1
|
Mmbando GS. The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses. PLANT SIGNALING & BEHAVIOR 2023; 18:2191463. [PMID: 36934364 PMCID: PMC10730183 DOI: 10.1080/15592324.2023.2191463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet-B radiation (UVB; 280-315 nm) is a significant environmental factor that alters plant development, changes interactions between species, and reduces the prevalence of pests and diseases. While UVB radiation has negative effects on plant growth and performance at higher doses, at lower and ambient doses, UVB radiation acts as a non-chemical method for managing biotic stresses by having positive effects on disease resistance and genes that protect plants from pests. Understanding the recent relationship between UVB radiation and plants' biotic stresses is crucial for the development of crops that are resistant to UVB and biotic stresses. However, little is known about the recent interactions between UVB radiation and biotic stresses in plants. This review discusses the most recent connections between UVB radiation and biotic stresses in crops, including how UVB radiation affects a plant's resistance to disease and pests. The interaction of UVB radiation with pathogens and herbivores has been the subject of the most extensive research of these. This review also discusses additional potential strategies for conferring multiple UVB-biotic stress resistance in crop plants, such as controlling growth inhibition, miRNA 396 and 398 modulations, and MAP kinase. This study provides crucial knowledge and methods for scientists looking to develop multiple resistant crops that will improve global food security.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma (UDOM), Dodoma, Tanzania
| |
Collapse
|
2
|
Barnes PW, Robson TM, Zepp RG, Bornman JF, Jansen MAK, Ossola R, Wang QW, Robinson SA, Foereid B, Klekociuk AR, Martinez-Abaigar J, Hou WC, Mackenzie R, Paul ND. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 2023; 22:1049-1091. [PMID: 36723799 PMCID: PMC9889965 DOI: 10.1007/s43630-023-00376-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA.
| | - T M Robson
- Organismal & Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland.
- National School of Forestry, University of Cumbria, Ambleside, UK.
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | | | - R Ossola
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S A Robinson
- Global Challenges Program & School of Earth, Atmospheric and Life Sciences, Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño (La Rioja), Spain
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - R Mackenzie
- Cape Horn International Center (CHIC), Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
3
|
Bartolić D, Stanković M, Prokopijević M, Radotić K. Effects of UV-A and UV-B Irradiation on Antioxidant Activity and Fluorescence Characteristics of Soybean (Glycine max L.) Seeds. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Shi S, Shi R, Li T, Zhou D. UV-B Radiation Effects on the Alpine Plant Kobresia humilis in a Qinghai-Tibet Alpine Meadow. PLANTS (BASEL, SWITZERLAND) 2022; 11:3102. [PMID: 36432831 PMCID: PMC9698231 DOI: 10.3390/plants11223102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Enhanced UV-B radiation resulting from stratospheric ozone depletion has been documented both globally and on the Qinghai-Tibet Plateau in China. The response of Kobresia humilis, an important alpine meadow plant species, to enhanced UV-B radiation was experimentally investigated at the Haibei Alpine Meadow Ecosystem Research Station (37°29′−37°45′ N, 101°12′−101°23′ E; alt. 3200 m). K. humilis was exposed to UV-B radiation including ambient UV-B and enhanced UV-B (simulating a 14% reduction in the ozone layer) in a randomized design with three replications of each treatment. Enhanced UV-B radiation resulted in a significant increase of both leaf area and fresh weight chlorophyll and carotenoid but had no effect on UV-B absorbing pigments. Similarly, enhanced UV-B radiation did not significantly change the photosynthetic O2 elevation rate while leaf thickness, width, and length significantly increased (p < 0.01). The enhanced UV-B radiation was associated with 2−3 days earlier flowering and a larger number of flowers per spikelet. The enhanced UV-B generally resulted in larger leaves and more flowers but earlier phenology. In summary, these findings suggest that alpine species of K. humilis have adapted to the strong solar UV-B radiation intensity presented on the Qinghai-Tibet Plateau, but the interspecies differences and their influence on trophic level should be more concerning.
