1
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Patrick MB, Omar N, Werner CT, Mitra S, Jarome TJ. The ubiquitin-proteasome system and learning-dependent synaptic plasticity - A 10 year update. Neurosci Biobehav Rev 2023; 152:105280. [PMID: 37315660 PMCID: PMC11323321 DOI: 10.1016/j.neubiorev.2023.105280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Over 25 years ago, a seminal paper demonstrated that the ubiquitin-proteasome system (UPS) was involved in activity-dependent synaptic plasticity. Interest in this topic began to expand around 2008 following another seminal paper showing that UPS-mediated protein degradation controlled the "destabilization" of memories following retrieval, though we remained with only a basic understanding of how the UPS regulated activity- and learning-dependent synaptic plasticity. However, over the last 10 years there has been an explosion of papers on this topic that has significantly changed our understanding of how ubiquitin-proteasome signaling regulates synaptic plasticity and memory formation. Importantly, we now know that the UPS controls much more than protein degradation, is involved in plasticity underlying drugs of abuse and that there are significant sex differences in how ubiquitin-proteasome signaling is used for memory storage processes. Here, we aim to provide a critical 10-year update on the role of ubiquitin-proteasome signaling in synaptic plasticity and memory formation, including updated cellular models of how ubiquitin-proteasome activity could be regulating learning-dependent synaptic plasticity in the brain.
Collapse
Affiliation(s)
- Morgan B Patrick
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nour Omar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Craig T Werner
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; National Center for Wellness and Recovery, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA.
| | - Swarup Mitra
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Narendra S, Klengel C, Hamzeh B, Patel D, Otten J, Lardenoije R, Newman EL, Miczek KA, Klengel T, Ressler KJ, Suh J. Genome-wide transcriptomics of the amygdala reveals similar oligodendrocyte-related responses to acute and chronic alcohol drinking in female mice. Transl Psychiatry 2022; 12:476. [PMID: 36371333 PMCID: PMC9653459 DOI: 10.1038/s41398-022-02231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics targeting development of AUD, particularly in women, have been validated. To gain a better understanding of molecular mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. Surprisingly, we found that both drinking modes triggered similar changes in gene expression and canonical pathways, including upregulation of ribosome-related/translational pathways and myelination pathways, and downregulation of chromatin binding and histone modification. In addition, analyses of hub genes and upstream regulatory pathways revealed that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor, Sox17. Furthermore, a viral vector-assisted knockdown of Sox17 gene expression in the amygdala prevented a gradual increase in alcohol consumption during repeated accesses. Overall, these results suggest that the expression of oligodendrocyte-related genes in the amygdala is sensitive to voluntary alcohol drinking in female mice. These findings suggest potential molecular targets for future therapeutic approaches to prevent the development of AUD, due to repeated excessive alcohol consumption, particularly in women.
Collapse
Affiliation(s)
- Sharvari Narendra
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Claudia Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Bilal Hamzeh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Drasti Patel
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Joy Otten
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roy Lardenoije
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Emily L Newman
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Klaus A Miczek
- Psychology and Neuroscience Departments, Tufts University, Medford, MA, 02155, USA
| | - Torsten Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
4
|
Haun HL, Lebonville CL, Solomon MG, Griffin WC, Lopez MF, Becker HC. Dynorphin/Kappa Opioid Receptor Activity Within the Extended Amygdala Contributes to Stress-Enhanced Alcohol Drinking in Mice. Biol Psychiatry 2022; 91:1019-1028. [PMID: 35190188 PMCID: PMC9167153 DOI: 10.1016/j.biopsych.2022.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND While there is high comorbidity of stress-related disorders and alcohol use disorder, few effective treatments are available and elucidating underlying neurobiological mechanisms has been hampered by a general lack of reliable animal models. Here, we use a novel mouse model demonstrating robust and reproducible stress-enhanced alcohol drinking to examine the role of dynorphin/kappa opioid receptor (DYN/KOR) activity within the extended amygdala in mediating this stress-alcohol interaction. METHODS Mice received repeated weekly cycles of chronic intermittent ethanol exposure alternating with weekly drinking sessions ± forced swim stress exposure. Pdyn messenger RNA expression was measured in the central amygdala (CeA), and DYN-expressing CeA neurons were then targeted for chemogenetic inhibition. Finally, a KOR antagonist was microinjected into the CeA or bed nucleus of the stria terminalis to examine the role of KOR signaling in promoting stress-enhanced drinking. RESULTS Stress (forced swim stress) selectively increased alcohol drinking in mice with a history of chronic intermittent ethanol exposure, and this was accompanied by elevated Pdyn messenger RNA levels in the CeA. Targeted chemogenetic silencing of DYN-expressing CeA neurons blocked stress-enhanced drinking, and KOR antagonism in the CeA or bed nucleus of the stria terminalis significantly reduced stress-induced elevated alcohol consumption without altering moderate intake in control mice. CONCLUSIONS Using a novel and robust model of stress-enhanced alcohol drinking, a significant role for DYN/KOR activity within extended amygdala circuitry in mediating this effect was demonstrated, thereby providing further evidence that the DYN/KOR system may be a valuable target in the development of more effective treatments for individuals presenting with comorbidity of stress-related disorders and alcohol use disorder.
Collapse
Affiliation(s)
- Harold L Haun
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Christina L Lebonville
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Matthew G Solomon
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina.
| |
Collapse
|
5
|
Ferguson LB, Roberts AJ, Mayfield RD, Messing RO. Blood and brain gene expression signatures of chronic intermittent ethanol consumption in mice. PLoS Comput Biol 2022; 18:e1009800. [PMID: 35176017 PMCID: PMC8853518 DOI: 10.1371/journal.pcbi.1009800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., antigen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between CIE and Air subjects.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, San Diego, California, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
6
|
Meinhardt MW, Giannone F, Hirth N, Bartsch D, Spampinato SM, Kelsch W, Spanagel R, Sommer WH, Hansson AC. Disrupted circadian expression of beta-arrestin 2 affects reward-related µ-opioid receptor function in alcohol dependence. J Neurochem 2021; 160:454-468. [PMID: 34919270 DOI: 10.1111/jnc.15559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
There is increasing evidence for a daily rhythm of μ-opioid receptor (MOR) efficacy and the development of alcohol dependence. Previous studies show that beta-Arrestin 2 (bArr2) has an impact on alcohol intake, at least partially mediated via modulation of MOR signaling, which in turn mediates the alcohol rewarding effects. Considering the interplay of circadian rhythms on MOR and alcohol dependence, we aimed to investigate bArr2 in alcohol dependence at different time-points of the day/light cycle on the level of bArr2 mRNA (in situ hybridization), MOR availability (receptor autoradiography) and MOR signaling (Damgo-stimulated G-protein coupling) in the nucleus accumbens of alcohol-dependent and non-dependent Wistar rats. Using a microarray data set we found that bArr2, but not bArr1, shows a diurnal transcription pattern in the accumbens of naïve rats with higher expression levels during the active cycle. In three-week abstinent rats, bArr2 is upregulated in the accumbens at the beginning of the active cycle (ZT15), whereas no differences were found at the beginning of the inactive cycle (ZT3), compared to controls. This effect was accompanied with a specific downregulation of MOR binding in the active cycle. Additionally, we detect a higher receptor coupling during the inactive cycle compared to the active cycle in alcohol-dependent animals. Together, we report a daily rhythmicity for bArr2 expression linked to an inverse pattern of MOR, suggesting an involvement for bArr2 on circadian regulation of G-protein coupled receptors in alcohol dependence. The presented data may have implications for the development of novel bArr2-related treatment targets for alcoholism.
Collapse
Affiliation(s)
- Marcus W Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany.,Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Nathalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Santi M Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| |
Collapse
|
7
|
Little HJ. L-Type Calcium Channel Blockers: A Potential Novel Therapeutic Approach to Drug Dependence. Pharmacol Rev 2021; 73:127-154. [PMID: 34663686 DOI: 10.1124/pharmrev.120.000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review describes interactions between compounds, primarily dihydropyridines, that block L-type calcium channels and drugs that cause dependence, and the potential importance of these interactions. The main dependence-inducing drugs covered are alcohol, psychostimulants, opioids, and nicotine. In preclinical studies, L-type calcium channel blockers prevent or reduce important components of dependence on these drugs, particularly their reinforcing actions and the withdrawal syndromes. The channel blockers also reduce the development of tolerance and/or sensitization, and they have no intrinsic dependence liability. In some instances, their effects include reversal of brain changes established during drug dependence. Prolonged treatment with alcohol, opioids, psychostimulant drugs, or nicotine causes upregulation of dihydropyridine binding sites. Few clinical studies have been carried out so far, and reports are conflicting, although there is some evidence of effectiveness of L-channel blockers in opioid withdrawal. However, the doses of L-type channel blockers used clinically so far have necessarily been limited by potential cardiovascular problems and may not have provided sufficient central levels of the drugs to affect neuronal dihydropyridine binding sites. New L-type calcium channel blocking compounds are being developed with more selective actions on subtypes of L-channel. The preclinical evidence suggests that L-type calcium channels may play a crucial role in the development of dependence to different types of drugs. Mechanisms for this are proposed, including changes in the activity of mesolimbic dopamine neurons, genomic effects, and alterations in synaptic plasticity. Newly developed, more selective L-type calcium channel blockers could be of considerable value in the treatment of drug dependence. SIGNIFICANCE STATEMENT: Dependence on drugs is a very serious health problem with little effective treatment. Preclinical evidence shows drugs that block particular calcium channels, the L-type, reduce dependence-related effects of alcohol, opioids, psychostimulants, and nicotine. Clinical studies have been restricted by potential cardiovascular side effects, but new, more selective L-channel blockers are becoming available. L-channel blockers have no intrinsic dependence liability, and laboratory evidence suggests they reverse previously developed effects of dependence-inducing drugs. They could provide a novel approach to addiction treatment.
