1
|
Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev 2024; 211:115347. [PMID: 38844005 DOI: 10.1016/j.addr.2024.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Viscus Biologics LLC, 2603 Miles Road, Cleveland, OH 44128, USA
| | - Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Li Q, Sun Y, Zhao H, Gao Z, Zhai D. Structure and properties of the acellular porcine cornea irradiated with electron beam and its in-situ implantation. J Biomed Mater Res B Appl Biomater 2023; 111:2013-2024. [PMID: 37477184 DOI: 10.1002/jbm.b.35301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Different sterilization doses of the electron beam (E-beam) will change the properties of biomaterials and affect their clinical application. Acellular porcine cornea (APC) is a promising corneal substitute to alleviate the shortage of corneal resources. The residual DNA was significantly reduced to 18.50 ± 3.19 ng/mg, and the clearance rate of α-Gal was close to 100% after the treatment with freezing-thawing combined enzyme, indicating that the decellularization was effective. The effects of different E-beam doses at 0, 2, 8, 15, and 25 kGy on the APC were studied. With the increase in irradiation dose, the transmittance, tensile strength, and swelling ratio of APC gradually decreased, but the resistance to enzymatic degradation was stronger than that of non-irradiated APC, especially at 8 kGy. The structure of APC was denser after irradiation, but the dose of 25 kGy could cause partial collagen fiber fracture and increase the pore size. The cell viability of the APC irradiated by 15 and 25 kGy were greater than 80%. After the implantation in rabbit corneas, there was no obvious neovascularization and inflammation, but the dose of 25 kGy had a more destructive effect on the chemical bonds of collagen, which made the APC easier to be degraded. The thickness of APC in the 25 kGy group was thinner than that in the 15 kGy group 1 year after surgery, and the epithelium grew more slowly, so the E-beam dose of 15 kGy might be more suitable for the sterilization of APC.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Yajun Sun
- Research and Development Center, Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, Shandong, China
| | - Haibin Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhiyong Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Dongjie Zhai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Wang X, Elbahrawi RT, Abdukadir AM, Ali ZM, Chan V, Corridon PR. A proposed model of xeno-keratoplasty using 3D printing and decellularization. Front Pharmacol 2023; 14:1193606. [PMID: 37799970 PMCID: PMC10548234 DOI: 10.3389/fphar.2023.1193606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Corneal opacity is a leading cause of vision impairment and suffering worldwide. Transplantation can effectively restore vision and reduce chronic discomfort. However, there is a considerable shortage of viable corneal graft tissues. Tissue engineering may address this issue by advancing xeno-keratoplasty as a viable alternative to conventional keratoplasty. In particular, livestock decellularization strategies offer the potential to generate bioartificial ocular prosthetics in sufficient supply to match existing and projected needs. To this end, we have examined the best practices and characterizations that have supported the current state-of-the-art driving preclinical and clinical applications. Identifying the challenges that delimit activities to supplement the donor corneal pool derived from acellular scaffolds allowed us to hypothesize a model for keratoprosthesis applications derived from livestock combining 3D printing and decellularization.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Zehara Mohammed Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Hleathcare, Engineering and Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Dittfeld C, Welzel C, König U, Jannasch A, Alexiou K, Blum E, Bronder S, Sperling C, Maitz MF, Tugtekin SM. Hemocompatibility tuning of an innovative glutaraldehyde-free preparation strategy using riboflavin/UV crosslinking and electron irradiation of bovine pericardium for cardiac substitutes. BIOMATERIALS ADVANCES 2023; 147:213328. [PMID: 36764200 DOI: 10.1016/j.bioadv.2023.213328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Hemocompatibility tuning was adopted to explore and refine an innovative, GA-free preparation strategy combining decellularization, riboflavin/UV crosslinking, and low-energy electron irradiation (SULEEI) procedure. A SULEEI-protocol was established to avoid GA-dependent deterioration that results in insufficient long-term aortic valve bioprosthesis durability. Final SULEEI-pericardium, intermediate steps and GA-fixed reference pericardium were exposed in vitro to fresh human whole blood to elucidate effects of preparation parameters on coagulation and inflammation activation and tissue histology. The riboflavin/UV crosslinking step showed to be less efficient in inactivating extracellular matrix (ECM) protein activity than the GA fixation, leading to tissue-factor mediated blood clotting. Intensifying the riboflavin/UV crosslinking with elevated riboflavin concentration and dextran caused an enhanced activation of the complement system. Yet activation processes induced by the previous protocol steps were quenched with the final electron beam treatment step. An optimized SULEEI protocol was developed using an intense and extended, trypsin-containing decellularization step to inactivate tissue factor and a dextran-free, low riboflavin, high UV crosslinking step. The innovative and improved GA-free SULEEI-preparation protocol results in low coagulant and low inflammatory bovine pericardium for surgical application.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany.
| | - Cindy Welzel
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Ulla König
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Konstantin Alexiou
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Ekaterina Blum
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Saskia Bronder
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Claudia Sperling
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Biofunctional Polymer Materials, Dresden, Germany
| | - Manfred F Maitz
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Biofunctional Polymer Materials, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| |
Collapse
|
5
|
Anisha GS. Biopharmaceutical applications of α-galactosidases. Biotechnol Appl Biochem 2023; 70:257-267. [PMID: 35436353 DOI: 10.1002/bab.2349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
α-Galactosidases are exoglycosidases that are active on galactose-containing side chains in oligosaccharides, polysaccharides, glycolipids, and glycoproteins. α-Galactosidases are gaining increased interest in human medicine, especially in the enzyme replacement therapy for Fabry's disease. α-Galactosidases with regioselectivity toward α-1,3-linked galactose find application in xenotransplantation and blood group transformation. The use of α-galactosidases as a therapeutic agent in alleviating the postprandial symptoms of irritable bowel syndrome is much acclaimed. The excellent therapeutic applications of α-galactosidases have led to an upwelling of worldwide research interventions to identify novel α-galactosidases with improved catalytic efficiency. In addition to these therapeutic applications, α-galactosidases also have interesting applications in the industrial sectors like food, feed, probiotics, sugar, and paper pulp. The current review focuses on the diverse therapeutic applications of α-galactosidases and their prospects.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Stocco E, Barbon S, Mammana M, Zambello G, Contran M, Parnigotto PP, Macchi V, Conconi MT, Rea F, De Caro R, Porzionato A. Preclinical and clinical orthotopic transplantation of decellularized/engineered tracheal scaffolds: A systematic literature review. J Tissue Eng 2023; 14:20417314231151826. [PMID: 36874984 PMCID: PMC9974632 DOI: 10.1177/20417314231151826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 03/07/2023] Open
Abstract
Severe tracheal injuries that cannot be managed by mobilization and end-to-end anastomosis represent an unmet clinical need and an urgent challenge to face in surgical practice; within this scenario, decellularized scaffolds (eventually bioengineered) are currently a tempting option among tissue engineered substitutes. The success of a decellularized trachea is expression of a balanced approach in cells removal while preserving the extracellular matrix (ECM) architecture/mechanical properties. Revising the literature, many Authors report about different methods for acellular tracheal ECMs development; however, only few of them verified the devices effectiveness by an orthotopic implant in animal models of disease. To support translational medicine in this field, here we provide a systematic review on studies recurring to decellularized/bioengineered tracheas implantation. After describing the specific methodological aspects, orthotopic implant results are verified. Furtherly, the only three clinical cases of compassionate use of tissue engineered tracheas are reported with a focus on outcomes.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Marco Mammana
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Giovanni Zambello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Martina Contran
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Maria Teresa Conconi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Rea
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| |
Collapse
|
7
|
Welzel C, König U, Jannasch A, Matschke K, Tugtekin SM, Dittfeld C, Steiner G. Infrared Spectroscopic Verification of a α-Helical Collagen Structure in Glutaraldehyde-Free Crosslinked Bovine Pericardium for Cardiac Implants. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122035. [PMID: 36556400 PMCID: PMC9785276 DOI: 10.3390/life12122035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The degeneration of heart valve bioprostheses due to calcification processes is caused by the intercalation of calciumhydroxyapatite in pericardium collagen bundles. Variations of the protein secondary structure of biomaterials according to preparation are relevant for this mineralization process and thus the structural characterization of innovative bioprostheses materials is of great importance. The gold standard for prostheses preparation is glutaraldehyde (GA)-fixation of bovine pericardium that adversely promotes calcification. The novel GA-free SULEEI-treatment of bovine pericardium includes decellularization, UV-crosslinking, and electron beam sterilization. The aim of this study is the structural characterization of SULEEI-treated and GA-fixed bovine pericardium. IR spectroscopic imaging combined with multivariate data and curve fit analysis was applied to investigate the amide I and amide II regions of SULEEI-treated and GA-fixed samples. The spectroscopic images of GA-fixed pericardial tissue exhibited a generally high content of amine groups and side chains providing nucleation points for calcification processes. In contrast, in SULEEI-treated tissue, the typical α-helical structure was retained and was supposed to be less prone to deterioration.
