1
|
Gholami M, Sakhaee F, Sotoodehnejadnematalahi F, Zamani MS, Ahmadi I, Anvari E, Fateh A. Increased risk of COVID-19 mortality rate in IFITM3 rs6598045 G allele carriers infected by SARS-CoV-2 delta variant. Hum Genomics 2022; 16:60. [PMID: 36403064 PMCID: PMC9675951 DOI: 10.1186/s40246-022-00434-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The interferon-induced transmembrane-protein 3 (IFITM3) is a vital component of the immune system's defense against viral infection. Variants in the IFITM3 gene have been linked to changes in expression and the risk of severe Coronavirus disease 2019 (COVID-19). This study aimed to investigate whether IFITM3 rs6598045, quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) values, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are associated with an increased mortality rate of COVID-19. METHODS The genotyping of IFITM3 rs6598045 polymorphism was analyzed using the amplification refractory mutation system-polymerase chain reaction in 1342 recovered and 1149 deceased patients positive for SARS-CoV-2. RESULTS In this study, IFITM3 rs6598045 G allele as minor allele frequency was significantly more common in the deceased patients than in the recovered ones. Furthermore, the highest mortality rates were observed in Delta variant and lowest qPCR Ct values. COVID-19 mortality was associated with IFITM3 rs6598045 GG and AG in Delta variant and IFITM3 rs6598045 AG in Alpha variant. A statistically significant difference was observed in the qPCR Ct values between individuals with GG and AG genotypes and those with an AA genotype. CONCLUSION A possible correlation was observed between the mortality rate of COVID-19, the G allele of IFITM3 rs6598045, and SARS-CoV-2 variants. However, large-scale research is still required to validate our results.
Collapse
Affiliation(s)
- Melika Gholami
- grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran ,grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Sakhaee
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fattah Sotoodehnejadnematalahi
- grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Saber Zamani
- grid.412501.30000 0000 8877 1424Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Iraj Ahmadi
- grid.449129.30000 0004 0611 9408Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Enayat Anvari
- grid.449129.30000 0004 0611 9408Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Fateh
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Said SA, Abdulbaset A, El-Kholy AA, Besckales O, Sabri NA. The effect of Ni gella sativa and vitamin D3 supplementation on the clinical outcome in COVID-19 patients: A randomized controlled clinical trial. Front Pharmacol 2022; 13:1011522. [PMID: 36425571 PMCID: PMC9681154 DOI: 10.3389/fphar.2022.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 10/08/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) is a novel coronavirus that causes severe infection in the respiratory system. Since the immune status plays an essential role in combating COVID-19, herbal medicines, which have an immunomodulatory effect, may help prevent and even treat COVID-19. Nigella sativa is one of the herbal medicines with antiviral and immunomodulatory activities, and its therapeutic effectiveness makes it a promising add-on therapy for COVID-19. In addition, vitamin D3 has an immunomodulatory role, but the effect of therapeutic vitamin D3 supplementation in SARS-CoV-2 infection is still not well-known. Objective: This study aims to investigate the effects of Nigella sativa and vitamin D3 as single supplemental therapies and in combination on viral clearance indicated by a negative polymerase chain reaction and the alleviation of symptoms during the study follow-up duration of 14 days. Patients and Methods: The study design was an open-label randomized controlled clinical trial conducted at the Respiratory Hospital at the Kobry El Qobba Armed Forces Medical Complex. In total, 120 COVID-19 patients with mild to moderate symptoms were randomly assigned to four groups, with thirty patients each, as follows: Group 1 received an oral dose of 900 mg Nigella sativa through 450 mg soft gelatin capsules twice daily for two weeks; Group 2 received 2,000 IU of vitamin D3 through 1000-IU tablets given as two tablets, once daily; Group 3 received 900 mg of Nigella sativa and 2,000 IU of vitamin D3 in the same manner of dosing as in the previous groups; and Group 4 was the control group. All groups received standard therapy for COVID-19 infections and clinical management of COVID-19's clinical symptoms. Results: The Nigella sativa-vitamin D3 combination in addition to the standard therapy for COVID-19 infections significantly contributed to the alleviation of most COVID-19 symptoms: 50% of patients were free of cough after 7 days, 70% showed an absence of fatigue after 4 days, 80% had no headache after 5 days, 90% were free of rhinorrhea after 7 days, and 86.7% of the patients had no dyspnea after 7 days. Moreover, patients in the four studied groups showed a reduced median temperature after 3 days of treatment. Negative results of the polymerase chain reaction (PCR) test recorded on the 7th and 14th day of therapy were superior in the Nigella sativa and vitamin D3 combination arm compared to those of the other studied arms where the value of the odds ratio (OR) on the 7th day was 0.13 with 95% CI: 0.03-0.45 and that of the 14th day was 0.09 with 95% CI: 0.02-0.3. Conclusion: The results of this study showed a promising therapeutic benefit of the administration of Nigella sativa and vitamin D3 combination in COVID-19 patients with mild to moderate symptoms. Additionally, the remarkable viral clearance in a short time interval and reduction in the severity and progression of symptoms recommended the use of this combination as an add-on therapy for the management of COVID-19 patients. Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT04981743.
Collapse
Affiliation(s)
- Shimaa A. Said
- Respiratory Specialized Hospital, Kobry Al Qobba Military Complex, Cairo, Egypt
| | - Alsayyed Abdulbaset
- Respiratory Specialized Hospital, Kobry Al Qobba Military Complex, Cairo, Egypt
| | - Amal A. El-Kholy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Osama Besckales
- Respiratory Specialized Hospital, Kobry Al Qobba Military Complex, Cairo, Egypt
| | - Nagwa A. Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Tomaszewska A, Rustecka A, Lipińska-Opałka A, Piprek RP, Kloc M, Kalicki B, Kubiak JZ. The Role of Vitamin D in COVID-19 and the Impact of Pandemic Restrictions on Vitamin D Blood Content. Front Pharmacol 2022; 13:836738. [PMID: 35264968 PMCID: PMC8899722 DOI: 10.3389/fphar.2022.836738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Vitamin D is a hormone regulating the immune system and playing a pivotal role in responses to microbial infections. It regulates inflammatory processes by influencing the transcription of immune-response genes in macrophages, T cells, and dendritic cells. The proven role of vitamin D in many infectious diseases of the respiratory tract indicated that vitamin D should also play a role in SARS-CoV-2 infection. Vitamin D inhibits cytokine storm by switching the pro-inflammatory Th1 and Th17 to the anti-inflammatory Th2 and Treg response. Vitamin D is therefore expected to play a role in preventing, relieving symptoms, or treating SARS-CoV-2 infection symptoms, including severe pneumonia. There are several possible mechanisms by which vitamin D may reduce the risk of COVID-19 infection, such as induction of the transcription of cathelicidin and defensin. Also a nongenomic antiviral action of vitamin D and lumisterol, the molecule closely related to vitamin D, was reported. Despite this enormous progress, currently, there is still insufficient scientific evidence to support the claim that vitamin D supplementation may help treat COVID-19 infection. The pandemic restrictions were also shown to impact vitamin D uptake by limiting exposure to sunlight.