Collapse
Affiliation(s)
- Hilary J Little
- Section of Alcohol Research, National Addiction Centre, Institute of Psychiatry, King's College, London, United Kingdom
| |
Collapse
|
8
|
Siemsen BM, Landin JD, McFaddin JA, Hooker KN, Chandler LJ, Scofield MD. Chronic intermittent ethanol and lipopolysaccharide exposure differentially alter Iba1-derived microglia morphology in the prelimbic cortex and nucleus accumbens core of male Long-Evans rats. J Neurosci Res 2021; 99:1922-1939. [PMID: 32621337 PMCID: PMC7779701 DOI: 10.1002/jnr.24683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has linked pathological changes associated with chronic alcohol exposure to neuroimmune signaling mediated by microglia. Prior characterization of the microglial structure-function relationship demonstrates that alterations in activity states occur concomitantly with reorganization of cellular architecture. Accordingly, gaining a better understanding of microglial morphological changes associated with ethanol exposure will provide valuable insight into how neuroimmune signaling may contribute to ethanol-induced reshaping of neuronal function. Here we have used Iba1-staining combined with high-resolution confocal imaging and 3D reconstruction to examine microglial structure in the prelimbic (PL) cortex and nucleus accumbens (NAc) in male Long-Evans rats. Rats were either sacrificed at peak withdrawal following 15 days of exposure to chronic intermittent ethanol (CIE) or 24 hr after two consecutive injections of the immune activator lipopolysaccharide (LPS), each separated by 24 hr. LPS exposure resulted in dramatic structural reorganization of microglia in the PL cortex, including increased soma volume, overall cellular volume, and branching complexity. In comparison, CIE exposure was associated with a subtle increase in somatic volume and differential effects on microglia processes, which were largely absent in the NAc. These data reveal that microglial activation following a neuroimmune challenge with LPS or exposure to chronic alcohol exhibits distinct morphometric profiles and brain region-dependent specificity.
Collapse
Affiliation(s)
- Benjamin M. Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jon A. McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N. Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lawrence J. Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
9
|
Transcriptomics identifies STAT3 as a key regulator of hippocampal gene expression and anhedonia during withdrawal from chronic alcohol exposure. Transl Psychiatry 2021; 11:298. [PMID: 34016951 PMCID: PMC8170676 DOI: 10.1038/s41398-021-01421-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Alcohol use disorder (AUD) is highly comorbid with depression. Withdrawal from chronic alcohol drinking results in depression and understanding brain molecular mechanisms that drive withdrawal-related depression is important for finding new drug targets to treat these comorbid conditions. Here, we performed RNA sequencing of the rat hippocampus during withdrawal from chronic alcohol drinking to discover key signaling pathways involved in alcohol withdrawal-related depressive-like behavior. Data were analyzed by weighted gene co-expression network analysis to identify several modules of co-expressed genes that could have a common underlying regulatory mechanism. One of the hub, or highly interconnected, genes in module 1 that increased during alcohol withdrawal was the transcription factor, signal transducer and activator of transcription 3 (Stat3), a known regulator of immune gene expression. Total and phosphorylated (p)STAT3 protein levels were also increased in the hippocampus during withdrawal after chronic alcohol exposure. Further, pSTAT3 binding was enriched at the module 1 genes Gfap, Tnfrsf1a, and Socs3 during alcohol withdrawal. Notably, pSTAT3 and its target genes were elevated in the postmortem hippocampus of human subjects with AUD when compared with control subjects. To determine the behavioral relevance of STAT3 activation during alcohol withdrawal, we treated rats with the STAT3 inhibitor stattic and tested for sucrose preference as a measure of anhedonia. STAT3 inhibition alleviated alcohol withdrawal-induced anhedonia. These results demonstrate activation of STAT3 signaling in the hippocampus during alcohol withdrawal in rats and in human AUD subjects, and suggest that STAT3 could be a therapeutic target for reducing comorbid AUD and depression.
Collapse
|
10
|
Pei W, Fu L, Li SQ, Yu Y. Brain transcriptomics of nonhuman primates: A review. Neurosci Lett 2021; 753:135872. [PMID: 33812931 DOI: 10.1016/j.neulet.2021.135872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/12/2022]
Abstract
The brain is one of the most important and intricate organs in our bodies. Interpreting brain function and illustrating the changes and molecular mechanisms during physiological or pathological processes are essential but sometimes difficult to achieve. In addition to histology, ethology and pharmacology, the development of transcriptomics alleviates this condition by enabling high-throughput observation of the brain at various levels of anatomical specificity. Moreover, because human brain samples are scarce, the brains of nonhuman primates are important alternative models. Here in this review, we summarize the applications of transcriptomics in nonhuman primate brain studies, including investigations of brain development, aging, toxic effects and diseases. Overall, as a powerful tool with developmental potential, transcriptomics has been widely utilized in neuroscience.
Collapse
Affiliation(s)
- Wendi Pei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
| | - Shui-Qing Li
- Department of Pain, Peking University Third Hospital, Beijing, 100191, China.
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
11
|
Barbier E, Barchiesi R, Domi A, Chanthongdee K, Domi E, Augier G, Augier E, Xu L, Adermark L, Heilig M. Downregulation of Synaptotagmin 1 in the Prelimbic Cortex Drives Alcohol-Associated Behaviors in Rats. Biol Psychiatry 2021; 89:398-406. [PMID: 33160605 DOI: 10.1016/j.biopsych.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Alcohol addiction is characterized by persistent neuroadaptations in brain structures involved in motivation, emotion, and decision making, including the medial prefrontal cortex, the nucleus accumbens, and the amygdala. We previously reported that induction of alcohol dependence was associated with long-term changes in the expression of genes involved in neurotransmitter release. Specifically, Syt1, which plays a key role in neurotransmitter release and neuronal functions, was downregulated. Here, we therefore examined the role of Syt1 in alcohol-associated behaviors in rats. METHODS We evaluated the effect of Syt1 downregulation using an adeno-associated virus (AAV) containing a short hairpin RNA against Syt1. Cre-dependent Syt1 was also used in combination with an rAAV2 retro-Cre virus to assess circuit-specific effects of Syt1 knockdown (KD). RESULTS Alcohol-induced downregulation of Syt1 is specific to the prelimbic cortex (PL), and KD of Syt1 in the PL resulted in escalated alcohol consumption, increased motivation to consume alcohol, and increased alcohol drinking despite negative consequences ("compulsivity"). Syt1 KD in the PL altered the excitation/inhibition balance in the basolateral amygdala, while the nucleus accumbens core was unaffected. Accordingly, a projection-specific Syt1 KD in the PL-basolateral amygdala projection was sufficient to increase compulsive alcohol drinking, while a KD of Syt1 restricted to PL-nucleus accumbens core projecting neurons had no effect on tested alcohol-related behaviors. CONCLUSIONS Together, these data suggest that dysregulation of Syt1 is an important mechanism in long-term neuroadaptations observed after a history of alcohol dependence, and that Syt1 regulates alcohol-related behaviors in part by affecting a PL-basolateral amygdala brain circuit.