Collapse
Affiliation(s)
- Cindy Welzel
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, 01307 Dresden, Germany
- Correspondence:
| | - Ulla König
- Department of Medical and Biotechnological Applications, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, 01277 Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, 01307 Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, 01307 Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, 01307 Dresden, Germany
| | - Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, 01307 Dresden, Germany
| | - Gerald Steiner
- Department of Anaesthesiology and Critical Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
8
|
Langley DB, Schofield P, Nevoltris D, Jackson J, Jackson KJL, Peters TJ, Burk M, Matthews JM, Basten A, Goodnow CC, van Nunen S, Reed JH, Christ D. Genetic and structural basis of the human anti-α-galactosyl antibody response. Proc Natl Acad Sci U S A 2022; 119:e2123212119. [PMID: 35867757 PMCID: PMC9282431 DOI: 10.1073/pnas.2123212119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023] Open
Abstract
Humans lack the capacity to produce the Galα1-3Galβ1-4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development.
Collapse
Affiliation(s)
- David B. Langley
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Damien Nevoltris
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Tim J. Peters
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Melanie Burk
- Tick-induced Allergies Research and Awareness Centre, Sydney, NSW 2065, Australia
| | - Jacqueline M. Matthews
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Antony Basten
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sheryl van Nunen
- Tick-induced Allergies Research and Awareness Centre, Sydney, NSW 2065, Australia
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2065, Australia
| | - Joanne H. Reed
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
9
|
|
10
|
Human P, Bezuidenhout D, Aikawa E, Zilla P. Residual Bioprosthetic Valve Immunogenicity: Forgotten, Not Lost. Front Cardiovasc Med 2022; 8:760635. [PMID: 35059444 PMCID: PMC8764456 DOI: 10.3389/fcvm.2021.760635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Despite early realization of the need to control inherent immunogenicity of bioprosthetic replacement heart valves and thereby mitigate the ensuing host response and its associated pathology, including dystrophic calcification, the problem remains unresolved to this day. Concerns over mechanical stiffness associated with prerequisite high cross-link density to effect abrogation of this response, together with the insinuated role of leaching glutaraldehyde monomer in subsequent dystrophic mineralization, have understandably introduced compromises. These have become so entrenched as a benchmark standard that residual immunogenicity of the extracellular matrix has seemingly been relegated to a very subordinate role. Instead, focus has shifted toward the removal of cellular compartment antigens renowned for their implication in the failure of vascularized organ xenotransplants. While decellularization certainly offers advantages, this review aims to refocus attention on the unresolved matter of the host response to the extracellular matrix. Furthermore, by implicating remnant immune and inflammatory processes to bioprosthetic valve pathology, including pannus overgrowth and mineralization, the validity of a preeminent focus on decellularization, in the context of inefficient antigen and possible residual microbial remnant removal, is questioned.
Collapse
Affiliation(s)
- Paul Human
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cardiovascular Research Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Deon Bezuidenhout
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cardiovascular Research Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Peter Zilla
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cardiovascular Research Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Jannasch A, Rix J, Welzel C, Schackert G, Kirsch M, König U, Koch E, Matschke K, Tugtekin SM, Dittfeld C, Galli R. Brillouin confocal microscopy to determine biomechanical properties of SULEEI-treated bovine pericardium for application in cardiac surgery. Clin Hemorheol Microcirc 2021; 79:179-192. [PMID: 34487036 DOI: 10.3233/ch-219119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Heart valves are exposed to a highly dynamic environment and underlie high tensile and shear forces during opening and closing. Therefore, analysis of mechanical performance of novel heart valve bioprostheses materials, like SULEEI-treated bovine pericardium, is essential and usually carried out by uniaxial tensile tests. Nevertheless, major drawbacks are the unidirectional strain, which does not reflect the in vivo condition and the deformation of the sample material. An alternative approach for measurement of biomechanical properties is offered by Brillouin confocal microscopy (BCM), a novel, non-invasive and three-dimensional method based on the interaction of light with acoustic waves. OBJECTIVE BCM is a powerful tool to determine viscoelastic tissue properties and is, for the first time, applied to characterize novel biological graft materials, such as SULEEI-treated bovine pericardium. Therefore, the method has to be validated as a non-invasive alternative to conventional uniaxial tensile tests. METHODS Vibratome sections of SULEEI-treated bovine pericardium (decellularized, riboflavin/UV-cross-linked and low-energy electron irradiated) as well as native and GA-fixed controls (n = 3) were analyzed by BCM. In addition, uniaxial tensile tests were performed on equivalent tissue samples and Young's modulus as well as length of toe region were analyzed from stress-strain diagrams. The structure of the extracellular matrix (ECM), especially collagen and elastin, was investigated by multiphoton microscopy (MPM). RESULTS SULEEI-treated pericardium exhibited a significantly higher Brillouin shift and hence higher tissue stiffness in comparison to native and GA-fixed controls (native: 5.6±0.2 GHz; GA: 5.5±0.1 GHz; SULEEI: 6.3±0.1 GHz; n = 3, p < 0.0001). Similarly, a significantly higher Young's modulus was detected in SULEEI-treated pericardia in comparison to native tissue (native: 30.0±10.4 MPa; GA: 31.8±10.7 MPa; SULEEI: 42.1±7.0 MPa; n = 3, p = 0.027). Native pericardia showed wavy and non-directional collagen fibers as well as thin, linear elastin fibers generating a loose matrix. The fibers of GA-fixed and SULEEI-treated pericardium were aligned in one direction, whereat the SULEEI-sample exhibited a much denser matrix. CONCLUSION BCM is an innovative and non-invasive method to analyze elastic properties of novel pericardial graft materials with special mechanical requirements, like heart valve bioprostheses.
Collapse
Affiliation(s)
- Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Jan Rix
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Cindy Welzel
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Klinik für Neurochirurgie, Asklepios Kliniken Schildautal, Seesen, Germany
| | - Ulla König
- Department of Medical and Biotechnological Applications, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Sems Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Roberta Galli
- Department of Medical Physics and Biomedical Technology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Schulz A, Buratto E, Konstantinov IE. Commentary: From Old World monkeys to New World humans-Evolved protection from tick bites and bioprosthetic material. JTCVS OPEN 2021; 6:97-98. [PMID: 36003557 PMCID: PMC9390648 DOI: 10.1016/j.xjon.2021.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Antonia Schulz
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia
| | - Edward Buratto
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Heart Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Igor E. Konstantinov
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Heart Research Group, Murdoch Children's Research Institute, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia
| |
Collapse
|
13
|
Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernández-Pérez J, Moroni L. Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front Chem 2021; 9:680836. [PMID: 34084767 PMCID: PMC8167061 DOI: 10.3389/fchem.2021.680836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a "bioactive" resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold's properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matthew Brandon Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Julia Fernández-Pérez
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| |
Collapse
|
14
|
Ding Y, Wang L, Su K, Gao J, Li X, Cheng G. Horizontal bone augmentation and simultaneous implant placement using xenogeneic bone rings technique: a retrospective clinical study. Sci Rep 2021; 11:4947. [PMID: 33654142 PMCID: PMC7925558 DOI: 10.1038/s41598-021-84401-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
This study evaluated the use of bone ring technique with xenogeneic bone grafts in treating horizontal alveolar bone defects. In total, 11 patients in need of horizontal bone augmentation treatment before implant placement were included in this retrospective study. All patients received simultaneous bone augmentation surgery and implant placement with xenogeneic bone ring grafts. We evaluated the postoperative efficacy of the bone ring technique with xenogeneic bone grafts using radiographical and clinical parameters. Survival rates of implants were 100%. Cone-beam computed tomography revealed that the xenogeneic bone ring graft had significantly sufficient horizontal bone augmentation below the implant neck platform to 0 mm, 1 mm, 2 mm, and 3 mm. It could also provide an excellent peri-implant tissue condition during the 1-year follow-up after loading. The bone ring technique with xenogeneic bone ring graft could increase and maintain horizontal bone mass in the region of the implant neck platforms in serious horizontal bone defects.