Collapse
Affiliation(s)
- Agata Tomaszewska
- Pediatric, Nephrology, and Allergology Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Agnieszka Rustecka
- Pediatric, Nephrology, and Allergology Clinic, Military Institute of Medicine, Warsaw, Poland
| | | | - Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, United States.,Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Genetics, M.D. Anderson Cancer Center, The University of Texas, Houston, TX, United States
| | - Bolesław Kalicki
- Pediatric, Nephrology, and Allergology Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Jacek Z Kubiak
- Faculty of Medicine, CNRS, UMR 6290, Institute of Genetics and Development of Rennes, University Rennes, Rennes, France.,Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
4
|
Zhou Y, Xue Y, Bao A, Han L, Bao W, Xia C, Tian X, Zhang M. Effect of Vitamin D Deficiency and Supplementation in Lactation and Early Life on Allergic Airway Inflammation and the Expression of Autophagy-Related Genes in an Ovalbumin Mouse Model. J Inflamm Res 2021; 14:4125-4141. [PMID: 34466017 PMCID: PMC8403027 DOI: 10.2147/jir.s321642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Objective Vitamin D is involved in various physiological and pathological processes, including inflammation and autophagy. We aimed to investigate the effects of dietary vitamin D deficiency or supplementation initiated in lactation and early life on inflammation and autophagy in an ovalbumin (OVA) mouse model. Methods Female BALB/c were fed with vitamin D-deficient, sufficient or supplemented diets throughout lactation and their offspring followed the same diet after weaning. Offspring were then sensitized and challenged with OVA, airway resistance (RL) was measured, and their serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected. Alveolar macrophages (AMs) were isolated from lung tissue and cultured with different concentrations of 1,25(OH)2D3. The expressions of autophagy-related (ATG) proteins including light-chain 3 (LC3), Beclin-1, and ATG5, and NF-κB p65 in lung tissue and AMs were measured. Results OVA sensitization and challenge induced dramatic allergic airway inflammation and higher RL in the vitamin D-deficient group compared with vitamin D-sufficient or the supplemented group. The expression of ATGs including LC3, Beclin-1, and ATG5, and NF-κB p65 in lung tissue in the vitamin D-deficient OVA-mediated group was increased compared with vitamin D-supplemented OVA-mediated group. There was correlation between the expression of LC3 mRNA and inflammatory cell numbers and cytokines in BALF. In vitro, 1,25(OH)2D3 also regulated the expression of LC3, Beclin-1, ATG5, and NF-κB p65 mRNA in AMs in a time- and dose-dependent manner. Conclusion Deficiency of vitamin D in early life may aggravate allergic airway inflammation, and maintaining sufficient vitamin D during early life is necessary for lung health. Vitamin D may modulate autophagy in lungs of OVA sensitized/challenged mice, thus playing a protective role in OVA-induced allergic airway inflammation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Aihua Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Chao Xia
- Department of Gerontology, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| |
Collapse
|
5
|
Gorman S, Lucas RM, Allen-Hall A, Fleury N, Feelisch M. Ultraviolet radiation, vitamin D and the development of obesity, metabolic syndrome and type-2 diabetes. Photochem Photobiol Sci 2018; 16:362-373. [PMID: 28009891 DOI: 10.1039/c6pp00274a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Obesity is increasing in prevalence in many countries around the world. Its causes have been traditionally ascribed to a model where energy intake exceeds energy consumption. Reduced energy output in the form of exercise is associated with less sun exposure as many of these activities occur outdoors. This review explores the potential for ultraviolet radiation (UVR), derived from sun exposure, to affect the development of obesity and two of its metabolic co-morbidities, type-2 diabetes and metabolic syndrome. We here discuss the potential benefits (or otherwise) of exposure to UVR based on evidence from pre-clinical, human epidemiological and clinical studies and explore and compare the potential role of UVR-induced mediators, including vitamin D and nitric oxide. Overall, emerging findings suggest a protective role for UVR and sun exposure in reducing the development of obesity and cardiometabolic dysfunction, but more epidemiological and clinical research is required that focuses on measuring the direct associations and effects of exposure to UVR in humans.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Robyn M Lucas
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia. and National Centre of Epidemiology and Public Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory
| | - Aidan Allen-Hall
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Naomi Fleury
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, and NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
6
|
Morgan KA, Mann EH, Young AR, Hawrylowicz CM. ASTHMA - comparing the impact of vitamin D versus UVR on clinical and immune parameters. Photochem Photobiol Sci 2018; 16:399-410. [PMID: 28092390 DOI: 10.1039/c6pp00407e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The incidence of asthma has increased markedly since the 1960s and is currently estimated to affect more than 300 million individuals worldwide. A number of environmental factors are implicated in asthma pathogenesis, one of which is vitamin D. Vitamin D deficiency is a global health concern and has increased in parallel with asthma incidence. Epidemiological studies report associations between low vitamin D status, assessed as circulating levels of 25-hydroxyvitamin D, with asthma incidence, severity, exacerbations and responses to treatment. This has led to clinical studies to test whether increasing the levels of vitamin D improves asthma management. Despite being highly variable in dosing regimens, design and outcomes, meta-analyses suggest overall positive outcomes with respect to reduced asthma exacerbations and steroid requirements. The primary mechanism for increasing vitamin D levels in the body is through exposure of the skin to the ultraviolet B (UVB) component of ultraviolet radiation (UVR), most commonly from sun exposure. However, only a limited number of studies investigating the impact of UVR on the asthmatic response have been performed; these generally report on the impact of latitude as a surrogate of sun exposure, or address this in animal models. To the best of our knowledge no comprehensive trials to assess the impact of UVB radiation on asthma outcomes have been performed. Within this review we discuss observational and clinical studies in this field, and innate and adaptive immune mechanisms through which UVR and vitamin D may impact respiratory health, and asthma. We highlight the heterogeneity of asthmatic disease, which is likely to impact upon the efficacy of interventional studies, and briefly overview more recent findings relating to the impact of vitamin D/UVR on the development of asthma.
Collapse
Affiliation(s)
- Kylie A Morgan
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, UK. and NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, UK and St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London, UK
| | - Elizabeth H Mann
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, UK.
| | - Antony R Young
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, UK and St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London, UK
| | - Catherine M Hawrylowicz
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, UK. and NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, UK
| |
Collapse
|
7
|
Gorman S, Buckley AG, Ling KM, Berry LJ, Fear VS, Stick SM, Larcombe AN, Kicic A, Hart PH. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol Rep 2018; 5:5/15/e13371. [PMID: 28774952 PMCID: PMC5555896 DOI: 10.14814/phy2.13371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D3‐supplemented (2280 IU/kg, VitD+) or nonsupplemented (0 IU/kg, VitD−) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD− diet were switched to a VitD+ diet from 8 weeks of age (VitD−/+). At 12 weeks of age, signs of low‐level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD− mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D3. There was no difference in the level of expression of the tight junction proteins occludin or claudin‐1 in lung epithelial cells of VitD+ mice compared to VitD− mice; however, claudin‐1 levels were reduced when initially vitamin D‐deficient mice were fed the vitamin D3‐containing diet (VitD−/+). Reduced total IgM levels were detected in BALF and serum of VitD−/+ mice compared to VitD+ mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD−/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D3‐containing diet, which may be explained by increased activation of B cells in airway‐draining lymph nodes. These findings suggest that supplementation of initially vitamin D‐deficient mice with vitamin D3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Luke J Berry
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Vanessa S Fear
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
8
|
Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OH)D3 metabolism. PLoS One 2017; 12:e0186374. [PMID: 29045457 PMCID: PMC5646812 DOI: 10.1371/journal.pone.0186374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/30/2017] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS). METHODS Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined. RESULTS Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A. CONCLUSIONS VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3, even with adequate circulating levels.