Collapse
Affiliation(s)
- Estelle Barbier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Riccardo Barchiesi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kanat Chanthongdee
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Physiology, Faculty of Medicine Siraj Hospital, Mahidol University, Bangkok, Thailand
| | - Esi Domi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Gaelle Augier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Psychosomatic Medicine Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Radcliffe RA, Dowell R, Odell AT, Richmond PA, Bennett B, Larson C, Kechris K, Saba LM, Rudra P, Wen S. Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular insights into acute ethanol tolerance. PLoS One 2020; 15:e0240253. [PMID: 33095786 PMCID: PMC7584226 DOI: 10.1371/journal.pone.0240253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
We have been using the Inbred Long- and Short-Sleep mouse strains (ILS, ISS) and a recombinant inbred panel derived from them, the LXS, to investigate the genetic underpinnings of acute ethanol tolerance which is considered to be a risk factor for alcohol use disorders (AUDs). Here, we have used RNA-seq to examine the transcriptome of whole brain in 40 of the LXS strains 8 hours after a saline or ethanol "pretreatment" as in previous behavioral studies. Approximately 1/3 of the 14,184 expressed genes were significantly heritable and many were unique to the pretreatment. Several thousand cis- and trans-eQTLs were mapped; a portion of these also were unique to pretreatment. Ethanol pretreatment caused differential expression (DE) of 1,230 genes. Gene Ontology (GO) enrichment analysis suggested involvement in numerous biological processes including astrocyte differentiation, histone acetylation, mRNA splicing, and neuron projection development. Genetic correlation analysis identified hundreds of genes that were correlated to the behaviors. GO analysis indicated that these genes are involved in gene expression, chromosome organization, and protein transport, among others. The expression profiles of the DE genes and genes correlated to AFT in the ethanol pretreatment group (AFT-Et) were found to be similar to profiles of HDAC inhibitors. Hdac1, a cis-regulated gene that is located at the peak of a previously mapped QTL for AFT-Et, was correlated to 437 genes, most of which were also correlated to AFT-Et. GO analysis of these genes identified several enriched biological process terms including neuron-neuron synaptic transmission and potassium transport. In summary, the results suggest widespread genetic effects on gene expression, including effects that are pretreatment-specific. A number of candidate genes and biological functions were identified that could be mediating the behavioral responses. The most prominent of these was Hdac1 which may be regulating genes associated with glutamatergic signaling and potassium conductance.
Collapse
Affiliation(s)
- Richard A. Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder CO, United States of America
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States of America
| | - Aaron T. Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Phillip A. Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Laura M. Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, United States of America
| | - Shi Wen
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
13
|
Asaoka Y, Won M, Morita T, Ishikawa E, Lee YA, Goto Y. Monoamine and genome-wide DNA methylation investigation in behavioral addiction. Sci Rep 2020; 10:11760. [PMID: 32678220 PMCID: PMC7366626 DOI: 10.1038/s41598-020-68741-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023] Open
Abstract
Behavioral addiction (BA) is characterized by repeated, impulsive and compulsive seeking of specific behaviors, even with consequent negative outcomes. In drug addiction, alterations in biological mechanisms, such as monoamines and epigenetic processes, have been suggested, whereas whether such mechanisms are also altered in BA remains unknown. In this preliminary study with a small sample size, we investigated monoamine concentrations and genome-wide DNA methylation in blood samples from BA patients and control (CT) subjects. Higher dopamine (DA) metabolites and the ratio between DA and its metabolites were observed in the BA group than in the CT group, suggesting increased DA turnover in BA. In the methylation assay, 186 hyper- or hypomethylated CpGs were identified in the BA group compared to the CT group, of which 64 CpGs were further identified to correlate with methylation status in brain tissues with database search. Genes identified with hyper- or hypomethylation were not directly associated with DA transmission, but with cell membrane trafficking and the immune system. Some of the genes were also associated with psychiatric disorders, such as drug addiction, schizophrenia, and autism spectrum disorder. These results suggest that BA may involve alterations in epigenetic regulation of the genes associated with synaptic transmission, including that of monoamines, and neurodevelopment.
Collapse
Affiliation(s)
- Yui Asaoka
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Moojun Won
- Kyowa Hospital, Obu, Aichi, 474-0071, Japan
| | | | | | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk, 38430, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
14
|
McClintick JN, Thapa K, Liu Y, Xuei X, Edenberg HJ. Effects of chronic intermittent ethanol exposure and withdrawal on neuroblastoma cell transcriptome. Alcohol 2020; 85:119-126. [PMID: 31923563 PMCID: PMC7237278 DOI: 10.1016/j.alcohol.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/08/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Cycles of heavy drinking and abstinence can lead to alcohol use disorder. We studied the effects of chronic intermittent ethanol exposure (CIE) over 3 weeks on neuroblastoma cells, using an ethanol concentration frequently attained in binge drinking (40 mM, 184 mg/dL). There were many changes in gene expression but most were small. CIE affected pathways instrumental in the development or plasticity of neurons, including axonal guidance, reelin signaling, and synaptogenesis. Genes involved in dopamine and serotonin signaling were also affected. Changes in transporters and receptors could dampen both NMDA and norepinephrine transmissions. Decreased expression of the GABA transporter SLC6A11 could increase GABA transmission and has been associated with a switch from sweet drinking to ethanol consumption in rats. Ethanol increased stress responses such as the unfolded protein response. TGF-β and NFκB signaling were increased. Most of the genes involved in cholesterol biosynthesis were decreased in expression. Withdrawal for 24 h after CIE caused most of the CIE-induced expression changes to move back toward unexposed levels.
Collapse
Affiliation(s)
- Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kriti Thapa
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
15
|
Smith ML, Lopez MF, Wolen AR, Becker HC, Miles MF. Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption. PLoS One 2020; 15:e0233319. [PMID: 32469986 PMCID: PMC7259766 DOI: 10.1371/journal.pone.0233319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022] Open
Abstract
Progressive increases in ethanol consumption is a hallmark of alcohol use disorder (AUD). Persistent changes in brain gene expression are hypothesized to underlie the altered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption. This model has previously been shown to produce long-lasting increased ethanol consumption, particularly when combining oral ethanol access with repeated cycles of intermittent vapor exposure. The interaction of CIE and oral consumption was studied by expression profiling and network analysis in medial prefrontal cortex, nucleus accumbens, hippocampus, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain region expression networks were analyzed for ethanol-responsive gene expression, correlation with ethanol consumption and functional content using extensive bioinformatics studies. In all brain-regions studied the largest number of changes in gene expression were seen when comparing ethanol naïve mice to those exposed to CIE and drinking. In the prefrontal cortex, however, unique patterns of gene expression were seen compared to other brain-regions. Network analysis identified modules of co-expressed genes in all brain regions. The prefrontal cortex and nucleus accumbens showed the greatest number of modules with significant correlation to drinking behavior. Across brain-regions, however, many modules with strong correlations to drinking, both baseline intake and amount consumed after CIE, showed functional enrichment for synaptic transmission and synaptic plasticity.
Collapse
Affiliation(s)
- Maren L. Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Marcelo F. Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aaron R. Wolen
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Howard C. Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States of America
- RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Michael F. Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
16
|
Anton RF, Latham P, Voronin K, Book S, Hoffman M, Prisciandaro J, Bristol E. Efficacy of Gabapentin for the Treatment of Alcohol Use Disorder in Patients With Alcohol Withdrawal Symptoms: A Randomized Clinical Trial. JAMA Intern Med 2020; 180:728-736. [PMID: 32150232 PMCID: PMC7063541 DOI: 10.1001/jamainternmed.2020.0249] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE Although an estimated 30 million people meet criteria for alcohol use disorder (AUD), few receive appropriate pharmacotherapy. A more personalized, symptom-specific, approach might improve efficacy and acceptance. OBJECTIVE To examine whether gabapentin would be useful in the treatment of AUD, especially in those with the most alcohol withdrawal symptoms. DESIGN, SETTING, AND PARTICIPANTS This double-blind randomized clinical trial conducted between November 2014 and June 2018 evaluated gabapentin vs placebo in community-recruited participants screened and treated in an academic outpatient setting over a 16-week treatment period. A total of 145 treatment-seeking individuals who met Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) criteria for AUD and were not receiving other AUD intervention were screened, and 96 who also met recent alcohol withdrawal criteria were randomized to treatment after 3 abstinent days. Daily drinking was recorded, and percentage of disialo carbohydrate-deficient transferrin in the blood, a heavy drinking marker, was collected at baseline and monthly during treatment. INTERVENTIONS Gabapentin up to 1200 mg/d, orally, vs placebo along with 9 medical management visits (20 minutes each). MAIN OUTCOMES AND MEASURES The percentage of individuals with no heavy drinking days and those with total abstinence were compared between treatment groups and further evaluated based on prestudy alcohol withdrawal symptoms. RESULTS Of 96 randomized individuals, 90 were evaluable (44 in the gabapentin arm and 46 in the placebo arm), with a mean (SD) age of 49.6 (10.1) years; 69 were men (77%) and 85 were white (94%). The evaluable participants had 83% baseline heavy drinking days (4 or more drinks/day for women, 5 or more for men) and met 4.5 alcohol withdrawal criteria from the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition). More gabapentin-treated individuals had no heavy drinking days (12 of 44 participants [27%]) compared with placebo (4 of 46 participants [9%]), a difference of 18.6% (95% CI, 3.1-34.1; P = .02; number needed to treat [NNT], 5.4), and more total abstinence (8 of 44 [18%]) compared with placebo (2 of 46 [4%]), a difference of 13.8% (95% CI, 1.0-26.7; P = .04; NNT, 6.2). The prestudy high-alcohol withdrawal group had positive gabapentin effects on no heavy drinking days (P < .02; NNT, 3.1) and total abstinence (P = .003; NNT, 2.7) compared with placebo, while within the low-alcohol withdrawal group, there were no significant differences. These findings were similar for other drinking variables, where gabapentin was more efficacious than placebo in the high-alcohol withdrawal group only. Gabapentin caused more dizziness, but this did not affect efficacy. CONCLUSIONS AND RELEVANCE These data, combined with others, suggest gabapentin might be most efficacious in people with AUD and a history of alcohol withdrawal symptoms. Future studies should evaluate sleep changes and mood during early recovery as mediators of gabapentin efficacy. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02349477.
