1
|
Kim D, Yoon JH, Bae H, Hwang S, Seo GH, Koh JY, Ju YS, Do HS, Kim S, Choi IH, Kim GH, Kim JH, Choi JH, Lee BH. Beyond CHD7 gene: unveiling genetic diversity in clinically suspected CHARGE syndrome. J Hum Genet 2025; 70:243-248. [PMID: 40000719 DOI: 10.1038/s10038-025-01325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The Verloes or Hale diagnostic criteria have been applied for diagnosing CHARGE syndrome in suspected patients. This study was conducted to evaluate the diagnostic rate of CHD7 according to these diagnostic criteria in suspected patients and also to investigate other genetic defects in CHD7-negative patients. The clinical findings and the results of genetic testing of CHD7, chromosome microarray, exome sequencing, or genome sequencing of 59 subjects were reviewed. CHD7 pathogenic variants were identified in 78% of 46 subjects who met either the Verloes or Hale diagnostic criteria and in 87% of 38 subjects who met both criteria, whereas no CHD7 variant was detected in 13 subjects who met neither criterion. Among 23 patients without the CHD7 variant, six genetic diseases were identified in 7 patients, including Wolf-Hirschhorn syndrome, 1q21 deletion syndrome, 19q13 microdeletion, and pathogenic variants in PLCB4, TRRAP, and OTX2. Based on these comprehensive analyses, the overall diagnostic rate was 73% for seven different genetic diseases. This study emphasizes the importance of comprehensive clinical and genetic evaluation in patients with clinically suspected CHARGE syndrome, recognizing the overlapping phenotypes in other rare genetic disorders.
Collapse
Affiliation(s)
- Dohyung Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Hee Yoon
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Bae
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kyungpook National University Chilgok Hospital, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Go Hun Seo
- Division of Medical genetics, 3billion Inc, Seoul, Republic of Korea
| | | | | | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Soyoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In Hee Choi
- Department of Genetic Counseling, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Bastelica P, Daruich A, Paganelli B, Robert M, Labbé A, Baudouin C, Bremond-Gignac D. [Glaucoma in PAX6-related congenital aniridia: A review of the literature]. J Fr Ophtalmol 2025; 48:104300. [PMID: 39368260 DOI: 10.1016/j.jfo.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 10/07/2024]
Abstract
PAX6-related congenital aniridia is a genetic pan-ocular disease characterized by a partial or total absence of the iris and foveal hypoplasia. The mechanisms involved in the development of ocular hypertension and glaucoma in patients with congenital aniridia are still unknown. Many hypotheses have been proposed and the advent of new anterior segment imaging techniques has allowed the identification of various potential mechanisms: congenital trabecular dysfunction, progressive closure of the iridocorneal angle, postoperative ocular hypertension. The diagnosis must take into account the various obstacles to clinical examination (corneal opacity, obturating cataract, foveolar aplasia, significant nystagmus) and is often considered only upon detection of ocular hypertension. Glaucoma remains, along with limbal insufficiency, one of the major causes of blindness in congenital aniridia. The treatment of glaucoma in congenital aniridia is primarily medical. The benefit/risk ratio of a surgical intervention should always be thoroughly evaluated in order to not underestimate the postoperative complications associated with congenital aniridia.
Collapse
Affiliation(s)
- P Bastelica
- Service 3, hôpital national de la vision des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de la vision, IHU FOReSIGHT, Sorbonne université, 17, rue Moreau, 75012 Paris, France
| | - A Daruich
- Faculté Paris Cité, hôpital universitaire Necker-Enfants Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France; UMRS1138, centre de recherche des Cordeliers, équipe 17, Inserm, Sorbonne université, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - B Paganelli
- Faculté Paris Cité, hôpital universitaire Necker-Enfants Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France
| | - M Robert
- Faculté Paris Cité, hôpital universitaire Necker-Enfants Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France
| | - A Labbé
- Service 3, hôpital national de la vision des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de la vision, IHU FOReSIGHT, Sorbonne université, 17, rue Moreau, 75012 Paris, France; Hôpital Ambroise-Paré, AP-HP, université de Versailles Saint-Quentin-en-Yvelines, 9, avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France
| | - C Baudouin
- Service 3, hôpital national de la vision des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de la vision, IHU FOReSIGHT, Sorbonne université, 17, rue Moreau, 75012 Paris, France; Hôpital Ambroise-Paré, AP-HP, université de Versailles Saint-Quentin-en-Yvelines, 9, avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France
| | - D Bremond-Gignac
- Faculté Paris Cité, hôpital universitaire Necker-Enfants Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France; UMRS1138, centre de recherche des Cordeliers, équipe 17, Inserm, Sorbonne université, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
3
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
4
|
Wang L, Xu Q, Wang W, Sun X, Chen Y. Genetic analysis using next-generation sequencing and multiplex ligation probe amplification in Chinese aniridia patients. Orphanet J Rare Dis 2024; 19:394. [PMID: 39449022 PMCID: PMC11515619 DOI: 10.1186/s13023-024-03388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Congenital aniridia is a rare pan-ocular disease characterized by complete irideremia, partial iridocoloboma. The progressive nature of aniridia is frequently accompanied by secondary ocular complications such as glaucoma and aniridia-associated keratopathy, which can lead to severely impaired vision or blindness. The genetic basis of aniridia has been the subject of numerous studies, leading to the development of innovative therapeutic options based on PAX6 nonsense mutations. Specific knowledge of the genetics of aniridia has become increasingly important. To report the clinical features, elucidate the genetic etiology, and reveal the mutational spectrum of congenital aniridia in the Chinese population, sixty patients with congenital aniridia from 51 families were recruited. Candidate genes associated with developmental eye diseases were identified and analyzed using panel-based next-generation sequencing (NGS), and mutations were confirmed through polymerase chain reaction and Sanger sequencing. Multiplex ligation probe amplification (MLPA) of PAX6 and FOXC1 was performed to detect copy number variations in the patients without intragenic mutations. RESULTS Clinical examination revealed complete iris hypoplasia in 58 patients and partial iris hypoplasia in two patients. Additionally, two patients were diagnosed with Wilms' tumor-aniridia-genital anomalies-retardation syndrome and nephroblastoma. By combining panel-based NGS and MLPA, 43 intragenic mutations or deletions of PAX6, FOXC1, and BCOR were identified in 59 patients, including 33 point mutations (76.7%) in 43 patients and 10 deletions (23.3%) in 16 patients. The total detection rate was 98.3%. Phenotypic variation was observed between and within families. CONCLUSIONS Variations in PAX6 and its adjacent regions were the predominant causes of aniridia in China. In addition to intragenic point mutations in PAX6, deletion of PAX6 or its adjacent genes is a common cause of congenital aniridia. Furthermore, FOXC1 is an important gene associated with congenital aniridia. The combination of panel-based NGS and MLPA significantly enhanced the detection rate of gene mutations in patients with congenital aniridia.
Collapse
Affiliation(s)
- Li Wang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Qingdan Xu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Wentao Wang
- Center Laboratory, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.
| |
Collapse
|
5
|
Guarnera A, Valente P, Pasquini L, Moltoni G, Randisi F, Carducci C, Carboni A, Lucignani G, Napolitano A, Romanzo A, Longo D, Gandolfo C, Rossi-Espagnet MC. Congenital Malformations of the Eye: A Pictorial Review and Clinico-Radiological Correlations. J Ophthalmol 2024; 2024:5993083. [PMID: 38322500 PMCID: PMC10846927 DOI: 10.1155/2024/5993083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/23/2023] [Accepted: 11/10/2023] [Indexed: 02/08/2024] Open
Abstract
Congenital malformations of the eye represent a wide and heterogeneous spectrum of abnormalities that may be part of a complex syndrome or be isolated. Ocular malformation severity depends on the timing of the causative event during eye formation, ranging from the complete absence of the eye if injury occurs during the first weeks of gestation, to subtle abnormalities if the cause occurs later on. Knowledge of ocular malformations is crucial to performing a tailored imaging protocol and correctly reporting imaging findings. Together with the ophthalmologic evaluation, imaging may help frame ocular malformations and identify underlying genetic conditions. The purpose of this pictorial review is to describe the imaging features of the main ocular malformations and the related ophthalmologic findings in order to provide a clinico-radiological overview of these abnormalities to the clinical radiologist. Sight is a crucial sense for children to explore the world and relate with their parents from birth. Vision impairment or even blindness secondary to ocular malformations deeply affects children's growth and quality of life.
