1
|
Gregorova K, Plachy L, Dusatkova P, Maratova K, Neuman V, Kolouskova S, Snajderova M, Obermannova B, Drnkova L, Soucek O, Lebl J, Sumnik Z, Pruhova S. Genetic Testing of Children With Familial Tall Stature: Is it Worth Doing? J Clin Endocrinol Metab 2024; 109:e2009-e2015. [PMID: 38307035 DOI: 10.1210/clinem/dgae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
CONTEXT Familial tall stature (FTS) is considered to be a benign variant of growth with a presumed polygenic etiology. However, monogenic disorders with possible associated pathological features could also be hidden under the FTS phenotype. OBJECTIVE To elucidate the genetic etiology in families with FTS and to describe their phenotype in detail. METHODS Children with FTS (the life-maximum height in both the child and his/her taller parent > 2 SD for age and sex) referred to the Endocrinology center of Motol University Hospital were enrolled into the study. Their DNA was examined cytogenetically and via a next-generation sequencing panel of 786 genes associated with growth. The genetic results were evaluated by the American College of Molecular Genetics and Genomics guidelines. All of the participants underwent standard endocrinological examination followed by specialized anthropometric evaluation. RESULTS In total, 34 children (19 girls) with FTS were enrolled in the study. Their median height and their taller parent's height were 3.1 SD and 2.5 SD, respectively. The genetic cause of FTS was elucidated in 11/34 (32.4%) children (47,XXX and 47,XYY karyotypes, SHOX duplication, and causative variants in NSD1 [in 2], SUZ12 [in 2], FGFR3, CHD8, GPC3, and PPP2R5D genes). Ten children had absent syndromic signs and 24 had dysmorphic features. CONCLUSION Monogenic (and cytogenetic) etiology of FTS can be found among children with FTS. Genetic examination should be considered in all children with FTS regardless of the presence of dysmorphic features.
Collapse
Affiliation(s)
- Katerina Gregorova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Lukas Plachy
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Klara Maratova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Vit Neuman
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Lenka Drnkova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Ondrej Soucek
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| |
Collapse
|
2
|
Gersing S, Schulze TK, Cagiada M, Stein A, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. Genome Biol 2024; 25:98. [PMID: 38627865 PMCID: PMC11021015 DOI: 10.1186/s13059-024-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms underlying variant effects in human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. RESULTS Using a yeast growth-based assay, we score the abundance of 95% of GCK missense and nonsense variants. When combining the abundance scores with our previously determined activity scores, we find that 43% of hypoactive variants also decrease cellular protein abundance. The low-abundance variants are enriched in the large domain, while residues in the small domain are tolerant to mutations with respect to abundance. Instead, many variants in the small domain perturb GCK conformational dynamics which are essential for appropriate activity. CONCLUSIONS In this study, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| | - Thea K Schulze
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, M5S 3E1, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, M5S 1A8, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, M5G 1X5, Toronto, ON, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 15213, Pittsburgh, USA
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
3
|
Amaratunga SA, Hussein Tayeb T, Muhamad Sediq RN, Hama Salih FK, Dusatkova P, Wakeling MN, De Franco E, Pruhova S, Lebl J. Paediatric diabetes subtypes in a consanguineous population: a single-centre cohort study from Kurdistan, Iraq. Diabetologia 2024; 67:113-123. [PMID: 37897565 PMCID: PMC10709478 DOI: 10.1007/s00125-023-06030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023]
Abstract
AIMS/HYPOTHESIS Monogenic diabetes is estimated to account for 1-6% of paediatric diabetes cases in primarily non-consanguineous populations, while the incidence and genetic spectrum in consanguineous regions are insufficiently defined. In this single-centre study we aimed to evaluate diabetes subtypes, obtain the consanguinity rate and study the genetic background of individuals with syndromic and neonatal diabetes in a population with a high rate of consanguinity. METHODS Data collection was carried out cross-sectionally in November 2021 at the paediatric diabetic clinic, Dr Jamal Ahmad Rashed Hospital, in Sulaimani, Kurdistan, Iraq. At the time of data collection, 754 individuals with diabetes (381 boys) aged up to 16 years were registered. Relevant participant data was obtained from patient files. Consanguinity status was known in 735 (97.5%) participants. Furthermore, 12 families of children with neonatal diabetes and seven families of children with syndromic diabetes consented to genetic testing by next-generation sequencing. Prioritised variants were evaluated using the American College of Medical Genetics and Genomics guidelines and confirmed by Sanger sequencing. RESULTS A total of 269 of 735 participants (36.5%) with known consanguinity status were offspring of consanguineous families. An overwhelming majority of participants (714/754, 94.7%) had clinically defined type 1 diabetes (35% of them were born to consanguineous parents), whereas only eight (1.1%) had type 2 diabetes (38% consanguineous). Fourteen (1.9%) had neonatal diabetes (50% consanguineous), seven (0.9%) had syndromic diabetes (100% consanguineous) and 11 (1.5%) had clinically defined MODY (18% consanguineous). We found that consanguinity was significantly associated with syndromic diabetes (p=0.0023) but not with any other diabetes subtype. The genetic cause was elucidated in ten of 12 participants with neonatal diabetes who consented to genetic testing (homozygous variants in GLIS3 [sibling pair], PTF1A and ZNF808 and heterozygous variants in ABCC8 and INS) and four of seven participants with syndromic diabetes (homozygous variants in INSR, SLC29A3 and WFS1 [sibling pair]). In addition, a participant referred as syndromic diabetes was diagnosed with mucolipidosis gamma and probably has type 2 diabetes. CONCLUSIONS/INTERPRETATION This unique single-centre study confirms that, even in a highly consanguineous population, clinically defined type 1 diabetes is the prevailing paediatric diabetes subtype. Furthermore, a pathogenic cause of monogenic diabetes was identified in 83% of tested participants with neonatal diabetes and 57% of participants with syndromic diabetes, with most variants being homozygous. Causative genes in our consanguineous participants were markedly different from genes reported from non-consanguineous populations and also from those reported in other consanguineous populations. To correctly diagnose syndromic diabetes in consanguineous populations, it may be necessary to re-evaluate diagnostic criteria and include additional phenotypic features such as short stature and hepatosplenomegaly.