Collapse
Affiliation(s)
- Raymond F Anton
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Patricia Latham
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Konstantin Voronin
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Sarah Book
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Michaela Hoffman
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - James Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| | - Emily Bristol
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston
| |
Collapse
|
17
|
Flores-Bastías O, Adriasola-Carrasco A, Karahanian E. Activation of Melanocortin-4 Receptor Inhibits Both Neuroinflammation Induced by Early Exposure to Ethanol and Subsequent Voluntary Alcohol Intake in Adulthood in Animal Models: Is BDNF the Key Mediator? Front Cell Neurosci 2020; 14:5. [PMID: 32063838 PMCID: PMC6997842 DOI: 10.3389/fncel.2020.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The concept that neuroinflammation induced by excessive alcohol intake in adolescence triggers brain mechanisms that perpetuate consumption has strengthened in recent years. The melanocortin system, composed of the melanocortin 4 receptor (MC4R) and its ligand α-melanocyte-stimulating hormone (α-MSH), has been implicated both in modulation of alcohol consumption and in ethanol-induced neuroinflammation decrease. Chronic alcohol consumption in adolescent rats causes a decrease in an α-MSH release by the hypothalamus, while the administration of synthetic agonists of MC4R causes a decrease in neuroinflammation and a decrease in voluntary alcohol consumption. However, the mechanism that connects the activation of MC4R with the decrease of both neuroinflammation and voluntary alcohol consumption has not been elucidated. Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol drinking motivation, dependence and withdrawal, and its levels are reduced in alcoholics. Deficiencies in BDNF levels increased ethanol self-administration in rats. Further, BDNF triggers important anti-inflammatory effects in the brain, and this could be one of the mechanisms by which BDNF reduces chronic alcohol intake. Interestingly, MC4R signaling induces BDNF expression through the activation of the cAMP-responsive element-binding protein (CREB). We hypothesize that ethanol exposure during adolescence decreases the expression of α-MSH and hence MC4R signaling in the hippocampus, leading to a lower BDNF activity that causes dramatic changes in the brain (e.g., neuroinflammation and decreased neurogenesis) that predispose to maintain alcohol abuse until adulthood. The activation of MC4R either by α-MSH or by synthetic agonist peptides can induce the expression of BDNF, which would trigger several processes that lead to lower alcohol consumption.
Collapse
Affiliation(s)
- Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| | - Alfredo Adriasola-Carrasco
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
18
|
Bogenpohl JW, Smith ML, Farris SP, Dumur CI, Lopez MF, Becker HC, Grant KA, Miles MF. Cross-Species Co-analysis of Prefrontal Cortex Chronic Ethanol Transcriptome Responses in Mice and Monkeys. Front Mol Neurosci 2019; 12:197. [PMID: 31456662 PMCID: PMC6701453 DOI: 10.3389/fnmol.2019.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Despite recent extensive genomic and genetic studies on behavioral responses to ethanol, relatively few new therapeutic targets for the treatment of alcohol use disorder have been validated. Here, we describe a cross-species genomic approach focused on identifying gene networks associated with chronic ethanol consumption. To identify brain mechanisms underlying a chronic ethanol consumption phenotype highly relevant to human alcohol use disorder, and to elucidate potential future therapeutic targets, we conducted a genomic study in a non-human primate model of chronic open-access ethanol consumption. Microarray analysis of RNA expression in anterior cingulate and subgenual cortices from rhesus macaques was performed across multiple cohorts of animals. Gene networks correlating with ethanol consumption or showing enrichment for ethanol-regulated genes were identified, as were major ethanol-related hub genes within these networks. A subsequent consensus module analysis was used to co-analyze monkey data with expression data from a chronic intermittent ethanol vapor-exposure and consumption model in C57BL/6J mice. Ethanol-related gene networks conserved between primates and rodents were enriched for genes involved in discrete biological functions, including; myelination, synaptic transmission, chromatin modification, Golgi apparatus function, translation, cellular respiration, and RNA processing. The myelin-related network, in particular, showed strong correlations with ethanol consumption behavior and displayed marked network reorganization between control and ethanol-drinking animals. Further bioinformatics analysis revealed that these networks also showed highly significant overlap with other ethanol-regulated gene sets. Altogether, these studies provide robust primate and rodent cross-species validation of gene networks associated with chronic ethanol consumption. Our results also suggest potential novel focal points for future therapeutic interventions in alcohol use disorder.
Collapse
Affiliation(s)
- James W Bogenpohl
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, United States
| | - Maren L Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| | - Catherine I Dumur
- Aurora Diagnostics-Sonic Healthcare, Bernhardt Laboratories, Jacksonville, FL, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
19
|
Erickson EK, Blednov YA, Harris RA, Mayfield RD. Glial gene networks associated with alcohol dependence. Sci Rep 2019; 9:10949. [PMID: 31358844 PMCID: PMC6662804 DOI: 10.1038/s41598-019-47454-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol abuse alters the molecular structure and function of brain cells. Recent work suggests adaptations made by glial cells, such as astrocytes and microglia, regulate physiological and behavioral changes associated with addiction. Defining how alcohol dependence alters the transcriptome of different cell types is critical for developing the mechanistic hypotheses necessary for a nuanced understanding of cellular signaling in the alcohol-dependent brain. We performed RNA-sequencing on total homogenate and glial cell populations isolated from mouse prefrontal cortex (PFC) following chronic intermittent ethanol vapor exposure (CIE). Compared with total homogenate, we observed unique and robust gene expression changes in astrocytes and microglia in response to CIE. Gene co-expression network analysis revealed biological pathways and hub genes associated with CIE in astrocytes and microglia that may regulate alcohol-dependent phenotypes. Astrocyte identity and synaptic calcium signaling genes were enriched in alcohol-associated astrocyte networks, while TGF-β signaling and inflammatory response genes were disrupted by CIE treatment in microglia gene networks. Genes related to innate immune signaling, specifically interferon pathways, were consistently up-regulated across CIE-exposed astrocytes, microglia, and total homogenate PFC tissue. This study illuminates the cell-specific effects of chronic alcohol exposure and provides novel molecular targets for studying alcohol dependence.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA.
| | - Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| |
Collapse
|
20
|
Solomon MG, Griffin WC, Lopez MF, Becker HC. Brain Regional and Temporal Changes in BDNF mRNA and microRNA-206 Expression in Mice Exposed to Repeated Cycles of Chronic Intermittent Ethanol and Forced Swim Stress. Neuroscience 2019; 406:617-625. [PMID: 30790666 DOI: 10.1016/j.neuroscience.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) expression and signaling activity in brain are influenced by chronic ethanol and stress. We previously demonstrated reduced Bdnf mRNA levels in the medial prefrontal cortex (mPFC) following chronic ethanol treatment and forced swim stress (FSS) enhanced escalated drinking associated with chronic ethanol exposure. The present study examined the effects of chronic ethanol and FSS exposure, alone and in combination, on Bdnf mRNA expression in different brain regions, including mPFC, central amygdala (CeA), and hippocampus (HPC). Additionally, since microRNA-206 has been shown to negatively regulate BDNF expression, the effects of chronic ethanol and FSS on its expression in the target brain regions were examined. Mice received four weekly cycles of chronic intermittent ethanol (CIE) vapor or air exposure and then starting 72-h later, the mice received either a single or 5 daily 10-min FSS sessions (or left undisturbed). Brain tissue samples were collected 4-h following final FSS testing and Bdnf mRNA and miR-206 levels were determined by qPCR assay. Results indicated dynamic brain regional and time-dependent changes in Bdnf mRNA and miR-206 expression. In general, CIE and FSS exposure reduced Bdnf mRNA expression while miR-206 levels were increased in the mPFC, CeA, and HPC. Further, in many instances, these effects were more robust in mice that experienced both CIE and FSS treatments. These results have important implications for the potential link between BDNF signaling in the brain and ethanol consumption related to stress interactions with chronic ethanol experience.