Collapse
Affiliation(s)
- Shengbo Shi
- Key Laboratory of Adaptation and Evolution of Plateau Biology, Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area and Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, China
| | - Rui Shi
- Guangdong Berkgen Biopharmaceuticals Co., Ltd., Shaoguan Advanced Institute of Biopharmaceuticals, Guangzhou 512000, China
| | - Tiancai Li
- Key Laboratory of Adaptation and Evolution of Plateau Biology, Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area and Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Dangwei Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biology, Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area and Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| |
Collapse
|
5
|
Tie D, Guo Y, Zhu C, Quan J, Liu S, Zhou Z, Chai Y, Yue M, Liu X. Parental UV-B radiation regulates the habitat selection of clonal Duchesnea indica in heterogeneous light environments. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:600-612. [PMID: 35272763 DOI: 10.1071/fp21253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Habitat selection behaviour is an effective strategy adopted by clonal plants in heterogeneous understorey light environments, and it is likely regulated by the parental environment's ultraviolet-B radiation levels (UV-B) due to the photomorphogenesis of UV-B and maternal effects. Here, parental ramets of Duchesnea indica were treated with two UV-B radiation levels [high (UV5 group) and low (UV10 group)], newborn offspring were grown under a heterogeneous light environment (ambient light vs shade habitat), and the growth and DNA methylation variations of parents and offspring were analysed. The results showed that parental UV-B affected not only the growth of the parent but also the offspring. The offspring of different UV-B-radiated parents showed different performances. Although these offspring all displayed a tendency to escape from light environments, such as entering shade habitats earlier, and allocating more biomass under shade (33.06% of control, 42.28% of UV5 and 72.73% of UV10), these were particularly obvious in offspring of the high UV-B parent. Improvements in epigenetic diversity (4.77 of control vs 4.83 of UV10) and total DNA methylation levels (25.94% of control vs 27.15% of UV10) and the inhibition of shade avoidance syndrome (denser growth with shorter stolons and internodes) were only observed in offspring of high UV-B parents. This difference was related to the eustress and stress effects of low and high UV-B, respectively. Overall, the behaviour of D. indica under heterogeneous light conditions was regulated by the parental UV-B exposure. Moreover, certain performance improvements helped offspring pre-regulate growth to cope with future environments and were probably associated with the effects of maternal DNA methylation variations in UV-B-radiated parents.
Collapse
Affiliation(s)
- Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China; and Linyou Branch of Baoji Tobacco Company, Linyou County, Baoji, China
| | - Yuehan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Chunrui Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Shiqiang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
6
|
Zhong Z, Wang X, Yin X, Tian J, Komatsu S. Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves. Int J Mol Sci 2021; 22:12239. [PMID: 34830127 PMCID: PMC8618018 DOI: 10.3390/ijms222212239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023] Open
Abstract
Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Xiaojian Yin
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, China;
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
7
|
Meyer P, Van de Poel B, De Coninck B. UV-B light and its application potential to reduce disease and pest incidence in crops. HORTICULTURE RESEARCH 2021; 8:194. [PMID: 34465753 PMCID: PMC8408258 DOI: 10.1038/s41438-021-00629-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
Ultraviolet-B radiation (280-315 nm), perceived by the plant photoreceptor UVR8, is a key environmental signal that influences plant growth and development and can reduce disease and pest incidence. The positive effect of UV-B on disease resistance and incidence in various plant species supports the implementation of supplemental UV-B radiation in sustainable crop production. However, despite many studies focusing on UV-B light, there is no consensus on the best mode of application. This review aims to analyze, evaluate, and organize the different application strategies of UV-B radiation in crop production with a focus on disease resistance. We summarize the physiological effects of UV-B light on plants and discuss how plants perceive and transduce UV-B light by the UVR8 photoreceptor as well as how this perception alters plant specialized metabolite production. Next, we bring together conclusions of various studies with respect to different UV-B application methods to improve plant resistance. In general, supplemental UV-B light has a positive effect on disease resistance in many plant-pathogen combinations, mainly through the induction of the production of specialized metabolites. However, many variables (UV-B light source, plant species, dose and intensity, timing during the day, duration, background light, etc.) make it difficult to compare and draw general conclusions. We compiled the information of recent studies on UV-B light applications, including e.g., details on the UV-B light source, experimental set-up, calculated UV-B light dose, intensity, and duration. This review provides practical insights and facilitates future research on UV-B radiation as a promising tool to reduce disease and pest incidence.