Collapse
Affiliation(s)
- Yude Ding
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Lianfei Wang
- Department of Stomatology of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Kuiwei Su
- Department of Stomatology of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jinxing Gao
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Xiao Li
- Department of Stomatology of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Bozso SJ, El-Andari R, Al-Adra D, Moon MC, Freed DH, Nagendran J, Nagendran J. A review of the immune response stimulated by xenogenic tissue heart valves. Scand J Immunol 2021; 93:e13018. [PMID: 33372305 DOI: 10.1111/sji.13018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 12/23/2022]
Abstract
Valvular heart disease continues to afflict millions of people around the world. In many cases, the only corrective treatment for valvular heart disease is valve replacement. Valve replacement options are currently limited, and the most common construct utilized are xenogenic tissue heart valves. The main limitation with the use of this valve type is the development of valvular deterioration. Valve deterioration results in intrinsic permanent changes in the valve structure, often leading to hemodynamic compromise and clinical symptoms of valve re-stenosis. A significant amount of research has been performed regarding the incidence of valve deterioration and determination of significant risk factors for its development. As a result, many believe that the underlying driver of valve deterioration is a chronic immune-mediated rejection process of the foreign xenogenic-derived tissue. The underlying mechanisms of how this occurs are an area of ongoing research and active debate. In this review, we provide an overview of the important components of the immune system and how they respond to xenografts. A review of the proposed mechanisms of xenogenic heart valve deterioration is provided including the immune response to xenografts. Finally, we discuss the role of strategies to combat valve degeneration such as preservation protocols, epitope modification and decellularization.
Collapse
Affiliation(s)
- Sabin J Bozso
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Ryaan El-Andari
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David Al-Adra
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michael C Moon
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H Freed
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jayan Nagendran
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jeevan Nagendran
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Bozso SJ, Kang JJH, Basu R, Adam B, Dyck JRB, Oudit GY, Moon MC, Freed DH, Nagendran J, Nagendran J. Structural Valve Deterioration Is Linked to Increased Immune Infiltrate and Chemokine Expression. J Cardiovasc Transl Res 2020; 14:503-512. [PMID: 33089488 DOI: 10.1007/s12265-020-10080-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023]
Abstract
We aim to investigate whether structural valve deterioration (SVD) of bioprosthetic xenogenic tissue heart valves (XTHVs) is associated with increased immune cell infiltration and whether co-expression of several chemokines correlates with this increase in immune infiltrate. Explanted XTHVs from patients undergoing redo valve replacement for SVD were obtained. Immunohistochemical, microscopic, and gene expression analysis approaches were used. XTHVs (n = 37) were obtained from 32 patients (mean 67.7 years) after a mean time of 11.6 years post-implantation. Significantly increased immune cellular infiltration was observed in the explanted SVD valves for all immune cell types examined, including T cells, macrophages, B cells, neutrophils, and plasma cells, compared to non-SVD controls. Furthermore, a significantly increased chemokine gradient in explanted SVD valves accompanied immune cell infiltration. These data suggest the development of SVD is associated with a significantly increased burden of immune cellular infiltrate correlated to the induction of a chemokine gradient around the XHTV, representing chronic immune rejection.Graphical abstract Proposed interaction between innate and adaptive immunity leading to the development of structural valve deterioration in xenogenic tissue heart valves.
Collapse
Affiliation(s)
- Sabin J Bozso
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jimmy J H Kang
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Benjamin Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Division of Pediatrics, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Gavin Y Oudit
- Cardiovascular Research Centre, Division of Cardiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Michael C Moon
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jayan Nagendran
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jeevan Nagendran
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
17
|
Poulis N, Zaytseva P, Gähwiler EKN, Motta SE, Fioretta ES, Cesarovic N, Falk V, Hoerstrup SP, Emmert MY. Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments. Expert Rev Cardiovasc Ther 2020; 18:681-696. [DOI: 10.1080/14779072.2020.1792777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Eric K. N. Gähwiler
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Nikola Cesarovic
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- German Center of Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
18
|
Schmitz TC, Salzer E, Crispim JF, Fabra GT, LeVisage C, Pandit A, Tryfonidou M, Maitre CL, Ito K. Characterization of biomaterials intended for use in the nucleus pulposus of degenerated intervertebral discs. Acta Biomater 2020; 114:1-15. [PMID: 32771592 DOI: 10.1016/j.actbio.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Biomaterials for regeneration of the intervertebral disc must meet complex requirements conforming to biological, mechanical and clinical demands. Currently no consensus on their characterization exists. It is crucial to identify parameters and their method of characterization for accurate assessment of their potential efficacy, keeping in mind the translation towards clinical application. This review systematically analyses the characterization techniques of biomaterial systems that have been used for nucleus pulposus (NP) restoration and regeneration. Substantial differences in the approach towards assessment became evident, hindering comparisons between different materials with respect to their suitability for NP restoration and regeneration. We have analysed the current approaches and identified parameters necessary for adequate biomaterial characterization, with the clinical goal of functional restoration and biological regeneration of the NP in mind. Further, we provide guidelines and goals for their measurement. STATEMENT OF SIGNIFICANCE: Biomaterials intended for restoration of regeneration of the nucleus pulposus within the intervertebral disc must meet biological, biomechanical and clinical demands. Many materials have been investigated, but a lack of consensus on which parameters to evaluate leads to difficulties in comparing materials as well as mostly partial characterization of the materials in question. A gap between current methodology and clinically relevant and meaningful characterization is prevalent. In this article, we identify necessary methods and their implementation for complete biomaterial characterization in the context of clinical applicability. This will allow for a more unified approach to NP-biomaterials research within the field as a whole and enable comparative analysis of novel materials yet to be developed.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Georgina Targa Fabra
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Catherine LeVisage
- Université de Nantes, INSERM UMR 1229, Regenerative Medicine and Skeleton, RMeS School of Dental Surgery, University of Nantes, 1 Place Ricordeau, 44300 Nantes, France.
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Marianna Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, Netherlands.
| | - Christine Le Maitre
- Biomolecular Sciences Research Centre Sheffield Hallam University, City Campus, Howard Street, S1 1WB Sheffield, United Kingdom.
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| |
Collapse
|
19
|
Amadeo F, Barbuto M, Bernava G, Savini N, Brioschi M, Rizzi S, Banfi C, Polvani G, Pesce M. Culture Into Perfusion-Assisted Bioreactor Promotes Valve-Like Tissue Maturation of Recellularized Pericardial Membrane. Front Cardiovasc Med 2020; 7:80. [PMID: 32478099 PMCID: PMC7235194 DOI: 10.3389/fcvm.2020.00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Derivation of tissue-engineered valve replacements is a strategy to overcome the limitations of the current valve prostheses, mechanical, or biological. In an effort to set living pericardial material for aortic valve reconstruction, we have previously assessed the efficiency of a recellularization strategy based on a perfusion system enabling mass transport and homogenous distribution of aortic valve-derived "interstitial" cells inside decellularized pericardial material. In the present report, we show that alternate perfusion promoted a rapid growth of valve cells inside the pericardial material and the activity of a proliferation-supporting pathway, likely controlled by the YAP transcription factor, a crucial component of the Hippo-dependent signaling cascade, especially between 3 and 14 days of culture. Quantitative mass spectrometry analysis of protein content in the tissue constructs showed deposition of valve proteins in the decellularized pericardium with a high variability at day 14 and a reproducible tissue maturation at 21 days. These results represent a step forward in the definition of strategies to produce a fully engineered tissue for replacing the calcified leaflets of failing aortic valves.