Collapse
Affiliation(s)
- Shenali A Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic.
| | - Tara Hussein Tayeb
- Diabetic Clinic, Dr Jamah Ahmad Rashed Hospital, Sulaimani, Kurdistan, Iraq
- Department of Paediatrics, College of Medicine, Sulaimani University, Sulaimani, Kurdistan, Iraq
| | - Rozhan N Muhamad Sediq
- Diabetic Clinic, Dr Jamah Ahmad Rashed Hospital, Sulaimani, Kurdistan, Iraq
- Department of Paediatrics, College of Medicine, Sulaimani University, Sulaimani, Kurdistan, Iraq
| | | | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Matthew N Wakeling
- Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Elisa De Franco
- Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
4
|
Kodytková A, Amaratunga SA, Zemková D, Maratová K, Dušátková P, Plachý L, Průhová Š, Koloušková S, Lebl J. SALL4 Phenotype in Four Generations of One Family: An Interplay of the Upper Limb, Kidneys, and the Pituitary. Horm Res Paediatr 2023; 97:203-210. [PMID: 37611564 DOI: 10.1159/000531996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/01/2023] [Indexed: 08/25/2023] Open
Abstract
INTRODUCTION The SALL4 gene encodes a transcription factor that is essential for early embryonic cellular differentiation of the epiblast and primitive endoderm. It is required for the development of neural tissue, kidney, heart, and limbs. Pathogenic SALL4 variants cause Duane-radial ray syndrome (Okihiro syndrome), acro-renal-ocular syndrome, and Holt-Oram syndrome. We report a family with vertical transmission of a SALL4 pathogenic variant leading to radial hypoplasia and kidney dystopia in several generations with additional growth hormone deficiency (GHD) in the proband. CASE PRESENTATION Our male proband was born at the 39th week of gestation. He was born small for gestational age (SGA; birth weight 2,550 g, -2.2 SDS; length 47 cm, -2.0 SDS). He had bilateral asymmetrical radial ray malformation (consisting of radial hypoplasia, ulnar flexure, and bilateral aplasia of the thumb) and pelvic kidney dystopia, but no cardiac malformations, clubfoot, ocular coloboma, or Duane anomaly. He was examined for progressive short stature at the age of 3.9 years, where his IGF-1 was 68 μg/L (-1.0 SD), and growth hormone (GH) after stimulation 6.2 μg/L. Other pituitary hormones were normal. A brain CT revealed normal morphology of the cerebral midline and the pituitary. He had a dental anomaly - a central mandibular ectopic canine. MRI could not be done due to the presence of metal after multiple corrective plastic surgeries of his hands. His mother's and father's heights are 152.3 cm (-2.4 SD) and 177.8 cm (-0.4 SD), respectively. His father has a milder malformation of the forearm. The affected paternal grandfather (height 164 cm; -2.3 SD) has a radial ray defect with missing opposition of the thumb. The family reports a similar phenotype of radial dysplasia in the paternal grandfather's mother. The proband started GH therapy at age 6.5 years when his height was 109 cm (-2.8 SDS) and he experienced catch-up growth as expected in GHD. Puberty started spontaneously at the age of 12.5 years. At age 13, his height was 158.7 cm (-0.2 SDS). Whole-exome sequencing revealed a nonsense variant in the SALL4 gene c.1717C>T (p.Arg573Ter) in the proband, his father, and paternal grandfather. CONCLUSION This is the first observation of a patient with a congenital upper limb defect due to a pathogenic SALL4 variant who has isolated GHD with no apparent cerebral or facial midline anomaly and has been successfully treated with growth hormone.
Collapse
Affiliation(s)
- Aneta Kodytková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Daniela Zemková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Klára Maratová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Petra Dušátková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Lukáš Plachý
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Štěpánka Průhová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stanislava Koloušková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia,
| |
Collapse
|
5
|
Gersing S, Schulze TK, Cagiada M, Stein A, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542036. [PMID: 37292969 PMCID: PMC10245906 DOI: 10.1101/2023.05.24.542036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms of human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. We assayed the abundance of 95% of GCK missense and nonsense variants, and found that 43% of hypoactive variants have a decreased cellular abundance. By combining our abundance scores with predictions of protein thermodynamic stability, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Thea K. Schulze
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Frederick P. Roth
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Toni L, Plachy L, Dusatkova P, Amaratunga SA, Elblova L, Sumnik Z, Kolouskova S, Snajderova M, Obermannova B, Pruhova S, Lebl J. The Genetic Landscape of Children Born Small for Gestational Age with Persistent Short Stature. Horm Res Paediatr 2023; 97:40-52. [PMID: 37019085 DOI: 10.1159/000530521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
INTRODUCTION Among children born small for gestational age, 10-15% fail to catch up and remain short (SGA-SS). The underlying mechanisms are mostly unknown. We aimed to decipher genetic aetiologies of SGA-SS within a large single-centre cohort. METHODS Out of 820 patients treated with growth hormone (GH), 256 were classified as SGA-SS (birth length and/or birth weight <-2 SD for gestational age and life-minimum height <-2.5 SD). Those with the DNA triplet available (child and both parents) were included in the study (176/256). Targeted testing (karyotype/FISH/MLPA/specific Sanger sequencing) was performed if a specific genetic disorder was clinically suggestive. All remaining patients underwent MS-MLPA to identify Silver-Russell syndrome, and those with unknown genetic aetiology were subsequently examined using whole-exome sequencing or targeted panel of 398 growth-related genes. Genetic variants were classified using ACMG guidelines. RESULTS The genetic aetiology was elucidated in 74/176 (42%) children. Of these, 12/74 (16%) had pathogenic or likely pathogenic (P/LP) gene variants affecting pituitary development (LHX4, OTX2, PROKR2, PTCH1, POU1F1), the GH-IGF-1 or IGF-2 axis (GHSR, IGFALS, IGF1R, STAT3, HMGA2), 2/74 (3%) the thyroid axis (TRHR, THRA), 17/74 (23%) the cartilaginous matrix (ACAN, various collagens, FLNB, MATN3), and 7/74 (9%) the paracrine chondrocyte regulation (FGFR3, FGFR2, NPR2). In 12/74 (16%), we revealed P/LP affecting fundamental intracellular/intranuclear processes (CDC42, KMT2D, LMNA, NSD1, PTPN11, SRCAP, SON, SOS1, SOX9, TLK2). SHOX deficiency was found in 7/74 (9%), Silver-Russell syndrome in 12/74 (16%) (11p15, UPD7), and miscellaneous chromosomal aberrations in 5/74 (7%) children. CONCLUSIONS The high diagnostic yield sheds a new light on the genetic landscape of SGA-SS, with a central role for the growth plate with substantial contributions from the GH-IGF-1 and thyroid axes and intracellular regulation and signalling.
