1
|
Bayati A, McPherson PS. Alpha-synuclein, autophagy-lysosomal pathway, and Lewy bodies: Mutations, propagation, aggregation, and the formation of inclusions. J Biol Chem 2024; 300:107742. [PMID: 39233232 PMCID: PMC11460475 DOI: 10.1016/j.jbc.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Research into the pathophysiology of Parkinson's disease (PD) is a fast-paced pursuit, with new findings about PD and other synucleinopathies being made each year. The involvement of various lysosomal proteins, such as TFEB, TMEM175, GBA, and LAMP1/2, marks the rising awareness about the importance of lysosomes in PD and other neurodegenerative disorders. This, along with recent developments regarding the involvement of microglia and the immune system in neurodegenerative diseases, has brought about a new era in neurodegeneration: the role of proinflammatory cytokines on the nervous system, and their downstream effects on mitochondria, lysosomal degradation, and autophagy. More effort is needed to understand the interplay between neuroimmunology and disease mechanisms, as many of the mechanisms remain enigmatic. α-synuclein, a key protein in PD and the main component of Lewy bodies, sits at the nexus between lysosomal degradation, autophagy, cellular stress, neuroimmunology, PD pathophysiology, and disease progression. This review revisits some fundamental knowledge about PD while capturing some of the latest trends in PD research, specifically as it relates to α-synuclein.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Savva L, Platts JA. Exploring the impact of mutation and post-translational modification on α-Synuclein: Insights from molecular dynamics simulations with and without copper. J Inorg Biochem 2023; 249:112395. [PMID: 37820444 DOI: 10.1016/j.jinorgbio.2023.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
We report molecular dynamics simulations of two modifications to α-Synuclein, namely A53T mutation and phosphorylation at Ser129, which have been observed in Parkinson's disease patients. Both modifications are close to known metal binding sites, so as well as each modified peptide we also study Cu(II) bound to N-terminal and C-terminal residues. We show that A53T is predicted to cause increased β-sheet content of the peptide, with a persistent β-hairpin between residues 35-55 particularly notable. Phosphorylation has less effect on secondary structure but is predicted to significantly increase the size of the peptide, especially when bound to Cu(II), which is ascribed to reduced interaction of C-terminal sequence with central non-amyloid component. In addition, estimate of binding free energy to Cu(II) indicates A53T has little effect on metal-ion affinity, whereas phosphorylation markedly enhances the strength of binding. We suggest that the predicted changes in spatial extent and secondary structure of α-Synuclein may have implications for aggregation into Lewy bodies.
Collapse
Affiliation(s)
- Loizos Savva
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
3
|
Garretti F, Monahan C, Sloan N, Bergen J, Shahriar S, Kim SW, Sette A, Cutforth T, Kanter E, Agalliu D, Sulzer D. Interaction of an α-synuclein epitope with HLA-DRB1 ∗15:01 triggers enteric features in mice reminiscent of prodromal Parkinson's disease. Neuron 2023; 111:3397-3413.e5. [PMID: 37597517 PMCID: PMC11068096 DOI: 10.1016/j.neuron.2023.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
Enteric symptoms are hallmarks of prodromal Parkinson's disease (PD) that appear decades before the onset of motor symptoms and diagnosis. PD patients possess circulating T cells that recognize specific α-synuclein (α-syn)-derived epitopes. One epitope, α-syn32-46, binds with strong affinity to the HLA-DRB1∗15:01 allele implicated in autoimmune diseases. We report that α-syn32-46 immunization in a mouse expressing human HLA-DRB1∗15:01 triggers intestinal inflammation, leading to loss of enteric neurons, damaged enteric dopaminergic neurons, constipation, and weight loss. α-Syn32-46 immunization activates innate and adaptive immune gene signatures in the gut and induces changes in the CD4+ TH1/TH17 transcriptome that resemble tissue-resident memory (TRM) cells found in mucosal barriers during inflammation. Depletion of CD4+, but not CD8+, T cells partially rescues enteric neurodegeneration. Therefore, interaction of α-syn32-46 and HLA-DRB1∗15:0 is critical for gut inflammation and CD4+ T cell-mediated loss of enteric neurons in humanized mice, suggesting mechanisms that may underlie prodromal enteric PD.
Collapse
Affiliation(s)
- Francesca Garretti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA; Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Connor Monahan
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Nicholas Sloan
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jamie Bergen
- Department of Neuroscience, Columbia University, New York, NY, USA; Department of Computer Science, Columbia University, New York, NY, USA
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seon Woo Kim
- Weill Cornell Medicine - Qatar, Education City, Doha, Qatar
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, University of California in San Diego, San Diego, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tyler Cutforth
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ellen Kanter
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - David Sulzer
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Stern S, Lau S, Manole A, Rosh I, Percia MM, Ben Ezer R, Shokhirev MN, Qiu F, Schafer S, Mansour AA, Mangan KP, Stern T, Ofer P, Stern Y, Diniz Mendes AP, Djamus J, Moore LR, Nayak R, Laufer SH, Aicher A, Rhee A, Wong TL, Nguyen T, Linker SB, Winner B, Freitas BC, Jones E, Sagi I, Bardy C, Brice A, Winkler J, Marchetto MC, Gage FH. Reduced synaptic activity and dysregulated extracellular matrix pathways in midbrain neurons from Parkinson's disease patients. NPJ Parkinsons Dis 2022; 8:103. [PMID: 35948563 PMCID: PMC9365794 DOI: 10.1038/s41531-022-00366-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Several mutations that cause Parkinson's disease (PD) have been identified over the past decade. These account for 15-25% of PD cases; the rest of the cases are considered sporadic. Currently, it is accepted that PD is not a single monolithic disease but rather a constellation of diseases with some common phenotypes. While rodent models exist for some of the PD-causing mutations, research on the sporadic forms of PD is lagging due to a lack of cellular models. In our study, we differentiated PD patient-derived dopaminergic (DA) neurons from the induced pluripotent stem cells (iPSCs) of several PD-causing mutations as well as from sporadic PD patients. Strikingly, we observed a common neurophysiological phenotype: neurons derived from PD patients had a severe reduction in the rate of synaptic currents compared to those derived from healthy controls. While the relationship between mutations in genes such as the SNCA and LRRK2 and a reduction in synaptic transmission has been investigated before, here we show evidence that the pathogenesis of the synapses in neurons is a general phenotype in PD. Analysis of RNA sequencing results displayed changes in gene expression in different synaptic mechanisms as well as other affected pathways such as extracellular matrix-related pathways. Some of these dysregulated pathways are common to all PD patients (monogenic or idiopathic). Our data, therefore, show changes that are central and convergent to PD and suggest a strong involvement of the tetra-partite synapse in PD pathophysiology.