Collapse
Affiliation(s)
- Francesco Amadeo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marianna Barbuto
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Giacomo Bernava
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Nicla Savini
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Maura Brioschi
- Unità di Proteomica, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Stefano Rizzi
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cristina Banfi
- Unità di Proteomica, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gianluca Polvani
- Dipartimento di Scienze Cliniche e di Comunità, Università degli studi di Milano, Milan, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
20
|
Bhatia S, Singh A, Batra N, Singh J. Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol 2019; 150:1294-1313. [PMID: 31747573 DOI: 10.1016/j.ijbiomac.2019.10.140] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
α-Galactosidase, (E.C. 3.2.1.22) is an exoglycosidase that target galactooligosaccharides such as raffinose, melibiose, stachyose and branched polysaccharides like galactomannans and galacto-glucomannans by catalysing the hydrolysis of α-1,6 linked terminal galactose residues. The enzyme has been isolated and characterized from microbial, plant and animal sources. This ubiquitous enzyme possesses physiological significance and immense industrial potential. Optimization of the growth conditions and efficient purification strategies can lead to a significant increase in the enzyme production. To boost commercial productivity, cloning of novel α-galactosidase genes and their heterologous expression in suitable host has gained popularity. Enzyme immobilization leads to its greater reutilization, superior thermostability, pH tolerance and increased activity. The enzyme is well explored in food industry in the removal of raffinose family oligosaccharides (RFOs) in soymilk and sugar crystallization process. It also improves animal feed quality and biomass processing. Applications of the enzyme is in the area of biomedicine includes therapeutic advances in treatment of Fabry disease, blood group conversion and removal of α-gal type immunogenic epitopes in xenotransplantation. With considerable biotechnological applications, this enzyme has been vastly commercialized and holds greater future prospects.
Collapse
Affiliation(s)
- Sonu Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Abhinashi Singh
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|
21
|
Santoro R, Venkateswaran S, Amadeo F, Zhang R, Brioschi M, Callanan A, Agrifoglio M, Banfi C, Bradley M, Pesce M. Acrylate-based materials for heart valve scaffold engineering. Biomater Sci 2018; 6:154-167. [PMID: 29148548 DOI: 10.1039/c7bm00854f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most frequent cardiac valve pathology. Its standard treatment consists of surgical replacement either with mechanical (metal made) or biological (animal tissue made) valve prostheses, both of which have glaring deficiencies. In the search for novel materials to manufacture artificial valve tissue, we have conducted a high-throughput screening with subsequent up-scaling to identify non-degradable polymer substrates that promote valve interstitial cells (VICs) adherence/growth and, at the same time, prevent their evolution toward a pro-calcific phenotype. Here, we provide evidence that one of the two identified 'hit' polymers, poly(methoxyethylmethacrylate-co-diethylaminoethylmethacrylate), provided robust VICs adhesion and maintained the healthy VICs phenotype without inducing pro-osteogenic differentiation. This ability was also maintained when the polymer was used to coat a non-woven poly-caprolactone (PCL) scaffold using a novel solvent coating procedure, followed by bioreactor-assisted VICs seeding. Since we observed that VICs had an increased secretion of the elastin-maturing component MFAP4 in addition to other valve-specific extracellular matrix components, we conclude that valve implants constructed with this polyacrylate will drive the biological response of human valve-specific cells.
Collapse
Affiliation(s)
- Rosaria Santoro
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Patra C, Boccaccini A, Engel F. Vascularisation for cardiac tissue engineering: the extracellular matrix. Thromb Haemost 2017; 113:532-47. [DOI: 10.1160/th14-05-0480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
SummaryCardiovascular diseases present a major socio-economic burden. One major problem underlying most cardiovascular and congenital heart diseases is the irreversible loss of contractile heart muscle cells, the cardiomyocytes. To reverse damage incurred by myocardial infarction or by surgical correction of cardiac malformations, the loss of cardiac tissue with a thickness of a few millimetres needs to be compensated. A promising approach to this issue is cardiac tissue engineering. In this review we focus on the problem of in vitro vascularisation as implantation of cardiac patches consisting of more than three layers of cardiomyocytes (> 100 μm thick) already results in necrosis. We explain the need for vascularisation and elaborate on the importance to include non-myocytes in order to generate functional vascularised cardiac tissue. We discuss the potential of extracellular matrix molecules in promoting vascularisation and introduce nephronectin as an example of a new promising candidate. Finally, we discuss current biomaterial- based approaches including micropatterning, electrospinning, 3D micro-manufacturing technology and porogens. Collectively, the current literature supports the notion that cardiac tissue engineering is a realistic option for future treatment of paediatric and adult patients with cardiac disease.
Collapse
|
23
|
Naso F, Gandaglia A. Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years. Xenotransplantation 2017; 25. [PMID: 29057501 DOI: 10.1111/xen.12354] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Xenogeneic decellularized heart valve scaffolds have the potential to overcome the limitations of existing bioprosthetic heart valves that have limited duration due to calcification and tissue degeneration phenomena. This article presents a review of 30 years of decellularization approaches adopted in cardiovascular tissue engineering, with a focus on the use, either individually or in combination, of different detergents. The safety and efficacy of cell-removal procedures are specifically reported and discussed, as well as the structure and biomechanics of the treated extracellular matrix (ECM). Detergent residues within the ECM, production of hyaluronan fragments, safe removal of cellular debris, and the persistence of the alpha-Gal epitope after the decellularization treatments are of particular interest as parameters for the identification of the best tissue for the manufacture of bioprostheses. Special attention has also been given to key factors that should be considered in the manufacture of the next generation of xenogeneic bioprostheses, where tissues must retain the ability to be remodeled and to grow in weight along with body reshaping.
Collapse
Affiliation(s)
- Filippo Naso
- Biocompatibility Innovation Company, Este, Padova, Italy
| | | |
Collapse
|
24
|
Halfwerk FR, Rouwkema J, Gossen JA, Grandjean JG. Supercritical carbon dioxide decellularised pericardium: Mechanical and structural characterisation for applications in cardio-thoracic surgery. J Mech Behav Biomed Mater 2017; 77:400-407. [PMID: 29020662 DOI: 10.1016/j.jmbbm.2017.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/11/2017] [Accepted: 10/01/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Many biomaterials are used in cardio-thoracic surgery with good short-term results. However, calcification, dehiscence, and formation of scar tissue are reported. The aim of this research is to characterise decellularised pericardium after supercritical carbon dioxide (scCO2) processing as an alternative biological material for uses in cardio-thoracic surgery. METHODS Porcine and bovine pericardium were decellularised using scCO2. Mechanical properties such as tensile strength, elastic modulus, fracture toughness and suture retention strength were determined. Ultrastructure was visualised using Scanning Electron Microscopy. Water uptake and swelling was experimentally determined. Commercially available glutaraldehyde treated bovine pericardium was used as gold standard for comparison. RESULTS scCO2 decellularised porcine (and bovine pericardium) maintained their tensile strength compared to untreated native pericardium (13.3 ± 2.4MPa vs 14.0 ± 4.1MPa, p = 0.73). Tensile strength of glutaraldehyde treated pericardium was significantly higher compared to untreated pericardium (19.4 ± 7.3MPa vs 10.2 ± 2.2MPa, p = 0.02). Suture retention strength of scCO2 treated pericardium was significantly higher than glutaraldehyde treated pericardium (p = 0.01). We found no anisotropy of scCO2 or glutaraldehyde treated pericardium based on a trouser tear test. Ultrastructure was uncompromised in scCO2 treated pericardium, while glutaraldehyde treated pericardium showed deterioration of extracellular matrix. CONCLUSION scCO2 processing preserves initial mechanical and structural properties of porcine and bovine pericardium, while glutaraldehyde processing damages the extracellular matrix of bovine pericardium. Decellularisation of tissue using scCO2 might give long-term solutions for cardio-thoracic surgery without compromising initial good mechanical properties.