Collapse
Affiliation(s)
- Prisca Meyer
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
8
|
Bernhard GH, Neale RE, Barnes PW, Neale PJ, Zepp RG, Wilson SR, Andrady AL, Bais AF, McKenzie RL, Aucamp PJ, Young PJ, Liley JB, Lucas RM, Yazar S, Rhodes LE, Byrne SN, Hollestein LM, Olsen CM, Young AR, Robson TM, Bornman JF, Jansen MAK, Robinson SA, Ballaré CL, Williamson CE, Rose KC, Banaszak AT, Häder DP, Hylander S, Wängberg SÅ, Austin AT, Hou WC, Paul ND, Madronich S, Sulzberger B, Solomon KR, Li H, Schikowski T, Longstreth J, Pandey KK, Heikkilä AM, White CC. Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochem Photobiol Sci 2020; 19:542-584. [PMID: 32364555 PMCID: PMC7442302 DOI: 10.1039/d0pp90011g] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022]
Abstract
This assessment, by the United Nations Environment Programme (UNEP) Environmental Effects Assessment Panel (EEAP), one of three Panels informing the Parties to the Montreal Protocol, provides an update, since our previous extensive assessment (Photochem. Photobiol. Sci., 2019, 18, 595-828), of recent findings of current and projected interactive environmental effects of ultraviolet (UV) radiation, stratospheric ozone, and climate change. These effects include those on human health, air quality, terrestrial and aquatic ecosystems, biogeochemical cycles, and materials used in construction and other services. The present update evaluates further evidence of the consequences of human activity on climate change that are altering the exposure of organisms and ecosystems to UV radiation. This in turn reveals the interactive effects of many climate change factors with UV radiation that have implications for the atmosphere, feedbacks, contaminant fate and transport, organismal responses, and many outdoor materials including plastics, wood, and fabrics. The universal ratification of the Montreal Protocol, signed by 197 countries, has led to the regulation and phase-out of chemicals that deplete the stratospheric ozone layer. Although this treaty has had unprecedented success in protecting the ozone layer, and hence all life on Earth from damaging UV radiation, it is also making a substantial contribution to reducing climate warming because many of the chemicals under this treaty are greenhouse gases.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc., San Diego, California, USA
| | - R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - P W Barnes
- Biological Sciences and Environment Program, Loyola University, New Orleans, USA
| | - P J Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - R G Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - A F Bais
- Department of Physics, Aristotle University of Thessaloniki, Greece
| | - R L McKenzie
- National Institute of Water & Atmospheric Research, Lauder, Central Otago, New Zealand
| | - P J Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - P J Young
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - J B Liley
- National Institute of Water & Atmospheric Research, Lauder, Central Otago, New Zealand
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - L E Rhodes
- Faculty of Biology Medicine and Health, University of Manchester, and Salford Royal Hospital, Manchester, UK
| | - S N Byrne
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - L M Hollestein
- Erasmus MC, University Medical Center Rotterdam, Manchester, The Netherlands
| | - C M Olsen
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College, London, London, UK
| | - T M Robson
- Organismal & Evolutionary Biology, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - M A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - S A Robinson
- Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, Australia
| | - C L Ballaré
- Faculty of Agronomy and IFEVA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - C E Williamson
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - K C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - A T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - D -P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - S Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - S -Å Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - A T Austin
- Faculty of Agronomy and IFEVA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - W -C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan, China
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - S Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - B Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - H Li
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - T Schikowski
- Research Group of Environmental Epidemiology, Leibniz Institute of Environmental Medicine, Düsseldorf, Germany
| | - J Longstreth
- Institute for Global Risk Research, Bethesda, Maryland, USA
| | - K K Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | - C C White
- , 5409 Mohican Rd, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Robson TM, Aphalo PJ, Banaś AK, Barnes PW, Brelsford CC, Jenkins GI, Kotilainen TK, Łabuz J, Martínez-Abaigar J, Morales LO, Neugart S, Pieristè M, Rai N, Vandenbussche F, Jansen MAK. A perspective on ecologically relevant plant-UV research and its practical application. Photochem Photobiol Sci 2019; 18:970-988. [PMID: 30720036 DOI: 10.1039/c8pp00526e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
Collapse
Affiliation(s)
- T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu E, Wang Y, Shen L, Yahuza L, Tian J, Yang L, Shang L, Zhu W, Zhan J. Strategies of Phytophthora infestans adaptation to local UV radiation conditions. Evol Appl 2019; 12:415-424. [PMID: 30828364 PMCID: PMC6383706 DOI: 10.1111/eva.12722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022] Open
Abstract
Expected global changes in environmental conditions underline the need for a better understanding of genetic variation in ecological traits and their strategies of adaptation to the stresses. In this study, evolutionary mechanisms and processes of UV adaptation in plant pathogens were investigated by combining statistical genetics, physiological assays, and common garden experiment approaches in an assessment of the potato late blight pathogen, Phytophthora infestans, sampled from various geographic locations in China. We found spatial divergence caused by diversifying selection in UV tolerance among P. infestans populations. Local UV radiation was the driving force of selection as indicated by a positive correlation between UV tolerance in P. infestans populations and the altitude of collection sites. Plasticity accounted for 68% of population variation while heritability was negligible, suggesting temporary changes in gene expression and/or enzymatic activity play a more important role than permanent modification of gene structure in the evolution of UV adaptation. This adaptation strategy may explain the lack of fitness penalty observed in genotypes with higher UV tolerance.