Collapse
Affiliation(s)
- Matthew G Solomon
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC 20401, USA.
| |
Collapse
|
21
|
Petruccelli E, Feyder M, Ledru N, Jaques Y, Anderson E, Kaun KR. Alcohol Activates Scabrous-Notch to Influence Associated Memories. Neuron 2018; 100:1209-1223.e4. [PMID: 30482693 DOI: 10.1016/j.neuron.2018.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/17/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Drugs of abuse, like alcohol, modulate gene expression in reward circuits and consequently alter behavior. However, the in vivo cellular mechanisms through which alcohol induces lasting transcriptional changes are unclear. We show that Drosophila Notch/Su(H) signaling and the secreted fibrinogen-related protein Scabrous in mushroom body (MB) memory circuitry are important for the enduring preference of cues associated with alcohol's rewarding properties. Alcohol exposure affects Notch responsivity in the adult MB and alters Su(H) targeting at the dopamine-2-like receptor (Dop2R). Alcohol cue training also caused lasting changes to the MB nuclear transcriptome, including changes in the alternative splicing of Dop2R and newly implicated transcripts like Stat92E. Together, our data suggest that alcohol-induced activation of the highly conserved Notch pathway and accompanying transcriptional responses in memory circuitry contribute to addiction. Ultimately, this provides mechanistic insight into the etiology and pathophysiology of alcohol use disorder.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael Feyder
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Nicolas Ledru
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Yanabah Jaques
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Edward Anderson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
22
|
Finn DA, Hashimoto JG, Cozzoli DK, Helms ML, Nipper MA, Kaufman MN, Wiren KM, Guizzetti M. Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice. Front Genet 2018; 9:325. [PMID: 30250478 PMCID: PMC6139464 DOI: 10.3389/fgene.2018.00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
We previously determined that repeated binge ethanol drinking produced sex differences in the regulation of signaling downstream of Group 1 metabotropic glutamate receptors in the nucleus accumbens (NAc) of adult C57BL/6J mice. The purpose of the present study was to characterize RNA expression differences in the NAc of adult male and female C57BL/6J mice following 7 binge ethanol drinking sessions, when compared with controls consuming water. This binge drinking procedure produced high intakes (average >2.2 g/kg/30 min) and blood ethanol concentrations (average >1.3 mg/ml). Mice were euthanized at 24 h after the 7th binge session, and focused qPCR array analysis was employed on NAc tissue to quantify expression levels of 384 genes in a customized Mouse Mood Disorder array, with a focus on glutamatergic signaling (3 arrays/group). We identified significant regulation of 50 genes in male mice and 70 genes in female mice after 7 ethanol binges. Notably, 14 genes were regulated in both males and females, representing common targets to binge ethanol drinking. However, expression of 10 of these 14 genes was strongly dimorphic (e.g., opposite regulation for genes such as Crhr2, Fos, Nos1, and Star), and only 4 of the 14 genes were regulated in the same direction (Drd5, Grm4, Ranbp9, and Reln). Interestingly, the top 30 regulated genes by binge ethanol drinking for each sex differed markedly in the male and female mice, and this divergent neuroadaptive response in the NAc could result in dysregulation of distinct biological pathways between the sexes. Characterization of the expression differences with Ingenuity Pathway Analysis was used to identify Canonical Pathways, Upstream Regulators, and significant Biological Functions. Expression differences suggested that hormone signaling and immune function were altered by binge drinking in female mice, whereas neurotransmitter metabolism was a central target of binge ethanol drinking in male mice. Thus, these results indicate that the transcriptional response to repeated binge ethanol drinking was strongly influenced by sex, and they emphasize the importance of considering sex in the development of potential pharmacotherapeutic targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Debra K Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Moriah N Kaufman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
23
|
Colville AM, Iancu OD, Lockwood DR, Darakjian P, McWeeney SK, Searles R, Zheng C, Hitzemann R. Regional Differences and Similarities in the Brain Transcriptome for Mice Selected for Ethanol Preference From HS-CC Founders. Front Genet 2018; 9:300. [PMID: 30210525 PMCID: PMC6120986 DOI: 10.3389/fgene.2018.00300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
The high genetic complexity found in heterogeneous stock (HS-CC) mice, together with selective breeding, can be used to detect new pathways and mechanisms associated with ethanol preference and excessive ethanol consumption. We predicted that these pathways would provide new targets for therapeutic manipulation. Previously (Colville et al., 2017), we observed that preference selection strongly affected the accumbens shell (SH) genes associated with synaptic function and in particular genes associated with synaptic tethering. Here we expand our analyses to include substantially larger sample sizes and samples from two additional components of the “addiction circuit,” the central nucleus of the amygdala (CeA) and the prelimbic cortex (PL). At the level of differential expression (DE), the majority of affected genes are region-specific; only in the CeA did the DE genes show a significant enrichment in GO annotation categories, e.g., neuron part. In all three brain regions the differentially variable genes were significantly enriched in a single network module characterized by genes associated with cell-to-cell signaling. The data point to glutamate plasticity as being a key feature of selection for ethanol preference. In this context the expression of Dlg2 which encodes for PSD-93 appears to have a key role. It was also observed that the expression of the clustered protocadherins was strongly associated with preference selection.
Collapse
Affiliation(s)
- Alexandre M Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Denesa R Lockwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Shannon K McWeeney
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Robert Searles
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR, United States
| | - Christina Zheng
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
24
|
Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology 2018; 140:35-42. [PMID: 30056122 DOI: 10.1016/j.neuropharm.2018.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/05/2018] [Accepted: 07/26/2018] [Indexed: 01/18/2023]
Abstract
The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) has been implicated in a number of neuropsychiatric disorders, including alcohol use disorder. Studies have shown that BDNF activity in cortical regions, such as the medial prefrontal cortex (mPFC) mediates various ethanol-related behaviors. We previously reported a significant down-regulation in Bdnf mRNA in mPFC following chronic ethanol exposure compared to control mice. The present study was conducted to extend these findings by examining whether chronic ethanol treatment reduces BDNF protein expression in mPFC and whether reversing this deficit via direct injection of BDNF or viral-mediated overexpression of BDNF in mPFC alters voluntary ethanol consumption in dependent and nondependent mice. Repeated cycles of chronic intermittent ethanol (CIE) exposure was employed to model ethanol dependence, which produces robust escalation of ethanol intake. Results indicated that CIE treatment significantly increased ethanol intake and this was accompanied by a significant decrease in BDNF protein in mPFC that lasted at least 72 h after CIE exposure. In a separate study, once dependence-related increased drinking was established, bilateral infusion of BDNF (0, 0.25, 0.50 μg) into mPFC significantly decreased ethanol intake in a dose-related manner in dependent mice but did not affect moderate drinking in nondependent mice. In a third study, viral-mediated overexpression of BDNF in mPFC prevented escalation of drinking in dependent mice but did not alter intake in nondependent mice. Collectively, these results provide evidence that adaptations in cortical (mPFC) BDNF activity resulting from chronic ethanol exposure play a role in mediating excessive ethanol drinking associated with dependence.
Collapse
|
25
|
Lindberg D, Andres-Beck L, Jia YF, Kang S, Choi DS. Purinergic Signaling in Neuron-Astrocyte Interactions, Circadian Rhythms, and Alcohol Use Disorder. Front Physiol 2018; 9:9. [PMID: 29467662 PMCID: PMC5808134 DOI: 10.3389/fphys.2018.00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022] Open
Abstract
Alcohol use disorder (AUD) is a debilitating condition marked by cyclic patterns of craving, use, and withdrawal. These pathological behaviors are mediated by multiple neurotransmitter systems utilizing glutamate, GABA, dopamine, ATP, and adenosine. In particular, purines such as ATP and adenosine have been demonstrated to alter the phase and function of the circadian clock and are reciprocally regulated by the clock itself. Importantly, chronic ethanol intake has been demonstrated to disrupt the molecular circadian clock and is associated with altered circadian patterns of activity and sleep. Moreover, ethanol has been demonstrated to disrupt purinergic signaling, while dysfunction of the purinergic system has been implicated in conditions of drug abuse such as AUD. In this review, we summarize our current knowledge regarding circadian disruption by ethanol, focusing on the reciprocal relationship that exists between oscillatory neurotransmission and the molecular circadian clock. In particular, we offer detailed explanations and hypotheses regarding the concerted regulation of purinergic signaling and circadian oscillations by neurons and astrocytes, and review the diverse mechanisms by which purinergic dysfuction may contribute to circadian disruption or alcohol abuse. Finally, we describe the mechanisms by which ethanol may disrupt or hijack endogenous circadian rhythms to induce the maladaptive behavioral patterns associated with AUD.