Collapse
Affiliation(s)
- Frank R Halfwerk
- Department of Cardio-Thoracic Surgery, Thoraxcentrum Twente, Medisch Spectrum Twente Hospital, PO Box 50000, 7500 KA Enschede, The Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Jan A Gossen
- European Medical Contract Manufacturing, 6545 CH Nijmegen, The Netherlands
| | - Jan G Grandjean
- Department of Cardio-Thoracic Surgery, Thoraxcentrum Twente, Medisch Spectrum Twente Hospital, PO Box 50000, 7500 KA Enschede, The Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
25
|
Hofmann M, Schmiady MO, Burkhardt BE, Dave HH, Hübler M, Kretschmar O, Bode PK. Congenital aortic valve repair using CorMatrix ® : A histologic evaluation. Xenotransplantation 2017; 24. [PMID: 28940406 DOI: 10.1111/xen.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The reconstruction of heart valves provides substantial benefits, particularly in the pediatric population. We present our experience using decellularized extracellular matrix (dECM, CorMatrix® ) for aortic valve procedures. METHODS We retrospectively reviewed the case histories of 6 patients (aged from 2 months - 14 years) who underwent surgery for severe aortic valve stenosis (n = 4) or regurgitation (n = 2). Aortic valve repair was performed on all patients using dECM as a leaflet replacement or leaflet extension. Follow-ups were performed using echocardiography. Reoperation was necessary in 4 cases, and the dECM was explanted and examined histologically and immunohistochemically. RESULTS The early post-operative period was uneventful, and the scaffold fulfilled the mechanical requirements. Significant valve insufficiency developed in 5 patients during the post-operative period (119-441 days postoperatively). In all specimens, only a migration of inflammatory cells was identified, which induced structural and functional changes caused by the chronic inflammatory response. CONCLUSIONS Our results suggest a mixed immunological response of remodeling and inflammation following the implantation. The expected process of seeding/migration and remodeling of the bioscaffold into the typical 3-layered architecture were not observed in our explanted specimens.
Collapse
Affiliation(s)
- Michael Hofmann
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin O Schmiady
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara E Burkhardt
- Division of Pediatric Cardiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Hitendu H Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michael Hübler
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oliver Kretschmar
- Division of Pediatric Cardiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Peter K Bode
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Namdari M, Negahdari B, Eatemadi A. Paediatric nanofibrous bioprosthetic heart valve. IET Nanobiotechnol 2017; 11:493-500. [PMID: 28745279 PMCID: PMC8676244 DOI: 10.1049/iet-nbt.2016.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 09/22/2023] Open
Abstract
The search for an optimal aortic valve implant with durability, calcification resistance, excellent haemodynamic parameters and ability to withstand mechanical loading is yet to be met. Thus, there has been struggled to fabricate bio-prosthetics heart valve using bioengineering. The consequential product must be resilient with suitable mechanical features, biocompatible and possess the capacity to grow. Defective heart valves replacement by surgery is now common, this improves the value and survival of life for a lot of patients. The recent paediatric heart valve implant is suboptimal due to their inability of somatic growth. They usually have multiple surgeries to change outgrown valves. Short-lived valve bio-prostheses occurring in older patients and younger ones who more usually need the replacement of its damaged heart with prosthesis led to a new invasive surgical interventions with an improved quality of life. The authors propose that nanofibre scaffold for paediatric tissue-engineered heart valve will meet most of these conditions, most particularly those related to somatic growth, and, as the nanofibre scaffold is eroded, new valve is produced, the valve matures in the child until adulthood.
Collapse
Affiliation(s)
- Mehrdad Namdari
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran.
| |
Collapse
|
27
|
Qiao WH, Liu P, Hu D, Al Shirbini M, Zhou XM, Dong NG. Sequential hydrophile and lipophile solubilization as an efficient method for decellularization of porcine aortic valve leaflets: Structure, mechanical property and biocompatibility study. J Tissue Eng Regen Med 2017; 12:e828-e840. [PMID: 27957807 DOI: 10.1002/term.2388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/03/2016] [Accepted: 12/06/2016] [Indexed: 01/25/2023]
Abstract
Antigenicity of xenogeneic tissues is the major obstacle to increased use of these materials in clinical medicine. Residual xenoantigens in decellularized tissue elicit the immune response after implantation, causing graft failure. With this in mind, the potential use is proposed of three protein solubilization-based protocols for porcine aortic valve leaflets decellularization. It was demonstrated that hydrophile solubilization alone achieved incomplete decellularization; lipophile solubilization alone (LSA) completely removed all cells and two most critical xenoantigens - galactose-α(1,3)-galactose (α-Gal) and major histocompatibility complex I (MHC I) - but caused severe alterations of the structure and mechanical properties; sequential hydrophile and lipophile solubilization (SHLS) resulted in a complete removal of cells, α-Gal and MHC I, and good preservation of the structure and mechanical properties. In contrast, a previously reported method using Triton X-100, sodium deoxycholate and IGEPAL CA-630 resulted in a complete removal of all cells and MHC I, but with remaining α-Gal epitope. LSA- and SHLS-treated leaflets showed significantly reduced leucocyte activation (polymorphonuclear elastase) upon interaction with human blood in vitro. When implanted subdermally in rats for 6 weeks, LSA- or SHLS-treated leaflets were presented with more biocompatible implants and all four decellularized leaflets were highly resistant to calcification. These findings illustrate that the SHLS protocol could be considered as a promising decellularization method for the decellularization of xenogeneic tissues in tissue engineering and regenerative medicine. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei-Hua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, Henan Cardiovascular Disease Institute, Zhengzhou, China
| | - Dan Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mahmoud Al Shirbini
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Ming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Ock SA, Lee J, Oh KB, Hwang S, Yun IJ, Ahn C, Chee HK, Kim H, Park JB, Kim SJ, Kim Y, Im GS, Park E. Molecular immunology profiles of monkeys following xenografting with the islets and heart of α-1,3-galactosyltransferase knockout pigs. Xenotransplantation 2016; 23:357-69. [PMID: 27511303 DOI: 10.1111/xen.12249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
Effective immunosuppression strategies and genetically modified animals have been used to prevent hyperacute and acute xenograft rejection; however, the underlying mechanisms remain unknown. In this study, we evaluated the expression of a comprehensive set of immune system-related genes (89 genes, including five housekeeping genes) in the blood of cynomolgus monkeys (~5 yr old) used as graft recipients, before and after the xenografting of the islets and heart from single and double α-1,3-galactosyltransferase (GalT) knockout (KO) pigs (<6 weeks old). The immunosuppressive regimen included administration of cobra venom factor, anti-thymocyte globulin, rituximab, and anti-CD154 monoclonal antibodies to recipients before and after grafting. Islets were xenografted into the portal vein in type 1 diabetic monkeys, and the heart was xenografted by heterotopic abdominal heart transplantation. Genes from recipient blood were analyzed using RT(2) profiler PCR arrays and the web-based RT(2) profiler PCR array software v.3.5. Recipients treated with immunosuppressive agents without grafting showed significant downregulation of CCL5, CCR4, CCR6, CD4, CD40LG, CXCR3, FASLG, CXCR3, FOXP3, GATA3, IGNG, L10, IL23A, TRAF6, MAPK8, MIF, STAT4, TBX21, TLR3, TLR7, and TYK2 and upregulation of IFNGR1; thus, genes involved in protection against viral and bacterial infection were downregulated, confirming the risk of infection. Notably, C3-level control resulted in xenograft failure within 2 days because of a 7- to 11-fold increase in all xenotransplanted models. Islet grafting using single GalT-KO pigs resulted in upregulation of CXCL10 and MX1, early inflammation, and acute rejection-associated signals at 2 days after xenografting. We observed at least 5-fold upregulation in recipients transplanted with islets grafts from single (MX1) or double (C3, CCR8, IL6, IL13, IRF6, CXCL10, and MX1) GalT-KO pigs after 77 days; single GalT-KO incurred early losses owing to immune attacks. Our results suggest that this novel, simple, non-invasive, and time-efficient procedure (requiring only 1.5 ml blood) for evaluating graft success, minimizing immune rejection, and blocking infection.