Collapse
Affiliation(s)
- Shani Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shong Lau
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andreea Manole
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Menachem Mendel Percia
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ran Ben Ezer
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Fan Qiu
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Abed AlFatah Mansour
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kile P Mangan
- Fujifilm Cellular Dynamics, In, Madison, WI, 53711, USA
| | - Tchelet Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Polina Ofer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yam Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | | - Jose Djamus
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lynne Randolph Moore
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sapir Havusha Laufer
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aidan Aicher
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amanda Rhee
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas L Wong
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thao Nguyen
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sara B Linker
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | | | - Eugenia Jones
- Fujifilm Cellular Dynamics, In, Madison, WI, 53711, USA
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), Adelaide, SA, Australia
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, F-75013, Paris, France
| | - Juergen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Nürnberg, Germany
| | - Maria C Marchetto
- Department of Anthropology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
5
|
Gene-Based Therapeutics for Parkinson’s Disease. Biomedicines 2022; 10:biomedicines10081790. [PMID: 35892690 PMCID: PMC9331241 DOI: 10.3390/biomedicines10081790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a complex multifactorial disorder that is not yet fully surmised, and it is only when such a disease is tackled on multiple levels simultaneously that we should expect to see fruitful results. Gene therapy is a modern medical practice that theoretically and, so far, practically, has demonstrated its capability in joining the battle against PD and other complex disorders on most if not all fronts. This review discusses how gene therapy can efficiently replace current forms of therapy such as drugs, personalized medicine or invasive surgery. Furthermore, we discuss the importance of enhancing delivery techniques to increase the level of transduction and control of gene expression or tissue specificity. Importantly, the results of current trials establish the safety, efficacy and applicability of gene therapy for PD. Gene therapy’s variety of potential in interfering with PD’s pathology by improving basal ganglial circuitry, enhancing dopamine synthesis, delivering neuroprotection or preventing neurodegeneration may one day achieve symptomatic benefit, disease modification and eradication.
Collapse
|
6
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
7
|
Jo J, Yang L, Tran HD, Yu W, Sun AX, Chang YY, Jung BC, Lee SJ, Saw TY, Xiao B, Khoo ATT, Yaw LP, Xie JJ, Lokman H, Ong WY, Lim GGY, Lim KL, Tan EK, Ng HH, Je HS. Lewy Body-like Inclusions in Human Midbrain Organoids Carrying Glucocerebrosidase and α-Synuclein Mutations. Ann Neurol 2021; 90:490-505. [PMID: 34288055 PMCID: PMC9543721 DOI: 10.1002/ana.26166] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Objective We utilized human midbrain‐like organoids (hMLOs) generated from human pluripotent stem cells carrying glucocerebrosidase gene (GBA1) and α‐synuclein (α‐syn; SNCA) perturbations to investigate genotype‐to‐phenotype relationships in Parkinson disease, with the particular aim of recapitulating α‐syn– and Lewy body–related pathologies and the process of neurodegeneration in the hMLO model. Methods We generated and characterized hMLOs from GBA1−/− and SNCA overexpressing isogenic embryonic stem cells and also generated Lewy body–like inclusions in GBA1/SNCA dual perturbation hMLOs and conduritol‐b‐epoxide–treated SNCA triplication hMLOs. Results We identified for the first time that the loss of glucocerebrosidase, coupled with wild‐type α‐syn overexpression, results in a substantial accumulation of detergent‐resistant, β‐sheet–rich α‐syn aggregates and Lewy body–like inclusions in hMLOs. These Lewy body–like inclusions exhibit a spherically symmetric morphology with an eosinophilic core, containing α‐syn with ubiquitin, and can also be formed in Parkinson disease patient–derived hMLOs. We also demonstrate that impaired glucocerebrosidase function promotes the formation of Lewy body–like inclusions in hMLOs derived from patients carrying the SNCA triplication. Interpretation Taken together, the data indicate that our hMLOs harboring 2 major risk factors (glucocerebrosidase deficiency and wild‐type α‐syn overproduction) of Parkinson disease provide a tractable model to further elucidate the underlying mechanisms for progressive Lewy body formation. ANN NEUROL 2021;90:490–505
Collapse
Affiliation(s)
- Junghyun Jo
- Genome Institute of Singapore, Singapore, Singapore.,Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lin Yang
- Genome Institute of Singapore, Singapore, Singapore
| | - Hoang-Dai Tran
- Genome Institute of Singapore, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore
| | - Weonjin Yu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Alfred Xuyang Sun
- Genome Institute of Singapore, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore.,Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Ya Yin Chang
- National Neuroscience Institute, Singapore, Singapore
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Laboratory Science, Masan University, Changwon-si, South Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Bin Xiao
- National Neuroscience Institute, Singapore, Singapore
| | - Audrey Tze Ting Khoo
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lai-Ping Yaw
- Genome Institute of Singapore, Singapore, Singapore
| | | | - Hidayat Lokman
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, Singapore
| | | | - Kah-Leong Lim
- National Neuroscience Institute, Singapore, Singapore.,Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore, Singapore
| | - Huck-Hui Ng
- Genome Institute of Singapore, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hyunsoo Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
8
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; .,Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Pathological findings in a patient with alpha-synuclein p.A53T and familial Parkinson's disease. Parkinsonism Relat Disord 2020; 81:183-187. [PMID: 33171430 DOI: 10.1016/j.parkreldis.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
Abstract
The present report documents a patient harboring an alpha-synuclein p.A53T variant from a family presenting with autosomal dominant inheritance, including four patients clinically diagnosed with Parkinson's disease (PD) and two with dementia. The alpha-synuclein p.A53T variant is linked to young- or middle-aged onset parkinsonism and cognitive decline. Our patient had a different haplotype from that of a patient with a p.A53T variant from an Italian family. The proband presented at 42 years of age with progressive parkinsonism and good response to levodopa in the early stages of the disease. At 46 years of age, he developed delusions and cognitive decline. Brain magnetic resonance imaging showed bilateral atrophic changes in the hippocampus and temporal lobes. He died of pneumonia at the age of 52 years. Neuropathological examination revealed severe neuronal loss in the substantia nigra, locus coeruleus, and dorsal nucleus of the vagus nerve, as well as widespread Lewy pathology including Lewy bodies and neurites, corresponding to Braak stage 6, and diffuse neocortical-type PD. There was mild appearance of tau pathology and glial cytoplasmic inclusion, in the absence of TDP-43 pathology. Alpha-synuclein p.A53T characteristically cause the Lewy body pathology and the symptoms, that resembled those of the reported patients with p.A53T.
Collapse
|
10
|
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatumvianigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.