Collapse
Affiliation(s)
- E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | - Yan‐Ping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | - Lin‐Lin Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | - Lurwanu Yahuza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | - Ji‐Chen Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | - Li‐Na Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | - Jiasui Zhan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Fujian Key Laboratory of Plant Virology, Institute of Plant VirologyFujian Agricultural and Forestry UniversityFuzhouFujianChina
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
11
|
Escobar Bravo R, Chen G, Grosser K, Van Dam NM, Leiss KA, Klinkhamer PGL. Ultraviolet radiation enhances salicylic acid-mediated defense signaling and resistance to Pseudomonas syringae DC3000 in a jasmonic acid-deficient tomato mutant. PLANT SIGNALING & BEHAVIOR 2019; 14:e1581560. [PMID: 30782061 PMCID: PMC6512923 DOI: 10.1080/15592324.2019.1581560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/06/2019] [Indexed: 05/29/2023]
Abstract
Ultraviolet radiation (UV) is an important modulator of plant defenses against biotic stresses. We have recently described that different supplemental UV exposure times and irradiance intensities enhanced tomato (Solanum lycopersicum) resistance to Western flower thrips (Frankliniella occidentalis). UV increased jasmonic acid-isoleucine (JA-Ile) and salicylic acid (SA) levels, as well as the expression of JA- and SA-responsive genes, before thrips herbivory. Here we report how UV affects tomato defense responses upon thrips infestation, and resistance to pathogens that are susceptible to the activation of SA-associated defenses. Our experiments reveal that, at 7 days after thrips infestation, UV did not enhance the levels of jasmonates, auxin or abscisic acid. UV also did not affect the expression of JA-responsive genes in the cultivar Moneymaker, the jasmonate deficient mutant def-1, the type-VI trichome deficient mutant od-2, or their wild-type Castlemart. However, UV strongly activated SA-associated defense responses in def-1 after thrips infestation. Further bioassays showed that UV increased def-1 resistance to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000, which is susceptible to SA-mediated defenses. Our results suggest that UV might enhance tomato resistance to this pathogen in the JA deficient genotype through the activation of SA defenses.
Collapse
Affiliation(s)
- Rocío Escobar Bravo
- Plant Sciences and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Gang Chen
- Plant Sciences and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole M. Van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Kirsten A. Leiss
- Plant Sciences and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
- Business Unit Horticulture, Wageningen University & Research, Bleiswijk, The Netherlands
| | - Peter G. L. Klinkhamer
- Plant Sciences and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| |
Collapse
|
12
|
Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, Leiss KA, Klinkhamer PGL. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:315-327. [PMID: 30304528 PMCID: PMC6305188 DOI: 10.1093/jxb/ery347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Ultraviolet (UV) radiation can modulate plant defenses against herbivorous arthropods. We investigated how different UV exposure times and irradiance intensities affected tomato (Solanum lycopersicum) resistance to thrips (Frankliniella occidentalis) by assessing UV effects on thrips-associated damage and host-selection, selected metabolite and phytohormone contents, expression of defense-related genes, and trichome density and chemistry, the latter having dual roles in defense and UV protection. Short UV daily exposure times increased thrips resistance in the cultivar 'Moneymaker' but this could not be explained by changes in the contents of selected leaf polyphenols or terpenes, nor by trichome-associated defenses. UV irradiance intensity also affected resistance to thrips. Further analyses using the tomato mutants def-1, impaired in jasmonic acid (JA) biosynthesis, od-2, defective in the production of functional type-VI trichomes, and their wild-type, 'Castlemart', showed that UV enhanced thrips resistance in Moneymaker and od-2, but not in def-1 and Castlemart. UV increased salicylic acid (SA) and JA-isoleucine concentrations, and increased expression of SA- and JA-associated genes in Moneymaker, while inducing expression of JA-defensive genes in od-2. Our results demonstrate that UV-mediated enhancement of tomato resistance to thrips is probably associated with the activation of JA-associated signaling, but not with plant secondary metabolism or trichome-related traits.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Gang Chen