Collapse
Affiliation(s)
- Alessia Guarnera
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa 1035-1039, Rome 00189, Italy
| | - Paola Valente
- Ophthalmology Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa 1035-1039, Rome 00189, Italy
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Giulia Moltoni
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa 1035-1039, Rome 00189, Italy
| | - Francesco Randisi
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| | - Chiara Carducci
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| | - Alessia Carboni
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| | - Giulia Lucignani
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonino Romanzo
- Ophthalmology Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| | - Carlo Gandolfo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy
| |
Collapse
|
6
|
Benítez-Burraco A, Uriagereka J, Nataf S. The genomic landscape of mammal domestication might be orchestrated by selected transcription factors regulating brain and craniofacial development. Dev Genes Evol 2023; 233:123-135. [PMID: 37552321 PMCID: PMC10746608 DOI: 10.1007/s00427-023-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Domestication transforms once wild animals into tamed animals that can be then exploited by humans. The process entails modifications in the body, cognition, and behavior that are essentially driven by differences in gene expression patterns. Although genetic and epigenetic mechanisms were shown to underlie such differences, less is known about the role exerted by trans-regulatory molecules, notably transcription factors (TFs) in domestication. In this paper, we conducted extensive in silico analyses aimed to clarify the TF landscape of mammal domestication. We first searched the literature, so as to establish a large list of genes selected with domestication in mammals. From this list, we selected genes experimentally demonstrated to exhibit TF functions. We also considered TFs displaying a statistically significant number of targets among the entire list of (domestication) selected genes. This workflow allowed us to identify 5 candidate TFs (SOX2, KLF4, MITF, NR3C1, NR3C2) that were further assessed in terms of biochemical and functional properties. We found that such TFs-of-interest related to mammal domestication are all significantly involved in the development of the brain and the craniofacial region, as well as the immune response and lipid metabolism. A ranking strategy, essentially based on a survey of protein-protein interactions datasets, allowed us to identify SOX2 as the main candidate TF involved in domestication-associated evolutionary changes. These findings should help to clarify the molecular mechanics of domestication and are of interest for future studies aimed to understand the behavioral and cognitive changes associated to domestication.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain.
- Área de Lingüística General, Departamento de Lengua Española, Lingüística y Teoría de la Literatura, Facultad de Filología, Universidad de Sevilla, C/ Palos de la Frontera s/n., 41007-, Sevilla, España.
| | - Juan Uriagereka
- Department of Linguistics and School of Languages, Literatures & Cultures, University of Maryland, College Park, MD, USA
| | - Serge Nataf
- Stem-cell and Brain Research Institute, 18 avenue de Doyen Lépine, F-69500, Bron, France
- University of Lyon 1, 43 Bd du 11 Novembre 1918, F-69100, Villeurbanne, France
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d'Arsonval, F-69003, Lyon, France
| |
Collapse
|
7
|
DeOliveira-Mello L, Baronio D, Panula P. Zebrafish embryonically exposed to valproic acid present impaired retinal development and sleep behavior. Autism Res 2023; 16:1877-1890. [PMID: 37638671 DOI: 10.1002/aur.3010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Prenatal exposure to valproic acid (VPA), a drug widely used to treat epilepsy and bipolar disorder, is an environmental risk factor for autism spectrum disorder (ASD). VPA has been used to reproduce the core symptoms of ASD in animal model organisms, including zebrafish. Visual system functioning is essential in the interpretation of social conditions and plays an important role of several behavioral responses. We hypothesized that behavioral deficits displayed by ASD patients may involve impaired visual processing. We used zebrafish as model organism to investigate the visual system after embryonic exposure to VPA using histological, behavioral and gene expression analysis. We analyzed the pineal gland of zebrafish and sleep-like behavior to study how VPA exposure alters photo-sensibility of zebrafish. VPA-exposed zebrafish showed a delay in the development of the retina and optic nerve, which normalized at five days post fertilization. At larval stage, VPA-exposed zebrafish showed sleep disturbances associated with a reduced number of serotonin-producing cells of the pineal gland. In addition, the number of hypocretin/orexin (hcrt) expressing neurons in the rostral hypothalamus at 6 and 14 days post fertilization was reduced. In conclusion, we demonstrated that although VPA exposure leads to a delay in visual system development, it does not affect larval visual function. The novel finding that VPA alters significantly cells involved in sleep regulation and the sleep-like state itself may be relevant for understanding sleep disturbances in ASD patients.
Collapse
Affiliation(s)
| | - Diego Baronio
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Shi X, Xue Z, Ye K, Yuan J, Zhang Y, Qu J, Su J. Roles of non-coding RNAs in eye development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1785. [PMID: 36849659 DOI: 10.1002/wrna.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The prevalence of ocular disorders is dramatically increasing worldwide, especially those that cause visual impairment and permanent loss of vision, including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. Extensive evidence has shown that ncRNAs are key regulators in various biogenesis and biological functions, controlling gene expression related to histogenesis and cell differentiation in ocular tissues. Aberrant expression and function of ncRNA can lead to dysfunction of visual system and mediate progression of eye disorders. Here, we mainly offer an overview of the role of precise modulation of ncRNAs in eye development and function in patients with eye diseases. We also highlight the challenges and future perspectives in conducting ncRNA studies, focusing specifically on the role of ncRNAs that may hold expanded promise for their diagnostic and therapeutic applications in various eye diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Xinrui Shi
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaicheng Ye
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Yan Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
- Institute of PSI Genomics, Zhejiang, China
| |
Collapse
|
9
|
Xie X, Wang X, Liu Q, Li Y, Dong Z, Wang L, Xia Q, Zhao P. The tissue-specific expression of silkworm cuticle protein gene ASSCP2 is mediated by the Sox-2 transcription factor. Int J Biol Macromol 2023; 237:124182. [PMID: 36972822 DOI: 10.1016/j.ijbiomac.2023.124182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
The silk gland of silkworm is a unique organ in which silk proteins are synthesized, secreted, and transformed into fibers. The anterior silk gland (ASG) is located at the end of the silk gland, and is thought to be involved in silk fibrosis. In our previous study, a cuticle protein, ASSCP2, was identified. This protein is specifically and highly expressed in the ASG. In this work, the transcriptional regulation mechanism of ASSCP2 gene was studied by a transgenic route. The ASSCP2 promoter was analyzed, truncated sequentially, and used to initiate the expression of EGFP gene in silkworm larvae. After egg injection, seven transgenic silkworm lines were isolated. Molecular analysis revealed that the green fluorescent signal could not be detected when the promoter was truncated to -257 bp, suggesting that the -357 to -257 sequence is the key region responsible for the transcriptional regulation of the ASSCP2 gene. Furthermore, an ASG specific transcription factor Sox-2 was identified. EMSA assays showed that Sox-2 binds with the -357 to -257 sequence, and thus regulates the tissue-specific expression of ASSCP2. This study on the transcriptional regulation of ASSCP2 gene provides theoretical and experimental basis for further studies of the regulatory mechanism of tissue-specific genes.
Collapse
Affiliation(s)
- Xiaoqian Xie
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Yi Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Lingyan Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Vetrivel S, Truong DJJ, Wurst W, Graw J, Giesert F. Identification of ocular regulatory functions of core histone variant H3.2. Exp Eye Res 2023; 226:109346. [PMID: 36529279 DOI: 10.1016/j.exer.2022.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The posttranscriptional modifications (PTM) of the Histone H3 family play an important role in ocular system differentiation. However, there has been no study on the nature of specific Histone H3 subtype carrying these modifications. Fortuitously, we had previously identified a dominant small-eye mutant Aey69 mouse with a mutation in the H3.2 encoding Hist2h3c1 gene (Vetrivel et al., 2019). In continuation, in the present study, the role of Histone H3.2 with relation to the microphtalmic Aey69 has been elaborated. Foremost, a transgenic mouse line expressing the fusion protein H3.2-GFP was generated using Crispr/Cas9. The approach was intended to confer a unique tag to the Hist2h3c1 gene which is similar in sequence and encoded protein structure to other histones. The GFP tag was then used for ChIP Seq analysis of the genes regulated by H3.2. The approach revealed ocular specific H3.2 targets including Ephrin family genes. Altered enrichment of H3.2 was found in the mutant Aey69 mouse, specifically around the ligand Efna5 and the receptor Ephb2. The effect of this altered enrichment on Ephrin signaling was further analysed by QPCR and immunohistochemistry. This study identifies Hist2h3c1 encoded H3.2 as an important epigenetic player in ocular development. By binding to specific regions of ocular developmental factors Histone H3.2 facilitates the function of these genes for successful early ocular development.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany.
| | - Dong-Jiunn Jeffery Truong
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany.