Collapse
|
9
|
Prevention of allergies in childhood - where are we now? Allergol Select 2017; 1:200-213. [PMID: 30402617 PMCID: PMC6040005 DOI: 10.5414/alx01807e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
Allergic diseases represent an increasing health problem for children worldwide. Along with allergic airway diseases, food allergy comes to the fore and herewith closely intertwined the hypothesis that an early allergic sensitization might occur via skin barrier defect(s). The importance of the skin barrier has been documented by several studies meanwhile. Not only genetic studies screen the associations between Filaggrin loss-of-function mutations, atopic dermatitis, allergic sensitization, food allergy and even airway diseases, but also epidemiological studies cast new light on the hypothesis of the atopic march. As another focus in context of the development of an allergic phenotype, the specific microbial exposure with all its diversities has been crystallized as it shapes the immune system in (early) infancy. Studies explored both, the role of human intestinal microbiota as well as the external microbial diversity. Unfortunately suitable markers for atopic predictors are still rare. New studies point out that specific IgE antibodies (e.g., IgE to Phl p 1) in children without allergic symptoms so far, might function as a pre-clinical biomarker, which may help to identify candidates for primary (allergen non-specific) or secondary (allergen-specific) prevention in terms of specific immunoprophylaxis. These manifold research activities document a complex increase in knowledge. Nevertheless new assumptions need to be substantively confirmed in order to finally generate the urgently needed preventive strategies for allergic diseases in childhood.
Collapse
|
10
|
Vitamin D and Bronchial Asthma: An Overview of Data From the Past 5 Years. Clin Ther 2017; 39:917-929. [PMID: 28449868 DOI: 10.1016/j.clinthera.2017.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/23/2022]
Abstract
PURPOSE Vitamin D is a potent immunomodulator capable of dampening inflammatory signals in several cell types involved in the asthmatic response. Its deficiency has been associated with increased inflammation, exacerbations, and overall poor outcomes in patients with asthma. Given the increase in the prevalence of asthma over the past few decades, there has been enormous interest in the use of vitamin D supplementation as a potential therapeutic option. Here, we critically reviewed the most recent findings from in vitro studies, animal models, and clinical trials regarding the role of vitamin D in treating bronchial asthma. METHODS Using the key terms [Vitamin D, asthma, clinical trials, in vivo and in vitro studies], the [PubMed, Google Scholar] databases were searched for [clinical trials, original research articles, meta-analyses, and reviews], English-language articles published from [2012] to the present. Articles that were [Articles that did not meet these criteria were excluded] excluded from the analysis. FINDINGS Several studies have found that low serum levels of vitamin D (< 20 ng/mL) are associated with increased exacerbations, increased airway inflammation, decreased lung function, and poor prognosis in asthmatic patients. Results from in vitro and in vivo studies in animals and humans have suggested that supplementation with vitamin D may ameliorate several hallmark features of asthma. However, the findings obtained from clinical trials are controversial and do not unequivocally support a beneficial role of vitamin D in asthma. Largely, interventional studies in children, pregnant women, and adults have primarily found little to no effect of vitamin D supplementation on improved asthma symptoms, onset, or progression of the disease. This could be related to the severity of the disease process and other confounding factors. IMPLICATIONS Despite the conflicting data obtained from clinical trials, vitamin D deficiency may influence the inflammatory response in the airways. Further studies are needed to determine the exact mechanisms by which vitamin D supplementation may induce antiinflammatory effects.
Collapse
|
11
|
Roggenbuck M, Anderson D, Barfod KK, Feelisch M, Geldenhuys S, Sørensen SJ, Weeden CE, Hart PH, Gorman S. Vitamin D and allergic airway disease shape the murine lung microbiome in a sex-specific manner. Respir Res 2016; 17:116. [PMID: 27655266 PMCID: PMC5031331 DOI: 10.1186/s12931-016-0435-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background Vitamin D is under scrutiny as a potential regulator of the development of respiratory diseases characterised by chronic lung inflammation, including asthma and chronic obstructive pulmonary disease. It has anti-inflammatory effects; however, knowledge around the relationship between dietary vitamin D, inflammation and the microbiome in the lungs is limited. In our previous studies, we observed more inflammatory cells in the bronchoalveolar lavage fluid and increased bacterial load in the lungs of vitamin D-deficient male mice with allergic airway disease, suggesting that vitamin D might modulate the lung microbiome. In the current study, we examined in more depth the effects of vitamin D deficiency initiated early in life, and subsequent supplementation with dietary vitamin D on the composition of the lung microbiome and the extent of respiratory inflammation. Methods BALB/c dams were fed a vitamin D-supplemented or -deficient diet throughout gestation and lactation, with offspring continued on this diet post-natally. Some initially deficient offspring were fed a supplemented diet from 8 weeks of age. The lungs of naïve adult male and female offspring were compared prior to the induction of allergic airway disease. In further experiments, offspring were sensitised and boosted with the experimental allergen, ovalbumin (OVA), and T helper type 2-skewing adjuvant, aluminium hydroxide, followed by a single respiratory challenge with OVA. Results In mice fed a vitamin D-containing diet throughout life, a sex difference in the lung microbial community was observed, with increased levels of an Acinetobacter operational taxonomic unit (OTU) in female lungs compared to male lungs. This effect was not observed in vitamin D-deficient mice or initially deficient mice supplemented with vitamin D from early adulthood. In addition, serum 25-hydroxyvitamin D levels inversely correlated with total bacterial OTUs, and Pseudomonas OTUs in the lungs. Increased levels of the antimicrobial murine ß-defensin-2 were detected in the bronchoalveolar lavage fluid of male and female mice fed a vitamin D-containing diet. The induction of OVA-induced allergic airway disease itself had a profound affect on the OTUs identified in the lung microbiome, which was accompanied by substantially more respiratory inflammation than that induced by vitamin D deficiency alone. Conclusion These data support the notion that maintaining sufficient vitamin D is necessary for optimal lung health, and that vitamin D may modulate the lung microbiome in a sex-specific fashion. Furthermore, our data suggest that the magnitude of the pro-inflammatory and microbiome-modifying effects of vitamin D deficiency were substantially less than that of allergic airway disease, and that there is an important interplay between respiratory inflammation and the lung microbiome.
Collapse
Affiliation(s)
- Michael Roggenbuck
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Clare E Weeden
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia.
| |
Collapse
|
12
|
An X, Fu M, Tian J, Xue Y, Xu H. Significance of serum 25-hydroxyvitamin D 3 and interleukin-6 levels in immunoglobulin treatment of Kawasaki disease in children. Exp Ther Med 2016; 12:1476-1480. [PMID: 27602072 PMCID: PMC4998228 DOI: 10.3892/etm.2016.3492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/30/2016] [Indexed: 01/02/2023] Open
Abstract
The aim of the study was to investigate the significance of the level of serum 25-hydroxyvitamin D3 [25-(OH)D3] and interleukin (IL)-6 in serum prior to and after immunoglobulin treatment in children suffering from Kawasaki disease in order to provide a reference for the successful treatment of Kawasaki disease in children. From February, 2013 to February, 2015, 45 patients with Kawasaki disease were enrolled in the observation group. The normal control group comprised 43 healthy volunteers and the feverish control group 46 patients with respiratory infection and fever. Venous blood was collected from each case before and after immunoglobulin treatment and the level of 25-(OH)D3 and IL-6 in the serum were measured using fluorescent quantitative PCR, enzyme-linked immunosorbent assay and western blotting. Before treatment, the level of 25-(OH)D3 in the feverish control group was significantly lower than that of the normal control group, while the level of 25-(OH)D3 in the observation group was significantly higher than that of the normal control group. The level of 25-(OH)D3 in the feverish control group was lower than the IL-6 level in the normal children, but the difference was not statistically significant (P>0.05). The level 25-(OH)D3 in the observation group was significantly higher than the IL-6 level in the normal control group. The serum content of 25-(OH)D3 was significantly higher after the treatment compared to before treatment levels and after treatment IL-6 level was only slightly lower. It was observed that the 25-(OH)D3 level in the observation group was significantly increased after immunoglobulin treatment and this was positively correlated with the effects of the treatment. The IL-6 level had no significant changes after treatment and had little correlation with the treatment effect. The results suggested that 25-(OH)D3 may be involved in the occurrence of Kawasaki disease in children and in the aggravation of the disease to some extent.