Collapse
Affiliation(s)
- Daniel Lindberg
- Neurobiology of Disease, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Lindsey Andres-Beck
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Doo-Sup Choi
- Neurobiology of Disease, Mayo Clinic College of Medicine, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, United States.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
26
|
Morud J, Ashouri A, Larsson E, Ericson M, Söderpalm B. Transcriptional profiling of the rat nucleus accumbens after modest or high alcohol exposure. PLoS One 2017; 12:e0181084. [PMID: 28715440 PMCID: PMC5513432 DOI: 10.1371/journal.pone.0181084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Alcohol use disorder is a chronic relapsing brain disorder and a global health issue. Prolonged high alcohol consumption increases the risk for dependence development, a complex state that includes progressive alterations in brain function. The molecular mechanisms behind these changes remain to be fully disclosed, but several genes show altered expression in various regions of the rat brain even after modest alcohol exposure. The present study utilizes whole-transcriptome sequencing (RNA-seq) to investigate expression changes in the brain nucleus accumbens (NAc), an area of particular interest in addictive disorders, of alcohol consuming rats. The impact on gene expression after eight weeks of moderate voluntary alcohol consumption or voluntary consumption combined with forced excessive exposure was explored in two separate experiments. The results point to a lack of strong and consistent expression alterations in the NAc after alcohol exposure, suggesting that transcriptional effects of alcohol are weak or transient, or occur primarily in brain regions other than NAc.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
27
|
Sumitomo A, Ueta K, Mauchi S, Hirai K, Horike K, Hikida T, Sakurai T, Sawa A, Tomoda T. Ulk1 protects against ethanol-induced neuronal stress and cognition-related behavioral deficits. Neurosci Res 2017; 117:54-61. [DOI: 10.1016/j.neures.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 01/20/2023]
|
28
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
29
|
Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice. Alcohol 2017; 58:139-151. [PMID: 28027852 DOI: 10.1016/j.alcohol.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Alcohol abuse is a complex disorder, which is confounded by other factors, including stress. In the present study, we examined gene expression in the hippocampus of BXD recombinant inbred mice after exposure to ethanol (NOE), stress (RSS), and the combination of both (RSE). Mice were given an intraperitoneal (i.p.) injection of 1.8 g/kg ethanol or saline, and subsets of both groups were exposed to acute restraint stress for 15 min or controls. Gene expression in the hippocampus was examined using microarray analysis. Genes that were significantly (p < 0.05, q < 0.1) differentially expressed were further evaluated. Bioinformatic analyses were predominantly performed using tools available at GeneNetwork.org, and included gene ontology, presence of cis-regulation or polymorphisms, phenotype correlations, and principal component analyses. Comparisons of differential gene expression between groups showed little overlap. Gene Ontology demonstrated distinct biological processes in each group with the combined exposure (RSE) being unique from either the ethanol (NOE) or stress (RSS) group, suggesting that the interaction between these variables is mediated through diverse molecular pathways. This supports the hypothesis that exposure to stress alters ethanol-induced gene expression changes and that exposure to alcohol alters stress-induced gene expression changes. Behavior was profiled in all groups following treatment, and many of the differentially expressed genes are correlated with behavioral variation within experimental groups. Interestingly, in each group several genes were correlated with the same phenotype, suggesting that these genes are the potential origins of significant genetic networks. The distinct sets of differentially expressed genes within each group provide the basis for identifying molecular networks that may aid in understanding the complex interactions between stress and ethanol, and potentially provide relevant therapeutic targets. Using Ptp4a1, a candidate gene underlying the quantitative trait locus for several of these phenotypes, and network analyses, we show that a large group of differentially expressed genes in the NOE group are highly interrelated, some of which have previously been linked to alcohol addiction or alcohol-related phenotypes.
Collapse
|
30
|
Park A, Ghezzi A, Wijesekera TP, Atkinson NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017; 122:22-35. [PMID: 28161376 DOI: 10.1016/j.neuropharm.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras. San Juan, PR, United States
| | - Thilini P Wijesekera
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
31
|
Mulligan MK, Mozhui K, Pandey AK, Smith ML, Gong S, Ingels J, Miles MF, Lopez MF, Lu L, Williams RW. Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system. Alcohol 2017; 58:61-72. [PMID: 27894806 DOI: 10.1016/j.alcohol.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States.
| | - Khyobeni Mozhui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Maren L Smith
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Suzhen Gong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Michael F Miles
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| |
Collapse
|
32
|
Heilig M, Barbier E, Johnstone AL, Tapocik J, Meinhardt MW, Pfarr S, Wahlestedt C, Sommer WH. Reprogramming of mPFC transcriptome and function in alcohol dependence. GENES, BRAIN, AND BEHAVIOR 2017; 16:86-100. [PMID: 27657733 PMCID: PMC5555395 DOI: 10.1111/gbb.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 01/07/2023]
Abstract
Despite its limited immediate reinforcement value, alcohol has a potent ability to induce neuroadaptations that promote its incentive salience, escalation of voluntary alcohol intake and aversion-resistant alcohol seeking. A constellation of these traits, collectively called 'post-dependent', emerges following brain exposure to repeated cycles of intoxication and withdrawal. The medial prefrontal cortex (mPFC) and its subdivisions exert top-down regulation of approach and avoidance behaviors, including those that lead to alcohol intake. Here, we review an emerging literature which indicates that a reprogramming of mPFC function occurs with prolonged exposure of the brain to cycles of alcohol intoxication and withdrawal. This reprogramming results in molecular dysregulations that contribute to the post-dependent syndrome. Convergent evidence has identified neuroadaptations resulting in altered glutamatergic and BDNF-mediated signaling, and for these pathways, direct evidence for a mechanistic role has been obtained. Additional evidence points to a dysregulation of pathways involving calcium homeostasis and neurotransmitter release. Recent findings indicate that global DNA hypermethylation is a key factor in reprogramming the mPFC genome after a history of dependence. As one of the results of this epigenetic remodeling, several histone modifying epigenetic enzymes are repressed. Among these, PR-domain zinc-finger protein 2, a methyltransferase that selectively mono-methylates histone H3 at lysine 9 has been functionally validated to drive several of the molecular and behavioral long-term consequences of alcohol dependence. Information processing within the mPFC involves formation of dynamic neuronal networks, or functional ensembles that are shaped by transcriptional responses. The epigenetic dysregulations identified by our molecular studies are likely to alter this dynamic processing in multiple ways. In summary, epigenetic molecular switches in the mPFC appear to be turned on as alcoholism develops. Strategies to reverse these processes may offer targets for disease-modifying treatments.
Collapse
Affiliation(s)
- M. Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - E. Barbier
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A. L. Johnstone
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J. Tapocik
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M. W. Meinhardt
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - S. Pfarr
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - C. Wahlestedt
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W. H. Sommer
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
33
|
Ayers-Ringler JR, Oliveros A, Qiu Y, Lindberg DM, Hinton DJ, Moore RM, Dasari S, Choi DS. Label-Free Proteomic Analysis of Protein Changes in the Striatum during Chronic Ethanol Use and Early Withdrawal. Front Behav Neurosci 2016; 10:46. [PMID: 27014007 PMCID: PMC4786553 DOI: 10.3389/fnbeh.2016.00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023] Open
Abstract
The molecular mechanisms underlying the neuronal signaling changes in alcohol addiction and withdrawal are complex and multifaceted. The cortico-striatal circuit is highly implicated in these processes, and the striatum plays a significant role not only in the early stages of addiction, but in the developed-addictive state as well, including withdrawal symptoms. Transcriptional analysis is a useful method for determining changes in gene expression, however, the results do not always accurately correlate with protein levels. In this study, we employ label-free proteomic analysis to determine changes in protein expression within the striatum during chronic ethanol use and early withdrawal. The striatum, composed primarily of medium spiny GABAergic neurons, glutamatergic and dopaminergic nerve terminals and astrocytes, is relatively homogeneous for proteomic analysis. We were able to analyze more than 5000 proteins from both the dorsal (caudate and putamen) and ventral (nucleus accumbens) striatum and identified significant changes following chronic intermittent ethanol exposure and acute (8 h) withdrawal compared to ethanol naïve and ethanol exposure groups respectively. Our results showed significant changes in proteins involved in glutamate and opioid peptide signaling, and also uncovered novel pathways including mitochondrial function and lipid/cholesterol metabolism, as revealed by changes in electron transport chain proteins and RXR activation pathways. These results will be useful in the development of novel treatments for alcohol withdrawal and thereby aid in recovery from alcohol use disorder.
Collapse
Affiliation(s)
| | - Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Yanyan Qiu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Daniel M Lindberg
- Neurobiology of Disease PhD Program, Mayo Graduate School, Mayo Clinic Rochester, MN, USA
| | - David J Hinton
- Neurobiology of Disease PhD Program, Mayo Graduate School, Mayo Clinic Rochester, MN, USA
| | - Raymond M Moore
- Department of Biochemistry and Molecular Biology, Center for Individualized Medicine, Mayo Clinic Rochester, MN, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Neurobiology of Disease PhD Program, Mayo Graduate School, Mayo ClinicRochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of MedicineRochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic College of MedicineRochester, MN, USA
| |
Collapse
|
34
|
RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies. PLoS One 2016; 11:e0149976. [PMID: 26930486 PMCID: PMC4773011 DOI: 10.1371/journal.pone.0149976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.
Collapse
|
35
|
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption. PLoS One 2016; 11:e0146257. [PMID: 26730594 PMCID: PMC4701666 DOI: 10.1371/journal.pone.0146257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/15/2015] [Indexed: 01/17/2023] Open
Abstract
Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol.