| |
Collapse
|
11
|
Eilertsen M, Dolan DWP, Bolton CM, Karlsen R, Davies WIL, Edvardsen RB, Furmanek T, Sveier H, Migaud H, Helvik JV. Photoreception and transcriptomic response to light during early development of a teleost with a life cycle tightly controlled by seasonal changes in photoperiod. PLoS Genet 2022; 18:e1010529. [PMID: 36508414 PMCID: PMC9744326 DOI: 10.1371/journal.pgen.1010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Light cues vary along the axis of periodicity, intensity and spectrum and perception of light is dependent on the photoreceptive capacity encoded within the genome and the opsins expressed. A global approach was taken to analyze the photoreceptive capacity and the effect of differing light conditions on a developing teleost prior to first feeding. The transcriptomes of embryos and alevins of Atlantic salmon (Salmo salar) exposed to different light conditions were analyzed, including a developmental series and a circadian profile. The results showed that genes mediating nonvisual photoreception are present prior to hatching when the retina is poorly differentiated. The clock genes were expressed early, but the circadian profile showed that only two clock genes were significantly cycling before first feeding. Few genes were differentially expressed between day and night within a light condition; however, many genes were significantly different between light conditions, indicating that light environment has an impact on the transcriptome during early development. Comparing the transcriptome data from constant conditions to periodicity of white light or different colors revealed overrepresentation of genes related to photoreception, eye development, muscle contraction, degradation of metabolites and cell cycle among others, and in constant light, several clock genes were upregulated. In constant white light and periodicity of green light, genes associated with DNA replication, chromatin remodeling, cell division and DNA repair were downregulated. The study implies a direct influence of light conditions on the transcriptome profile at early developmental stages, by a complex photoreceptive system where few clock genes are cycling.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail: (ME); (JVH)
| | | | - Charlotte M. Bolton
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Wayne I. L. Davies
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | | | | | | | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail: (ME); (JVH)
| |
Collapse
|
12
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
13
|
Mirjalili Mohanna SZ, Djaksigulova D, Hill AM, Wagner PK, Simpson EM, Leavitt BR. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J Control Release 2022; 350:401-413. [PMID: 36029893 DOI: 10.1016/j.jconrel.2022.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
CRISPR/Cas9-based genome-editing therapies are poised to change the clinical outcome for many diseases with validated therapeutic targets awaiting an appropriate delivery system. Recent advances in lipid nanoparticle (LNP) technology make them an attractive platform for the delivery of various forms of CRISPR/Cas9, including the efficient and transient Cas9/gRNA ribonucleoprotein (RNP) complexes. In this study, we initially tested our novel LNP platform by delivering pre-complexed RNPs and template DNA to cultured mouse cortical neurons, and obtained successful ex vivo genome editing. We then directly injected LNP-packaged RNPs and DNA template into the mouse cornea to evaluate in vivo delivery. For the first time, we demonstrated wide-spread genome editing in the cornea using our LNP-RNPs. The ability of our LNPs to transfect the cornea highlights the potential of our novel delivery platform to be used in CRISPR/Cas9-based genome editing therapies of corneal diseases.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mirjalili Mohanna
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Diana Djaksigulova
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | | | | | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada; Incisive Genetics Inc., Vancouver, BC, Canada
| |
Collapse
|
14
|
Bricker RL, Bhaskar U, Titone R, Carless MA, Barberi T. A Molecular Analysis of Neural Olfactory Placode Differentiation in Human Pluripotent Stem Cells. Stem Cells Dev 2022; 31:507-520. [PMID: 35592997 PMCID: PMC9641992 DOI: 10.1089/scd.2021.0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/19/2022] [Indexed: 11/12/2022] Open
Abstract
During embryonic development, the olfactory sensory neurons (OSNs) and the gonadotropic-releasing hormone neurons (GNRHNs) migrate from the early nasal cavity, known as the olfactory placode, to the brain. Defects in the development of OSNs and GNRHNs result in neurodevelopmental disorders such as anosmia and congenital hypogonadotropic hypogonadism, respectively. Treatments do not restore the defective neurons in these disorders, and as a result, patients have a diminished sense of smell or a gonadotropin hormone deficiency. Human pluripotent stem cells (hPSCs) can produce any cell type in the body; therefore, they are an invaluable tool for cell replacement therapies. Transplantation of olfactory placode progenitors, derived from hPSCs, is a promising therapeutic to replace OSNs and GNRHNs and restore tissue function. Protocols to generate olfactory placode progenitors are limited, and thus, we describe, in this study, a novel in vitro model for olfactory placode differentiation in hPSCs, which is capable of producing both OSNs and GNRHNs. Our study investigates the major developmental signaling factors that recapitulate the embryonic development of the olfactory tissue. We demonstrate that induction of olfactory placode in hPSCs requires bone morphogenetic protein inhibition, wingless/integrated protein inhibition, retinoic acid inhibition, transforming growth factor alpha activation, and fibroblast growth factor 8 activation. We further show that the protocol transitions hPSCs through the anterior pan-placode ectoderm and neural ectoderm regions in early development while preventing neural crest and non-neural ectoderm regions. Finally, we demonstrate production of OSNs and GNRHNs by day 30 of differentiation. Our study is the first to report on OSN differentiation in hPSCs.
Collapse
Affiliation(s)
- Rebecca L. Bricker
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Uchit Bhaskar
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Rossella Titone
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Melanie A. Carless
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Tiziano Barberi
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Lab Farm Foods, Inc., New York City, New York, USA
| |
Collapse
|
15
|
Patasova K, Khawaja AP, Wojciechowski R, Mahroo OA, Falchi M, Rahi JS, Hammond CJ, Hysi PG. A genome-wide analysis of 340 318 participants identifies four novel loci associated with the age of first spectacle wear. Hum Mol Genet 2022; 31:3012-3019. [PMID: 35220419 PMCID: PMC9433727 DOI: 10.1093/hmg/ddac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
Refractive errors, particularly myopia, are the most common eye conditions, often leading to serious visual impairment. The age of onset is correlated with the severity of refractive error in adulthood observed in epidemiological and genetic studies and can be used as a proxy in refractive error genetic studies. To further elucidate genetic factors that influence refractive error, we analysed self-reported age of refractive error correction data from the UK Biobank European and perform genome-wide time-to-event analyses on the age of first spectacle wear (AFSW). Genome-wide proportional hazards ratio analyses were conducted in 340 318 European subjects. We subsequently assessed the similarities and differences in the genetic architectures of refractive error correction from different causes. All-cause AFSW was genetically strongly correlated (rg = -0.68) with spherical equivalent (the measured strength of spectacle lens required to correct the refractive error) and was used as a proxy for refractive error. Time-to-event analyses found genome-wide significant associations at 44 independent genomic loci, many of which (GJD2, LAMA2, etc.) were previously associated with refractive error. We also identified six novel regions associated with AFSW, the most significant of which was on chromosome 17q (P = 3.06 × 10-09 for rs55882072), replicating in an independent dataset. We found that genes associated with AFSW were significantly enriched for expression in central nervous system tissues and were involved in neurogenesis. This work demonstrates the merits of time-to-event study design in the genetic investigation of refractive error and contributes additional knowledge on its genetic risk factors in the general population.
Collapse
Affiliation(s)
- Karina Patasova
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology, London WC1E 6BT, UK
| | | | - Omar A Mahroo
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology, London WC1E 6BT, UK
- Department of Ophthalmology, St Thomas’ Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
| | - Jugnoo S Rahi
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
- UCL Great Ormond Street Hospital Institute of Child Health, London WC1N 1EH, UK
- Ulverscroft Vision Research Group, University College London, London WC1N 1EH, UK
| | - Chris J Hammond
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
| | - Pirro G Hysi
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
- UCL Great Ormond Street Hospital Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
16
|
van Heyningen V. A Journey Through Genetics to Biology. Annu Rev Genomics Hum Genet 2022; 23:1-27. [PMID: 35567277 DOI: 10.1146/annurev-genom-010622-095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
17
|
Chesneau B, Aubert-Mucca M, Fremont F, Pechmeja J, Soler V, Isidor B, Nizon M, Dollfus H, Kaplan J, Fares-Taie L, Rozet JM, Busa T, Lacombe D, Naudion S, Amiel J, Rio M, Attie-Bitach T, Lesage C, Thouvenin D, Odent S, Morel G, Vincent-Delorme C, Boute O, Vanlerberghe C, Dieux A, Boussion S, Faivre L, Pinson L, Laffargue F, Le Guyader G, Le Meur G, Prieur F, Lambert V, Laudier B, Cottereau E, Ayuso C, Corton-Pérez M, Bouneau L, Le Caignec C, Gaston V, Jeanton-Scaramouche C, Dupin-Deguine D, Calvas P, Chassaing N, Plaisancié J. First evidence of SOX2 mutations in Peters' anomaly: lessons from molecular screening of 95 patients. Clin Genet 2022; 101:494-506. [PMID: 35170016 DOI: 10.1111/cge.14123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022]
Abstract
Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some Copy Number Variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of Comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bertrand Chesneau
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | | | - Félix Fremont
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Jacmine Pechmeja
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Vincent Soler
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,Service d'ophtalmologie, Hôpital Purpan, CHU Toulouse, France
| | - Bertrand Isidor
- Génétique Médicale, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Nizon
- Génétique Médicale, Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Hélène Dollfus
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpitaux Universitaires, Strasbourg, France
| | - Josseline Kaplan
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Lucas Fares-Taie
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Jean-Michel Rozet
- Laboratoire de Génétique Ophtalmologique, INSERM U1163, Institut Imagine, Paris, France
| | - Tiffany Busa