Collapse
Affiliation(s)
- Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea. ,
| | - Jungkyu Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Curie Ahn
- Transplantation Center, Seoul National University Hospital, Seoul, Korea.,Designed Animal & Transplantation Research Institute, Institute of Green BioScience & Technology, Seoul National University, Pyeongchang, Gangwon-do, Korea
| | - Hyun Keun Chee
- Department of Cardiothoracic Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Hwajung Kim
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - EungWoo Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| |
Collapse
|
29
|
Lee W, Long C, Ramsoondar J, Ayares D, Cooper DKC, Manji RA, Hara H. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation 2016; 23:370-80. [DOI: 10.1111/xen.12254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/07/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | | | | | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Rizwan A. Manji
- Department of Surgery; University of Manitoba; Winnipeg MB Canada
- Cardiac Sciences Program; Winnipeg Regional Health Authority and St Boniface Hospital; Winnipeg MB Canada
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
30
|
Hussein KH, Park KM, Kang KS, Woo HM. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:766-778. [PMID: 27287176 DOI: 10.1016/j.msec.2016.05.068] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022]
Abstract
Biomaterials based on seeding of cells on decellularized scaffolds have gained increasing interest in the last few years and suggested to serve as an alternative approach to bioengineer artificial organs and tissues for transplantation. The reaction of the host toward the decellularized scaffold and transplanted cells depends on the biocompatibility of the construct. Before proceeding to the clinical application step of decellularized scaffolds, it is greatly important to apply a number of biocompatibility tests in vitro and in vivo. This review describes the different methodology involved in cytotoxicity, pathogenicity, immunogenicity and biodegradability testing for evaluating the biocompatibility of various decellularized matrices obtained from human or animals.
Collapse
Affiliation(s)
- Kamal Hany Hussein
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Mee Park
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Institue of Veterinary Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, South Korea
| | - Heung-Myong Woo
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Institue of Veterinary Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, South Korea; Harvard Stem Cell Institute, Renal Division, Brigham and Women's Hospital, Harvard Medical School, MA 02115, USA.
| |
Collapse
|
31
|
Hilger C, Fischer J, Swiontek K, Hentges F, Lehners C, Eberlein B, Morisset M, Biedermann T, Ollert M. Two galactose-α-1,3-galactose carrying peptidases from pork kidney mediate anaphylactogenic responses in delayed meat allergy. Allergy 2016; 71:711-9. [PMID: 26728983 DOI: 10.1111/all.12835] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Serum IgE antibodies directed at galactose-α-1,3-galactose (α-Gal) are associated with a novel form of delayed anaphylaxis occurring upon consumption of red meat or innards. Pork kidney is known as the most potent trigger of this syndrome, but the culprit allergens have not yet been identified. The aim of this study was the identification and characterization of pork kidney proteins mediating delayed anaphylactic reactions through specific IgE to α-Gal. METHODS A cohort of 59 patients with specific IgE to α-Gal was screened by immunoblot for IgE-reactive proteins in pork kidney. Proteins were identified by peptide mass fingerprinting. Isolated proteins were assayed in ELISA and ELISA inhibition, basophil activation and skin prick test. RESULTS Several IgE-binding proteins of high molecular weight (100- >200 kDa) were detected in pork kidney extracts by immunoblot using patient sera and an anti-α-Gal antibody. Two major IgE-binding proteins were identified as porcine angiotensin-I-converting enzyme (ACE I) and aminopeptidase N (AP-N). Reactivity of patient sera and anti-α-Gal antibody to both proteins was abolished by carbohydrate oxidation. The α-Gal IgE epitopes were resistant to heat denaturation. Pork kidney extract, isolated ACE I, and AP-N were able to activate patient basophils and elicit positive responses in skin prick tests. CONCLUSION Two cell-membrane proteins carrying α-Gal epitopes were identified in pork kidney. For the first time, isolated meat proteins were shown to induce basophil activation in patients with delayed anaphylaxis to red meat providing further confirmation for the clinical relevance of these α-Gal-carrying proteins.
Collapse
Affiliation(s)
- C. Hilger
- Department of Infection and Immunity; Luxembourg Institute of Health (LIH); Esch-sur-Alzette Luxembourg
| | - J. Fischer
- Department of Dermatology; Eberhard Karls University; Tuebingen Germany
| | - K. Swiontek
- Department of Infection and Immunity; Luxembourg Institute of Health (LIH); Esch-sur-Alzette Luxembourg
| | - F. Hentges
- Immunology Allergology Unit; Centre Hospitalier; Luxembourg Luxembourg
| | - C. Lehners
- Immunology Allergology Unit; Centre Hospitalier; Luxembourg Luxembourg
| | - B. Eberlein
- Department of Dermatology and Allergology; Technical University Munich; Munich Germany
| | - M. Morisset
- Immunology Allergology Unit; Centre Hospitalier; Luxembourg Luxembourg
| | - T. Biedermann
- Department of Dermatology and Allergology; Technical University Munich; Munich Germany
| | - M. Ollert
- Department of Infection and Immunity; Luxembourg Institute of Health (LIH); Esch-sur-Alzette Luxembourg
- Department of Dermatology and Allergy Center; Odense Research Center for Anaphylaxis; University of Southern Denmark; Odense Denmark
| |
Collapse
|
32
|
Zhu Z, Zhou J, Ding J, Xu J, Zhong H, Lei S. A novel approach to prepare a tissue engineering decellularized valve scaffold with poly(ethylene glycol)–poly(ε-caprolactone). RSC Adv 2016. [DOI: 10.1039/c5ra22808e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to explore the feasibility of preparing a decellularized valve scaffold with methoxy poly(ethylene glycol)–poly(ε-caprolactone) (MPEG–PCL).
Collapse
Affiliation(s)
- Zhigang Zhu
- Department of Cardiothoracic Surgery
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| | - Jianliang Zhou
- Department of Cardiothoracic Surgery
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| | - Jingli Ding
- Department of Gastroenterology
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| | - Haijun Zhong
- School of Pharmacy
- Nanchang University
- Nanchang
- P. R. China
| | - Shuijin Lei
- School of Materials Science and Engineering
- Nanchang University
- Nanchang
- P. R. China
| |
Collapse
|
33
|
Aguiari P, Fiorese M, Iop L, Gerosa G, Bagno A. Mechanical testing of pericardium for manufacturing prosthetic heart valves. Interact Cardiovasc Thorac Surg 2015; 22:72-84. [DOI: 10.1093/icvts/ivv282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/03/2015] [Indexed: 01/15/2023] Open
|
34
|
Gao HW, Li SB, Sun WQ, Yun ZM, Zhang X, Song JW, Zhang SK, Leng L, Ji SP, Tan YX, Gong F. Quantification of α-Gal Antigen Removal in the Porcine Dermal Tissue by α-Galactosidase. Tissue Eng Part C Methods 2015; 21:1197-204. [PMID: 26140655 DOI: 10.1089/ten.tec.2015.0129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The α-Gal (Galα1,3-Galβ1-4GlcNAc-R) epitope, the major xenoantigen, is the first barrier in a porcine-to-man tissue and organ xenotransplantation. The elimination or reduction of the α-Gal epitopes is therefore an important step for a successful xenotransplantation. The present study is to evaluate the α-Gal elimination in the porcine skin with α-galactosidase treatment, and to assess two methods (immunohistochemistry and inhibition ELISA) that may be used in quality control for quantifying the extent of the α-Gal elimination. Enzymatic cleavage in a single-step process is extremely efficient and affordable at eliminating the α-Gal epitope even in a tissue as dense as the porcine dermis. The cost of enzymatic cleavage is found to be less than US$7 for a 10 × 10 cm piece of porcine skin (0.5 mm thick) or about US$140 for 100 g of 3-dimensional soft tissues. After enzymatic cleavage, the α-Gal-positive immunostaining was essentially undetectable in enzyme-treated porcine skin. The inhibition rate constant of the monoclonal anti-Gal antibody M86 binding to α-Gal-bovine serum albumin in ELISA was reduced from 15.0 ± 4.3 (n = 10) to 6.1 ± 2.6 (n = 7) after enzyme treatment, in comparison to 4.4 ± 1.8 (n = 9) background inhibition of decellularized human skin (the ultimate negative control), which demonstrates ∼ 84% elimination of α-Gal epitopes in treated porcine skin. To examine the suitability of two detection methods for the routine quality control application, comparative studies were made with control and enzyme-treated porcine skin, porcine skin from the α-Gal knockout animal, as well as decellularized human skin. The data show that the traditional immunohistochemistry and, to a less extent, the inhibition ELISA with further modifications can be used as quality control tools in the production and selection of biocompatible bioprosthetic devices. The biological evaluation of enzyme-treated porcine skin is ongoing with a small animal model and a nonhuman primate model.