Collapse
Affiliation(s)
- Xinjiang An
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Mingyu Fu
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Jing Tian
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Ying Xue
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Hui Xu
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
13
|
Dietary Vitamin D Increases Percentages and Function of Regulatory T Cells in the Skin-Draining Lymph Nodes and Suppresses Dermal Inflammation. J Immunol Res 2016; 2016:1426503. [PMID: 27672666 PMCID: PMC5031886 DOI: 10.1155/2016/1426503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 12/16/2022] Open
Abstract
Skin inflammatory responses in individuals with allergic dermatitis may be suppressed by dietary vitamin D through induction and upregulation of the suppressive activity of regulatory T (TReg) cells. Vitamin D may also promote TReg cell tropism to dermal sites. In the current study, we examined the capacity of dietary vitamin D3 to modulate skin inflammation and the numbers and activity of TReg cells in skin and other sites including lungs, spleen, and blood. In female BALB/c mice, dietary vitamin D3 suppressed the effector phase of a biphasic ear swelling response induced by dinitrofluorobenzene in comparison vitamin D3-deficient female BALB/c mice. Vitamin D3 increased the percentage of TReg (CD3+CD4+CD25+Foxp3+) cells in the skin-draining lymph nodes (SDLN). The suppressive activity of TReg cells in the SDLN, mesenteric lymph nodes, spleen, and blood was upregulated by vitamin D3. However, there was no difference in the expression of the naturally occurring TReg cell marker, neuropilin, nor the expression of CCR4 or CCR10 (skin-tropic chemokine receptors) on TReg cells in skin, SDLN, lungs, and airway-draining lymph nodes. These data suggest that dietary vitamin D3 increased the percentages and suppressive activity of TReg cells in the SDLN, which are poised to suppress dermal inflammation.
Collapse
|
14
|
Foong RE, Bosco A, Troy NM, Gorman S, Hart PH, Kicic A, Zosky GR. Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L653-63. [PMID: 27496895 DOI: 10.1152/ajplung.00026.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022] Open
Abstract
Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway hyperresponsiveness is increased in vitamin D-deficient mice. In this study, we hypothesize that vitamin D deficiency would exacerbate house dust mite (HDM)-induced inflammation and alterations in lung structure and function. A BALB/c mouse model of vitamin D deficiency was established by dietary manipulation. Responsiveness to methacholine, airway smooth muscle (ASM) mass, mucus cell metaplasia, lung and airway inflammation, and cytokines in bronchoalveolar lavage (BAL) fluid were assessed. Gene expression patterns in mouse lung samples were profiled by RNA-Seq. HDM exposure increased inflammation and inflammatory cytokines in BAL, baseline airway resistance, tissue elastance, and ASM mass. Vitamin D deficiency enhanced the HDM-induced influx of lymphocytes into BAL, ameliorated the HDM-induced increase in ASM mass, and protected against the HDM-induced increase in baseline airway resistance. RNA-Seq identified nine genes that were differentially regulated by vitamin D deficiency in the lungs of HDM-treated mice. Immunohistochemical staining confirmed that protein expression of midline 1 (MID1) and adrenomedullin was differentially regulated such that they promoted inflammation, while hypoxia-inducible lipid droplet-associated, which is associated with ASM remodeling, was downregulated. Protein expression studies in human bronchial epithelial cells also showed that addition of vitamin D decreased MID1 expression. Differential regulation of these genes by vitamin D deficiency could determine lung inflammation and pathophysiology and suggest that the effect of vitamin D deficiency on HDM-induced allergic airways disease is complex.
Collapse
Affiliation(s)
- Rachel E Foong
- Telethon Kids Institute, the University of Western Australia, Perth, Western Australia, Australia;
| | - Anthony Bosco
- Telethon Kids Institute, the University of Western Australia, Perth, Western Australia, Australia
| | - Niamh M Troy
- Telethon Kids Institute, the University of Western Australia, Perth, Western Australia, Australia
| | - Shelley Gorman
- Telethon Kids Institute, the University of Western Australia, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute, the University of Western Australia, Perth, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute, the University of Western Australia, Perth, Western Australia, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia; and
| | - Graeme R Zosky
- School of Medicine, Faculty of Health Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
15
|
Li C, Jiang X, Luo M, Feng G, Sun Q, Chen Y. Mycobacterium vaccae Nebulization Can Protect against Asthma in Balb/c Mice by Regulating Th9 Expression. PLoS One 2016; 11:e0161164. [PMID: 27518187 PMCID: PMC4982628 DOI: 10.1371/journal.pone.0161164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. CD4(+) T-helper 9 (Th9) cells are closely linked to asthma, helping to regulate inflammation and immunity. Epidemiological studies showed that mycobacteria infections are negatively associated with asthma. Our previous research showed that inactivated Mycobacterium phlei nebulization alleviated the airway hyperresponsiveness and inflammation of asthma. However, the relationship between Th9 cells and mycobacteria remains unknown. Here, we evaluated the relationship between Mycobacterium vaccae nebulization and Th9 cells in asthmatic mice. Eighteen Balb/c mice were randomized into 3 groups of 6 mice each (normal control group, asthma control group, and nebulization asthma group [Neb. group]). The Neb. group was nebulized with M. vaccae one month before establishment of the asthmatic model with ovalbumin (OVA) sensitization, and the normal and asthma control groups were nebulized with phosphate-buffered saline. The hyperresponsiveness of the mouse airways was assessed using a non-invasive lung function machine. Lung airway inflammation was evaluated by hematoxylin and eosin and periodic acid-Schiff staining. Cytokine interlukin-9 (IL-9) concentration and OVA-specific IgE in the bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assays. The percentages of γδTCR+ CD3+, IL-9+CD3+, IL-10+CD3+ lymphocytes, and IL9+γδT and IL-10+γδT cells were detected by flow cytometry. The airway inflammation and concentration of IL-9 and OVA-specific IgE were significantly reduced in the Neb. group compared to the asthma control group. The Neb. group had lower airway hyperresponsiveness, percentages of γδTCR+CD3+ and IL-9+CD3+ lymphocytes, and IL9+γδT cells, and higher percentages of IL-10+CD3+ lymphocytes and IL-10+γδT cells compared to the asthma control group. Thus, mouse bronchial asthma could be prevented by M. vaccae nebulization. The mechanism could involve M. vaccae-mediated effects on induction of IL-9 secretion and suppression of IL-10 secretion from γδT cells. γδT cells showed prominent IL-10 expression, indicating that they possibly belong to the Th9 family.