- Génétique Clinique, AP- HM CHU Timone Enfants, Marseille, France
| | - Didier Lacombe
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Sophie Naudion
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - Jeanne Amiel
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Marlène Rio
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Tania Attie-Bitach
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-, HP, Paris, France
| | | | | | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, CHU Rennes; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN ITHACA, France
| | - Godelieve Morel
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, CHU Rennes; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN ITHACA, France
| | | | | | | | | | | | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU, Dijon, France
| | - Lucile Pinson
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, France
| | | | | | | | | | - Victor Lambert
- Service d'ophtalmologie, Hôpital Nord, Saint-Etienne, France
| | | | | | - Carmen Ayuso
- Genetics & Genomics Department, Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD-UAM). Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Marta Corton-Pérez
- Genetics & Genomics Department, Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD-UAM). Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | | | | | | | | | | | - Patrick Calvas
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | - Nicolas Chassaing
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France
| | - Julie Plaisancié
- Génétique Médicale, Hôpital Purpan, CHU, Toulouse, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU, Toulouse, France.,INSERM U1214, ToNIC, Université Toulouse III, France
| |
Collapse
|
18
|
Woogeng IN, Kaczkowski B, Abugessaisa I, Hu H, Tachibana A, Sahara Y, Hon CC, Hasegawa A, Sakai N, Nishida M, Sanyal H, Sho J, Kajita K, Kasukawa T, Takasato M, Carninci P, Maeda A, Mandai M, Arner E, Takahashi M, Kime C. Inducing human retinal pigment epithelium-like cells from somatic tissue. Stem Cell Reports 2022; 17:289-306. [PMID: 35030321 PMCID: PMC8828536 DOI: 10.1016/j.stemcr.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Regenerative medicine relies on basic research outcomes that are only practical when cost effective. The human eyeball requires the retinal pigment epithelium (RPE) to interface the neural retina and the choroid at large. Millions of people suffer from age-related macular degeneration (AMD), a blinding multifactor genetic disease among RPE degradation pathologies. Recently, autologous pluripotent stem-cell-derived RPE cells were prohibitively expensive due to time; therefore, we developed a faster reprogramming system. We stably induced RPE-like cells (iRPE) from human fibroblasts (Fibs) by conditional overexpression of both broad plasticity and lineage-specific transcription factors (TFs). iRPE cells displayed critical RPE benchmarks and significant in vivo integration in transplanted retinas. Herein, we detail the iRPE system with comprehensive single-cell RNA sequencing (scRNA-seq) profiling to interpret and characterize its best cells. We anticipate that our system may enable robust retinal cell induction for basic research and affordable autologous human RPE tissue for regenerative cell therapy. Human Fibs reprogrammed to stable RPE-like cells Reprogramming factors selected for pioneering, plasticity, lineage, and target cell Nicotinamide (NIC) and Chetomin (CTM) improved the reprogramming outcomes scRNA-seq analysis identifies high-quality subpopulation resembling model cells
Collapse
Affiliation(s)
| | | | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Haiming Hu
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Yoshiki Sahara
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Renal and Cardiovascular Research, New Drug Research Division, Otsuka Pharmaceutical Co. Ltd., Tokushima 771-0192, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Noriko Sakai
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Hashimita Sanyal
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Junki Sho
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Keisuke Kajita
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Akiko Maeda
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Michiko Mandai
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Masayo Takahashi
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Cody Kime
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| |
Collapse
|
19
|
Berry V, Ionides A, Pontikos N, Moore AT, Quinlan RA, Michaelides M. Variants in PAX6, PITX3 and HSF4 causing autosomal dominant congenital cataracts. Eye (Lond) 2021; 36:1694-1701. [PMID: 34345029 PMCID: PMC9307513 DOI: 10.1038/s41433-021-01711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
Background Lens development is orchestrated by transcription factors. Disease-causing variants in transcription factors and their developmental target genes are associated with congenital cataracts and other eye anomalies. Methods Using whole exome sequencing, we identified disease-causing variants in two large British families and one isolated case with autosomal dominant congenital cataract. Bioinformatics analysis confirmed these disease-causing mutations as rare or novel variants, with a moderate to damaging pathogenicity score, with testing for segregation within the families using direct Sanger sequencing. Results Family A had a missense variant (c.184 G>A; p.V62M) in PAX6 and affected individuals presented with nuclear cataract. Family B had a frameshift variant (c.470–477dup; p.A160R*) in PITX3 that was also associated with nuclear cataract. A recurrent missense variant in HSF4 (c.341 T>C; p.L114P) was associated with congenital cataract in a single isolated case. Conclusions We have therefore identified novel variants in PAX6 and PITX3 that cause autosomal dominant congenital cataract.
Collapse
Affiliation(s)
- Vanita Berry
- UCL Institute of Ophthalmology, University College London, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| | - Alex Ionides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Roy A Quinlan
- School of Biological and Medical Sciences, University of Durham, Durham, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
20
|
Kit V, Cunha DL, Hagag AM, Moosajee M. Longitudinal genotype-phenotype analysis in 86 patients with PAX6-related aniridia. JCI Insight 2021; 6:e148406. [PMID: 34101622 PMCID: PMC8410060 DOI: 10.1172/jci.insight.148406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Aniridia is most commonly caused by haploinsufficiency of the PAX6 gene, characterized by variable iris and foveal hypoplasia, nystagmus, cataracts, glaucoma, and aniridia-related keratopathy (ARK). Genotype-phenotype correlations have previously been described; however, detailed longitudinal studies of aniridia are less commonly reported. We identified 86 patients from 62 unrelated families with molecularly confirmed heterozygous PAX6 variants from a UK-based single-center ocular genetics service. They were categorized into mutation groups, and a retrospective review of clinical characteristics (ocular and systemic) from baseline to most recent was recorded. One hundred and seventy-two eyes were evaluated, with a mean follow-up period of 16.3 ± 12.7 years. Nystagmus was recorded in 87.2% of the eyes, and foveal hypoplasia was found in 75%. Cataracts were diagnosed in 70.3%, glaucoma in 20.6%, and ARK in 68.6% of eyes. Prevalence, age of diagnosis and surgical intervention, and need for surgical intervention varied among mutation groups. Overall, the missense mutation subgroup had the mildest phenotype, and surgically naive eyes maintained better visual acuity. Systemic evaluation identified type 2 diabetes in 12.8% of the study group, which is twice the UK prevalence. This is the largest longitudinal study of aniridia in the UK, and as such, it can provide insights into prognostic indicators for patients and guiding clinical management of both ocular and systemic features.
Collapse
Affiliation(s)
- Vivienne Kit
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Ahmed M Hagag
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Mariya Moosajee
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom.,Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
21
|
Jin X, Liu W, Qv LH, X WQ, Huang HB. A novel variant in PAX6 as the cause of aniridia in a Chinese family. BMC Ophthalmol 2021; 21:225. [PMID: 34016071 PMCID: PMC8136215 DOI: 10.1186/s12886-021-01848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aniridia is a kind of congenital human pan-ocular anomaly, which is related to PAX6 commonly. METHODS The ophthalmic examinations including visual acuity, slit lamp and fundoscopy examination were performed in a Chinese aniridia pedigree. The targeted next-generation sequencing of aniridia genes was used to identify the causative mutation. RESULTS A novel heterozygous PAX6 nonsense mutation c.619A > T (p.K207*) was identified in the Chinese autosomal dominant family with aniridia. Phenotype related to the novel mutation included nystagmus, keratopathy, absence of iris, cataract and foveal hypoplasia. CONCLUSIONS The novel nonsense variation in PAX6 was the cause of aniridia in this family, which expanded the spectrum of the PAX6 mutation.
Collapse
Affiliation(s)
- X Jin
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China
| | - W Liu
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, 572000, Sanya, Hainan Province, China
| | - L H Qv
- Department of Ophthalmology, the 74th Army Group Hospital, 510318, Guangzhou, China
| | - W Q X
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China
| | - H B Huang
- Department of Ophthalmology, Chinese PLA General Hospital, 100853, Beijing, China.
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, 572000, Sanya, Hainan Province, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Daich Varela M, Hufnagel RB, Guan B, Blain D, Sapp JC, Gropman AL, Alur R, Johnston JJ, Biesecker LG, Brooks BP. Clinical diagnosis of presumed SOX2 gonadosomatic mosaicism. Ophthalmic Genet 2021; 42:320-325. [PMID: 33719903 PMCID: PMC8154737 DOI: 10.1080/13816810.2021.1888127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Purpose: To describe a family with presumed SOX2 gonadosomatic mosaicism diagnosed upon ophthalmic examination of the proband’s mother. Methods: The family underwent comprehensive ophthalmic and physical examination. Variant detection was performed using trio exome analysis on peripheral leukocyte DNA from blood and saliva samples. Variant segregation analysis was performed using a custom panel NGS sequencing. An identified variant in the SOX2 gene was confirmed in the proband by Sanger sequencing. Results: We report an individual with bilateral microphthalmia, developmental delay, hearing loss, and dysmorphic features. Her mother was found to have asymptomatic forme fruste uveal coloboma affecting her anterior segment. Her father, aunt, and sisters were unaffected. Trio exome sequence analysis showed an apparent de novo heterozygous deletion in the proband, NM_003106.3:c.70_89del, NP_003097.1:p. (Asn24Argfs*65), classified as pathogenic. Testing of the other family members’ peripheral blood and saliva was negative for this variant. The iris transillumination abnormalities in the proband’s mother supports a gonadosomatic mosaicism scenario. Conclusions: The results from this family underscore the importance of performing detailed evaluations of the parents of apparently sporadically affected individuals with heritable ophthalmic disorders. The identification of mildly affected individuals could substantially alter recurrence risks.