Collapse
Affiliation(s)
- Hong-Wei Gao
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Su-Bo Li
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Wendell Q Sun
- 2 School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology , Shanghai, China
| | - Zhi-Min Yun
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Xue Zhang
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Jin-Wen Song
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Shi-Kun Zhang
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Ling Leng
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Shou-Ping Ji
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Ying-Xia Tan
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| | - Feng Gong
- 1 Department of Blood Biochemistry and Molecular Biology, Beijing Institute of Transfusion Medicine , Beijing, China
| |
Collapse
|
35
|
Santoro R, Consolo F, Spiccia M, Piola M, Kassem S, Prandi F, Vinci MC, Forti E, Polvani G, Fiore GB, Soncini M, Pesce M. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium. J Biomed Mater Res B Appl Biomater 2015; 104:345-56. [PMID: 25809726 DOI: 10.1002/jbm.b.33404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 11/08/2022]
Abstract
Glutaraldehyde-fixed pericardium of animal origin is the elective material for the fabrication of bio-prosthetic valves for surgical replacement of insufficient/stenotic cardiac valves. However, the pericardial tissue employed to this aim undergoes severe calcification due to chronic inflammation resulting from a non-complete immunological compatibility of the animal-derived pericardial tissue resulting from failure to remove animal-derived xeno-antigens. In the mid/long-term, this leads to structural deterioration, mechanical failure, and prosthesis leaflets rupture, with consequent need for re-intervention. In the search for novel procedures to maximize biological compatibility of the pericardial tissue into immunocompetent background, we have recently devised a procedure to decellularize the human pericardium as an alternative to fixation with aldehydes. In the present contribution, we used this procedure to derive sheets of decellularized pig pericardium. The decellularized tissue was first tested for the presence of 1,3 α-galactose (αGal), one of the main xenoantigens involved in prosthetic valve rejection, as well as for mechanical tensile behavior and distensibility, and finally seeded with pig- and human-derived aortic valve interstitial cells. We demonstrate that the decellularization procedure removed the αGAL antigen, maintained the mechanical characteristics of the native pig pericardium, and ensured an efficient surface colonization of the tissue by animal- and human-derived aortic valve interstitial cells. This establishes, for the first time, the feasibility of fixative-free pericardial tissue seeding with valve competent cells for derivation of tissue engineered heart valve leaflets.
Collapse
Affiliation(s)
- Rosaria Santoro
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Filippo Consolo
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marco Spiccia
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marco Piola
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Samer Kassem
- Divisione di Cardiochirurgia, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Francesca Prandi
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | - Elisa Forti
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gianluca Polvani
- Dipartimento di Scienze Cliniche e di Comunità, Sezione cardiovascolare, Università di Milano, Milan, Italy
| | | | - Monica Soncini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
36
|
Sutherland AJ, Converse GL, Hopkins RA, Detamore MS. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv Healthc Mater 2015; 4:29-39. [PMID: 25044502 DOI: 10.1002/adhm.201400165] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/28/2014] [Indexed: 01/08/2023]
Abstract
Cartilage matrix is a promising material for cartilage regeneration given the evidence supporting its chondroinductive character. The "raw materials" of cartilage matrix can serve as building blocks and signals for tissue regeneration. These matrices can be created by chemical or physical processing: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods combined with physical methods are effective in fully decellularizing such materials. It is important to delineate between the sources of the cartilage matrix, that is, derived from matrix in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell-derived matrix (DCCM), and devitalized cell-derived matrix (DVCM). One currently marketed cartilage matrix device is decellularized, although trends in patents suggest additional decellularized products may be available in the future. To identify the most relevant source and processing for cartilage matrix, testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of materials, and immunogenic properties of the product.
Collapse
Affiliation(s)
| | - Gabriel L. Converse
- Children's Mercy Hospital; Cardiac Surgery Research Lab; Ward Family Center for Congenital Heart Disease; 2401 Gillham Rd Kansas City MO 64108 USA
| | - Richard A. Hopkins
- Children's Mercy Hospital; Cardiac Surgery Research Lab; Ward Family Center for Congenital Heart Disease; 2401 Gillham Rd Kansas City MO 64108 USA
| | - Michael S. Detamore
- Bioengineering Graduate Program; University of Kansas; Lawrence KS 66045 USA
- Department of Chemical and Petroleum Engineering; University of Kansas; Lawrence KS 66045 USA
| |
Collapse
|
37
|
Schuurman HJ. Commentary on “Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts” (by Barone et al.): bioprosthetic products from animal origin are xenotransplantation produc. Xenotransplantation 2014; 21:507-9. [DOI: 10.1111/xen.12146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Lim HG, Kim GB, Jeong S, Kim YJ. Development of a next-generation tissue valve using a glutaraldehyde-fixed porcine aortic valve treated with decellularization, α-galactosidase, space filler, organic solvent and detoxification. Eur J Cardiothorac Surg 2014; 48:104-13. [PMID: 25315752 DOI: 10.1093/ejcts/ezu385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Conventional crosslinking with glutaraldehyde (GA) renders cardiac xenografts inert, non-biodegradable and non-antigenic, but is a main cause for dystrophic calcification due to phospholipids, free aldehyde groups and residual antigenicity. A significant immune reaction to the galactose-α-1,3 galactose β-1,4-N-acetylglucosamine (α-Gal) of a GA-fixed cardiac xenograft occurs, leading to calcification. We developed a next-generation α-Gal-free tissue valve with GA-fixed cardiac xenografts, treated using a novel combined anticalcification protocol including immunological modification, which was demonstrated effective in a small animal study. METHODS Porcine aortic valves were decellularized with 1% sodium dodecyl sulphate, 1% Triton X-100 and 1% sodium lauroyl sarcosinate and immunologically modified with α-galactosidase. The valves were treated by a polyethylene glycol space filler, fixed with GA in 75% ethanol + 5% octanol and detoxified with glycine. We manufactured the tissue valve with the porcine aortic valve mounted on a Nitinol (nickel-titanium memory alloy) plate. The tissue valve was placed under in vitro mock circulation, and durability from mechanical stress was evaluated for 100 days. Ten sheep underwent mitral valve replacement with the tissue valve, and haemodynamic, radiological, immunohistopathological and biochemical results were obtained for 18 months after implantation. RESULTS The in vitro circulation experiment demonstrated that the valve functioned well with good morphology. Eight sheep survived for 1, 2, 5, 10, 14, 53, 546 and 552 days after mitral valve replacement, but two sheep did not survive. An evaluation by echocardiography and cardiac catheterization demonstrated good haemodynamic status and function of the mitral valve at 18 months after implantation. The xenografts were well preserved without a α-Gal immune reaction or calcification based on the immunological, radiographic, microscopic and biochemical examinations. CONCLUSIONS We developed a next-generation α-Gal-free tissue valve with simultaneous use of multiple anticalcification therapies and novel tissue treatments such as decellularization, immunological modification with α-galactosidase, space filler, an organic solvent and detoxification. Future investigations should evaluate α-Gal-free substitutes such as our tissue valve, and a future clinical study is warranted based on these promising preclinical results.