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| |
Collapse
|
13
|
Carvalho SD, Castillo JA. Influence of Light on Plant-Phyllosphere Interaction. FRONTIERS IN PLANT SCIENCE 2018; 9:1482. [PMID: 30369938 PMCID: PMC6194327 DOI: 10.3389/fpls.2018.01482] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/21/2018] [Indexed: 05/11/2023]
Abstract
Plant-phyllosphere interactions depend on microbial diversity, the plant host and environmental factors. Light is perceived by plants and by microorganisms and is used as a cue for their interaction. Photoreceptors respond to narrow-bandwidth wavelengths and activate specific internal responses. Light-induced plant responses include changes in hormonal levels, production of secondary metabolites, and release of volatile compounds, which ultimately influence plant-phyllosphere interactions. On the other hand, microorganisms contribute making some essential elements (N, P, and Fe) biologically available for plants and producing growth regulators that promote plant growth and fitness. Therefore, light directly or indirectly influences plant-microbe interactions. The usage of light-emitting diodes in plant growth facilities is helping increasing knowledge in the field. This progress will help define light recipes to optimize outputs on plant-phyllosphere communications. This review describes research advancements on light-regulated plant-phyllosphere interactions. The effects of full light spectra and narrow bandwidth-wavelengths from UV to far-red light are discussed.
Collapse
Affiliation(s)
- Sofia D. Carvalho
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - José A. Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| |
Collapse
|
14
|
Dillon FM, Tejedor MD, Ilina N, Chludil HD, Mithöfer A, Pagano EA, Zavala JA. Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean. PLANT, CELL & ENVIRONMENT 2018; 41:383-394. [PMID: 29194661 DOI: 10.1111/pce.13104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 05/13/2023]
Abstract
Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone.
Collapse
Affiliation(s)
- Francisco M Dillon
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
- INBA/CONICET, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - M Daniela Tejedor
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Natalia Ilina
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Hugo D Chludil
- Cátedra de Química de Biomoléculas, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Eduardo A Pagano
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Jorge A Zavala
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
- INBA/CONICET, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
15
|
Qi J, Zhang M, Lu C, Hettenhausen C, Tan Q, Cao G, Zhu X, Wu G, Wu J. Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory through the jasmonic acid pathway. Sci Rep 2018; 8:277. [PMID: 29321619 PMCID: PMC5762720 DOI: 10.1038/s41598-017-18600-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/14/2017] [Indexed: 01/02/2023] Open
Abstract
Land plants protect themselves from ultraviolet-B (UV-B) by accumulating UV-absorbing metabolites, which may also function as anti-insect toxins. Previous studies have shown that UV-B enhances the resistance of different plant species to pierce-sucking pests; however, whether and how UV-B influences plant defense against chewing caterpillars are not well understood. Here we show that UV-B treatment increased Spodoptera litura herbivory-induced jasmonic acid (JA) production in Arabidopsis and thereby Arabidopsis exhibited elevated resistance to S. litura. Using mutants impaired in the biosynthesis of JA and the defensive metabolites glucosinolates (GSs), we show that the UV-B-induced resistance to S. litura is dependent on the JA-regulated GSs and an unidentified anti-insect metabolite(s). Similarly, UV-B treatment also enhanced the levels of JA-isoleucine conjugate and defense-related secondary metabolites in tobacco, rice, and maize after these plants were treated with simulated herbivory of lepidopteran insects; consistently, these plants showed elevated resistance to insect larvae. Using transgenic plants impaired in JA biosynthesis or signaling, we further demonstrate that the UV-B-enhanced defense responses also require the JA pathway in tobacco and rice. Our findings reveal a likely conserved JA-dependent mechanism by which UV-B enhances plant defense against lepidopteran insects.