Collapse
Affiliation(s)
- Ledjona Toni
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Lukas Plachy
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Stanislava Kolouskova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Marta Snajderova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Barbora Obermannova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| |
Collapse
|
7
|
Dai T, Yang Y, Zhang J, Ma X, Chen L, Zhang C, Lv S, Li L, Tang R, Zhen N, Lu W, Li C, Hu R, Xiao Y, Dong Z. GCK exonic mutations induce abnormal biochemical activities and result in GCK-MODY. Front Genet 2023; 14:1120153. [PMID: 37082200 PMCID: PMC10110986 DOI: 10.3389/fgene.2023.1120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: Glucokinase-maturity-onset diabetes of the young (GCK-MODY; MODY2) is a rare genetic disorder caused by mutations in the glucokinase (GCK) gene. It is often under- or misdiagnosed in clinical practice, but correct diagnosis can be facilitated by genetic testing. In this study, we examined the genes of three patients diagnosed with GCK-MODY and tested their biochemical properties, such as protein stability and half-life, to explore the function of the mutant proteins and identify the pathogenic mechanism of GCK-MODY.Methods: Three patients with increased blood glucose levels were diagnosed with MODY2 according to the diagnostic guidelines of GCK-MODY proposed by the International Society for Pediatric and Adolescent Diabetes (ISPAD) in 2018. Next-generation sequencing (whole exome detection) was performed to detect gene mutations. The GCK gene and its mutations were introduced into the pCDNA3.0 and pGEX-4T-1 vectors. Following protein purification, enzyme activity assay, and protein immunoblotting, the enzyme activity of GCK was determined, along with the ubiquitination level of the mutant GCK protein.Results: Genetic testing revealed three mutations in the GCK gene of the three patients, including c.574C>T (p.R192W), c.758G>A (p.C253Y), and c.794G>A (p.G265D). The biochemical characteristics of the protein encoded by wild-type GCK and mutant GCK were different, compared to wild-type GCK, the enzyme activity encoded by the mutant GCK was reduced, suggesting thermal instability of the mutant GST-GCK. The protein stability and expression levels of the mutant GCK were reduced, and the enzyme activity of GCK was negatively correlated with the levels of fasting blood glucose and HbA1c. In addition, ubiquitination of the mutant GCK protein was higher than that of the wild-type, suggesting a higher degradation rate of mutant GCK than WT-GCK.Conclusion:GCK mutations lead to changes in the biochemical characteristics of its encoded proteins. The enzyme activities, protein expression, and protein stability of GCK may be reduced in patients with GCK gene mutations, which further causes glucose metabolism disorders and induces MODY2.
Collapse
Affiliation(s)
- Tongtong Dai
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Yang
- School of Medicine, Guizhou University, Guiyang, China
| | - Juanjuan Zhang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Caiping Zhang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Lv
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Li
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renqiao Tang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Zhen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Salina A, Bassi M, Aloi C, Strati MF, Bocciardi R, d’Annunzio G, Maghnie M, Minuto N. "Pesto" Mutation: Phenotypic and Genotypic Characteristics of Eight GCK/MODY Ligurian Patients. Int J Mol Sci 2023; 24:ijms24044034. [PMID: 36835446 PMCID: PMC9961661 DOI: 10.3390/ijms24044034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes mellitus (DM) that accounts for around 2-5% of all types of diabetes. Autosomal dominant inheritance in pathogenic variations of 14 genes related to β-cell functions can lead to monogenic types of diabetes. In Italy, GCK/MODY is the most frequent form and it is caused by mutations of the glucokinase (GCK). Patients with GCK/MODY usually have stable mild fasting hyperglycaemia with mildly elevated HbA1c levels and rarely need pharmacological treatment. Molecular analysis of the GCK coding exons was carried out by Sanger sequencing in eight Italian patients. All the probands were found to be heterozygous carriers of a pathogenic gross insertion/deletion c.1279_1358delinsTTACA; p.Ser426_Ala454delinsLeuGln. It was previously described for the first time by our group in a large cohort of Italian GCK/MODY patients. The higher levels of HbA1c (6.57% vs. 6.1%), and the higher percentage of patients requiring insulin therapy (25% vs. 2%) compared to the previously studied Italian patients with GCK/MODY, suggest that the mutation discovered could be responsible for a clinically worse form of GCK/MODY. Moreover, as all the patients carrying this variant share an origin from the same geographic area (Liguria), we postulate a possible founder effect and we propose to name it the "pesto" mutation.
Collapse
Affiliation(s)
- Alessandro Salina
- LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), Pediatric Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Marta Bassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Concetta Aloi
- LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), Pediatric Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Correspondence: ; Tel.: +39-01-05636-3786
| | - Marina Francesca Strati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Renata Bocciardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giuseppe d’Annunzio
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Mohamad Maghnie
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Nicola Minuto
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
9
|
Santos Monteiro S, da Silva Santos T, Fonseca L, Assunção G, Lopes AM, Duarte DB, Soares AR, Laranjeira F, Ribeiro I, Pinto E, Rocha S, Barbosa Gouveia S, Vazquez-Mosquera ME, Oliveira MJ, Borges T, Cardoso MH. Maturity-onset diabetes of the young in a large Portuguese cohort. Acta Diabetol 2023; 60:83-91. [PMID: 36208343 DOI: 10.1007/s00592-022-01980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
AIMS Monogenic forms of diabetes that develop with autosomal dominant inheritance are classically aggregated in the Maturity-Onset Diabetes of the Young (MODY) categories. Despite increasing awareness, its true prevalence remains largely underestimated. We describe a Portuguese cohort of individuals with suspected monogenic diabetes who were genetically evaluated for MODY-causing genes. METHODS This single-center retrospective cohort study enrolled patients with positive genetic testing for MODY between 2015 and 2021. Automatic sequencing and, in case of initial negative results, next-generation sequencing were performed. Their clinical and molecular characteristics were described. RESULTS Eighty individuals were included, 55 with likely pathogenic/pathogenic variants in one of the MODY genes and 25 MODY-positive family members, identified by cascade genetic testing. The median age at diabetes diagnosis was 23 years, with a median HbA1c of 6.5%. The most frequently mutated genes were identified in HNF1A (40%), GCK (34%) and HNF4A (13%), followed by PDX1, HNF1B, INS, KCNJ11 and APPL1. Thirty-six unique variants were found (29 missense and 7 frameshift variants), of which ten (28%) were novel. CONCLUSIONS Our data highlights the importance of genetic testing in the diagnosis of MODY and the establishment of its subtypes, leading to more personalized treatment and follow-up strategies.