Collapse
|
11
|
Lesage S, Houot M, Mangone G, Tesson C, Bertrand H, Forlani S, Anheim M, Brefel-Courbon C, Broussolle E, Thobois S, Damier P, Durif F, Roze E, Tison F, Grabli D, Ory-Magne F, Degos B, Viallet F, Cormier-Dequaire F, Ouvrard-Hernandez AM, Vidailhet M, Lohmann E, Singleton A, Corvol JC, Brice A. Genetic and Phenotypic Basis of Autosomal Dominant Parkinson's Disease in a Large Multi-Center Cohort. Front Neurol 2020; 11:682. [PMID: 32849182 PMCID: PMC7399219 DOI: 10.3389/fneur.2020.00682] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
LRRK2, SNCA, and VPS35 are unequivocally associated with autosomal dominant Parkinson's disease (PD). We evaluated the prevalence of LRRK2, SNCA, and VPS35 mutations and associated clinical features in a large French multi-center cohort of PD patients. Demographic and clinical data were collected for 1,805 index cases (592 with autosomal dominant inheritance and 1,213 isolated cases) since 1990. All probands were screened with TaqMan assays for LRRK2 Gly2019Ser. In the absence of this mutation, the coding sequences of the three genes were analyzed by Sanger sequencing and/or next-generation sequencing. The data for the three genes were analyzed according to age at onset, family history, ethnic origin and clinical features. We identified 160 index cases (8.9%) with known pathogenic variants: 138 with pathogenic LRRK2 variants (7.6%), including 136 with the Gly2019Ser mutation, 19 with SNCA point mutations or genomic rearrangements (1.1%), and three with the VPS35 Asp620Asn mutation (0.16%). Mutation frequencies were higher in familial than isolated cases, consistent with autosomal dominant inheritance (12.0 vs. 7.3%; OR 1.7, 95% CI [1.2-2.4], p = 0.001). PD patients with LRRK2 variants were more likely to have higher rates of late-onset PD (>50 years; OR 1.5, 95% CI [1.0-2.1], p = 0.03), whereas those with SNCA mutations tended to have earlier age at onset disease (≤ 50 years, p = 0.06). The clinical features of LRRK2 carriers and those without any pathogenic variants in known PD-associated genes were similar. The likelihood of detecting disease-causing mutations was higher in cases compatible with autosomal dominant inheritance.
Collapse
Affiliation(s)
- Suzanne Lesage
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
| | - Marion Houot
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Centre d'Excellence sur les Maladies Neurodégénératives (CoEN), Assistance Publique – Hôpitaux de Paris (AP-HP), Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Université Paris 6, Paris, France
- Centre d'Investigation Clinique Pitié Neurosciences CIC-1422, Paris, France
| | - Graziella Mangone
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
- Centre d'Investigation Clinique Pitié Neurosciences CIC-1422, Paris, France
| | - Christelle Tesson
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
| | - Hélène Bertrand
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
| | - Mathieu Anheim
- Département de Neurologie aux Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Christine Brefel-Courbon
- Service de Pharmacologie Clinique, Faculté de Médecine, Hôpital Universitaire, Toulouse, France
- Service de Neurologie B8, Hôpital Pierre Paul Riquet, Hôpital Universitaire, Toulouse, France
| | - Emmanuel Broussolle
- Université de Lyon, Institut des Sciences Cognitives Marc-Jeannerod, Unité Mixte de Recherche (UMR) 5229, Centre National de la Recherche Scientifique (CNRS), Bron, France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre-Wertheimer, Département de Neurologie C, Bron, France
- Université de Lyon, Faculté de Médecine Lyon-Sud Charles-Mérieux, Oullins, France
| | - Stéphane Thobois
- Université de Lyon, Institut des Sciences Cognitives Marc-Jeannerod, Unité Mixte de Recherche (UMR) 5229, Centre National de la Recherche Scientifique (CNRS), Bron, France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre-Wertheimer, Département de Neurologie C, Bron, France
- Université de Lyon, Faculté de Médecine Lyon-Sud Charles-Mérieux, Oullins, France
| | - Philippe Damier
- Centre Hospitalier Universitaire de Nantes, Centre d'Investigation Clinique, Nantes, France
| | - Franck Durif
- Département de Neurologie A, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Emmanuel Roze
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - François Tison
- Institut des Maladies Neurodégénératives, Centre Hospitalier Universitaire et Université de Bordeaux, Bordeaux, France
| | - David Grabli
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
- Centre d'Investigation Clinique Pitié Neurosciences CIC-1422, Paris, France
| | - Fabienne Ory-Magne
- Centre de Neuroimagerie de Toulouse, Université de Toulouse - Institut National de la Santé et de la Recherche Médicale (INSERM) - Université de Toulouse, Toulouse, France
- Centre des Neurosciences, Hôpital Universitaire de Toulouse, Toulouse, France
| | - Bertrand Degos
- Unité de Neurologie, Hôpital Universitaire Avicenne, Hôpitaux Universitaires de Paris-Seine Saint Denis, Assistance Publique – Hôpitaux de Paris (AP-HP), Sorbonne Paris Nord, Bobigny, France
- Equipe Dynamique et Physiopathologie des Réseaux Neuronaux, Centre pour la Recherche Interdisciplinaire en Biologie, Collège de France, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7241, Institut National de la Santé et de la Recherche Médicale (INSERM) U1050, Labex MemoLife, Paris, France
| | - François Viallet
- Département de Neurologie, Centre Hospitalier Intercommunal d'Aix-Pertuis, Aix-en-Provence, France
- Laboratoire Parole et Langage, Unité Mixte de Recherche (UMR) 7309, Centre National de la Recherche Scientifique (CNRS) et Université d'Aix-Marseille, Aix-en-Provence, France
| | - Florence Cormier-Dequaire
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
- Centre d'Investigation Clinique Pitié Neurosciences CIC-1422, Paris, France
| | | | - Marie Vidailhet
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ebba Lohmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Jean-Christophe Corvol
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
- Centre d'Investigation Clinique Pitié Neurosciences CIC-1422, Paris, France
| | - Alexis Brice
- Sorbonne Université, Unité Mixte de Recherche (UMR) 1127, Paris, France
- Unité de Recherche U1127 à l'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Unité de Recherche Unité Mixte de Recherche (UMR) 7225 au Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut du Cerveau (ICM), Paris, France
| | | |
Collapse
|
12
|
Grassi D, Diaz-Perez N, Volpicelli-Daley LA, Lasmézas CI. Pα-syn* mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria. Neurobiol Dis 2019; 124:248-262. [DOI: 10.1016/j.nbd.2018.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023] Open
|
13
|
Monin M, Lesage S, Brice A. Basi molecolari della malattia di Parkinson. Neurologia 2019. [DOI: 10.1016/s1634-7072(18)41584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
14
|
Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019; 137:183-207. [PMID: 30478624 PMCID: PMC6513904 DOI: 10.1007/s00401-018-1939-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings of the most common adult-onset neurodegenerative disorders (AOND) are complex in majority of the cases. In some families, however, the disease can be inherited in a Mendelian fashion as an autosomal-dominant trait. Next to that, patients carrying mutations in the same disease genes have been reported despite a negative family history. Although challenging to demonstrate due to the late onset of the disease in most cases, the occurrence of de novo mutations can explain this sporadic presentation, as demonstrated for severe neurodevelopmental disorders. Exome or genome sequencing of patient-parent trios allows a hypothesis-free study of the role of de novo mutations in AOND and the discovery of novel disease genes. Another hypothesis that may explain a proportion of sporadic AOND cases is the occurrence of a de novo mutation after the fertilization of the oocyte (post-zygotic mutation) or even as a late-somatic mutation, restricted to the brain. Such somatic mutation hypothesis, that can be tested with the use of novel sequencing technologies, is fully compatible with the seeding and spreading mechanisms of the pathological proteins identified in most of these disorders. We review here the current knowledge and future perspectives on de novo mutations in known and novel candidate genes identified in the most common AONDs such as Alzheimer's disease, Parkinson's disease, the frontotemporal lobar degeneration spectrum and Prion disorders. Also, we review the first lessons learned from recent genomic studies of control and diseased brains and the challenges which remain to be addressed.