Collapse
|
36
|
Follesa P, Floris G, Asuni GP, Ibba A, Tocco MG, Zicca L, Mercante B, Deriu F, Gorini G. Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression. Front Cell Neurosci 2015; 9:445. [PMID: 26617492 PMCID: PMC4637418 DOI: 10.3389/fncel.2015.00445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs). Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption, and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air) cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15%) and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Gabriele Floris
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Gino P Asuni
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Antonio Ibba
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | - Maria G Tocco
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | - Luca Zicca
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | | | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Giorgio Gorini
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| |
Collapse
|
37
|
Ozburn AR, Janowsky AJ, Crabbe JC. Commonalities and Distinctions Among Mechanisms of Addiction to Alcohol and Other Drugs. Alcohol Clin Exp Res 2015; 39:1863-77. [PMID: 26431116 PMCID: PMC4594192 DOI: 10.1111/acer.12810] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. METHODS In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in preclinical studies using rodent models of drug self-administration. RESULTS While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. CONCLUSIONS For alcohol, versus other drugs of abuse, we discuss and compare advances in: (i) neurocircuitry important for the different stages of drug dependence; (ii) transcriptomics and genetical genomics; and (iii) enduring effects, noting in particular the contributions of behavioral genetics and animal models.
Collapse
Affiliation(s)
- Angela R. Ozburn
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J. Janowsky
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - John C. Crabbe
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
38
|
Finegersh A, Ferguson C, Maxwell S, Mazariegos D, Farrell D, Homanics GE. Repeated vapor ethanol exposure induces transient histone modifications in the brain that are modified by genotype and brain region. Front Mol Neurosci 2015; 8:39. [PMID: 26300722 PMCID: PMC4524924 DOI: 10.3389/fnmol.2015.00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/10/2015] [Indexed: 01/01/2023] Open
Abstract
Background: Emerging research implicates ethanol (EtOH)-induced epigenetic modifications in regulating gene expression and EtOH consumption. However, consensus on specific epigenetic modifications induced by EtOH has not yet emerged, making it challenging to identify mechanisms and develop targeted treatments. We hypothesized that chronic intermittent EtOH (CIE) induces persistent changes in histone modifications across the cerebral cortex (CCx), nucleus accumbens (NAc), and prefrontal cortex (PFC), and that these histone modifications are altered in a knock-in mouse strain with altered sensitivity to EtOH. Methods: C57BL/6J (B6) mice and α1SHLA knockin mice on a B6 background were exposed to 16 h of vapor EtOH or room air followed by 8 h of room air for 4 consecutive days and sacrificed at multiple time points up to 72 h following exposure. Histone modifications were assessed using Western blot and dot blot. RT-qPCR was used to study expression of chromatin modifying enzymes in NAc and PFC. Results: In NAc, CIE significantly increased acetylation of histone subunit H3 at lysine 9 (H3K9ac) but not lysine 14 (H3K14ac) or lysine 27 (H3K27ac). In PFC, CIE significantly increased H3K9ac but not H3K14 or H3K27ac. There were no significant changes at 8 or 72 h after EtOH exposure in either NAc or PFC. CIE was also associated with increased expression of Kat2b, Kat5, and Tet1 in NAc but not PFC. In CCx, CIE had a significant effect on levels of H3K18ac; there was also a significant effect of the α1SHLA mutation on levels of H3K27me3, H3K14ac, and H3K18ac as well as a trend for H3S10pK14ac. Conclusions: The EtOH-induced histone modifications observed were transient and varied significantly between brain regions. A genetic mutation that altered sensitivity to EtOH was associated with altered induction of histone modifications during CIE. These results have implications for studying EtOH-induced histone modifications and EtOH sensitivity.
Collapse
Affiliation(s)
- Andrey Finegersh
- Departments of Anesthesiology, Pharmacology and Chemical Biology, University of Pittsburgh Pittsburgh, PA, USA
| | - Carolyn Ferguson
- Departments of Anesthesiology, Pharmacology and Chemical Biology, University of Pittsburgh Pittsburgh, PA, USA
| | - Seth Maxwell
- Departments of Anesthesiology, Pharmacology and Chemical Biology, University of Pittsburgh Pittsburgh, PA, USA
| | - David Mazariegos
- Departments of Anesthesiology, Pharmacology and Chemical Biology, University of Pittsburgh Pittsburgh, PA, USA
| | - Daniel Farrell
- Departments of Anesthesiology, Pharmacology and Chemical Biology, University of Pittsburgh Pittsburgh, PA, USA
| | - Gregg E Homanics
- Departments of Anesthesiology, Pharmacology and Chemical Biology, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
39
|
Cui C, Noronha A, Warren KR, Koob GF, Sinha R, Thakkar M, Matochik J, Crews FT, Chandler LJ, Pfefferbaum A, Becker HC, Lovinger D, Everitt BJ, Egli M, Mandyam CD, Fein G, Potenza MN, Harris RA, Grant KA, Roberto M, Meyerhoff DJ, Sullivan EV. Brain pathways to recovery from alcohol dependence. Alcohol 2015; 49:435-52. [PMID: 26074423 PMCID: PMC4468789 DOI: 10.1016/j.alcohol.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022]
Abstract
This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.
Collapse
Affiliation(s)
- Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Antonio Noronha
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenneth R Warren
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mahesh Thakkar
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - John Matochik
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Judson Chandler
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Adolf Pfefferbaum
- Neuroscience Program, Center for Health Science, SRI International, Menlo Park, CA, USA
| | - Howard C Becker
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - David Lovinger
- Laboratory of Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mark Egli
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - George Fein
- Neurobehavioral Research, Inc., Ala Moana Pacific Center, Honolulu, HI, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - Kathleen A Grant
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Parekh PK, Ozburn AR, McClung CA. Circadian clock genes: effects on dopamine, reward and addiction. Alcohol 2015; 49:341-9. [PMID: 25641765 DOI: 10.1016/j.alcohol.2014.09.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
Abstract
Addiction is a widespread public health issue with social and economic ramifications. Substance abuse disorders are often accompanied by disruptions in circadian rhythms including sleep/wake cycles, which can exacerbate symptoms of addiction and dependence. Additionally, genetic disturbance of circadian molecular mechanisms can predispose some individuals to substance abuse disorders. In this review, we will discuss how circadian genes can regulate midbrain dopaminergic activity and subsequently, drug intake and reward. We will also suggest future directions for research on circadian genes and drugs of abuse.
Collapse
|
41
|
Osterndorff-Kahanek EA, Becker HC, Lopez MF, Farris SP, Tiwari GR, Nunez YO, Harris RA, Mayfield RD. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks. PLoS One 2015; 10:e0121522. [PMID: 25803291 PMCID: PMC4372440 DOI: 10.1371/journal.pone.0121522] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/02/2015] [Indexed: 01/19/2023] Open
Abstract
Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.
Collapse
Affiliation(s)
| | - Howard C. Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marcelo F. Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sean P. Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yury O. Nunez
- Pharmacotherapy Education and Research Center, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Lacaille H, Duterte-Boucher D, Liot D, Vaudry H, Naassila M, Vaudry D. Comparison of the deleterious effects of binge drinking-like alcohol exposure in adolescent and adult mice. J Neurochem 2015; 132:629-41. [PMID: 25556946 DOI: 10.1111/jnc.13020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
Abstract
A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking-like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge-like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short-term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity. The effects of alcohol exposure were investigated on genes involved in oxidative mechanisms. In adolescent animals, alcohol decreased the expression of genes involved in DNA repair, a potential cause of the observed decrease of neurogenesis. In contrast, in the adult brain, alcohol increased the expression of genes associated with antioxidant mechanisms. Apoptosis was increase in all groups and converged with other biochemical alterations to enhance short-term memory impairment in the adolescent brain. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity.
Collapse
Affiliation(s)
- Hélène Lacaille
- INSERM U982, Neurotrophic factors and neuronal differentiation team, Mont-Saint-Aignan, France; International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
43
|
Marcinkiewcz CA, Dorrier CE, Lopez AJ, Kash TL. Ethanol induced adaptations in 5-HT2c receptor signaling in the bed nucleus of the stria terminalis: implications for anxiety during ethanol withdrawal. Neuropharmacology 2015; 89:157-67. [PMID: 25229718 PMCID: PMC4469779 DOI: 10.1016/j.neuropharm.2014.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 01/13/2023]
Abstract
One of the hallmarks of alcohol dependence is the presence of a withdrawal syndrome during abstinence, which manifests as physical craving for alcohol accompanied by subjective feelings of anxiety. Using a model of chronic intermittent ethanol (CIE) vapor in mice, we investigated the role of serotonin2c receptor (5HT2c-R) signaling in the BNST as a neural substrate underlying ethanol-induced anxiety during withdrawal. Mice were subjected to a 5-day CIE regimen of 16 h of ethanol vapor exposure followed by an 8 h "withdrawal" period between exposures. After the 5th and final exposure, mice were withdrawn for 24 h or 1 week before experiments began. Anxiety-like behavior was assessed in the social approach, light dark, and open field tests with mice showing deficits in social, but not general anxiety-like behavior that was alleviated by pretreatment with the 5HT2c-R antagonist SB 242,084 (3 mg/kg, i.p.) 24 h and 1 week post-CIE. Using immunohistochemistry and whole cell patch clamp electrophysiology, we also found that CIE increased FOS-IR and enhanced neuronal excitability in the ventral BNST (vBNST) 24 h into withdrawal in a 5HT2c-R dependent manner. This enhanced excitability persisted for 1 week post-CIE. We also found that mCPP, a 5HT2c/b agonist, induced a more robust depolarization in cells of the vBNST in CIE mice, confirming that 5HT2c-R signaling is upregulated in the vBNST following CIE. Taken together, these results suggest that CIE upregulates 5HT2c-R signaling in the vBNST, leading to increased excitability. This enhanced excitability of the vBNST may drive increased anxiety-like behavior during ethanol withdrawal.