Collapse
Affiliation(s)
- Sílvia Santos Monteiro
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal.
| | - Tiago da Silva Santos
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Liliana Fonseca
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Guilherme Assunção
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Ana M Lopes
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Diana B Duarte
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Ana Rita Soares
- Division of Medical Genetics, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Francisco Laranjeira
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinar Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar. Universidade do Porto, Porto, Portugal
| | - Isaura Ribeiro
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinar Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar. Universidade do Porto, Porto, Portugal
| | - Eugénia Pinto
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sónia Rocha
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sofia Barbosa Gouveia
- University Clinical Hospital of Santiago de Compostela. IDIS, CIBERER, MetabERN, 15701, Santiago de Compostela, Spain
| | | | - Maria João Oliveira
- Division of Pediatric Endocrinology. Department of Pediatrics. Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Teresa Borges
- Division of Pediatric Endocrinology. Department of Pediatrics. Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Maria Helena Cardoso
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| |
Collapse
|
10
|
Nakasato Y, Terashita S, Kusabiraki S, Horie S, Wada T, Nakabayashi M, Nakamura M, Yorifuji T. Glucokinase maturity-onset diabetes of the young as a mimicker of stress hyperglycemia: a case report. Clin Pediatr Endocrinol 2023; 32:72-75. [PMID: 36761491 PMCID: PMC9887293 DOI: 10.1297/cpe.2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Febrile seizures are frequently accompanied by stress-induced hyperglycemia. Herein, we report the case of a 1.5-yr-old girl with hyperglycemia during febrile seizures who was subsequently diagnosed with glucokinase (GCK) maturity-onset diabetes of the young (MODY), considering its distinction from stress hyperglycemia. Following the development of febrile seizures owing to adenovirus infection, the patient presented a casual blood glucose level was 185 mg/dL. She had a multigenerational family history of diabetes and a hemoglobin A1c (HbA1c) level of 6.4%. Owing to the persistent glucose intolerance until the age of 5 years, genetic testing was performed, which revealed a heterozygous mutation in GCK, and the patient was diagnosed with GCK-MODY. Precise diagnosis of GCK-MODY individuals is important to avoid administering unnecessary antidiabetic medications. Even during hyperglycemia under stress, multigenerational diabetes and mildly elevated HbA1c levels can suggest GCK-MODY.
Collapse
Affiliation(s)
| | | | | | - Sadashi Horie
- Department of Pediatrics, Toyama University Hospital, Toyama,
Japan
| | - Takuya Wada
- Department of Pediatrics, Toyama City Hospital, Toyama,
Japan
| | | | | | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism,
Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
11
|
Younis H, Ha SE, Jorgensen BG, Verma A, Ro S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. J Pers Med 2022; 12:jpm12111762. [PMID: 36573710 PMCID: PMC9697644 DOI: 10.3390/jpm12111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a rare form of diabetes which affects between 1% and 5% of diagnosed diabetes cases. Clinical characterizations of MODY include onset of diabetes at an early age (before the age of 30), autosomal dominant inheritance pattern, impaired glucose-induced secretion of insulin, and hyperglycemia. Presently, 14 MODY subtypes have been identified. Within these subtypes are several mutations which contribute to the different MODY phenotypes. Despite the identification of these 14 subtypes, MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus due to an overlap in clinical features, high cost and limited availability of genetic testing, and unfamiliarity with MODY outside of the medical profession. The primary aim of this review is to investigate the genetic characterization of the MODY subtypes. Additionally, this review will elucidate the link between the genetics, function, and clinical manifestations of MODY in each of the 14 subtypes. In providing this knowledge, we hope to assist in the accurate diagnosis of MODY patients and, subsequently, in ensuring they receive appropriate treatment.