Collapse
Affiliation(s)
- Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, 22, Boulevard Gambetta, 76000, 76031, Rouen Cedex, France.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
16
|
|
17
|
Koros C, Simitsi A, Stefanis L. Genetics of Parkinson's Disease: Genotype-Phenotype Correlations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:197-231. [PMID: 28554408 DOI: 10.1016/bs.irn.2017.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the first discovery of a specific genetic defect in the SNCA gene, encoding for α-synuclein, as a causative factor for Parkinson's disease 20 years ago, a multitude of other genes have been linked to this disease in rare cases with Mendelian inheritance. Furthermore, the genetic contribution to the much more common sporadic disease has been demonstrated through case control association studies and, more recently, genome-wide association studies. Interestingly, some of the genes with Mendelian inheritance, such as SNCA, are also relevant to the sporadic disease, suggesting common pathogenetic mechanisms. In this review, we place an emphasis on Mendelian forms, and in particular genetic defects which present predominantly with Parkinsonism. We provide details into the particular phenotypes associated with each genetic defect, with a particular emphasis on nonmotor symptoms. For genetic defects for whom a sufficient number of patients has been assessed, there are evident genotype-phenotype correlations. However, it should be noted that patients with the same causative mutation may present with distinctly divergent phenotypes. This phenotypic variability may be due to genetic, epigenetic or environmental factors. From a clinical and genetic point of view, it will be especially interesting in the future to identify genetic factors that modify disease penetrance, the age of onset or other specific phenotypic features.
Collapse
Affiliation(s)
- Christos Koros
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece
| | - Athina Simitsi
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece
| | - Leonidas Stefanis
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece.
| |
Collapse
|
18
|
Kasten M, Marras C, Klein C. Nonmotor Signs in Genetic Forms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:129-178. [DOI: 10.1016/bs.irn.2017.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Pasanen P, Palin E, Pohjolan-Pirhonen R, Pöyhönen M, Rinne JO, Päivärinta M, Martikainen MH, Kaasinen V, Hietala M, Gardberg M, Saukkonen AM, Eerola-Rautio J, Kaakkola S, Lyytinen J, Tienari PJ, Paetau A, Suomalainen A, Myllykangas L. SNCA mutation p.Ala53Glu is derived from a common founder in the Finnish population. Neurobiol Aging 2016; 50:168.e5-168.e8. [PMID: 27838048 DOI: 10.1016/j.neurobiolaging.2016.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/09/2016] [Indexed: 11/27/2022]
Abstract
Mutations in SNCA are rare causes of familial Parkinson's disease (PD). We have previously described a novel p.Ala53Glu mutation in 2 Finnish families. To assess this mutation's frequency among Finnish PD patients, we screened 110 PD patients (mean age-of-onset 60 years) from Western Finland by Sanger sequencing of the third coding exon of SNCA. In addition, a sample of 47 PD subjects (mean age-of-onset 53 years) originating from Southern and Eastern Finland were studied using next-generation sequencing covering SNCA. Only one new individual with the p.Ala53Glu mutation was identified, confirming that this mutation is a rare cause of PD in the Finnish population. To search for a possible common origin of the p.Ala53Glu mutation, haplotype analysis was conducted in 2 families and in a patient from a third family (6 affected subjects) using both STR markers and a genome-wide SNP array. The results show that patients with the p.Ala53Glu mutation share a haplotype spanning a minimum of 5.7 Mb suggesting a common founder.
Collapse
Affiliation(s)
- Petra Pasanen
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland; Department of Medical Genetics, Tyks Microbiology and Genetics, Turku University Hospital, Turku, Finland
| | - Eino Palin
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | | | - Minna Pöyhönen
- Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland; Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Mika H Martikainen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland; Department of Neurology, University of Turku, Turku, Finland
| | - Marja Hietala
- Department of Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Johanna Eerola-Rautio
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Kaakkola
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Lyytinen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pentti J Tienari
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Anu Suomalainen
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland.
| |
Collapse
|
20
|
The heterozygous A53T mutation in the alpha-synuclein gene in a Chinese Han patient with Parkinson disease: case report and literature review. J Neurol 2016; 263:1984-92. [DOI: 10.1007/s00415-016-8213-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
|
21
|
Tambasco N, Nigro P, Romoli M, Prontera P, Simoni S, Calabresi P. A53T in a parkinsonian family: a clinical update of the SNCA phenotypes. J Neural Transm (Vienna) 2016; 123:1301-1307. [PMID: 27250986 DOI: 10.1007/s00702-016-1578-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/21/2016] [Indexed: 01/04/2023]
Abstract
Approximately 15 % of PD patients with Parkinson Disease (PD) have the familial type and 5-10 % of these are known to have monogenic forms with either an autosomal dominant or a recessive inheritance pattern. Here, we report on a family carrying the A53T SNCA mutation and we review SNCA mutation phenotypes by comparing point mutations within each other as well as with duplication and triplication.
Collapse
Affiliation(s)
- Nicola Tambasco
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy.
| | - Pasquale Nigro
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy
| | - Michele Romoli
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy
| | - Paolo Prontera
- Servizio di Genetica Medica, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Simone Simoni
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Azienda Ospedaliera e Universitaria di Perugia, S.Andrea delle Fratte, 06156, Perugia, Italy.,I.R.C.C.S. Fondazione S.Lucia, Rome, Italy
| |
Collapse
|
22
|
Halbgebauer S, Öckl P, Wirth K, Steinacker P, Otto M. Protein biomarkers in Parkinson's disease: Focus on cerebrospinal fluid markers and synaptic proteins. Mov Disord 2016; 31:848-60. [PMID: 27134134 DOI: 10.1002/mds.26635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 01/06/2023] Open
Abstract
Despite extensive research, to date, no validated biomarkers for PD have been found. This review seeks to summarize studies approaching the detection of biomarker candidates for PD and introduce promising ones in more detail, with special attention to synaptic proteins. To this end, we performed a PubMed search and included studies using proteomic tools (2-dimensional difference in gel electrophoresis and/or mass spectrometry) for the comparison of samples from PD and control patients. We found 27 studies reporting more than 500 differentially expressed proteins in which a total of 28 were detected in 2 and 17 in 3 or more independent studies, including posttranslationally modified proteins. In addition, of these 500 proteins, 25 were found to be brain specific, and 14 were enriched in synapses. Special attention was given to the applicability of the biomarker regarding sampling procedures, that is, using CSF/serum material for diagnosis. Furthermore, presynaptic proteins involved in vesicle membrane fusion seem to be interesting candidates for future analyses. Nonetheless, even though such promising biomarker candidates for PD exist, validation of these biomarkers in large-scale clinical studies is necessary to evaluate the diagnostic potential. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Patrick Öckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
23
|
Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 2016; 139 Suppl 1:59-74. [PMID: 27090875 DOI: 10.1111/jnc.13593] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/25/2016] [Accepted: 02/09/2016] [Indexed: 12/12/2022]
Abstract
Parkinson's disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically, Parkinson's disease (PD) is associated with resting tremor, postural instability, rigidity, bradykinesia, and a good response to levodopa therapy. Over the last 15 years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2, and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets. This review discusses monogenic risk factors and mechanisms of Mendelian inheritance of Parkinson disease. Highly penetrant mutations in SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35 produce rare, monogenic forms of the disease, while unique variants within LRRK2 and GBA show incomplete penetrance and are strong risk factors for PD. Additionally, over 20 common variants with small effect sizes modulate disease risk. The challenge over the next decade is to strengthen genetic findings by assessing direct, biological consequences of risk variants in tandem with high-content, integrated datasets. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA.,German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA.