Collapse
Affiliation(s)
- Hong-Gook Lim
- Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center, Seoul, Republic of Korea Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gi Beom Kim
- Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center, Seoul, Republic of Korea Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Saeromi Jeong
- Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center, Seoul, Republic of Korea
| | - Yong Jin Kim
- Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center, Seoul, Republic of Korea Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Wang Y, Bao J, Wu Q, Zhou Y, Li Y, Wu X, Shi Y, Li L, Bu H. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation 2014; 22:48-61. [PMID: 25291435 DOI: 10.1111/xen.12141] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/26/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Whole-organ engineering provides a new alternative source of donor organs for xenotransplantation. Utilization of decellularized whole-organ scaffolds, which can be created by detergent perfusion, is a strategy for tissue engineering. In this article, our aim is to scale up the decellularization process to human-sized liver and kidney to generate a decellularized matrix with optimal and stable characteristics on a clinically relevant scale. METHODS Whole porcine liver and kidney were decellularized by perfusion using different detergents (1% SDS, 1% Triton X-100, 1% peracetic acid (PAA), and 1% NaDOC) via the portal vein and renal artery of the liver and kidney, respectively. After rinsing with PBS to remove the detergents, the obtained liver and kidney extracellular matrix (ECM) were processed for histology, residual cellular content analysis, and ECM components evaluation to investigate decellularization efficiency, xenoantigens removal, and ECM preservation. RESULTS The resulting liver and kidney scaffolds in the SDS-treated group showed the most efficient clearance of cellular components and xenoantigens, including DNA and protein, and preservation of the extracellular matrix composition. In comparison, cell debris was observed in the other decellularized groups that were generated using Triton X-100, PAA, and NaDOC. Special staining and immunochemistry of the porcine liver and kidney ECMs further confirmed the disrupted three-dimension ultrastructure of the ECM in the Triton X-100 and NaDOC groups. Additionally, Triton X-100 effectively eliminated the residual SDS in the SDS-treated group, which ensured the scaffolds were not cytotoxic to cells. Thus, we have developed an optimal method that can be scaled up for use with other solid whole organs. CONCLUSIONS Our SDS-perfusion protocol can be used for porcine liver and kidney decellularization to obtain organ scaffolds cleared of cellular material, xenoimmunogens, and preserved vital ECM components.
Collapse
Affiliation(s)
- Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zeyland J, Woźniak A, Gawrońska B, Juzwa W, Jura J, Nowak A, Słomski R, Smorąg Z, Szalata M, Mazurek U, Lipiński D. Double transgenic pigs with combined expression of human α1,2-fucosyltransferase and α-galactosidase designed to avoid hyperacute xenograft rejection. Arch Immunol Ther Exp (Warsz) 2014; 62:411-22. [PMID: 24554032 PMCID: PMC4164832 DOI: 10.1007/s00005-014-0280-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 01/25/2023]
Abstract
Hyperacute rejection (HAR) depends on the response of xenoreactive antibodies principally against porcine α-Gal epitope. Methods eliminating HAR include GGTA1 inactivation, regulation of the complement system and modification of the oligosaccharide structure of surface proteins in donor's cells. Transgenic animals designed for the purpose of xenotransplantation with single modification do not display full reduction of the α-Gal epitope level, which means that a accumulation of several modifications in one transgenic individual is needed. The aim of the study was to create a molecular and cytogenetic profile of a double transgenic animal with α1,2-fucosyltransferase and α-galactosidase expression. As a result of interbreeding of an individual with α1,2-fucosyltransferase expression with an individual with α-galactosidase expression 12 living piglets were obtained. PCR revealed the pCMVFUT gene construct was present in four individuals and pGAL-GFPBsd in three, including one with a confirmed integration of both the gene constructs. Fluorescence in situ hybridization confirmed the site of transgene integration, which corresponded to the mapping site of the transgenes which occurred in the parental generations. Karyotype analysis did not show any changes in the structure or the number of chromosomes (2n = 38, XX). As for the results pertaining to the single transgenic individuals, expression analysis demonstrated a high extent of α-Gal epitope level reduction on the surface of cells, whereas human serum cytotoxicity tests revealed the smallest decrease in longevity of cells in the obtained double transgenic individual (4.35 %). The tests suggest that the co-expression of both the transgenes leads to a considerable reduction of the α-Gal antigen level on the surface of cells and a decrease of xenotransplant immunogenicity.
Collapse
Affiliation(s)
- Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater 2014; 10:1806-16. [PMID: 24486910 DOI: 10.1016/j.actbio.2014.01.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/15/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Decades of research have been undertaken towards the goal of tissue engineering using xenogeneic scaffolds. The primary advantages associated with use of xenogeneic tissue-derived scaffolds for in vitro development of replacement tissues and organs stem from the inherent extracellular matrix (ECM) composition and architecture. Native ECM possesses appropriate mechanical properties for physiological function of the biomaterial and signals for cell binding, growth and differentiation. Additionally, xenogeneic tissue is readily available. However, translation of xenogeneic scaffold-derived engineered tissues or organs into clinical therapies requires xenoantigenicity of the material to be adequately addressed prior to implantation. Failure to achieve this goal will result in a graft-specific host immune rejection response, jeopardizing in vivo survival of the resultant scaffold, tissue or organ. This review explores (i) the appropriateness of scaffold acellularity as an outcome measure for assessing reduction of the immunological barriers to the use of xenogeneic scaffolds for tissue engineering applications and (ii) the need for tissue engineers to strive for antigen removal during xenogeneic scaffold generation.
Collapse
Affiliation(s)
- Maelene L Wong
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
42
|
Byrne GW, McGregor CGA. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprosthesis (by Naso et al.). Xenotransplantation 2013; 21:11-2. [PMID: 24188452 DOI: 10.1111/xen.12072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Guerard W Byrne
- Institute of Cardiovascular Science, University College London, London, UK; Department of Surgery, Mayo Clinic, Rochester, MN, USA.
| | | |
Collapse
|
43
|
Naso F, Gandaglia A, Bottio T, Tarzia V, Nottle MB, d'Apice AJF, Cowan PJ, Cozzi E, Galli C, Lagutina I, Lazzari G, Iop L, Spina M, Gerosa G. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation 2013; 20:252-61. [PMID: 23865597 DOI: 10.1111/xen.12044] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/31/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glutaraldehyde fixation does not guarantee complete tissue biocompatibility in current clinical bioprosthetic heart valves (BHVs). Particularly, circulating anti-αGal human antibodies increase significantly from just 10 days after a BHV implantation. The inactivation of such epitope should be mandatory to meet the requirements for a perspectively safe clinical application; nevertheless, its quantitative assessment in commercially available BHVs has never been carried out. METHODS In this investigation, seven different models of BHVs were tested. The number of epitopes was determined with reference to a standard αGal source by an ELISA test. The presence of xenoantigen was subsequently confirmed by immunofluorescence analysis. Porcine tissue, knockout for the αGal epitopes, was used as negative control. RESULTS Epic™ valve was the only model among those tested, in which the αGal antigen appeared to be completely shielded. Composite Trifecta™ valve exhibited conflicting results: cusps of bovine pericardial tissue were devoid of reactive αGal epitopes, while the stent cover strip of porcine pericardium still maintained 30% of active antigens originally present in native tissue. All other tested BHVs express an αGal amount not significantly different from that exhibited by porcine Mosaic(®) valve (5.2 ± 0.6 × 10(10) each 10 mg of tissue). CONCLUSIONS For the first time, the quantitative evaluation of the αGal epitope in heart valve bioprostheses, already in clinical practice for about 40 yrs, was finally determined. Such quantification might provide indications of biocompatibility relevant for the selection of bioprosthetic devices and an increase in the confidence of the patient. It might become a major quality control tool in the production and redirection of future investigation in the quest for αGal-free long-lasting substitutes.
Collapse
Affiliation(s)
- Filippo Naso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, September-October 2012. Xenotransplantation 2012. [PMID: 23198733 DOI: 10.1111/xen.12010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|