Collapse
Affiliation(s)
- Hazar Younis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Arushi Verma
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- RosVivo Therapeutics, Applied Research Facility, Reno, NV 89557, USA
- Correspondence:
| |
Collapse
|
12
|
Dusatkova P, Pavlikova M, Elblova L, Larionov V, Vesela K, Kolarova K, Sumnik Z, Lebl J, Pruhova S. Search for a time- and cost-saving genetic testing strategy for maturity-onset diabetes of the young. Acta Diabetol 2022; 59:1169-1178. [PMID: 35737141 PMCID: PMC9219402 DOI: 10.1007/s00592-022-01915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
AIMS Correct genetic diagnosis of maturity-onset diabetes of the young (MODY) is beneficial for person's diabetes management compared to no genetic testing. Aim of the present study was a search for optimal time- and cost-saving strategies by comparing two approaches of genetic testing of participants with clinical suspicion of MODY. METHODS A total of 121 consecutive probands referred for suspicion of MODY (Group A) were screened using targeted NGS (tNGS), while the other 112 consecutive probands (Group B) underwent a single gene test based on phenotype, and in cases of negative findings, tNGS was conducted. The study was performed in two subsequent years. The genetic results, time until reporting of the final results and financial expenses were compared between the groups. RESULTS MODY was confirmed in 30.6% and 40.2% probands from Groups A and B, respectively; GCK-MODY was predominant (72.2% in Group A and 77.8% in Group B). The median number of days until results reporting was 184 days (IQR 122-258) in Group A and 91 days (44-174) in Group B (p < 0.00001). Mean costs per person were higher for Group A (639 ± 30 USD) than for Group B (584 ± 296 USD; p = 0.044). CONCLUSIONS The two-step approach represented a better strategy for genetic investigation of MODY concerning time and costs compared to direct tNGS. Although a single-gene investigation clarified the diabetes aetiology in the majority of cases, tNGS could reveal rare causes of MODY and expose possible limitations of both standard genetic techniques and clinical evaluation.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovska 83, 18675, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Vladyslav Larionov
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Klara Vesela
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Katerina Kolarova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| |
Collapse
|
13
|
Plachy L, Amaratunga SA, Dusatkova P, Maratova K, Neuman V, Petruzelkova L, Zemkova D, Obermannova B, Snajderova M, Kolouskova S, Sumnik Z, Lebl J, Pruhova S. Isolated growth hormone deficiency in children with vertically transmitted short stature: What do the genes tell us? Front Endocrinol (Lausanne) 2022; 13:1102968. [PMID: 36714562 PMCID: PMC9880029 DOI: 10.3389/fendo.2022.1102968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The growth hormone deficiency (GHD) diagnosis is controversial especially due to low specificity of growth hormone (GH) stimulation tests. It is therefore believed that children diagnosed with GHD form a heterogeneous group with growth disorder frequently independent on GH function. No study evaluating the complex etiology of growth failure in children with diagnosed GHD has been performed thus far. AIMS To discover genetic etiology of short stature in children with diagnosed GHD from families with short stature. METHODS Fifty-two children diagnosed with primary GHD and vertically transmitted short stature (height SDS in the child and his/her shorter parent <-2 SD) were included to our study. The GHD diagnosis was based on growth data suggestive of GHD, absence of substantial disproportionality (sitting height to total height ratio <-2 SD or >+2 SD), IGF-1 levels <0 for age and sex specific SD and peak GH concentration <10 ug/L in two stimulation tests. All children were examined using next-generation sequencing methods, and the genetic variants were subsequently evaluated by American College of Medical Genetics standards and guidelines. RESULTS The age of children at enrollment into the study was 11 years (median, IQR 9-14 years), their height prior to GH treatment was -3.0 SD (-3.6 to -2.8 SD), IGF-1 concentration -1.4 SD (-2.0 to -1.1 SD), and maximal stimulated GH 6.3 ug/L (4.8-7.6 ug/L). No child had multiple pituitary hormone deficiency or a midbrain region pathology. Causative variant in a gene that affects growth was discovered in 15/52 (29%) children. Of them, only 2 (13%) had a genetic variant affecting GH secretion or function (GHSR and OTX2). Interestingly, in 10 (67%) children we discovered a primary growth plate disorder (ACAN, COL1A2, COL11A1, COL2A1, EXT2, FGFR3, NF1, NPR2, PTPN11 [2x]), in one (7%) a genetic variant impairing IGF-1 action (IGFALS) and in two (12%) a variant in miscellaneous genes (SALL4, MBTPS2). CONCLUSIONS In children with vertically transmitted short stature, genetic results frequently did not correspond with the clinical diagnosis of GH deficiency. These results underline the doubtful reliability of methods standardly used to diagnose GH deficiency.
Collapse
|
14
|
A Comprehensive Analysis of Hungarian MODY Patients-Part II: Glucokinase MODY Is the Most Prevalent Subtype Responsible for about 70% of Confirmed Cases. Life (Basel) 2021; 11:life11080771. [PMID: 34440516 PMCID: PMC8400228 DOI: 10.3390/life11080771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 01/22/2023] Open
Abstract
MODY2 is caused by heterozygous inactivating mutations in the glucokinase (GCK) gene that result in persistent, stable and mild fasting hyperglycaemia (5.6–8.0 mmol/L, glycosylated haemoglobin range of 5.6–7.3%). Patients with GCK mutations usually do not require any drug treatment, except during pregnancy. The GCK gene is considered to be responsible for about 20% of all MODY cases, transcription factors for 67% and other genes for 13% of the cases. Based on our findings, GCK and HNF1A mutations together are responsible for about 90% of the cases in Hungary, this ratio being higher than the 70% reported in the literature. More than 70% of these patients have a mutation in the GCK gene, this means that GCK-MODY is the most prevalent form of MODY in Hungary. In the 91 index patients and their 72 family members examined, we have identified a total of 65 different pathogenic (18) and likely pathogenic (47) GCK mutations of which 28 were novel. In two families, de novo GCK mutations were detected. About 30% of the GCK-MODY patients examined were receiving unnecessary OAD or insulin therapy at the time of requesting their genetic testing, therefore the importance of having a molecular genetic diagnosis can lead to a major improvement in their quality of life.
Collapse
|
15
|
Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Elblova L, Kolouskova S, Snajderova M, Obermannova B, Zemkova D, Sumnik Z, Lebl J, Pruhova S. Familial Short Stature-A Novel Phenotype of Growth Plate Collagenopathies. J Clin Endocrinol Metab 2021; 106:1742-1749. [PMID: 33570564 DOI: 10.1210/clinem/dgab084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Collagens are the most abundant proteins in the human body. In a growth plate, collagen types II, IX, X, and XI are present. Defects in collagen genes cause heterogeneous syndromic disorders frequently associated with short stature. Less is known about oligosymptomatic collagenopathies. OBJECTIVE This work aims to evaluate the frequency of collagenopathies in familial short stature (FSS) children and to describe their phenotype, including growth hormone (GH) treatment response. METHODS Eighty-seven FSS children (pretreatment height ≤ -2 SD both in the patient and his or her shorter parent) treated with GH were included in the study. Next-generation sequencing was performed to search for variants in the COL2A1, COL9A1, COL9A2, COL9A3, COL10A1, COL11A1, and COL11A2 genes. The results were evaluated using American College of Medical Genetics and Genomics guidelines. The GH treatment response of affected children was retrospectively evaluated. RESULTS A likely pathogenic variant in the collagen gene was found in 10 of 87 (11.5%) children. Detailed examination described mild asymmetry with shorter limbs and mild bone dysplasia signs in 2 of 10 and 4 of 10 affected children, respectively. Their growth velocity improved from a median of 5.3 cm/year to 8.7 cm/year after 1 year of treatment. Their height improved from a median of -3.1 SD to -2.6 SD and to -2.2 SD after 1 and 3 years of therapy, respectively. The final height reached by 4 of 10 children differed by -0.67 to +1.0 SD and -0.45 to +0.5 SD compared to their pretreatment height and their affected untreated parent's height, respectively. CONCLUSION Oligosymptomatic collagenopathies are a frequent cause of FSS. The short-term response to GH treatment is promising.