| |
Collapse
|
24
|
Longo GS, Pinhel MAS, Gregório ML, Oliveira BAP, Quinhoneiro DCG, Tognola WA, Oliveira FN, Martins DP, Cezario SM, Sado CL, Nakazone MA, Calastri MCJ, Souza DRS. Alpha-synuclein A53T mutation is not frequent on a sample of Brazilian Parkinson's disease patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 73:506-9. [PMID: 26083886 DOI: 10.1590/0004-282x20150032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The pathogenesis of Parkinson's disease (PD) involves both genetic susceptibility and environmental factors, with focus on the mutation in the alpha-synuclein gene (SNCA).Objective To analyse the polymorphism SNCA-A53T in patients with familial PD (FPD) and sporadic PD (SPD). METHOD A total of 294 individuals were studied, regardless of sex and with mixed ethnicity. The study group with 154 patients with PD, and the control group included 140 individuals without PD. The genotyping of SNCA-A53T was performed by PCR/RFLP. Significance level was p < 0.05. RESULTS Among all patients, 37 (24%) had FPD and 117 (75.9%) had SPD. The absence of SNCA-A53T mutation was observed in all individuals. CONCLUSION SPD is notably observed in patients. However, the SNCA-A53T mutation was absent in all individuals, which does not differ controls from patients. This fact should be confirmed in a Brazilian study case with a more numerous and older population.
Collapse
Affiliation(s)
- Gabriela S Longo
- Faculdade de Medicina de São José do Rio Preto, Sao José do Rio Preto, SP, Brazil
| | - Marcela A S Pinhel
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | | | - Bruno A P Oliveira
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Driele C G Quinhoneiro
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Waldir A Tognola
- Faculdade de Medicina de São José do Rio Preto, Sao José do Rio Preto, SP, Brazil
| | - Fábio N Oliveira
- Faculdade de Medicina de São José do Rio Preto, Sao José do Rio Preto, SP, Brazil
| | | | - Sabrina M Cezario
- Faculdade de Medicina de São José do Rio Preto, Sao José do Rio Preto, SP, Brazil
| | | | - Marcelo A Nakazone
- Faculdade de Medicina de São José do Rio Preto, Sao José do Rio Preto, SP, Brazil
| | - Maria C J Calastri
- Faculdade de Medicina de São José do Rio Preto, Sao José do Rio Preto, SP, Brazil
| | - Dorotéia R S Souza
- Faculdade de Medicina de São José do Rio Preto, Sao José do Rio Preto, SP, Brazil
| |
Collapse
|
25
|
Deng S, Deng X, Yuan L, Song Z, Yang Z, Xiong W, Deng H. Genetic analysis of SNCA coding mutation in Chinese Han patients with Parkinson disease. Acta Neurol Belg 2015; 115:267-71. [PMID: 25092551 DOI: 10.1007/s13760-014-0347-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/22/2014] [Indexed: 12/01/2022]
Abstract
Parkinson disease (PD) is the second most common progressive neurodegenerative disorder. It is characterized by selective loss of dopamine-producing neurons and aggregation of alpha-synuclein (SNCA) in neurons of particular brain regions. At least 20 loci and 15 disease-causing genes have been identified. Rare missense or multiplication mutations in the SNCA gene have been reported to be involved in some familial and sporadic cases of PD. More recently, two novel pathogenic missense mutations (p.H50Q and p.G51D) were identified in the SNCA gene. To evaluate whether mutation(s) in the coding region of SNCA gene is related to PD in Chinese population, we investigated the SNCA gene in 502 PD patients of Chinese Han ethnicity from Mainland China. No pathogenic mutation was identified in the coding region of the gene. A known G to A transition (c.306 + 66G>A, rs10005233) in the intron 4, which does not potentially change splicing, was identified. Our data indicate that mutations in the coding region of the SNCA gene are not likely to be a common cause of PD in Chinese population.
Collapse
Affiliation(s)
- Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Guardia-Laguarta C, Area-Gomez E, Schon EA, Przedborski S. A new role for α-synuclein in Parkinson's disease: Alteration of ER-mitochondrial communication. Mov Disord 2015; 30:1026-33. [DOI: 10.1002/mds.26239] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - Estela Area-Gomez
- Department of Neurology; Columbia University Medical Center; New York NY USA
| | - Eric A. Schon
- Department of Neurology; Columbia University Medical Center; New York NY USA
- Department of Genetics and Development; Columbia University Medical Center; New York NY USA
| | - Serge Przedborski
- Department of Pathology and Cell Biology; Columbia University Medical Center; New York NY USA
| |
Collapse
|
27
|
Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation. Parkinsonism Relat Disord 2015; 21:586-9. [PMID: 25817515 DOI: 10.1016/j.parkreldis.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/25/2015] [Accepted: 03/08/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. METHODS In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. RESULTS The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. CONCLUSION Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease.
Collapse
|
28
|
|
29
|
Recasens A, Dehay B. Alpha-synuclein spreading in Parkinson's disease. Front Neuroanat 2014; 8:159. [PMID: 25565982 PMCID: PMC4270285 DOI: 10.3389/fnana.2014.00159] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/04/2014] [Indexed: 01/17/2023] Open
Abstract
Formation and accumulation of misfolded protein aggregates are a central hallmark of several neurodegenerative diseases. In Parkinson’s disease (PD), the aggregation-prone protein alpha-synuclein (α-syn) is the culprit. In the past few years, another piece of the puzzle has been added with data suggesting that α-syn may self-propagate, thereby contributing to the progression and extension of PD. Of particular importance, it was the seminal observation of Lewy bodies (LB), a histopathological signature of PD, in grafted fetal dopaminergic neurons in the striatum of PD patients. Consequently, these findings were a conceptual breakthrough, generating the “host to graft transmission” hypothesis, also called the “prion-like hypothesis.” Several in vitro and in vivo studies suggest that α-syn can undergo a toxic templated conformational change, spread from cell to cell and from region to region, and initiate the formation of “LB–like aggregates,” contributing to the PD pathogenesis. Here, we will review and discuss the current knowledge for such a putative mechanism on the prion-like nature of α-syn, and discuss about the proper use of the term prion-like.