Collapse
Affiliation(s)
- Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Mou Zhang
- College of Plant Protection, Yunnan Agriculture University, Kunming, 650201, China
| | - Chengkai Lu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qing Tan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 31006, China
| | - Guoxing Wu
- College of Plant Protection, Yunnan Agriculture University, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
16
|
Mao B, Wang Y, Zhao TH, Tian RR, Wang W, Ye JS. Combined Effects of Elevated O 3 Concentrations and Enhanced UV-B Radiation of the Biometric and Biochemical Properties of Soybean Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:1568. [PMID: 28955360 PMCID: PMC5600998 DOI: 10.3389/fpls.2017.01568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/28/2017] [Indexed: 06/01/2023]
Abstract
Enhanced ultraviolet-B (UV-B) radiation and elevated tropospheric ozone alone may inhibit the growth of agricultural crops. However, research regarding their combined effects on growth and biochemical properties of roots is still scarce. Using open top chambers, we monitored the response of growth, secondary metabolites, endogenous hormones and enzyme activities of soybean roots to elevated O3 and enhanced UV-B individually and in combination at stages of branching, flowering and podding. Our results indicated that the root biomass decreased by 23.6, 25.2, and 27.7%, and root oxidative capacity declined by11.2, 39.9, and 55.7% exposed to elevated O3, enhanced UV-B, and O3 + UV-B, respectively, compared to the control treatment. Concentrations of quercetin and ABA were significantly increased, while concentrations of total polyphenol and P-coumaric acid responded insignificantly to elevated O3, enhanced UV-B, and O3 + UV-B during the whole period of soybean growth. Elevated O3, enhanced UV-B and O3 + UV-B showed significant negative effects on superoxide dismutase (EC 1.15.1.1) activity at flowering stage, on activities of peroxidase (EC 1.11.1.7) and catalase (EC 1.11.1.6) at podding stage, on ascorbate peroxidase activity during the whole period of soybean growth. Moreover, compared to hormones and enzyme activity, secondary metabolisms showed stronger correlation with root growth exposed to elevated O3 and enhanced UV-B individually and in combination. Our study concluded that combined effects of O3 and UV-B radiation significantly exacerbated the decline of soybean root growth, and for annual legumes, the inhibited root growth exposed to O3 and/or UV-B radiation was mostly associated with secondary metabolisms (especially flavonoids).
Collapse
Affiliation(s)
- Bing Mao
- Postdoctoral Research Station of Crop Science, College of Agronomy, Shenyang Agricultural UniversityShenyang, China
- College of Agronomy, Shenyang Agricultural UniversityShenyang, China
| | - Yan Wang
- College of Agronomy, Shenyang Agricultural UniversityShenyang, China
| | - Tian-Hong Zhao
- College of Agronomy, Shenyang Agricultural UniversityShenyang, China
| | - Rong-Rong Tian
- College of Agronomy, Shenyang Agricultural UniversityShenyang, China
| | - Wei Wang
- College of Agronomy, Shenyang Agricultural UniversityShenyang, China
| | - Jia-Shu Ye
- National Field Observation and Research Station of Shenyang Agro-EcosystemsShenyang, China
| |
Collapse
|
17
|
Dillon FM, Chludil HD, Zavala JA. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean. PHYTOCHEMISTRY 2017; 141:27-36. [PMID: 28551080 DOI: 10.1016/j.phytochem.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS2. We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata.
Collapse
Affiliation(s)
- Francisco M Dillon
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; CONICET/INBA, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Hugo D Chludil
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Química de Biomoléculas, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Jorge A Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; CONICET/INBA, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Mao B, Yin H, Wang Y, Zhao TH, Tian RR, Wang W, Ye JS. Combined effects of O3 and UV radiation on secondary metabolites and endogenous hormones of soybean leaves. PLoS One 2017; 12:e0183147. [PMID: 28806739 PMCID: PMC5555667 DOI: 10.1371/journal.pone.0183147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
Enhanced ultraviolet radiation (UV) and elevated tropospheric ozone (O3) may individually cause reductions in the growth and productivity of important agricultural crops. However, research regarding their combined effects on important agricultural crops is still scarce, especially on changes in secondary metabolites and endogenous hormones, which are important protective substances and signal components that control plant responses to environment stresses. In this study, using an experimental setup of open top chambers, we monitored the responses of seed yield per plant, leaf secondary metabolites and leaf endogenous hormones under the stress of elevated O3 and enhanced UV radiation individually, as well as their combined stress. The results indicated that elevated O3 (110 ± 10 nmol mol-1 for 8 hours per day) and enhanced UV radiation (1.73 kJ h-1 m-2) significantly decreased seed yield per plant. Concentrations of rutin, queretin and total flavonoids were significantly increased under the elevated O3 treatment or the enhanced UV radiation treatment or the combination treatment at flowering and podding stages, and concentrations of rutin, queretin and total flavonoids showed significant correlations with seed yield per plant. Concentrations of ABA and IAA decreased under the three treatments. There was a significant positive correlation between the ABA concentration and seed yield and a negative correlation between the IAA concentration and seed yield. We concluded that the combined stress of elevated O3 and UV radiation significantly decreased seed yield per plant. Yield reduction was associated with changes in the concentrations of flavonoids, ABA and IAA in soybean leaves. The effects of the combined O3 and UV stress were always greater than those of the individual stresses alone.