Collapse
Affiliation(s)
- Chaoqian Li
- Department of Respiratory Medicine, Guangxi Medical College, Nanning, Guangxi, China
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohong Jiang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail:
| | - Mingjie Luo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangyi Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qixiang Sun
- The Graduate School of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiping Chen
- Department of Geriatric Disease, The National Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Wang Z, Zhang H, Sun X, Ren L. The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway. Mol Med Rep 2016; 14:2389-96. [PMID: 27484042 PMCID: PMC4991747 DOI: 10.3892/mmr.2016.5563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Asthma is a common worldwide health burden, the prevalence of which is increasing. Recently, the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3, has been reported to have a protective role in murine asthma; however, the molecular mechanisms by which vitamin D3 attenuates asthma-associated airway injury remain elusive. In the present study, BALB/c mice were sensitized to ovalbumin (OVA) and were administered 100 ng 1,25-dihydroxyvitamin D3 (intraperitoneal injection) 30 min prior to each airway challenge. The inflammatory responses were measured by ELISA, airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was analyzed by Masson staining and periodic acid-Schiff staining, markers of oxidative stress were measured by commercial kits, and the expression levels of α-smooth muscle actin (α-SMA) and the activity of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and the transforming growth factor-β (TGF-β)/Smad signaling pathways were measured by immunohistochemistry and western blotting. The results demonstrated that OVA-induced airway inflammation and immunoglobulin E overexpression were significantly reduced by vitamin D3 treatment. In addition, treatment with vitamin D3 decreased α-SMA expression, collagen deposition and goblet cell hyperplasia, and inhibited TGF-β/Smad signaling in the asthmatic airway. The upregulated levels of malondialdehyde, and the reduced activities of superoxide dismutase and glutathione in OVA-challenged mice were also markedly restored following vitamin D3 treatment. Furthermore, treatment with vitamin D3 enhanced activation of the Nrf2/HO-1 pathway in the airways of asthmatic mice. In conclusion, these findings suggest that vitamin D3 may protect airways from asthmatic damage via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway; however, these protective effects were shown to be accompanied by hypercalcemia.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haitao Zhang
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaohan Sun
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lihong Ren
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
17
|
Fischer KD, Hall SC, Agrawal DK. Vitamin D Supplementation Reduces Induction of Epithelial-Mesenchymal Transition in Allergen Sensitized and Challenged Mice. PLoS One 2016; 11:e0149180. [PMID: 26872336 PMCID: PMC4752470 DOI: 10.1371/journal.pone.0149180] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 01/05/2023] Open
Abstract
Asthma is a chronic disease of the lung associated with airway hyperresponsiveness (AHR), airway obstruction and airway remodeling. Airway remodeling involves differentiation of airway epithelial cells into myofibroblasts via epithelial-mesenchymal transition (EMT) to intensify the degree of subepithelial fibrosis. EMT involves loss in E-cadherin with an increase in mesenchymal markers, including vimentin and N-cadherin. There is growing evidence that vitamin D has immunomodulatory and anti-inflammatory properties. However, the underlying molecular mechanisms of these effects are still unclear. In this study, we examined the contribution of vitamin D on the AHR, airway inflammation and expression of EMT markers in the airways of mice sensitized and challenged with a combination of clinically relevant allergens, house dust mite, ragweed, and Alternaria (HRA). Female Balb/c mice were fed with vitamin D-sufficient (2000 IU/kg) or vitamin D-supplemented (10,000 IU/kg) diet followed by sensitization with HRA. The density of inflammatory cells in the bronchoalveolar lavage fluid (BALF), lung histology, and expression of EMT markers by immunofluorescence were examined. Vitamin D-supplementation decreased AHR, airway inflammation in the BALF and the features of airway remodeling compared to vitamin D-sufficiency in HRA-sensitized and -challenged mice. This was accompanied with increased expression of E-cadherin and decreased vimentin and N-cadherin expression in the airways. These results indicate that vitamin D may be a beneficial adjunct in the treatment regime in allergic asthma.
Collapse
Affiliation(s)
- Kimberly D. Fischer
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Sannette C. Hall
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Devendra K. Agrawal
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kang JW, Kim JH, Kim HJ, Lee JG, Yoon JH, Kim CH. Association of serum 25-hydroxyvitamin D with serum IgE levels in Korean adults. Auris Nasus Larynx 2015. [PMID: 26209260 DOI: 10.1016/j.anl.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Studies about the association between vitamin D and allergic disease and the immune-modulatory function of vitamin D have increased in the recent years. However, not enough studies have been conducted for concrete conclusion about the association vitamin D and allergy. We investigate the association between serum immunoglobulin E (IgE) and serum 25-hydroxyvitamin D (25(OH)D) levels in Korean adults. METHODS We used data of 1969 subjects from the 2010 Korean National Health and Nutrition Examination Survey. Total IgE, Dermatophagoides farinae (Df)-specific IgE, and serum 25(OH)D levels were analyzed. Other variables included sex, age, body mass index, smoking history, and economic status. Adjusted regression analysis was used to examine the independent association of 25(OH)D with serum IgE levels. RESULTS When we divided all subjects into four groups according to the serum 25(OH)D level: Q1 (lowest), Q2, Q3, and Q4 (highest), the median TIgE level increased with higher quartiles in the Kruskal-Wallis test (p<0.001). Also, the prevalence of Df sensitization was highest in Q4. Serum vitamin D was positively associated with logarithmic transformed total IgE with base of 10 (LogTIgE) (coefficient (B), 0.011; 95% confidence interval, 0.001-0.021). Furthermore, a positive association between 25(OH)D and LogTIgE was found only in men with Df sensitization, but not in men without Df sensitization and women with/without Df sensitization. However, the mean serum 25(OH)D level was significantly lower in participants who were clinically diagnosed with asthma or atopic dermatitis than participants without a history of asthma or atopic dermatitis, respectively. CONCLUSION Serum 25(OH)D levels were positively associated with total IgE levels. Furthermore, the association between serum 25(OH)D and total IgE levels could vary depending on sex or allergic sensitization. But, the mean serum 25(OH)D level was lower in participants with asthma or atopic dermatitis history than participants without history of asthma or atopic dermatitis. Prospective further studies will be required to verify this discrepancy.
Collapse
Affiliation(s)
- Ju Wan Kang
- Department of Otorhinolaryngology, Jeju National University School of Medicine, Jeju, Republic of Korea; Department of Medicine, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Jeong Hong Kim
- Department of Otorhinolaryngology, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeung-Gweon Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Britt RD, Faksh A, Vogel ER, Thompson MA, Chu V, Pandya HC, Amrani Y, Martin RJ, Pabelick CM, Prakash YS. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells. J Cell Physiol 2015; 230:1189-98. [PMID: 25204635 DOI: 10.1002/jcp.24814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/05/2014] [Indexed: 01/02/2023]
Abstract
Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood.
Collapse
Affiliation(s)
- Rodney D Britt
- Departments of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics 2015; 7:53. [PMID: 26052354 PMCID: PMC4456695 DOI: 10.1186/s13148-015-0085-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence is now emerging that early life environment can have lifelong effects on metabolic, cardiovascular, and pulmonary function in offspring, a concept also known as fetal or developmental programming. In mammals, developmental programming is thought to occur mainly via epigenetic mechanisms, which include DNA methylation, histone modifications, and expression of non-coding RNAs. The effects of developmental programming can be induced by the intrauterine environment, leading to intergenerational epigenetic effects from one generation to the next. Transgenerational epigenetic inheritance may be considered when developmental programming is transmitted across generations that were not exposed to the initial environment which triggered the change. So far, inter- and transgenerational programming has been mainly described for cardiovascular and metabolic disease risk. In this review, we discuss available evidence that epigenetic inheritance also occurs in respiratory diseases, using asthma and chronic obstructive pulmonary disease (COPD) as examples. While multiple epidemiological as well as animal studies demonstrate effects of 'toxic' intrauterine exposure on various asthma-related phenotypes in the offspring, only few studies link epigenetic marks to the observed phenotypes. As epigenetic marks may distinguish individuals most at risk of later disease at early age, it will enable early intervention strategies to reduce such risks. To achieve this goal further, well designed experimental and human studies are needed.