Collapse
Affiliation(s)
- Malena Daich Varela
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Delphine Blain
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Julie C Sapp
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, Washington, District of Columbia, USA.,Department of Neurology, George Washington University, Washington, District of Columbia, USA
| | - Ramakrishna Alur
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jennifer J Johnston
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
23
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
24
|
Abstract
Pituitary stalk interruption syndrome (PSIS) is a distinct developmental defect of the pituitary gland identified by magnetic resonance imaging and characterized by a thin, interrupted, attenuated or absent pituitary stalk, hypoplasia or aplasia of the adenohypophysis, and an ectopic posterior pituitary. The precise etiology of PSIS still remains elusive or incompletely confirmed in most cases. Adverse perinatal events, including breech delivery and hypoxia, were initially proposed as the underlying mechanism affecting the hypothalamic-pituitary axis. Nevertheless, recent findings have uncovered a wide variety of PSIS-associated molecular defects in genes involved in pituitary development, holoprosencephaly (HPE), neural development, and other important cellular processes such as cilia function. The application of whole exome sequencing (WES) in relatively large cohorts has identified an expanded pool of potential candidate genes, mostly related to the Wnt, Notch, and sonic hedgehog signaling pathways that regulate pituitary growth and development during embryogenesis. Importantly, WES has revealed coexisting pathogenic variants in a significant number of patients; therefore, pointing to a multigenic origin and inheritance pattern of PSIS. The disorder is characterized by inter- and intrafamilial variability and incomplete or variable penetrance. Overall, PSIS is currently viewed as a mild form of an expanded HPE spectrum. The wide and complex clinical manifestations include evolving pituitary hormone deficiencies (with variable timing of onset and progression) and extrapituitary malformations. Severe and life-threatening symptomatology is observed in a subset of patients with complete pituitary hormone deficiency during the neonatal period. Nevertheless, most patients are referred later in childhood for growth retardation. Prompt and appropriate hormone substitution therapy constitutes the cornerstone of treatment. Further studies are needed to uncover the etiopathogenesis of PSIS.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Department of Pediatrics, School of Medicine, Democritus University of Thrace, Alexandroupolis, Thrace, Greece.
| |
Collapse
|
25
|
Berntsson SG, Kristoffersson A, Daniilidou M, Dahl N, Ekström C, Semnic R, Markström A, Niemelä V, Partinen M, Hallböök F, Landtblom AM. Aniridia with PAX6 mutations and narcolepsy. J Sleep Res 2020; 29:e12982. [PMID: 31943460 DOI: 10.1111/jsr.12982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/20/2023]
Abstract
PAX6 gene mutations cause a variety of eye and central nervous system (CNS) abnormalities. Aniridia is often accompanied by CNS abnormalities such as pineal gland atrophy or hypoplasia, leading to disturbed circadian rhythm and sleep disorders. Less is known on the coincidence of narcolepsy in this patient group. We aimed to find out whether the circadian rhythm or sleep-wake structure was affected in patients with aniridia. Four members of a family segregating with congenital aniridia in two generations were included in the study. The patients were subjected to genetic testing for a PAX6 mutation, multiple sleep latency test, whole-brain magnetic resonance imaging (MRI), hypocretin-1 in cerebrospinal fluid, and Human Leukocyte Antigen DQ beta1*06:02. All four members were heterozygous for the pathogenic c.959-1G>A mutation in the PAX6 gene. Sleep disturbance was observed in all family members. The index patient was diagnosed with narcolepsy. MRI showed a hypoplastic pineal gland in all members. We describe the first case of a patient with PAX6 haploinsufficiency, aniridia and pineal gland hypoplasia diagnosed with narcolepsy type-1, suggesting a complex sleep disorder pathogenesis.
Collapse
Affiliation(s)
| | - Anna Kristoffersson
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Department of Clinical and Experimental Medicine, Neurology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Makrina Daniilidou
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Curt Ekström
- Department of Neuroscience, Ophthalmology, Uppsala University, Uppsala, Sweden
| | - Robert Semnic
- Section of Neuroradiology, Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Agneta Markström
- Department of Medical Sciences, Respiratory, Allergy, and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Valter Niemelä
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Markku Partinen
- Vitalmed Research Center, Helsinki Sleep Clinic, Helsinki, Finland.,Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Department of Clinical and Experimental Medicine, Neurology, Medical Faculty, University of Linköping, Linköping, Sweden
| |
Collapse
|
26
|
Gopinathan NV, Rajkumar S, Vasavada AR. A rare association of aniridia with conjunctival xerosis in two Indian siblings with PAX6 mutation. Indian J Ophthalmol 2020; 68:2635-2637. [PMID: 33120723 PMCID: PMC7774223 DOI: 10.4103/ijo.ijo_2185_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nair Vidya Gopinathan
- Department of Pediatric Ophthalmology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Sankaranarayanan Rajkumar
- Department of Pediatric Ophthalmology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat; Department of Ophthalmic Genetics, Aditya Jyot Foundation for Twinkling Little Eyes, Mumbai, Maharashtra, India
| | - Abhay Raghukant Vasavada
- Department of Pediatric Ophthalmology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| |
Collapse
|
27
|
Eintracht J, Toms M, Moosajee M. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders. Front Cell Neurosci 2020; 14:265. [PMID: 32973457 PMCID: PMC7468397 DOI: 10.3389/fncel.2020.00265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately one-third of childhood blindness is attributed to developmental eye disorders, of which 80% have a genetic cause. Eye morphogenesis is tightly regulated by a highly conserved network of transcription factors when disrupted by genetic mutations can result in severe ocular malformation. Human-induced pluripotent stem cells (hiPSCs) are an attractive tool to study early eye development as they are more physiologically relevant than animal models, can be patient-specific and their use does not elicit the ethical concerns associated with human embryonic stem cells. The generation of self-organizing hiPSC-derived optic cups is a major advancement to understanding mechanisms of ocular development and disease. Their development in vitro has been found to mirror that of the human eye and these early organoids have been used to effectively model microphthalmia caused by a VSX2 variant. hiPSC-derived optic cups, retina, and cornea organoids are powerful tools for future modeling of disease phenotypes and will enable a greater understanding of the pathophysiology of many other developmental eye disorders. These models will also provide an effective platform for identifying molecular therapeutic targets and for future clinical applications.
Collapse
Affiliation(s)
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
28
|
Groot AL, Kuijten MM, Remmers J, Gilani A, Mourits DL, Kraal‐Biezen E, de Graaf P, Zwijnenburg PJ, Moll AC, Tan S, Saeed P, Hartong DT. Classification for treatment urgency for the microphthalmia/anophthalmia spectrum using clinical and biometrical characteristics. Acta Ophthalmol 2020; 98:514-520. [PMID: 32100474 PMCID: PMC7497250 DOI: 10.1111/aos.14364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Current clinical classifications do not distinguish between the severity of the MICrophthalmia/Anophthalmia (MICA) spectrum with regard to treatment urgency. We aim to provide parameters for distinguishing mild, moderate and severe MICA using clinical and biometrical characteristics. METHODS We performed a single-centre, cross-sectional analysis of prospective cohort of 58 MICA children from September 2013 to February 2018 seen at the Amsterdam University Medical Center, The Netherlands. All patients with a visible underdeveloped globe were included. We performed full ophthalmic evaluation including horizontal palpebral fissure length, axial length by ultrasound and/or MRI measurements, paediatric and genetic evaluation. Cases were subdivided based on clinical characteristics. Biometrical data were used to calculate the relative axial length (rAL) and the relative horizontal palpebral fissure length (rHPF) compared with the healthy contralateral eye for unilateral cases. RESULTS In previously untreated patients, a strong correlation exists between rAL and rHPF, distinguishing between severe, moderate and mild subjects using rAL of 0-45%, 45-75% and 75%-100%, respectively. Clinical subgroups were randomly dispersed throughout the scatterplot. CONCLUSION Current classifications lack clinical implications for MICA patients. We suggest measuring eyelid length and axial length to classify the severity and determine treatment strategy. The 'severe' group has obvious asymmetry and abnormal socket configuration for which therapy should quickly be initiated; the 'moderately' affected group has normal socket anatomy with a microphthalmic eye with disturbing asymmetry for which treatment should be initiated within months of development; the 'mild' group has a slightly smaller axial length or less obvious eyelid asymmetry for which reconstructive correction is possible, but expansive conformer treatment is unnecessary.