Collapse
Affiliation(s)
- Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cayce E Dorrier
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alberto J Lopez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Meinhardt MW, Sommer WH. Postdependent state in rats as a model for medication development in alcoholism. Addict Biol 2015; 20:1-21. [PMID: 25403107 DOI: 10.1111/adb.12187] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review.
Collapse
Affiliation(s)
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology; University of Heidelberg; Germany
- Department of Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
45
|
Gene expression profile analysis of rat cerebellum under acute alcohol intoxication. Gene 2014; 557:188-94. [PMID: 25527120 DOI: 10.1016/j.gene.2014.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/20/2014] [Accepted: 12/14/2014] [Indexed: 11/22/2022]
Abstract
Acute alcohol intoxication, a common disease causing damage to the central nervous system (CNS) has been primarily studied on the aspects of alcohol addiction and chronic alcohol exposure. The understanding of gene expression change in the CNS during acute alcohol intoxication is still lacking. We established a model for acute alcohol intoxication in SD rats by oral gavage. A rat cDNA microarray was used to profile mRNA expression in the cerebella of alcohol-intoxicated rats (experimental group) and saline-treated rats (control group). A total of 251 differentially expressed genes were identified in response to acute alcohol intoxication, in which 208 of them were up-regulated and 43 were down-regulated. Gene ontology (GO) term enrichment analysis and pathway analysis revealed that the genes involved in the biological processes of immune response and endothelial integrity are among the most severely affected in response to acute alcohol intoxication. We discovered five transcription factors whose consensus binding motifs are overrepresented in the promoter region of differentially expressed genes. Additionally, we identified 20 highly connected hub genes by co-expression analysis, and validated the differential expression of these genes by real-time quantitative PCR. By determining novel biological pathways and transcription factors that have functional implication to acute alcohol intoxication, our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of acute alcoholism.
Collapse
|
46
|
Barker JM, Taylor JR, De Vries TJ, Peters J. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking. Brain Res 2014; 1628:68-81. [PMID: 25451116 DOI: 10.1016/j.brainres.2014.10.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 11/27/2022]
Abstract
Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural circuits are responsible for storing and executing drug-procuring motor programs, whereas other neural circuits are responsible for the active suppression of these "seeking" systems. These seeking-circuits are established as associations are formed between drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. drug seeking) can be diminished either through a passive weakening of seeking- circuits or an active suppression of those circuits through extinction. Extinction learning occurs when the association between cues and drug are violated, for example, by cue exposure without the drug present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits that "incubate" over prolonged withdrawal periods. We begin by discussing the role of BDNF in extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like effects in hippocampal-prefrontal circuits and consider the role of sex differences in extinction and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol "break the mold" in terms of BDNF function in extinction circuits.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Taco J De Vries
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 BT Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Neuroscience Campus Amsterdam, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, VU University, 1081 HV Amsterdam, The Netherlands
| | - Jamie Peters
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
47
|
Maldonado-Devincci AM, Cook JB, O'Buckley TK, Morrow DH, McKinley RE, Lopez MF, Becker HC, Morrow AL. Chronic intermittent ethanol exposure and withdrawal alters (3α,5α)-3-hydroxy-pregnan-20-one immunostaining in cortical and limbic brain regions of C57BL/6J mice. Alcohol Clin Exp Res 2014; 38:2561-71. [PMID: 25293837 DOI: 10.1111/acer.12530] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/15/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP; allopregnanolone) has been studied during withdrawal from ethanol (EtOH) in humans, rats, and mice. Serum 3α,5α-THP levels decreased, and brain levels were not altered following acute EtOH administration (2 g/kg) in male C57BL/6J mice; however, the effects of chronic intermittent ethanol (CIE) exposure on 3α,5α-THP levels have not been examined. Given that CIE exposure changes subsequent voluntary EtOH drinking in a time-dependent fashion following repeated cycles of EtOH exposure, we conducted a time-course analysis of CIE effects on 3α,5α-THP levels in specific brain regions known to influence drinking behavior. METHODS Adult male C57BL/6J mice were exposed to 4 cycles of CIE to induce EtOH dependence. All mice were sacrificed and perfused at 1 of 2 time points, 8 or 72 hours following the final exposure cycle. Free-floating brain sections (40 μm; 3 to 5 sections/region/animal) were immunostained and analyzed to determine relative levels of cellular 3α,5α-THP. RESULTS Withdrawal from CIE exposure produced time-dependent and region-specific effects on immunohistochemical detection of 3α,5α-THP levels across cortical and limbic brain regions. A transient reduction in 3α,5α-THP immunoreactivity was observed in the central nucleus of the amygdala 8 hours after withdrawal from CIE (-31.4 ± 9.3%). Decreases in 3α,5α-THP immunoreactivity were observed 72 hours following withdrawal in the medial prefrontal cortex (-25.0 ± 9.3%), nucleus accumbens core (-29.9 ± 6.6%), and dorsolateral striatum (-18.5 ± 6.0%), while an increase was observed in the CA3 pyramidal cell layer of the hippocampus (+42.8 ± 19.5%). Sustained reductions in 3α,5α-THP immunoreactivity were observed at both time points in the lateral amygdala (8 hours -28.3 ± 12.8%; 72 hours -27.5 ± 12.4%) and in the ventral tegmental area (8 hours -26.5 ± 9.9%; 72 hours -31.6 ± 13.8%). CONCLUSIONS These data suggest that specific neuroadaptations in 3α,5α-THP levels may be present in regions of brain that mediate anxiety, stress, and reinforcement relevant to EtOH dependence. The changes that occur at different time points likely modulate neurocircuitry involved in EtOH withdrawal as well as the elevated drinking observed after CIE exposure.
Collapse
Affiliation(s)
- Antoniette M Maldonado-Devincci
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ruby CL, Vadnie CA, Hinton DJ, Abulseoud OA, Walker DL, O'Connor KM, Noterman MF, Choi DS. Adenosinergic regulation of striatal clock gene expression and ethanol intake during constant light. Neuropsychopharmacology 2014; 39:2432-40. [PMID: 24755889 PMCID: PMC4138755 DOI: 10.1038/npp.2014.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/09/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023]
Abstract
Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the co-occurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during chronodisruption.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Chelsea A Vadnie
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David J Hinton
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Denise L Walker
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katheryn M O'Connor
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Maria F Noterman
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA, Tel: +1 507 284 5602, Fax: +1 507 266 0824, E-mail:
| |
Collapse
|
49
|
The synaptoneurosome transcriptome: a model for profiling the emolecular effects of alcohol. THE PHARMACOGENOMICS JOURNAL 2014; 15:177-88. [PMID: 25135349 DOI: 10.1038/tpj.2014.43] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/29/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022]
Abstract
Chronic alcohol consumption changes gene expression, likely causing persistent remodeling of synaptic structures via altered translation of mRNAs within synaptic compartments of the cell. We profiled the transcriptome from synaptoneurosomes (SNs) and paired total homogenates (THs) from mouse amygdala following chronic voluntary alcohol consumption. In SN, both the number of alcohol-responsive mRNAs and the magnitude of fold-change were greater than in THs, including many GABA-related mRNAs upregulated in SNs. Furthermore, SN gene co-expression analysis revealed a highly connected network, demonstrating coordinated patterns of gene expression and highlighting alcohol-responsive biological pathways, such as long-term potentiation, long-term depression, glutamate signaling, RNA processing and upregulation of alcohol-responsive genes within neuroimmune modules. Alterations in these pathways have also been observed in the amygdala of human alcoholics. SNs offer an ideal model for detecting intricate networks of coordinated synaptic gene expression and may provide a unique system for investigating therapeutic targets for the treatment of alcoholism.
Collapse
|
50
|
Tyler CR, Allan AM. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model. Alcohol 2014; 48:483-92. [PMID: 24954023 DOI: 10.1016/j.alcohol.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15-17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis. This study is the first to use chronic low to moderate PAE, to more accurately reflect maternal alcohol consumption, and subsequent neural progenitor cell culture to demonstrate that PAE throughout gestation alters expression of genes involved in neural development and embryonic neurogenesis.
Collapse
|