Collapse
Affiliation(s)
- Susanne Krauss-Etschmann
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
- />Priority Area Asthma & Allergy, Leibniz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Airway Research Center North, Member of the German Center for Lung Research, Parkallee 1-40, Borstel, Germany
| | - Karolin F Meyer
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Stefan Dehmel
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Machteld N Hylkema
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
21
|
Vasiliou JE, Lui S, Walker SA, Chohan V, Xystrakis E, Bush A, Hawrylowicz CM, Saglani S, Lloyd CM. Vitamin D deficiency induces Th2 skewing and eosinophilia in neonatal allergic airways disease. Allergy 2014; 69:1380-9. [PMID: 24943330 PMCID: PMC4329404 DOI: 10.1111/all.12465] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Associations between vitamin D status and childhood asthma are increasingly reported, but direct causation and mechanisms underlying an effect remain unknown. We investigated the effect of early-life vitamin D deficiency on the development of murine neonatal allergic airways disease (AAD). METHODS In utero and early-life vitamin D deficiency was achieved using a vitamin D-deficient diet for female mice during the third trimester of pregnancy and lactation. Offspring were weaned onto a vitamin D-deficient or vitamin D-replete diet, and exposure to intranasal house dust mite (HDM) or saline was commenced from day 3 of life for up to 6 weeks, when airway hyper-responsiveness (AHR), airway inflammation and remodelling were assessed. RESULTS Neonatal mice that had in utero and early-life vitamin D deficiency had significantly increased pulmonary CD3(+) CD4(+) T1ST2(+) cells and reduced CD4(+) IL-10(+) cells. This effect was enhanced following HDM exposure. AHR in HDM-exposed mice was unaffected by vitamin D status. Introduction of vitamin D into the diet at weaning resulted in a significant reduction in serum IgE levels, reduced pulmonary eosinophilia and peri-bronchiolar collagen deposition. CONCLUSION Peri-natal vitamin D deficiency alone has immunomodulatory effects including Th2 skewing and reduced IL-10-secreting T regulatory cells, exaggerated with additional allergen exposure. Vitamin D deficiency in early life does not affect AHR, but contributes to disease severity with worse eosinophilic inflammation and airway remodelling. Importantly, supplementation with vitamin D improves both of these pathological abnormalities.
Collapse
Affiliation(s)
- J E Vasiliou
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - S Lui
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - S A Walker
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - V Chohan
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - E Xystrakis
- MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's HospitalLondon, UK
| | - A Bush
- Respiratory Paediatrics, Royal Brompton Hospital, and National Heart & Lung Institute, Imperial College LondonLondon, UK
| | - C M Hawrylowicz
- MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's HospitalLondon, UK
| | - S Saglani
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Respiratory Paediatrics, Royal Brompton Hospital, and National Heart & Lung Institute, Imperial College LondonLondon, UK
| | - C M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| |
Collapse
|
22
|
Wöbke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol 2014; 5:244. [PMID: 25071589 PMCID: PMC4078458 DOI: 10.3389/fphys.2014.00244] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Changes in vitamin D serum levels have been associated with inflammatory diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis (MS), atherosclerosis, or asthma. Genome- and transcriptome-wide studies indicate that vitamin D signaling modulates many inflammatory responses on several levels. This includes (i) the regulation of the expression of genes which generate pro-inflammatory mediators, such as cyclooxygenases or 5-lipoxygenase, (ii) the interference with transcription factors, such as NF-κB, which regulate the expression of inflammatory genes and (iii) the activation of signaling cascades, such as MAP kinases which mediate inflammatory responses. Vitamin D targets various tissues and cell types, a number of which belong to the immune system, such as monocytes/macrophages, dendritic cells (DCs) as well as B- and T cells, leading to individual responses of each cell type. One hallmark of these specific vitamin D effects is the cell-type specific regulation of genes involved in the regulation of inflammatory processes and the interplay between vitamin D signaling and other signaling cascades involved in inflammation. An important task in the near future will be the elucidation of the regulatory mechanisms that are involved in the regulation of inflammatory responses by vitamin D on the molecular level by the use of techniques such as chromatin immunoprecipitation (ChIP), ChIP-seq, and FAIRE-seq.
Collapse
Affiliation(s)
- Thea K Wöbke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| | - Bernd L Sorg
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| |
Collapse
|
23
|
Rebel H, der Spek CDV, Salvatori D, van Leeuwen JPTM, Robanus-Maandag EC, de Gruijl FR. UV exposure inhibits intestinal tumor growth and progression to malignancy in intestine-specific Apc mutant mice kept on low vitamin D diet. Int J Cancer 2014; 136:271-7. [PMID: 24890436 DOI: 10.1002/ijc.29002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Abstract
Mortality from colorectal cancer increases with latitude and decreases with ambient UV radiation. We investigated whether moderate UV dosages could inhibit intestinal tumor development and whether this corresponded with UV-induced vitamin D. FabplCre;Apc(15lox/+) mice, which develop intestinal tumors, and their parents were put on a vitamin D-deficient diet. Next to a control group, one group was vitamin D supplemented and another one group was daily UV irradiated from 6 weeks of age. Vitamin D statuses after 6 weeks of treatment were markedly increased: mean ± SD from 7.7 ± 1.9 in controls to 75 ± 15 nmol/l with vitamin D supplementation (no gender difference), and to 31 ± 13 nmol/l in males and 85 ± 17 nmol/l in females upon UV irradiation. The tumor load (area covered by tumors) at 7.5 months of age was significantly reduced in both the vitamin D-supplemented group (130 ± 25 mm(2), p = 0.018) and the UV-exposed group (88 ± 9 mm(2), p < 0.0005; no gender differences) compared to the control group (202 ± 23 mm(2)). No reductions in tumor numbers were found. Only UV exposure appeared to reduce progression to malignancy (p = 0.014). Our experiments clearly demonstrate for the first time an inhibitory effect of moderate UV exposure on outgrowth and malignant progression of primary intestinal tumors, which at least in part can be attributed to vitamin D.
Collapse
Affiliation(s)
- Heggert Rebel
- Department of Dermatology, Leiden University Medical Center, 2333, ZC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Divekar R, Calhoun WJ. Heterogeneity of asthma in society. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 795:31-41. [PMID: 24162901 DOI: 10.1007/978-1-4614-8603-9_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There has been an increased interest in studying other factors that affect asthma pathogenesis and cause heterogeneity in prevalence and incidence of asthma. The reason there are such varied expression patterns of disease in asthmatics is because of multiple variables that affect the pathogenesis of asthma. As an exemplar of an epidemiologic variable, we will discuss geographical location, obesity and vitamin D status of the individual, and their effects on asthma burden in humans. There is varying data regarding the prevalence or severity of asthma in urban versus rural setting which is likely related to the difference of the populations studied, complexity of causal variables involved, and local geographic factors. In addition to cross-sectional and cohort studies in humans, animal models and studies have established a link between asthma and obesity by investigating the mechanisms affecting both disease processes. The complicated interrelationship between obesity and asthma is an active area of epidemiological and experimental research with new insights being discovered at a rapid pace. Finally, vitamin D, an important immunomodulator thought to be important in pathogenesis of asthma, has both mechanistic and therapeutic implications in treatment of asthma. The influences of these factors on the clinical expression of asthma are discussed below.