Collapse
Affiliation(s)
- Bing Mao
- Postdoctoral Research Station of Crop Science, College of Agronomy, Shenyang Agricultural University, Shenyang, China
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hong Yin
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yan Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Tian-Hong Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Rong-Rong Tian
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Wei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jia-Shu Ye
- National Field Observation and Research Station of Shenyang Agro-ecosystems, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
19
|
The Role of Specialized Photoreceptors in the Protection of Energy‐Rich Tissues. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Escobar-Bravo R, Klinkhamer PGL, Leiss KA. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. FRONTIERS IN PLANT SCIENCE 2017; 8:278. [PMID: 28303147 PMCID: PMC5332372 DOI: 10.3389/fpls.2017.00278] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 05/06/2023]
Abstract
Ultraviolet-B (UV-B) light plays a crucial role in plant-herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests.
Collapse
Affiliation(s)
- Rocio Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology of Leiden, Leiden UniversityLeiden, Netherlands
| | | | | |
Collapse
|
21
|
Zhang ZS, Jin LQ, Li YT, Tikkanen M, Li QM, Ai XZ, Gao HY. Ultraviolet-B Radiation (UV-B) Relieves Chilling-Light-Induced PSI Photoinhibition And Accelerates The Recovery Of CO 2 Assimilation In Cucumber (Cucumis sativus L.) Leaves. Sci Rep 2016; 6:34455. [PMID: 27686324 PMCID: PMC5043378 DOI: 10.1038/srep34455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet-B radiation (UV-B) is generally considered to negatively impact the photosynthetic apparatus and plant growth. UV-B damages PSII but does not directly influence PSI. However, PSI and PSII successively drive photosynthetic electron transfer, therefore, the interaction between these systems is unavoidable. So we speculated that UV-B could indirectly affect PSI under chilling-light conditions. To test this hypothesis, the cucumber leaves were illuminated by UV-B prior or during the chilling-light treatment, and the leaves were then transferred to 25 °C and low-light conditions for recovery. The results showed that UV-B decreased the electron transfer to PSI by inactivating the oxygen-evolving complex (OEC), thereby protecting PSI from chilling-light-induced photoinhibition. This effect advantages the recoveries of PSI and CO2 assimilation after chilling-light stress, therefore should minimize the yield loss caused by chilling-light stress. Because sunlight consists of both UV-B and visible light, we suggest that UV-B-induced OEC inactivation is critical for chilling-light-induced PSI photoinhibition in field. Moreover, additional UV-B irradiation is an effective strategy to relieve PSI photoinhibition and yield loss in protected cultivation during winter. This study also demonstrates that minimizing the photoinhibition of PSI rather than that of PSII is essential for the chilling-light tolerance of the plant photosynthetic apparatus.
Collapse
Affiliation(s)
- Zi-Shan Zhang
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Qiao Jin
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu-Ting Li
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Mikko Tikkanen
- Plant Physiology and Molecular Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Qing-Ming Li
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xi-Zhen Ai
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui-Yuan Gao
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
22
|
Barnes PW, Flint SD, Ryel RJ, Tobler MA, Barkley AE, Wargent JJ. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:94-100. [PMID: 25465528 DOI: 10.1016/j.plaphy.2014.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 05/13/2023]
Abstract
The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA.