Collapse
Affiliation(s)
- Ariadna Recasens
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute - Center for Networked Biomedical Research on Neurodegenerative Diseases Barcelona, Spain
| | - Benjamin Dehay
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, UMR 5293 Bordeaux, France
| |
Collapse
|
30
|
Bourdenx M, Bezard E, Dehay B. Lysosomes and α-synuclein form a dangerous duet leading to neuronal cell death. Front Neuroanat 2014; 8:83. [PMID: 25177278 PMCID: PMC4132369 DOI: 10.3389/fnana.2014.00083] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/28/2014] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are (i) characterized by a selective neuronal vulnerability to degeneration in specific brain regions; and (ii) likely to be caused by disease-specific protein misfolding. Parkinson's disease (PD) is characterized by the presence of intraneuronal proteinacious cytoplasmic inclusions, called Lewy Bodies (LB). α-Synuclein, an aggregation prone protein, has been identified as a major protein component of LB and the causative for autosomal dominant PD. Lysosomes are responsible for the clearance of long-lived proteins, such as α-synuclein, and for the removal of old or damaged organelles, such as mitochondria. Interestingly, PD-linked α-synuclein mutants and dopamine-modified wild-type α-synuclein block its own degradation, which result in insufficient clearance, leading to its aggregation and cell toxicity. Moreover, both lysosomes and lysosomal proteases have been found to be involved in the activation of certain cell death pathways. Interestingly, lysosomal alterations are observed in the brains of patients suffering from sporadic PD and also in toxic and genetic rodent models of PD-related neurodegeneration. All these events have unraveled a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. In this review, we emphasize the pathophysiological mechanisms connecting α-synuclein and lysosomal dysfunction in neuronal cell death.
Collapse
Affiliation(s)
- Mathieu Bourdenx
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Benjamin Dehay
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| |
Collapse
|
31
|
Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, Pieri L, Madiona K, Dürr A, Melki R, Verny C, Brice A. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 2014; 73:459-71. [PMID: 23526723 DOI: 10.1002/ana.23894] [Citation(s) in RCA: 514] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/18/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To date, 3 rare missense mutations in the SNCA (α-synuclein) gene and the more frequent duplications or triplications of the wild-type gene are known to cause a broad array of clinical and pathological symptoms in familial Parkinson disease (PD). Here, we describe a French family with a parkinsonian-pyramidal syndrome harboring a novel heterozygous SNCA mutation. METHODS Whole exome sequencing of DNA from 3 patients in a 3-generation pedigree was used to identify a new PD-associated mutation in SNCA. Clinical and pathological features of the patients were analyzed. The cytotoxic effects of the mutant and wild-type proteins were assessed by analytical ultracentrifugation, thioflavin T binding, transmission electron microscopy, cell viability assay, and caspase-3 activation. RESULTS We identified a novel SNCA G51D (c.152 G>A) mutation that cosegregated with the disease and was absent from controls. G51D was associated with an unusual PD phenotype characterized by early disease onset, moderate response to levodopa, rapid progression leading to loss of autonomy and death within a few years, marked pyramidal signs including bilateral extensor plantar reflexes, occasionally spasticity, and frequently psychiatric symptoms. Pathological lesions predominated in the basal ganglia and the pyramidal tracts and included fine, diffuse cytoplasmic inclusions containing phospho-α-synuclein in superficial layers of the cerebral cortex, including the entorhinal cortex. Functional studies showed that G51D α-synuclein oligomerizes more slowly and its fibrils are more toxic than those of the wild-type protein. INTERPRETATION We have identified a novel SNCA G51D mutation that causes a form of PD with unusual clinical, neuropathological, and biochemical features.
Collapse
Affiliation(s)
- Suzanne Lesage
- Pierre and Marie Curie University-Paris 6, Research Center of the Institute for Brain and Spinal Cord, National Institute of Health and Medical Research, Paris
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Deng H, Yuan L. Genetic variants and animal models in SNCA and Parkinson disease. Ageing Res Rev 2014; 15:161-76. [PMID: 24768741 DOI: 10.1016/j.arr.2014.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD; MIM 168600) is the second most common progressive neurodegenerative disorder characterized by a variety of motor and non-motor features. To date, at least 20 loci and 15 disease-causing genes for parkinsonism have been identified. Among them, the α-synuclein (SNCA) gene was associated with PARK1/PARK4. Point mutations, duplications and triplications in the SNCA gene cause a rare dominant form of PD in familial and sporadic PD cases. The α-synuclein protein, a member of the synuclein family, is abundantly expressed in the brain. The protein is the major component of Lewy bodies and Lewy neurites in dopaminergic neurons in PD. Further understanding of its role in the pathogenesis of PD through various genetic techniques and animal models will likely provide new insights into our understanding, therapy and prevention of PD.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan 410013, PR China.
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan 410013, PR China
| |
Collapse
|
33
|
Sheerin UM, Houlden H, Wood NW. Advances in the Genetics of Parkinson's Disease: A Guide for the Clinician. Mov Disord Clin Pract 2014; 1:3-13. [PMID: 30363913 DOI: 10.1002/mdc3.12000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/13/2022] Open
Abstract
Over the last 16 years, insights in clinical and genetic characteristics of Parkinson's disease (PD) have increased substantially. We summarize the clinical, genetic, and pathological findings of autosomal dominant PD linked to mutations in SNCA, leucine-rich repeat kinase 2, vacuolar protein sorting-35, and eukaryotic translation initiation factor 4 gamma 1 and autosomal recessive PD linked to parkin,PINK1, and DJ-1, as well as autosomal recessive complicated parkinsonian syndromes caused by mutations in ATP13A2,FBXO7,PLA2G6,SYNJ1, and DNAJC6. We also review the advances in high- and low-risk genetic susceptibility factors and present multisystem disorders that may present with parkinsonism as the major clinical feature and provide recommendations for prioritization of genetic testing. Finally, we consider the challenges of future genetic research in PD.
Collapse
Affiliation(s)
- Una-Marie Sheerin
- Department of Molecular Neuroscience UCL Institute of Neurology University College London London United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience UCL Institute of Neurology University College London London United Kingdom
| | - Nicholas W Wood
- UCL Department of Molecular Neuroscience and UCL Genetics Institute University College London London United Kingdom
| |
Collapse
|
34
|
Chai C, Lim KL. Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics 2014; 14:486-501. [PMID: 24532982 PMCID: PMC3924245 DOI: 10.2174/1389202914666131210195808] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 09/09/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022] Open
Abstract
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant
genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has
shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively;
these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with
oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide
association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein
and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered
variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of
GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions
in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial
and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless,
the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.
Collapse
Affiliation(s)
- Chou Chai
- Duke-NUS Graduate Medical School, Singapore
| | - Kah-Leong Lim
- Duke-NUS Graduate Medical School, Singapore ; Department of Physiology, National University of Singapore, Singapore ; Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
| |
Collapse
|
35
|
Abstract
Fifteen years of genetic research in Parkinson's disease (PD) have led to the identification of several monogenic forms of the disorder and of numerous genetic risk factors increasing the risk to develop PD. Monogenic forms, caused by a single mutation in a dominantly or recessively inherited gene, are well-established, albeit relatively rare types of PD. They collectively account for about 30% of the familial and 3%-5% of the sporadic cases. In this article, we will summarize the current knowledge and understanding of the molecular genetics of PD. In brief, we will review familial forms of PD, basic genetic principles of inheritance (and their exceptions in PD), followed by current methods for the identification of PD genes and risk factors, and implications for genetic testing.