Collapse
Affiliation(s)
- Rohit Divekar
- Division of Allergy and Immunology, University of Texas Medical Branch, 301, University Boulevard, Galveston, TX, 77555, USA,
| | | |
Collapse
|
25
|
Abstract
Beyond its critical function in calcium homeostasis, vitamin D has recently been found to play an important role in the modulation of the immune/inflammation system via regulating the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies have associated lower vitamin D status with increased risk and unfavorable outcome of acute infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the diseases. In this article, we review recent epidemiological and interventional studies of vitamin D in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/inflammatory responses in inflammatory diseases are also discussed.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
26
|
Foong RE, Shaw NC, Berry LJ, Hart PH, Gorman S, Zosky GR. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF-β expression in the lungs of female BALB/c mice. Physiol Rep 2014; 2:e00276. [PMID: 24760528 PMCID: PMC4002254 DOI: 10.1002/phy2.276] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. Vitamin D deficiency caused airway hyperresponsiveness and increased airway smooth muscle mass in the airways of adult female mice. Vitamin D deficiency also reduced transforming growth factor (TGF)‐β1 protein levels in both male and female mice, as well as reduced gene expression of TGF‐β1 and TGF‐β receptor I in female E17.5 fetal pups. These observations may provide a link between vitamin D deficiency and respiratory symptoms in chronic lung disease.
Collapse
Affiliation(s)
- Rachel E Foong
- Telethon Institute for Child Health Research, The University of Western Australia, Subiaco, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Agrawal T, Gupta GK, Agrawal DK. Vitamin D supplementation reduces airway hyperresponsiveness and allergic airway inflammation in a murine model. Clin Exp Allergy 2014; 43:672-83. [PMID: 23711130 DOI: 10.1111/cea.12102] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Asthma is a chronic disease associated with airway hyperresponsiveness (AHR), airway obstruction and airway remodelling. NF-κB is a transcriptional factor that regulates and co-ordinates the expression of various inflammatory genes. The NF-κB subunits, p50 and Rel-A, are translocated to the nucleus by importin α3 and importin α4. There is growing evidence that vitamin D is a potent immunomodulator. However, the evidence for beneficial or adverse effects of vitamin D in asthma is still unclear. OBJECTIVE In this study, we examined the effect of vitamin D status on AHR, airway inflammation and cytokines in the bronchoalveolar lavage fluid (BALF) in a murine model of allergic asthma. METHODS Female BALB/c mice were fed with special vitamin D-deficient or vitamin D-sufficient (2000 IU/kg) or vitamin D-supplemented (10,000 IU/kg) diet for 13 weeks. Mice were sensitized and challenged with ovalbumin (OVA). The effect of vitamin D on lung histology, AHR, T regulatory cells (Tregs) and BALF cytokines was examined. The expression of importin-α3 and Rel-A in the lung of OVA-sensitized mice was analysed using immunofluorescence. RESULTS Vitamin D deficiency was associated with higher AHR in OVA-sensitized and challenged mice than those in vitamin D-sufficient mice. This was accompanied with marked signs of airway remodelling, high BALF eosinophilia, increased BALF pro-inflammatory cytokines, reduced BALF IL-10 levels, reduced blood Tregs, increased expression of importin-α3 and Rel-A in the lung tissue. Vitamin D supplementation attenuated the pro-inflammatory effects, but did not completely reverse the features of allergic airway inflammation. CONCLUSION AND CLINICAL RELEVANCE Vitamin D could be beneficial as an adjunct therapy in the treatment of allergic asthma.
Collapse
Affiliation(s)
- T Agrawal
- Department of Biomedical Sciences and Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
28
|
Hakimeh D, Tripodi S. Recent advances on diagnosis and management of childhood asthma and food allergies. Ital J Pediatr 2013; 39:80. [PMID: 24373684 PMCID: PMC3891976 DOI: 10.1186/1824-7288-39-80] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/16/2013] [Indexed: 11/10/2022] Open
Abstract
The epidemic of childhood allergic disorders has been associated to the decline of infectious disease. However, exposure to many triggers (airborne viruses, tobacco smoke, pollution, indoor allergens, etc.) contribute to the disease. Breast feeding practices, nutrition, dietary and obesity also play a multifaceted role in shaping the observed worldwide trends of childhood allergies. Guidelines for treatment are available, but their implementation is suboptimal. Then developed countries are slowing learning integrating the development of suitable guidelines with implementation plans. Awareness, psychosocial and family factors strongly influence asthma and food allergy control. Moreover, monitoring tools are necessary to facilitate self-management. By taking into consideration these and many other pragmatic aspects, national public health programs to control the allergic epidemic have been successful in reducing its impact and trace the need for future research in the area.
Collapse
Affiliation(s)
| | - Salvatore Tripodi
- Department of Paediatrics and Allergology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini, 389, 00157 Rome, Italy.
| |
Collapse
|
29
|
Abstract
Vitamin D (vitD3) deficiency occurs frequently and has profound effects on health, especially asthma. This article examines how current knowledge of vitD3 actions and the worldwide distribution of vitD3 deficiency influences everyday clinical allergy practice. Within the limits of current knowledge, the article concisely explains the molecular nature of vitD3 actions, reviews key vitD3 research as it applies to clinical care, answers questions about the potential clinical impact of low vitD3 levels, and discusses use and safety of vitD3 supplements.
Collapse
Affiliation(s)
- Bruce R Gordon
- Cape Cod Hospital, 27 Park Street, Hyannis, MA 02601, USA; Laryngology & Otology, Harvard University, 25 Shattuck Street, Boston, MA 02115, USA; Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Luong KVQ, Nguyen LTH. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther Adv Respir Dis 2013; 7:327-50. [PMID: 24056290 DOI: 10.1177/1753465813503029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is evidence of aberrations in the vitamin D-endocrine system in subjects with respiratory diseases. Vitamin D deficiency is highly prevalent in patients with respiratory diseases, and patients who receive vitamin D have significantly larger improvements in inspiratory muscle strength and maximal oxygen uptake. Studies have provided an opportunity to determine which proteins link vitamin D to respiratory pathology, including the major histocompatibility complex class II molecules, vitamin D receptor, vitamin D-binding protein, chromosome P450, Toll-like receptors, poly(ADP-ribose) polymerase-1, and the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on respiratory diseases through cell signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D plays a significant role in respiratory diseases. The best form of vitamin D for use in the treatment of respiratory diseases is calcitriol because it is the active metabolite of vitamin D3 and modulates inflammatory cytokine expression. Further investigation of calcitriol in respiratory diseases is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Luong
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA
| | | |
Collapse
|
31
|
San T, Muluk NB, Cingi C. 1,25(OH)₂D₃ and specific IgE levels in children with recurrent tonsillitis, and allergic rhinitis. Int J Pediatr Otorhinolaryngol 2013; 77:1506-11. [PMID: 23871269 DOI: 10.1016/j.ijporl.2013.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES We investigated 1,25-dihydroxyvitamin D3 [1,25(OH)₂D₃] and specific immunoglobulin E (IgE) levels in children with recurrent tonsillitis (RT) plus allergic rhinitis (AR). METHODS Thirty children with RT+AR were included in the study group, and 30 healthy children comprised the control group. AR-related symptoms were determined using a symptom scale. 1,25(OH)₂D₃ and specific IgE measurements were made in both groups. RESULTS The 1,25(OH)₂D₃ value was significantly lower in the RT+AR group than in the control group. Specific IgE (mixed) panels were in normal limits in both groups; whereas specific IgE (mixed) grass pollen panel value of RT+AT group was significantly higher than that of the control group. Higher nasal itching, nasal obstruction, and concha edema scores were related to significantly higher specific IgE values for the (mixed) grass pollen panel, whereas higher sneeze scores were related to higher specific IgE values for the (mixed) pediatric panel. CONCLUSIONS Children with grass pollen allergy may not be exposed to sufficient sunlight. With reduced 1,25(OH)₂D₃, T helper cells may increase, and allergic response also increases. As allergic events increased, these children did not go outside and thus lacked sun exposure. This vicious cycle must be broken, and children with RT+AR should have sunlight exposure to increase 1,25(OH)₂D₃ levels.