Collapse
Affiliation(s)
- Annabel L.W. Groot
- Department of OphthalmologyAmsterdam Orbital CenterAmsterdam UMCUniversity of AmsterdamAmsterdamNetherlands,Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Maayke M.P. Kuijten
- Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Jelmer Remmers
- Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Asra Gilani
- Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Daphne L. Mourits
- Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Elke Kraal‐Biezen
- Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Petra J. Zwijnenburg
- Department of Clinical GeneticsAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Annette C. Moll
- Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Stevie Tan
- Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Peerooz Saeed
- Department of OphthalmologyAmsterdam Orbital CenterAmsterdam UMCUniversity of AmsterdamAmsterdamNetherlands,Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Dyonne T. Hartong
- Department of OphthalmologyAmsterdam Orbital CenterAmsterdam UMCUniversity of AmsterdamAmsterdamNetherlands,Department of OphthalmologyAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| |
Collapse
|
29
|
Berry V, Georgiou M, Fujinami K, Quinlan R, Moore A, Michaelides M. Inherited cataracts: molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches. Br J Ophthalmol 2020; 104:1331-1337. [PMID: 32217542 DOI: 10.1136/bjophthalmol-2019-315282] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 01/28/2020] [Indexed: 02/01/2023]
Abstract
Cataract is the most common cause of blindness in the world; during infancy and early childhood, it frequently results in visual impairment. Congenital cataracts are phenotypically and genotypically heterogeneous and can occur in isolation or in association with other systemic disorders. Significant progress has been made in identifying the molecular genetic basis of cataract; 115 genes to date have been found to be associated with syndromic and non-syndromic cataract and 38 disease-causing genes have been identified to date to be associated with isolated cataract. In this review, we briefly discuss lens development and cataractogenesis, detail the variable cataract phenotypes and molecular mechanisms, including genotype-phenotype correlations, and explore future novel therapeutic avenues including cellular therapies and pharmacological treatments.
Collapse
Affiliation(s)
- Vanita Berry
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK
| | - Michalis Georgiou
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Centre, Tokyo, Japan
| | - Roy Quinlan
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,Department of Biosciences, School of Biological and Medical Sciences, University of Durham, Durham, UK
| | - Anthony Moore
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Ophthalmology Department, University of California School of Medicine, San Francisco, California, USA
| | - Michel Michaelides
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK .,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Mirjalili Mohanna SZ, Hickmott JW, Lam SL, Chiu NY, Lengyell TC, Tam BM, Moritz OL, Simpson EM. Germline CRISPR/Cas9-Mediated Gene Editing Prevents Vision Loss in a Novel Mouse Model of Aniridia. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:478-490. [PMID: 32258211 PMCID: PMC7114625 DOI: 10.1016/j.omtm.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
Abstract
Aniridia is a rare eye disorder, which is caused by mutations in the paired box 6 (PAX6) gene and results in vision loss due to the lack of a long-term vision-saving therapy. One potential approach to treating aniridia is targeted CRISPR-based genome editing. To enable the Pax6 small eye (Sey) mouse model of aniridia, which carries the same mutation found in patients, for preclinical testing of CRISPR-based therapeutic approaches, we endogenously tagged the Sey allele, allowing for the differential detection of protein from each allele. We optimized a correction strategy in vitro then tested it in vivo in the germline of our new mouse to validate the causality of the Sey mutation. The genomic manipulations were analyzed by PCR, as well as by Sanger and next-generation sequencing. The mice were studied by slit lamp imaging, immunohistochemistry, and western blot analyses. We successfully achieved both in vitro and in vivo germline correction of the Sey mutation, with the former resulting in an average 34.8% ± 4.6% SD correction, and the latter in restoration of 3xFLAG-tagged PAX6 expression and normal eyes. Hence, in this study we have created a novel mouse model for aniridia, demonstrated that germline correction of the Sey mutation alone rescues the mutant phenotype, and developed an allele-distinguishing CRISPR-based strategy for aniridia.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mirjalili Mohanna
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Jack W Hickmott
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nina Y Chiu
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences and Centre for Macular Research, The University of British Columbia, Vancouver, BC, Canada
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences and Centre for Macular Research, The University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
32
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
33
|
Li L, Cui YJ, Zou Y, Yang L, Yin X, Li B, Yan L. Genetic association study of SOX2 gene polymorphisms with high myopia in a Chinese population. Eur J Ophthalmol 2020; 31:734-739. [PMID: 32037877 DOI: 10.1177/1120672120904666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study is to investigate whether SOX2 gene variants were associated with high myopia in a Chinese population. METHODS This study is conducted using case-control association analysis. This study recruited 83 healthy controls (with binocular spherical equivalent between -0.50 and +0.50 D) and 117 high myopia cases (spherical equivalent > -6.00 D in both eyes). Three single-nucleotide polymorphisms were selected from HapMap database for genotyping by direct sequencing. Statistical software (SPSS 22.0) was used for statistical analysis. The chi-square test was used to examine the difference in the frequency between cases and controls. RESULTS Genotype distributions in the three single-nucleotide polymorphisms were all in accordance with the Hardy-Weinberg equilibrium. The differences of rs4575941 locus genotype frequency and allele frequency between the case group and the control group were statistically significant (p = .043 and p = .029, respectively). The rs4575941 allele G frequency in the high myopia group was significantly higher than that in the control group with an odds ratio value of 1.579. However, the value of a chi-square test for the trend was 0.029, and after Bonferroni test, the p value was .087. CONCLUSION In Chinese population, rs4575941 in SOX2 gene was likely to play some roles in the genetic susceptibility to high myopia; the rs4575941 allele G might be a risk gene for high myopia.
Collapse
Affiliation(s)
- Lan Li
- Department of Ophthalmology, Langzhong People's Hospital, Langzhong, China
| | - Ying Juan Cui
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yunchun Zou
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
| | - Liyuan Yang
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
| | - Ximin Yin
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
| | - Bo Li
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
| | - Liying Yan
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China.,Department of Ophthalmology, Suining Central Hospital, Suining, China
| |
Collapse
|
34
|
DeOliveira-Mello L, Lara JM, Arevalo R, Velasco A, Mack AF. Sox2 expression in the visual system of two teleost species. Brain Res 2019; 1722:146350. [DOI: 10.1016/j.brainres.2019.146350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
35
|
Williams C, Suderman M, Guggenheim JA, Ellis G, Gregory S, Iles-Caven Y, Northstone K, Golding J, Pembrey M. Grandmothers' smoking in pregnancy is associated with a reduced prevalence of early-onset myopia. Sci Rep 2019; 9:15413. [PMID: 31659193 PMCID: PMC6817861 DOI: 10.1038/s41598-019-51678-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Myopia (near sightedness) is the most common vision disorder resulting in visual impairment worldwide. We tested the hypothesis that intergenerational, non-genetic heritable effects influence refractive development, using grandparental prenatal smoking as a candidate exposure. Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC), we found that the prevalence of myopia at age 7 was lower if the paternal grandmother had smoked in pregnancy, an association primarily found among grandsons compared to granddaughters. There was a weaker, non-sex-specific, reduction in the prevalence of myopia at age 7 if the maternal grandmother had smoked in pregnancy. For children who became myopic later (between 7 and 15 years of age) there were no associations with either grandmother smoking. Differences between early and late-onset myopia were confirmed with DNA methylation patterns: there were very distinct and strong associations with methylation for early-onset but not later-onset myopia.
Collapse
Affiliation(s)
- Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Genette Ellis
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Steve Gregory
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Yasmin Iles-Caven
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Kate Northstone
- ALSPAC, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Jean Golding
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK.
| | - Marcus Pembrey
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
36
|
MicroRNA-129-5p suppresses proliferation, migration and invasion of retinoblastoma cells through PI3K/AKT signaling pathway by targeting PAX6. Pathol Res Pract 2019; 215:152641. [PMID: 31727502 DOI: 10.1016/j.prp.2019.152641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Retinoblastoma (RB) is the most common primary intraocular malignancy in children. Accumulating evidences have clarified that microRNAs (miRNAs) modulated signaling molecules by acting as oncogenes or tumor-suppressor genes in RB. Thus, in our study, we aimed to investigate the function of miR-129-5p in RB cells through PI3K/AKT signaling pathway by targeting PAX6. Two RB cell lines, Y79 and WERI-Rb-1, were selected in our study, followed by transfection of miR-129-5p inhibitor or si-PAX6 to explore the regulatory role of miR-129-5p in RB cell proliferation, invasion and migration. MATERIAL AND METHODS Dual-luciferase assay was used for the detection of targeting relationship between miR-129-5p and PAX6. Besides, western blot analysis was applied to detect expression of cell cycle-related factors (CDK2 and Cyclin E) and PI3K/AKT signaling pathway-related factors (p-AKT and AKT). Nude mice tumorigenesis experiment was used to evaluate the effect of miR-129a-5p on RB growth in vivo. RESULTS miR-129-5p was down-regulated in RB cell lines. miR-129-5p directly targeted the 3'-untranslated region of PAX6. Artificial down-regulation of miR-129-5p promoted cell proliferation, migration and invasion in RB cell lines Y79 and WERI-Rb-1, and promoted RB growth in vivo via PI3K/AKT signaling pathway, which could be reversed by transfection with silencing PAX6. CONCLUSION This study provides evidences that RB progression was suppressed by overexpressed miR-129-5p via direct targeting of PAX6 through PI3K/AKT signaling pathway, which may provide a molecular basis for better treatment for RB.