Collapse
Affiliation(s)
- Lukas Plachy
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Klara Maratova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Dana Zemkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| |
Collapse
|
16
|
Ivanoshchuk DE, Shakhtshneider EV, Rymar OD, Ovsyannikova AK, Mikhailova SV, Fishman VS, Valeev ES, Orlov PS, Voevoda MI. The Mutation Spectrum of Maturity Onset Diabetes of the Young (MODY)-Associated Genes among Western Siberia Patients. J Pers Med 2021; 11:57. [PMID: 33477506 PMCID: PMC7831070 DOI: 10.3390/jpm11010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Maturity onset diabetes of the young (MODY) is a congenital form of diabetes characterized by onset at a young age and a primary defect in pancreatic-β-cell function. Currently, 14 subtypes of MODY are known, and each is associated with mutations in a specific gene: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1. The most common subtypes of MODY are associated with mutations in the genes GCK, HNF1A, HNF4A, and HNF1B. Among them, up to 70% of cases are caused by mutations in GCK and HNF1A. Here, an analysis of 14 MODY genes was performed in 178 patients with a MODY phenotype in Western Siberia. Multiplex ligation-dependent probe amplification analysis of DNA samples from 50 randomly selected patients without detectable mutations did not reveal large rearrangements in the MODY genes. In 38 patients (37% males) among the 178 subjects, mutations were identified in HNF4A, GCK, HNF1A, and ABCC8. We identified novel potentially causative mutations p.Lys142*, Leu146Val, Ala173Glnfs*30, Val181Asp, Gly261Ala, IVS7 c.864 -1G>T, Cys371*, and Glu443Lys in GCK and Ser6Arg, IVS 2 c.526 +1 G>T, IVS3 c.713 +2 T>A, and Arg238Lys in HNF1A.
Collapse
Affiliation(s)
- Dinara E. Ivanoshchuk
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Elena V. Shakhtshneider
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Oksana D. Rymar
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Alla K. Ovsyannikova
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Svetlana V. Mikhailova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
| | - Veniamin S. Fishman
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
| | - Emil S. Valeev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
| | - Pavel S. Orlov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Mikhail I. Voevoda
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
| |
Collapse
|
17
|
Vaxillaire M, Bonnefond A, Liatis S, Ben Salem Hachmi L, Jotic A, Boissel M, Gaget S, Durand E, Vaillant E, Derhourhi M, Canouil M, Larcher N, Allegaert F, Medlej R, Chadli A, Belhadj A, Chaieb M, Raposo JF, Ilkova H, Loizou D, Lalic N, Vassallo J, Marre M, Froguel P. Monogenic diabetes characteristics in a transnational multicenter study from Mediterranean countries. Diabetes Res Clin Pract 2021; 171:108553. [PMID: 33242514 DOI: 10.1016/j.diabres.2020.108553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diagnosis of monogenic diabetes has important clinical implications for treatment and health expenditure. However, its prevalence remains to be specified in many countries, particularly from South Europe, North Africa and Middle-East, where non-autoimmune diabetes in young adults is increasing dramatically. AIMS To identify cases of monogenic diabetes in young adults from Mediterranean countries and assess the specificities between countries. METHODS We conducted a transnational multicenter study based on exome sequencing in 204 unrelated patients with diabetes (age-at-diagnosis: 26.1 ± 9.1 years). Rare coding variants in 35 targeted genes were evaluated for pathogenicity. Data were analyzed using one-way ANOVA, chi-squared test and factor analysis of mixed data. RESULTS Forty pathogenic or likely pathogenic variants, 14 of which novel, were identified in 36 patients yielding a genetic diagnosis rate of 17.6%. The majority of cases were due to GCK, HNF1A, ABCC8 and HNF4A variants. We observed highly variable diagnosis rates according to countries, with association to genetic ancestry. Lower body mass index and HbA1c at study inclusion, and less frequent insulin treatment were hallmarks of pathogenic variant carriers. Treatment changes following genetic diagnosis have been made in several patients. CONCLUSIONS Our data from patients in several Mediterranean countries highlight a broad clinical and genetic spectrum of diabetes, showing the relevance of wide genetic testing for personalized care of early-onset diabetes.
Collapse
Affiliation(s)
- Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France.
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom.
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, National and Kapodistrian University of Athens Medical School, Diabetes Center, Laiko General Hospital, Athens, Greece
| | - Leila Ben Salem Hachmi
- Department of Endocrinology and Metabolic Diseases, National Institut of Nutrition, Tunis, Tunisia
| | - Aleksandra Jotic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Stefan Gaget
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuelle Durand
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Nicolas Larcher
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Frédéric Allegaert
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | | | - Asma Chadli
- Department of Endocrinology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Azzedine Belhadj
- Department of Internal Medicine, CHU Dr Ben Badis University Hospital, Constantine, Algeria
| | - Molka Chaieb
- Department of Endocrinology, Farhat Hached Hospital, Sousse, Tunisia
| | | | - Hasan Ilkova
- Department of Endocrinology, School of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Nebojsa Lalic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Josanne Vassallo
- Division of Endocrinology and University of Malta Medical School, Mater Dei Hospital; Centre of Molecular Medicine and Biobanking, University of Malta, Malta
| | - Michel Marre