| | - Stephan D Flint
- Department of Forest, Rangeland and Fire Sciences, UIPO 441135, University of Idaho, Moscow, ID 83844-1135, USA
| | - Ronald J Ryel
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322-5230, USA
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Anne E Barkley
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Jason J Wargent
- Institute of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
23
|
Björn LO. On the history of phyto-photo UV science (not to be left in skoto toto and silence). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:3-8. [PMID: 25308920 DOI: 10.1016/j.plaphy.2014.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/17/2014] [Indexed: 05/22/2023]
Abstract
This review of the history of ultraviolet photobiology focuses on the effects of UV-B (280-315 nm) radiation on terrestrial plants. It describes the early history of ultraviolet photobiology, the discovery of DNA as a major ultraviolet target and the discovery of photoreactivation and photolyases, and the later identification of Photosystem II as another important target for damage to plants by UV-B radiation. Some experimental techniques are briefly outlined. The insight that the ozone layer was thinning spurred the interest in physiological and ecological effects of UV-B radiation and resulted in an exponential increase over time in the number of publications and citations until 1998, at which time it was realized by the research community that the Montreal Protocol regulating the pollution of the atmosphere with ozone depleting substances was effective. From then on, the publication and citation rate has continued to rise exponentially, but with an abrupt change to lower exponents. We have now entered a phase when more emphasis is put on the "positive" effects of UV-B radiation, and with more emphasis on regulation than on damage and inhibition.
Collapse
Affiliation(s)
- Lars Olof Björn
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; Lund University, Department of Biology, Sölvegatan 35, SE-22362 Lund, Sweden.
| |
Collapse
|
24
|
Mintoff SJL, Rookes JE, Cahill DM. Sub-lethal UV-C radiation induces callose, hydrogen peroxide and defence-related gene expression in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:703-11. [PMID: 25381714 DOI: 10.1111/plb.12286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/02/2014] [Indexed: 05/24/2023]
Abstract
Exposure of plants to UV-C irradiation induces gene expression and cellular responses that are commonly associated with wounding and pathogen defence, and in some cases can lead to increased resistance against pathogen infection. We examined, at a physiological, molecular and biochemical level, the effects of and responses to, sub-lethal UV-C exposure on Arabidopsis plants when irradiated with increasing dosages of UV-C radiation. Following UV-C exposure plants had reduced leaf areas over time, with the severity of reduction increasing with dosage. Severe morphological changes that included leaf glazing, bronzing and curling were found to occur in plants treated with the 1000 J·m(-2) dosage. Extensive damage to the mesophyll was observed, and cell death occurred in both a dosage- and time-dependent manner. Analysis of H₂O₂ activity and the pathogen defence marker genes PR1 and PDF1.2 demonstrated induction of these defence-related responses at each UV-C dosage tested. Interestingly, in response to UV-C irradiation the production of callose (β-1,3-glucan) was identified at all dosages examined. Together, these results show plant responses to UV-C irradiation at much lower doses than have previously been reported, and that there is potential for the use of UV-C as an inducer of plant defence.
Collapse
Affiliation(s)
- S J L Mintoff
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic., Australia
| | | | | |
Collapse
|
25
|
Zavala JA, Mazza CA, Dillon FM, Chludil HD, Ballaré CL. Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions. PLANT, CELL & ENVIRONMENT 2015; 38:920-8. [PMID: 24811566 DOI: 10.1111/pce.12368] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 05/07/2023]
Abstract
Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions.
Collapse
Affiliation(s)
- Jorge A Zavala
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE, Buenos Aires, Argentina; INBA, Universidad de Buenos Aires, C1417DSE, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
26
|
Bornman JF, Barnes PW, Robinson SA, Ballaré CL, Flint SD, Caldwell MM. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems. Photochem Photobiol Sci 2015; 14:88-107. [DOI: 10.1039/c4pp90034k] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We summarise advances in our knowledge of how UV-B radiation (280–315 nm) together with other climate change factors interact in their influence on terrestrial organisms and ecosystems.
Collapse
Affiliation(s)
- J. F. Bornman
- International Institute of Agri-Food Security (IIAFS)
- Curtin University
- Perth
- Australia
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program
- Loyola University New Orleans
- New Orleans
- USA
| | - S. A. Robinson
- Institute for Conservation Biology
- School of Biological Sciences
- The University of Wollongong
- New South Wales 2522
- Australia
| | - C. L. Ballaré
- IFEVA Universidad de Buenos Aires and IIB Universidad Nacional de San Martín
- Consejo Nacional de Investigaciones Científicas y Técnicas
- C1417DSE Buenos Aires
- Argentina
| | - S. D. Flint
- Department of Forest
- Rangeland
- and Fire Sciences
- University of Idaho
- Moscow
| | | |
Collapse
|
27
|
Season and light affect constitutive defenses of understory shrub species against folivorous insects. ACTA OECOLOGICA 2013. [DOI: 10.1016/j.actao.2013.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|