium transporters (HKT2s) mediate Na+–K+ cotransport and Na+/K+ homeostasis under K+-starved or saline conditions. Their functions have been studied in yeast and X. laevis oocytes; however, little is known about their respective properties in plant cells. In this study, we characterized the Na+ and K+ transport properties of SvHKT2;1, SvHKT2;2 and HvHKT2;1 in Arabidopsis under different ionic conditions. The differences were detected in shoot K+ accumulation and root K+ uptake under salt stress conditions, K+ accumulation in roots and phloem sap under K+-starved conditions, and shoot and root Na+ accumulation under K+-starved conditions among the HKT2s transgenic lines and WT plants. These results indicate the diverse ionic transport properties of these HKT2s in plant cells, which could not be detected using yeast or X. laevis oocytes. Furthermore, Arabidopsis expressing HKT2s showed reduced salt tolerance, while over-expression of HvHKT2;1 in barley, which has the ability to sequestrate Na+, showed enhanced salt tolerance by accumulating Na+ in the shoots. These results suggest that the coordinated enhancement of Na+ accumulation and sequestration mechanisms in shoots could be a promising strategy to confer salt tolerance to glycophytes.
Collapse
|
49
|
Characterization and Expression of KT/HAK/KUP Transporter Family Genes in Willow under Potassium Deficiency, Drought, and Salt Stresses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2690760. [PMID: 32596286 PMCID: PMC7303730 DOI: 10.1155/2020/2690760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) transporters dominate K+ uptake, transport, and allocation that play a pivotal role in mineral homeostasis and plant adaptation to adverse abiotic stresses. However, molecular mechanisms towards K+ nutrition in forest trees are extremely rare, especially in willow. In this study, we identified 22 KT/HAK/KUP transporter genes in purple osier willow (designated as SpuHAK1 to SpuHAK22) and examined their expression under K+ deficiency, drought, and salt stress conditions. Both transcriptomic and quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuHAKs were predominantly expressed in stems, and the expression levels of SpuHAK1, SpuHAK2, SpuHAK3, SpuHAK7, and SpuHAK8 were higher at the whole plant level, whereas SpuHAK9, SpuHAK11, SpuHAK20, and SpuHAK22 were hardly detected in tested tissues. In addition, both K+ deficiency and salt stress decreased the tissue K+ content, while drought increased the tissue K+ content in purple osier plant. Moreover, SpuHAK genes were differentially responsive to K+ deficiency, drought, and salt stresses in roots. K+ deficiency and salt stress mainly enhanced the expression level of responsive SpuHAK genes. Fifteen putative cis-acting regulatory elements, including the stress response, hormone response, circadian regulation, and nutrition and development, were identified in the promoter region of SpuHAK genes. Our findings provide a foundation for further functional characterization of KT/HAK/KUP transporters in forest trees and may be useful for breeding willow rootstocks that utilize potassium more efficiently.
Collapse
|
50
|
Huang L, Wu DZ, Zhang GP. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ Sci B 2020; 21:426-441. [PMID: 32478490 PMCID: PMC7306632 DOI: 10.1631/jzus.b1900510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022]
Abstract
Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumulating compatible solutes in the cytoplasm, reactive oxygen species (ROS) scavenging through enhancing the activity of anti-oxidative enzymes, and Na+/K+ homeostasis regulation through controlling Na+ uptake and transportation. In this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance among plant species or genotypes within a species is presented. We also discuss the application and roles of different breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and perspectives of genome or gene editing in improving the salt tolerance of crops.
Collapse
|