- Department of Diabetology-Endocrinology-Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France; Inserm U1138, Centre de Recherche des Cordeliers, Paris, France; UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Dusatkova P, Pavlikova M, Spirkova A, Elblova L, Zdarska DJ, Rozenkova K, Hron J, Sumnik Z, Cinek O, Lebl J, Pruhova S. Quality of Life and Treatment Satisfaction in Participants with Maturity-Onset Diabetes of the Young: A Comparison to Other Major Forms of Diabetes. Exp Clin Endocrinol Diabetes 2020; 130:85-93. [PMID: 32722819 DOI: 10.1055/a-1200-1482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS We investigated the quality of life (QoL), treatment satisfaction and perception of genetic results in participants with Maturity-Onset Diabetes of the Young (MODY) and compared the results with those of subjects with type 1 (T1D) or type 2 (T2D) diabetes. METHODS A total of 162 adults with GCK-MODY, 62 with HNF1A-MODY and 29 with HNF4A-MODY answered the questionnaire Audit of Diabetes Dependent Quality of Life, the Diabetes Treatment Satisfaction Questionnaire and non-validated instrument examining the respondent's perception of the genetic results. Data from GCK-MODY patients were compared with 84 participants with T2D and HNF-MODY subjects were compared with 81 participants having T1D. RESULTS Higher age (p=0.004), higher haemoglobin A1c (p=0.026) and medication (p=0.019) were associated with lower general QoL in GCK-MODY patients. In HNF-MODY patients, lower general QoL was associated with a longer time since diagnosis (p=0.005), worse haemoglobin bA1c (p=0.006) and insulin treatment (p=0.019). Similar numbers of participants with GCK- and HNF-MODY considered the genetic diagnosis of MODY to be positive, negative and without significance. The patient with GCK-MODY did not differ from those with T2D in terms of their QoL, but they were less satisfied with their treatment (p<0.001). QoL was better in patients with HNF-MODY compared with patients with T1D (p=0.006), and they did not differ in terms of treatment satisfaction. CONCLUSIONS QoL was affected in both GCK-MODY and HNF-MODY subjects. Apprehension of genetic diagnosis was not single-valued in MODY respondents.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Alena Spirkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Denisa Janickova Zdarska
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Klara Rozenkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ondrej Cinek
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
19
|
Malikova J, Kaci A, Dusatkova P, Aukrust I, Torsvik J, Vesela K, Kankova PD, Njølstad PR, Pruhova S, Bjørkhaug L. Functional Analyses of HNF1A-MODY Variants Refine the Interpretation of Identified Sequence Variants. J Clin Endocrinol Metab 2020; 105:5722353. [PMID: 32017842 DOI: 10.1210/clinem/dgaa051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT While rare variants of the hepatocyte nuclear factor-1 alpha (HNF1A) gene can cause maturity-onset diabetes of the young (HNF1A-MODY), other variants can be risk factors for the development of type 2 diabetes. As has been suggested by the American College of Medical Genetics (ACMG) guidelines for variant interpretation, functional studies provide strong evidence to classify a variant as pathogenic. OBJECTIVE We hypothesized that a functional evaluation can improve the interpretation of the HNF1A variants in our Czech MODY Registry. DESIGN, SETTINGS, AND PARTICIPANTS We studied 17 HNF1A variants that were identified in 48 individuals (33 female/15 male) from 20 Czech families with diabetes, using bioinformatics in silico tools and functional protein analyses (transactivation, protein expression, DNA binding, and nuclear localization). RESULTS Of the 17 variants, 12 variants (p.Lys120Glu, p.Gln130Glu, p.Arg131Pro, p.Leu139Pro, p.Met154Ile, p.Gln170Ter, p.Glu187SerfsTer40, p.Phe215SerfsTer18, p.Gly253Arg, p.Leu383ArgfsTer3, p.Gly437Val, and p.Thr563HisfsTer85) exhibited significantly reduced transcriptional activity or DNA binding (< 40%) and were classified as (likely) pathogenic, 2/17 variants were (likely) benign and 3/17 remained of uncertain significance. Functional analyses allowed for the reclassification of 10/17 variants (59%). Diabetes treatment was improved in 20/29 (69%) carriers of (likely) pathogenic HNF1A variants. CONCLUSION Functional evaluation of the HNF1A variants is necessary to better predict the pathogenic effects and to improve the diagnostic interpretation and treatment, particularly in cases where the cosegregation or family history data are not available or where the phenotype is more diverse and overlaps with other types of diabetes.
Collapse
Affiliation(s)
- Jana Malikova
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Alba Kaci
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, Bergen, Norway
- Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Petra Dusatkova
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Janniche Torsvik
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, Bergen, Norway
- Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Klara Vesela
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Pavla Dvorakova Kankova
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, Bergen, Norway
- Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Stepanka Pruhova
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lise Bjørkhaug
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
20
|
Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Zemkova D, Elblova L, Kucerova P, Toni L, Kolouskova S, Snajderova M, Sumnik Z, Lebl J, Pruhova S. NPR2 Variants Are Frequent among Children with Familiar Short Stature and Respond Well to Growth Hormone Therapy. J Clin Endocrinol Metab 2020; 105:5716766. [PMID: 31990356 DOI: 10.1210/clinem/dgaa037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT The C-type natriuretic peptide receptor encoded by the NPR2 gene is a paracrine regulator of the growth plate; heterozygous NPR2 variants cause short stature with possible presence of different signs of bone dysplasia. To date, the effect of growth hormone (GH) treatment has been described in a few individuals with NPR2 gene variants with inconsistent results. OBJECTIVES To identify NPR2 gene variants among children with familial short stature (FSS) and to describe their phenotype, including GH treatment response. DESIGN, SETTINGS AND PATIENTS Out of 747 patients with short stature treated with GH in a single center, 87 with FSS met the inclusion criteria (pretreatment height ≤ -2 standard deviation in both the patient and the shorter parent, unknown genetic etiology). Next-generation sequencing methods were performed to search for NPR2 gene variants. The results were evaluated using the American College of Medical Genetics and Genomics guidelines. The GH treatment response (growth velocity improvement and height standard deviation score development over the first 5 years of treatment) was evaluated. RESULTS In 5/87 children (5.7%), a (likely) pathogenic variant in the NPR2 gene was identified (p.Ile558Thr [in 2], p.Arg205*, p.Arg557His, p.Ser603Thr). Two children had disproportionate short-limbed short stature, 1 a dysplastic 5th finger phalanx. The growth velocity in the first year of GH treatment accelerated by 3.6 to 4.2 cm/year; the height improved by 1.2 to 1.8 SD over 5 years of treatment. CONCLUSIONS NPR2 gene variants cause FSS in a significant proportion of children. Their GH treatment response is promising. Studies including final height data are necessary to assess the long-term efficacy of this therapy.
Collapse
Affiliation(s)
- Lukas Plachy
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Klara Maratova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Dana Zemkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Petra Kucerova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Ledjona Toni
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| |
Collapse
|
21
|
Abstract
MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.