Collapse
Affiliation(s)
- Turhan San
- Istanbul Medeniyet University, Göztepe Training and Research Hospital, ENT Department , Istanbul, Turkey
| | | | | |
Collapse
|
32
|
Reversible control by vitamin D of granulocytes and bacteria in the lungs of mice: an ovalbumin-induced model of allergic airway disease. PLoS One 2013; 8:e67823. [PMID: 23826346 PMCID: PMC3691156 DOI: 10.1371/journal.pone.0067823] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/21/2013] [Indexed: 12/26/2022] Open
Abstract
Vitamin D may be essential for restricting the development and severity of allergic diseases and asthma, but a direct causal link between vitamin D deficiency and asthma has yet to be established. We have developed a 'low dose' model of allergic airway disease induced by intraperitoneal injection with ovalbumin (1 µg) and aluminium hydroxide (0.2 mg) in which characteristics of atopic asthma are recapitulated, including airway hyperresponsiveness, antigen-specific immunoglobulin type-E and lung inflammation. We assessed the effects of vitamin D deficiency throughout life (from conception until adulthood) on the severity of ovalbumin-induced allergic airway disease in vitamin D-replete and -deficient BALB/c mice using this model. Vitamin D had protective effects such that deficiency significantly enhanced eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male but not female mice. Vitamin D also suppressed the proliferation and T helper cell type-2 cytokine-secreting capacity of airway-draining lymph node cells from both male and female mice. Supplementation of initially vitamin D-deficient mice with vitamin D for four weeks returned serum 25-hydroxyvitamin D to levels observed in initially vitamin D-replete mice, and also suppressed eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male mice. Using generic 16 S rRNA primers, increased bacterial levels were detected in the lungs of initially vitamin D-deficient male mice, which were also reduced by vitamin D supplementation. These results indicate that vitamin D controls granulocyte levels in the bronchoalveolar lavage fluid in an allergen-sensitive manner, and may contribute towards the severity of asthma in a gender-specific fashion through regulation of respiratory bacteria.
Collapse
|
33
|
Effect of 1,25(OH)2D3 on BALB/c mice infected with Leishmania mexicana. Exp Parasitol 2013; 134:413-21. [PMID: 23707346 DOI: 10.1016/j.exppara.2013.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/29/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
The most active metabolite of vitamin D, 1,25(OH)2D3 is a steroid hormone implicated in a wide range of cell functions such as differentiation, proliferation and apoptosis. Leishmania mexicana causes two kinds of cutaneous leishmaniasis: localized or diffuse. In this work we explored the effect of treatment of 1,25(OH)2D3 on a susceptible leishmaniasis mice model. A significant reduction in the lesion size was found in animals treated with 1,25(OH)2D3. Well preserved tissue and presence of large numbers of eosinophils and fibroblasts was found in the group treated with 1,25(OH)2D3. By contrast, destroyed epidermis was observed with large amount of neutrophils and epithelioid macrophages, on infected groups without 1,25(OH)2D3 treatment. The production of pro-inflammatory cytokines in mice infected and treated with 1,25(OH)2D3 was lower than the animals infected without 1,25(OH)2D3 treatment. Interestingly, there were no differences in the number of parasites in both groups. Finally, the amount of collagen was higher in animals with treatment compare with animals without 1,25(OH)2D3 treatment. In summary, mice treated with 1,25 (OH) 2D3 reflect a healing process without elimination of L. mexicana.
Collapse
|
34
|
Gorman S, Hart PH. The current state of play of rodent models to study the role of vitamin D in UV-induced immunomodulation. Photochem Photobiol Sci 2013; 11:1788-96. [PMID: 22898802 DOI: 10.1039/c2pp25108f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ultraviolet radiation (UVR) from sunlight is immunomodulatory and the main source of vitamin D for humans. Vitamin D can also regulate adaptive immunity, through mechanisms that involve the induction or activation of regulatory T cells. Similar mechanisms have also been proposed for the induction of regulatory T cells after skin exposure to UVR. Here we discuss the converging and diverging immunoregulatory pathways of UVR and vitamin D, including the molecular pathways for regulatory T cell induction, non-genomic pathways regulated by vitamin D, antimicrobial peptides, skin integrity and potential interactions between vitamin D and other UVR-induced mediators. We then discuss possible in vivo approaches that could be used to demonstrate a direct (or otherwise) role for vitamin D in mediating the immunosuppressive effects of UVR such as the use of dietary vitamin D restriction to induce vitamin D deficiency, gene knockout mice or drugs to block enzymes of vitamin D metabolism. We end with discussion of the epigenetic effects of vitamin D and UVR for immunosuppression.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia.
| | | |
Collapse
|
35
|
Gorman S, Scott NM, Tan DHW, Weeden CE, Tuckey RC, Bisley JL, Grimbaldeston MA, Hart PH. Acute erythemal ultraviolet radiation causes systemic immunosuppression in the absence of increased 25-hydroxyvitamin D3 levels in male mice. PLoS One 2012; 7:e46006. [PMID: 23049920 PMCID: PMC3458820 DOI: 10.1371/journal.pone.0046006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/27/2012] [Indexed: 12/17/2022] Open
Abstract
Vitamin D is synthesised by ultraviolet (UV) irradiation of skin and is hypothesized to be a direct mediator of the immunosuppression that occurs following UV radiation (UVR) exposure. Both UVR and vitamin D drive immune responses towards tolerance by ultimately increasing the suppressive activities of regulatory T cells. To examine a role for UVR-induced vitamin D, vitamin D3-deficient mice were established by dietary vitamin D3 restriction. In comparison to vitamin D3-replete mice, vitamin D3-deficient mice had significantly reduced serum levels of 25-hydroxyvitamin D3 (25(OH)D3, <20 nmol.L−1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, <20 pmol.L−1). Following either acute erythemal UVR, or chronic sub-erythemal UVR (8 exposures over 4 weeks) treatment, serum 25(OH)D3 levels significantly increased in vitamin D3-deficient female but not male mice. To determine if UVR-induced vitamin D was a mediator of UVR-induced systemic immunosuppression, responses were measured in mice that were able (female) or unable (male) to increase systemic levels of 25(OH)D3 after UVR. Erythemal UVR (≥4 kJ/m2) suppressed contact hypersensitivity responses (T helper type-1 or -17), aspects of allergic airway disease (T helper type-2) and also the in vivo priming capacity of bone marrow-derived dendritic cells to a similar degree in female and male vitamin D3-deficient mice. Thus, in male mice, UVR-induced 25(OH)D3 is not essential for mediating the immunosuppressive effects of erythemal UVR.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat Rev Immunol 2011; 11:584-96. [PMID: 21852793 DOI: 10.1038/nri3045] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Humans obtain most of their vitamin D through the exposure of skin to sunlight. The immunoregulatory properties of vitamin D have been demonstrated in studies showing that vitamin D deficiency is associated with poor immune function and increased disease susceptibility. The benefits of moderate ultraviolet (UV) radiation exposure and the positive latitude gradients observed for some immune-mediated diseases may therefore reflect the activities of UV-induced vitamin D. Alternatively, other mediators that are induced by UV radiation may be more important for UV-mediated immunomodulation. Here, we compare and contrast the effects of UV radiation and vitamin D on immune function in immunopathological diseases, such as psoriasis, multiple sclerosis and asthma, and during infection.
Collapse
|