Collapse
|
37
|
Demeulenaere S, Beysen D, De Veuster I, Reyniers E, Kooy F, Meuwissen M. Novel BRPF1 mutation in a boy with intellectual disability, coloboma, facial nerve palsy and hypoplasia of the corpus callosum. Eur J Med Genet 2019; 62:103691. [DOI: 10.1016/j.ejmg.2019.103691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
|
38
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
39
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2019. [PMCID: PMC6476998 DOI: 10.1002/sctm.19-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Wiegering A, Petzsch P, Köhrer K, Rüther U, Gerhardt C. GLI3 repressor but not GLI3 activator is essential for mouse eye patterning and morphogenesis. Dev Biol 2019; 450:141-154. [PMID: 30953627 DOI: 10.1016/j.ydbio.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Since 1967, it is known that the loss of GLI3 causes very severe defects in murine eye development. GLI3 is able to act as a transcriptional activator (GLI3-A) or as a transcriptional repressor (GLI3-R). Soon after the discovery of these GLI3 isoforms, the question arose which of the different isoforms is involved in eye formation - GLI3-A, GLI3-R or even both. For several years, this question remained elusive. By analysing the eye morphogenesis of Gli3XtJ/XtJ mouse embryos that lack GLI3-A and GLI3-R and of Gli3Δ699/Δ699 mouse embryos in which only GLI3-A is missing, we revealed that GLI3-A is dispensable in vertebrate eye formation. Remarkably, our study shows that GLI3-R is sufficient for the creation of morphologically normal eyes although the molecular setup deviates substantially from normality. In depth-investigations elucidated that GLI3-R controls numerous key players in eye development and governs lens and retina development at least partially via regulating WNT/β-CATENIN signalling.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
41
|
He Q, Gao Y, Wang T, Zhou L, Zhou W, Yuan Z. Deficiency of Yes-Associated Protein Induces Cataract in Mice. Aging Dis 2019; 10:293-306. [PMID: 31011480 PMCID: PMC6457047 DOI: 10.14336/ad.2018.0910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022] Open
Abstract
Cataract is a major cause of blindness worldwide, its complicated and unclear etiopathogenesis limit effective therapy. Here, we found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in lens epithelial cells and Yap conditional knockout (cKO) in the lens leads to cataract. Histologically, Yap deficient lens show fewer epithelial cells, retention of nuclei and accumulation of morgagnian globules in the transitional zone and the posterior area. Mechanistically, GFAP-mediated Yap cKO leads to the reduced proliferation of epithelial cells, delayed fiber cell denucleation and increased cellular senescence in lens. Further RNA profiling analysis reveals Yap cKO results in a significant alteration in gene transcription that is involved in eye development, lens structure, inflammation, cellular proliferation and polarity. Collectively, our data reveal a novel function of Yap in the lens and links Yap deficiency with the development of cataract, making Yap a promising target for cataract therapy.
Collapse
Affiliation(s)
- Qing He
- 1State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,3College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Gao
- 1State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,3College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongxing Wang
- 4Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,5State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Lujun Zhou
- 2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,3College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxia Zhou
- 4Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,5State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zengqiang Yuan
- 2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
42
|
Zhang X, Wang D, Dongye M, Zhu Y, Chen C, Wang R, Long E, Liu Z, Wu X, Lin D, Chen J, Lin Z, Wang J, Li W, Li Y, Li D, Lin H. Loss-of-function mutations in FREM2 disrupt eye morphogenesis. Exp Eye Res 2019; 181:302-312. [PMID: 30802441 DOI: 10.1016/j.exer.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/30/2019] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
Cryptophthalmos is a rare congenital disorder characterized by ocular dysplasia with eyelid malformation. Complete cryptophthalmos is characterized by the presence of continuous skin from the forehead over the eyes and onto the cheek, along with complete fusion of the eyelids. In the present study, we characterized the clinical manifestations of three patients with isolated bilateral cryptophthalmos. These patients shared the same c.6499C > T missense mutation in the FRAS1-related extracellular matrix protein 2 (FREM2) gene, while each individual presented an additional nonsense mutation in the same gene (Patient #1, c.2206C > T; Patient #2, c.5309G > A; and Patient #3, c.4063C > T). Then, we used CRISPR/Cas9 to generate mice carrying Frem2R725X/R2156W compound heterozygous mutations, and showed that these mice recapitulated the human isolated cryptophthalmos phenotype. We detected FREM2 expression in the outer plexiform layer of the retina for the first time in the cryptophthalmic eyes, and the levels were comparable to the wild-type mice. Moreover, a set of different expressed genes that may contribute secondarily to the phenotypes were identified by performing RNA sequencing (RNA-seq) of the fetal Frem2 mutant mice. Our findings extend the spectrum of FREM2 mutations, and provide insights into opportunities for the prenatal diagnosis of isolated cryptophthalmos. Furthermore, our work highlights the importance of the FREM2 protein during the development of eyelids and the anterior segment of the eyeballs, establishes a suitable animal model for studying epithelial reopening during eyelid development and serves as a valuable reference for further mechanistic studies of the pathogenesis of isolated cryptophthalmos.
Collapse
Affiliation(s)
- Xiayin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Meimei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Erping Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jingjing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinghui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wangting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing, 100730, China
| | - Dongmei Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing, 100730, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
43
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
44
|
Pedersen HR, Neitz M, Gilson SJ, Landsend ECS, Utheim ØA, Utheim TP, Baraas RC. The Cone Photoreceptor Mosaic in Aniridia: Within-Family Phenotype-Genotype Discordance. Ophthalmol Retina 2019; 3:523-534. [PMID: 31174676 DOI: 10.1016/j.oret.2019.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Investigate in vivo cone photoreceptor structure in familial aniridia caused by deletion in the PAX6 gene to elucidate the complexity of between-individual variation in retinal phenotype. DESIGN Descriptive case-control study. PARTICIPANTS Eight persons with congenital aniridia (40-66 yrs) from 1 family and 33 normal control participants (14-69 yrs), including 7 unaffected family members (14-53 yrs). METHODS DNA was isolated from saliva samples and used in polymerase chain reaction analysis to amplify and sequence exons and intron or exon junctions of the PAX6 gene. High-resolution retinal images were acquired with OCT and adaptive optics scanning light ophthalmoscopy. Cone density (CD; in cones per square millimeter) and mosaic regularity were estimated along nasal-temporal meridians within the central 0° to 5° eccentricity. Horizontal spectral-domain OCT line scans were segmented to analyze the severity of foveal hypoplasia (FH) and to measure retinal layer thicknesses. MAIN OUTCOMES AND MEASURES Within-family variability in macular retinal layer thicknesses, cone photoreceptor density, and mosaic regularity in aniridia compared with normal control participants. RESULTS DNA sequencing revealed a known PAX6 mutation (IV2-2delA). Those with aniridia showed variable iris phenotype ranging from almost normal appearance to no iris. Four participants with aniridia demonstrated FH grade 2, 2 demonstrated grade 3 FH, and 1 demonstrated grade 4 FH. Visual acuity ranged from 0.20 to 0.86 logarithm of the minimum angle of resolution. Adaptive optics scanning light ophthalmoscopy images were acquired from 5 family members with aniridia. Foveal CD varied between 19 899 and 55 128 cones/mm2 with overlap between the foveal hypoplasia grades. Cone density was 3 standard deviations (SDs) or more less than the normal mean within 0.5°, 2 SDs less than the normal mean at 0.5° to 4°, and more than 1 SD less than the normal mean at 5° retinal eccentricity. CONCLUSIONS The results showed considerable variability in foveal development within a family carrying the same PAX6 mutation. This, together with the structural and functional variability within each grade of foveal hypoplasia, underlines the importance of advancing knowledge about retinal cellular phenotype in aniridia.
Collapse
Affiliation(s)
- Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | | | | | - Tor Paaske Utheim
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.