Collapse
Affiliation(s)
- Christine Klein
- Section of Clinical and Molecular Neurogenetics at the Department of Neurology, University of Lübeck, Lübeck, Germany.
| | | |
Collapse
|
36
|
Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, Proukakis C, Quinn N, Lees AJ, Hardy J, Revesz T, Houlden H, Holton JL. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy? Acta Neuropathol 2013; 125:753-69. [PMID: 23404372 PMCID: PMC3681325 DOI: 10.1007/s00401-013-1096-7] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022]
Abstract
We report a British family with young-onset Parkinson's disease (PD) and a G51D SNCA mutation that segregates with the disease. Family history was consistent with autosomal dominant inheritance as both the father and sister of the proband developed levodopa-responsive parkinsonism with onset in their late thirties. Clinical features show similarity to those seen in families with SNCA triplication and to cases of A53T SNCA mutation. Post-mortem brain examination of the proband revealed atrophy affecting frontal and temporal lobes in addition to the caudate, putamen, globus pallidus and amygdala. There was severe loss of pigmentation in the substantia nigra and pallor of the locus coeruleus. Neuronal loss was most marked in frontal and temporal cortices, hippocampal CA2/3 subregions, substantia nigra, locus coeruleus and dorsal motor nucleus of the vagus. The cellular pathology included widespread and frequent neuronal α-synuclein immunoreactive inclusions of variable morphology and oligodendroglial inclusions similar to the glial cytoplasmic inclusions of multiple system atrophy (MSA). Both inclusion types were ubiquitin and p62 positive and were labelled with phosphorylation-dependent anti-α-synuclein antibodies In addition, TDP-43 immunoreactive inclusions were observed in limbic regions and in the striatum. Together the data show clinical and neuropathological similarities to both the A53T SNCA mutation and multiplication cases. The cellular neuropathological features of this case share some characteristics of both PD and MSA with additional unique striatal and neocortical pathology. Greater understanding of the disease mechanism underlying the G51D mutation could aid in understanding of α-synuclein biology and its impact on disease phenotype.
Collapse
Affiliation(s)
- Aoife P. Kiely
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Yasmine T. Asi
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Eleanna Kara
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, UK
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - Helen Ling
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Patrick Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Christos Proukakis
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Niall Quinn
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Andrew J. Lees
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - John Hardy
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Tamas Revesz
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Janice L. Holton
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
37
|
Puschmann A. Monogenic Parkinson's disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 2013; 19:407-15. [PMID: 23462481 DOI: 10.1016/j.parkreldis.2013.01.020] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/20/2013] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Mutations in seven genes are robustly associated with autosomal dominant (SNCA, LRRK2, EIF4G1, VPS35) or recessive (parkin/PARK2, PINK1, DJ1/PARK7) Parkinson's disease (PD) or parkinsonism. Changes in a long list of additional genes have been suggested as causes for parkinsonism or PD, including genes for hereditary ataxias (ATXN2, ATXN3, FMR1), frontotemporal dementia (C9ORF72, GRN, MAPT, TARDBP), DYT5 (GCH1, TH, SPR), and others (ATP13A2, CSF1R, DNAJC6, FBXO, GIGYF2, HTRA2, PLA2G6, POLG, SPG11, UCHL1). This review summarizes the clinical features of diseases caused by mutations in these genes, and their frequencies. Point mutations and multiplications in SNCA cause cognitive or psychiatric symptoms, parkinsonism, dysautonomia and myoclonus with widespread alpha-synuclein pathology in the central and peripheral nervous system. LRRK2 mutations may lead to a clinical phenotype closely resembling idiopathic PD with a puzzling variety in neuropathology. Mutations in parkin/PARK2, PINK1 or DJ1/PARK7 may cause early-onset parkinsonism with a low risk for cognitive decline and a pathological process usually restricted to the brainstem. Carriers of mutations in the other genes may develop parkinsonism with or without additional symptoms, but rarely a disease resembling PD. The pathogenicity of several mutations remains unconfirmed. Although some mutations occur with high frequency in specific populations, worldwide all are very rare. The genetic cause of the majority of patients with sporadic or hereditary PD remains unknown in most populations. Clinical genetic testing is useful for selected patients. Testing strategies need to be adapted individually based on clinical phenotype and estimated frequency of the mutation in the patient's population.
Collapse
Affiliation(s)
- Andreas Puschmann
- Dept. for Neurology, Lund University and Skåne University Hospital, Getingevägen 4, 22185 Lund, Sweden.
| |
Collapse
|
38
|
Tian JY, Guo JF, Wang L, Sun QY, Yao LY, Luo LZ, Shi CH, Hu YC, Yan XX, Tang BS. Mutation analysis of LRRK2, SCNA, UCHL1, HtrA2 and GIGYF2 genes in Chinese patients with autosomal dorminant Parkinson's disease. Neurosci Lett 2012; 516:207-11. [PMID: 22503729 DOI: 10.1016/j.neulet.2012.03.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 03/24/2012] [Accepted: 03/28/2012] [Indexed: 11/27/2022]
Abstract
Autosomal dorminant Parkinson's disease (ADPD) has been associated with mutations in the SCNA, LRRK2, UCHL1, HtrA2 and GIGYF2 genes. We studied the prevalence of variants in all five genes in 12 Chinese unrelated families with ADPD and 4 families with both essential tremor (ET) and Parkinson's disease (PD) phenotypes using direct sequencing analysis. We found 27 variants in the LRRK2 gene, eight in GIGYF2 gene, three in the SCNA and UCHL1 gene respectively, in which five variants were novel. However, no pathogenic mutations in the five genes were found in these families. Our result indicated that SCNA, LRRK2, UCHL1, HtrA2 and GIGYF2 genes' mutations might not be a main reason for Chinese ADPD.
Collapse
Affiliation(s)
- Jin-yong Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
40
|
Crosiers D, Theuns J, Cras P, Van Broeckhoven C. Parkinson disease: Insights in clinical, genetic and pathological features of monogenic disease subtypes. J Chem Neuroanat 2011; 42:131-41. [DOI: 10.1016/j.jchemneu.2011.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 12/13/2022]
|
41
|
Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 2010; 31:763-80. [PMID: 20506312 PMCID: PMC3056147 DOI: 10.1002/humu.21277] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/21/2010] [Accepted: 04/21/2010] [Indexed: 12/13/2022]
Abstract
To date, molecular genetic analyses have identified over 500 distinct DNA variants in five disease genes associated with familial Parkinson disease; alpha-synuclein (SNCA), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-rich repeat kinase 2 (LRRK2). These genetic variants include approximately 82% simple mutations and approximately 18% copy number variations. Some mutation subtypes are likely underestimated because only few studies reported extensive mutation analyses of all five genes, by both exonic sequencing and dosage analyses. Here we present an update of all mutations published to date in the literature, systematically organized in a novel mutation database (http://www.molgen.ua.ac.be/PDmutDB). In addition, we address the biological relevance of putative pathogenic mutations. This review emphasizes the need for comprehensive genetic screening of Parkinson patients followed by an insightful study of the functional relevance of observed genetic variants. Moreover, while capturing existing data from the literature it became apparent that several of the five Parkinson genes were also contributing to the genetic etiology of other Lewy Body Diseases and Parkinson-plus syndromes, indicating that mutation screening is recommendable in these patient groups.