| |
Collapse
|
45
|
Bhattacharya S, Serror L, Nir E, Dhiraj D, Altshuler A, Khreish M, Tiosano B, Hasson P, Panman L, Luxenburg C, Aberdam D, Shalom-Feuerstein R. SOX2 Regulates P63 and Stem/Progenitor Cell State in the Corneal Epithelium. Stem Cells 2019; 37:417-429. [PMID: 30548157 PMCID: PMC6850148 DOI: 10.1002/stem.2959] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/07/2018] [Accepted: 11/24/2018] [Indexed: 11/22/2022]
Abstract
Mutations in key transcription factors SOX2 and P63 were linked with developmental defects and postnatal abnormalities such as corneal opacification, neovascularization, and blindness. The latter phenotypes suggest that SOX2 and P63 may be involved in corneal epithelial regeneration. Although P63 has been shown to be a key regulator of limbal stem cells, the expression pattern and function of SOX2 in the adult cornea remained unclear. Here, we show that SOX2 regulates P63 to control corneal epithelial stem/progenitor cell function. SOX2 and P63 were co‐expressed in the stem/progenitor cell compartments of the murine cornea in vivo and in undifferentiated human limbal epithelial stem/progenitor cells in vitro. In line, a new consensus site that allows SOX2‐mediated regulation of P63 enhancer was identified while repression of SOX2 reduced P63 expression, suggesting that SOX2 is upstream to P63. Importantly, knockdown of SOX2 significantly attenuated cell proliferation, long‐term colony‐forming potential of stem/progenitor cells, and induced robust cell differentiation. However, this effect was reverted by forced expression of P63, suggesting that SOX2 acts, at least in part, through P63. Finally, miR‐450b was identified as a direct repressor of SOX2 that was required for SOX2/P63 downregulation and cell differentiation. Altogether, we propose that SOX2/P63 pathway is an essential regulator of corneal stem/progenitor cells while mutations in SOX2 or P63 may disrupt epithelial regeneration, leading to loss of corneal transparency and blindness. Stem Cells2019;37:417–429
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Laura Serror
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eshkar Nir
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dalbir Dhiraj
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maroun Khreish
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lia Panman
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
46
|
Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. Epigenetics Chromatin 2018; 11:72. [PMID: 30522514 PMCID: PMC6282277 DOI: 10.1186/s13072-018-0241-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Lysine-specific histone demethylase 5C (KDM5C) belongs to the jumonji family of demethylases and is specific for the di- and tri-demethylation of lysine 4 residues on histone 3 (H3K4 me2/3). KDM5C is expressed in the brain and skeletal muscles of humans and is associated with various biologically significant processes. KDM5C is known to be associated with X-linked mental retardation and is also involved in the development of cancer. However, the developmental significance of KDM5C has not been explored yet. In the present study, we investigated the physiological roles of KDM5C during Xenopus laevis embryonic development. Results Loss-of-function analysis using kdm5c antisense morpholino oligonucleotides indicated that kdm5c knockdown led to small-sized heads, reduced cartilage size, and malformed eyes (i.e., small-sized and deformed eyes). Molecular analyses of KDM5C functional roles using whole-mount in situ hybridization, β-galactosidase staining, and reverse transcription-polymerase chain reaction revealed that loss of kdm5c resulted in reduced expression levels of neural crest specifiers and genes involved in eye development. Furthermore, transcriptome analysis indicated the significance of KDM5C in morphogenesis and organogenesis. Conclusion Our findings indicated that KDM5C is associated with embryonic development and provided additional information regarding the complex and dynamic gene network that regulates neural crest formation and eye development. This study emphasizes the functional significance of KDM5C in Xenopus embryogenesis; however, further analysis is needed to explore the interactions of KDM5C with specific developmental genes. Electronic supplementary material The online version of this article (10.1186/s13072-018-0241-x) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Blackburn PR, Chacon-Camacho OF, Ortiz-González XR, Reyes M, Lopez-Uriarte GA, Zarei S, Bhoj EJ, Perez-Solorzano S, Vaubel RA, Murphree MI, Nava J, Cortes-Gonzalez V, Parisi JE, Villanueva-Mendoza C, Tirado-Torres IG, Li D, Klee EW, Pichurin PN, Zenteno JC. Extension of the mutational and clinical spectrum of SOX2 related disorders: Description of six new cases and a novel association with suprasellar teratoma. Am J Med Genet A 2018; 176:2710-2719. [PMID: 30450772 DOI: 10.1002/ajmg.a.40644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 01/05/2023]
Abstract
SOX2 is a transcription factor that is essential for maintenance of pluripotency and has several conserved roles in early embryonic development. Heterozygous loss-of-function variants in SOX2 are identified in approximately 40% of all cases of bilateral anophthalmia/micropthalmia (A/M). Increasingly SOX2 mutation-positive patients without major eye findings, but with a range of other developmental disorders including autism, mild to moderate intellectual disability with or without structural brain changes, esophageal atresia, urogenital anomalies, and endocrinopathy are being reported, suggesting that the clinical phenotype associated with SOX2 loss is much broader than previously appreciated. In this report we describe six new cases, four of which carry novel pathogenic SOX2 variants. Four cases presented with bilateral anophthalmia in addition to extraocular involvement. Another individual presented with only unilateral anophthalmia. One individual did not have any eye findings but presented with a suprasellar teratoma in infancy and was found to have the recurrent c.70del20 mutation in SOX2 (c.70_89del, p.Asn24Argfs*65). This is this first time this tumor type has been reported in the context of a de novo SOX2 mutation. Notably, individuals with hypothalamic hamartomas and slow-growing hypothalamo-pituitary tumors have been reported previously, but it is still unclear how SOX2 loss contributes to their formation.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Health Sciences Research, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Oscar F Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Xilma R Ortiz-González
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariana Reyes
- Department of Genetics, Hospital "Dr. Luis Sánchez Bulnes", Asociación para Evitar la Ceguera en México, Mexico City, Mexico
| | - Graciela A Lopez-Uriarte
- Genetics Department, University Hospital "Dr. José Eleuterio González" and Medical School, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Shabnam Zarei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sofia Perez-Solorzano
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Jessica Nava
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Vianney Cortes-Gonzalez
- Department of Genetics, Hospital "Dr. Luis Sánchez Bulnes", Asociación para Evitar la Ceguera en México, Mexico City, Mexico
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Cristina Villanueva-Mendoza
- Department of Genetics, Hospital "Dr. Luis Sánchez Bulnes", Asociación para Evitar la Ceguera en México, Mexico City, Mexico
| | - Iris G Tirado-Torres
- Genetics Department, University Hospital "Dr. José Eleuterio González" and Medical School, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Health Sciences Research, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
48
|
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet 2018; 138:831-846. [PMID: 30374660 DOI: 10.1007/s00439-018-1949-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype-genotype correlations and shared pathways where relevant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco Room RH384C, 1550 4th St, San Francisco, CA, 94143-2711, USA.
| |
Collapse
|
49
|
Chang YK, Hwang JS, Chung TY, Shin YJ. SOX2 Activation Using CRISPR/dCas9 Promotes Wound Healing in Corneal Endothelial Cells. Stem Cells 2018; 36:1851-1862. [DOI: 10.1002/stem.2915] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Yoon Kyung Chang
- Department of Ophthalmology; Hallym University Medical Center, Hallym University College of Medicine; Seoul Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology; Hallym University Medical Center, Hallym University College of Medicine; Seoul Republic of Korea
| | - Tae-Young Chung
- Department of Ophthalmology; Samsung Medical Center, Sungkyunkwan University; Seoul Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology; Hallym University Medical Center, Hallym University College of Medicine; Seoul Republic of Korea
| |
Collapse
|
50
|
Plaisancié J, Tarilonte M, Ramos P, Jeanton-Scaramouche C, Gaston V, Dollfus H, Aguilera D, Kaplan J, Fares-Taie L, Blanco-Kelly F, Villaverde C, Francannet C, Goldenberg A, Arroyo I, Rozet JM, Ayuso C, Chassaing N, Calvas P, Corton M. Implication of non-coding PAX6 mutations in aniridia. Hum Genet 2018; 137:831-846. [PMID: 30291432 DOI: 10.1007/s00439-018-1940-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/23/2018] [Indexed: 01/14/2023]
Abstract
There is an increasing implication of non-coding regions in pathological processes of genetic origin. This is partly due to the emergence of sophisticated techniques that have transformed research into gene expression by allowing a more global understanding of the genome, both at the genomic, epigenomic and chromatin levels. Here, we implemented the analysis of PAX6, whose coding loss-of-function variants are mainly implied in aniridia, by studying its non-coding regions (untranslated regions, introns and cis-regulatory sequences). In particular, we have taken advantage of the development of high-throughput approaches to screen the upstream and downstream regulatory regions of PAX6 in 47 aniridia patients without identified mutation in the coding sequence. This was made possible through the use of custom targeted resequencing and/or CGH array to analyze the entire PAX6 locus on 11p13. We found candidate variants in 30 of the 47 patients. 9/30 correspond to the well-known described 3' deletions encompassing SIMO and other enhancer elements. In addition, we identified numerous different variants in various non-coding regions, in particular untranslated regions. Among these latter, most of them demonstrated an in vitro functional effect using a minigene strategy, and 12/21 are thus considered as causative mutations or very likely to explain the phenotypes. This new analysis strategy brings molecular diagnosis to more than 90% of our aniridia patients. This study revealed an outstanding mutation pattern in non-coding PAX6 regions confirming that PAX6 remains the major gene for aniridia.
Collapse
Affiliation(s)
- Julie Plaisancié
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France.
- INSERM U1056, Université Toulouse III, Toulouse, France.
| | - M Tarilonte
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - P Ramos
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - C Jeanton-Scaramouche
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France
| | - V Gaston
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France
| | - H Dollfus
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - D Aguilera
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - J Kaplan
- Laboratoire de Génétique Ophtalmologique INSERM U1163, Institut Imagine, Paris, France
| | - L Fares-Taie
- Laboratoire de Génétique Ophtalmologique INSERM U1163, Institut Imagine, Paris, France
| | - F Blanco-Kelly
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - C Villaverde
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - C Francannet
- Service de Génétique Médicale, CHU Estaing, Clermont-Ferrand, France
| | - A Goldenberg
- Service de Génétique, CHU de Rouen, Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - I Arroyo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Department of Genetics, Hospital of Cáceres, Cáceres, Spain
| | - J M Rozet
- Laboratoire de Génétique Ophtalmologique INSERM U1163, Institut Imagine, Paris, France
| | - C Ayuso
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - N Chassaing
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France
- INSERM U1056, Université Toulouse III, Toulouse, France
| | - P Calvas
- Service de Génétique Médicale, Pavillon Lefebvre, Hôpital Purpan, CHU Toulouse, Place du Dr Baylac, 31059, Toulouse Cedex 9, France
- INSERM U1056, Université Toulouse III, Toulouse, France
| | - M Corton
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|