Collapse
Affiliation(s)
- Karen Nuytemans
- Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIB, Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of AntwerpAntwerpen, Belgium
| | - Jessie Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIB, Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of AntwerpAntwerpen, Belgium
| | - Marc Cruts
- Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIB, Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of AntwerpAntwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIB, Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of AntwerpAntwerpen, Belgium
| |
Collapse
|
42
|
Voutsinas GE, Stavrou EF, Karousos G, Dasoula A, Papachatzopoulou A, Syrrou M, Verkerk AJ, van der Spek P, Patrinos GP, Stöger R, Athanassiadou A. Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease. Hum Mutat 2010; 31:685-91. [DOI: 10.1002/humu.21248] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Basi molecolari del morbo di Parkinson. Neurologia 2010. [DOI: 10.1016/s1634-7072(10)70497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
α-Synuclein and Parkinson's Disease. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-1-4160-6641-5.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Westerlund M, Hoffer B, Olson L. Parkinson's disease: Exit toxins, enter genetics. Prog Neurobiol 2009; 90:146-56. [PMID: 19925845 DOI: 10.1016/j.pneurobio.2009.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/15/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease was long considered a non-hereditary disorder. Despite extensive research trying to find environmental risk factors for the disease, genetic variants now stand out as the major causative factor. Since a number of genes have been implicated in the pathogenesis it seems likely that several molecular pathways and downstream effectors can affect the trophic support and/or the survival of dopamine neurons, subsequently leading to Parkinson's disease. The present review describes how toxin-based animal models have been valuable tools in trying to find the underlying mechanisms of disease, and how identification of disease-linked genes in humans has led to the development of new transgenic rodent models. The review also describes the current status of the most common genetic susceptibility factors for Parkinson's disease identified up to today.
Collapse
Affiliation(s)
- Marie Westerlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
46
|
A Swedish family with de novo alpha-synuclein A53T mutation: evidence for early cortical dysfunction. Parkinsonism Relat Disord 2009; 15:627-32. [PMID: 19632874 DOI: 10.1016/j.parkreldis.2009.06.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 05/22/2009] [Accepted: 06/19/2009] [Indexed: 11/20/2022]
Abstract
A de novo alpha-synuclein A53T (p.Ala53 Th; c.209G > A) mutation has been identified in a Swedish family with autosomal dominant Parkinson's disease (PD). Two affected individuals had early-onset (before 31 and 40 years), severe levodopa-responsive PD with prominent dysphasia, dysarthria, and cognitive decline. Longitudinal clinical follow-up, EEG, SPECT and CSF biomarker examinations suggested an underlying encephalopathy with cortical involvement. The mutated allele (c.209A) was present within a haplotype different from that shared among mutation carriers in the Italian (Contursi) and the Greek-American Family H kindreds. One unaffected family member carried the mutation haplotype without the c.209A mutation, strongly suggesting its de novo occurrence within this family. Furthermore, a novel mutation c.488G > A (p.Arg163His; R163H) in the presenilin-2 (PSEN2) gene was detected, but was not associated with disease state.
Collapse
|
47
|
Mendelian forms of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:587-96. [DOI: 10.1016/j.bbadis.2008.12.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 12/13/2022]
|
48
|
Lesage S, Brice A. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009; 18:R48-59. [PMID: 19297401 DOI: 10.1093/hmg/ddp012] [Citation(s) in RCA: 646] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Research in Parkinson's disease (PD) genetics has been extremely prolific over the past decade. More than 13 loci and 9 genes have been identified, but their implication in PD is not always certain. Point mutations, duplications and triplications in the alpha-synuclein (SNCA) gene cause a rare dominant form of PD in familial and sporadic cases. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a more frequent cause of autosomal dominant PD, particularly in certain ethnic groups. Loss-of-function mutations in Parkin, PINK1, DJ-1 and ATP13A2 cause autosomal recessive parkinsonism with early-onset. Identification of other Mendelian forms of PD will be a main challenge for the next decade. In addition, susceptibility variants that contribute to PD have been identified in several populations, such as polymorphisms in the SNCA, LRRK2 genes and heterozygous mutations in the beta-glucocerebrosidase (GBA) gene. Genome-wide associations and re-sequencing projects, together with gene-environment interaction studies, are expected to further define the causal role of genetic determinants in the pathogenesis of PD, and improve prevention and treatment.
Collapse
|
49
|
Choi JM, Woo MS, Ma HI, Kang SY, Sung YH, Yong SW, Chung SJ, Kim JS, Shin HW, Lyoo CH, Lee PH, Baik JS, Kim SJ, Park MY, Sohn YH, Kim JH, Kim JW, Lee MS, Lee MC, Kim DH, Kim YJ. Analysis of PARK genes in a Korean cohort of early-onset Parkinson disease. Neurogenetics 2008; 9:263-9. [PMID: 18704525 DOI: 10.1007/s10048-008-0138-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 07/07/2008] [Indexed: 12/16/2022]
Abstract
Mutations in five PARK genes (SNCA, PARKIN, DJ-1, PINK1, and LRRK2) are well-established genetic causes of Parkinson disease (PD). Recently, G2385R substitution in LRRK2 has been determined as a susceptibility allele in Asian PD. The objective of this study is to determine the frequency of mutations in these PARK genes in a Korean early-onset Parkinson disease (EOPD) cohort. The authors sequenced 35 exons in SNCA, PARKIN, DJ-1, PINK1, and LRRK2 in 72 unrelated EOPD (age-at-onset <or=50) recruited from ten movement disorders clinics in South Korea. Gene dosage change of the aforementioned genes was studied using multiple ligation-dependent probe amplification. We found four patients with PARKIN mutations, which were homozygous deletion of exon 4, compound heterozygous deletion of exon 2 and exon 4, heterozygous deletion of exon 4, and heterozygous nonsense mutation (Q40X). Four patients had PINK1 mutations; a compound heterozygous mutation (N367S and K520RfsX522) and three heterozygous mutations (G32R, R279H, and F385L). A missense mutation of SNCA (A53T) was found in a familial PD with autosomal dominant inheritance. Nine patients (12.5%) had heterozygous G2385R polymorphism of LRRK2, whereas none had G2019S mutation. However, no mutations were detected in DJ-1 and UCHL1 in our series. We identified genetic variants in PARKIN, PINK1, LRRK2, and SNCA as a cause or genetic risk factors for PD in 25% of Korean EOPD, and mutation of PARKIN was the most common genetic cause.
Collapse
Affiliation(s)
- Jung Mi Choi
- Department of Neurology, Hallym University Sacred Heart Hospital, ILSONG Institute of Life Science, Hallym University, Dongan-gu, Anyang-si, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|