Collapse
|
22
|
Strakova V, Elblova L, Johnson MB, Dusatkova P, Obermannova B, Petruzelkova L, Kolouskova S, Snajderova M, Fronkova E, Svaton M, Lebl J, Hattersley AT, Sumnik Z, Pruhova S. Screening of monogenic autoimmune diabetes among children with type 1 diabetes and multiple autoimmune diseases: is it worth doing? J Pediatr Endocrinol Metab 2019; 32:1147-1153. [PMID: 31483759 DOI: 10.1515/jpem-2019-0261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 11/15/2022]
Abstract
Background Paediatric type 1 diabetes (T1D) and rare syndromes of monogenic multi-organ autoimmunity share basic features such as full insulin dependency and the presence of circulating beta-cell autoantibodies. However, the aetiopathogenesis, natural course and treatment of these conditions differ; therefore, monogenic multi-organ autoimmunity requires early recognition. We aimed to search for these monogenic conditions among a large cohort of children with T1D. Methods Of 519 children with T1D followed-up in a single centre, 18 had multiple additional autoimmune conditions - either autoimmune thyroid disease (AITD) and coeliac disease (CD) or at least one additional organ-specific autoimmune condition in addition to AITD or CD. These 18 children were tested by direct Sanger sequencing (four patients with a suggestive phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-linked [IPEX] or signal transducer and activator of transcription 3 [STAT3]- and cytotoxic T-lymphocyte protein 4 [CTLA4]-associated syndromes) or by whole-exome sequencing (WES) focused on autoimmune regulator (AIRE), forkhead box protein 3 (FOXP3), CTLA4, STAT3, signal transducer and activator of transcription 1 (STAT1), lipopolysaccharide-responsive and beige-like anchor protein (LRBA) and interleukin-2 receptor subunit α (IL2RA) genes. In addition, we assessed their T1D genetic risk score (T1D-GRS). Results We identified novel variants in FOXP3, STAT3 and CTLA4 in four cases. All patients had a severe phenotype suggestive of a single gene defect. No variants were identified in the remaining 14 patients. T1D-GRS varied among the entire cohort; four patients had scores below the 25th centile including two genetically confirmed cases. Conclusions A monogenic cause of autoimmune diabetes was confirmed only in four patients. Genetic screening for monogenic autoimmunity in children with a milder phenotype and a combination of AITD and CD is unlikely to identify a monogenic cause. In addition, the T1D-GRS varied among individual T1D patients.
Collapse
Affiliation(s)
- Veronika Strakova
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Matthew B Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Petra Dusatkova
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Barbora Obermannova
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Lenka Petruzelkova
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Stanislava Kolouskova
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Marta Snajderova
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Eva Fronkova
- Department of Paediatric Haematology and Oncology, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Michael Svaton
- Department of Paediatric Haematology and Oncology, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Zdenek Sumnik
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
23
|
Kononenko IV, Glibka AA, Zubkova NA, Mayorov AY, Tyulpakov AN, Schmidt OM. MODY2 diagnostic issues in adults. DIABETES MELLITUS 2019. [DOI: 10.14341/dm10063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Approximately 90% of all cases of diabetes mellitus in adults involve type 2 diabetes, while the prevalence of maturity-onset diabetes of the young (MODY) remains undetermined leading to inappropriate treatment regimens. One of the most common monogenic forms of diabetes is a disease caused by a mutation in the glucokinase gene, MODY2. Knowledge of the clinical features of the disease allows the selection of patients with a high risk of mutation in the glucokinase gene and verification of diagnosis for molecular genetic research. This paper reflects the clinical features of MODY2 and the difficulties of diagnosis in adults. Furthermore, it presents a clinical case of a patient with MODY2 demonstrating all the features of this type of diabetes. A family member with a mutation in the gene allows to predict the nature of carbohydrate metabolism disorders in first degree relatives. A targeted study of only one part of the glucokinase gene in molecular genetic research is sufficient to confirm the diagnosis in relatives.
Collapse
|
24
|
Plachy L, Strakova V, Elblova L, Obermannova B, Kolouskova S, Snajderova M, Zemkova D, Dusatkova P, Sumnik Z, Lebl J, Pruhova S. High Prevalence of Growth Plate Gene Variants in Children With Familial Short Stature Treated With GH. J Clin Endocrinol Metab 2019; 104:4273-4281. [PMID: 30753492 DOI: 10.1210/jc.2018-02288] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Abstract
CONTEXT Familial short stature (FSS) is a term describing a growth disorder that is vertically transmitted. Milder forms may result from the combined effect of multiple genes; more severe short stature is suggestive of a monogenic condition. The etiology of most FSS cases has not been thoroughly elucidated to date. OBJECTIVES To identify the genetic etiology of severe FSS in children treated with GH because of the diagnosis of small for gestational age or GH deficiency (SGA/GHD). DESIGN, SETTINGS, AND PATIENTS Of 736 children treated with GH because of GHD/SGA, 33 with severe FSS (life-minimum height -2.5 SD or less in both the patient and shorter parent) were included in the study. The genetic etiology was known in 5 of 33 children prior to the study [ACAN (in 2], NF1, PTPN11, and SOS1). In the remaining 28 of 33, whole-exome sequencing was performed. The results were evaluated using American College of Medical Genetics and Genomics standards and guidelines. RESULTS In 30 of 33 children (90%), we found at least one variant with potential clinical significance in genes known to affect growth. A genetic cause was elucidated in 17 of 33 (52%). Of these children, variants in growth plate-related genes were found in 9 of 17 [COL2A1, COL11A1, and ACAN (all in 2), FLNB, FGFR3, and IGF1R], and IGF-associated proteins were affected in 2 of 17 (IGFALS and HMGA2). In the remaining 6 of 17, the discovered genetic mechanisms were miscellaneous (TRHR, MBTPS2, GHSR, NF1, PTPN11, and SOS1). CONCLUSIONS Single-gene variants are frequent among families with severe FSS, with variants affecting the growth plate being the most prevalent.
Collapse
Affiliation(s)
- Lukas Plachy
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Veronika Strakova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Dana Zemkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- University Hospital Motol, Prague 5, Czech Republic
| |
Collapse
|
25
|
Bouldjennet F, Hireche A, Kechout N, Bouaziz-Terrachet S, Azzouz M, Mihoubi E, Aissou A, Touil-Boukoffa C, Attal N, Raache R. Clinical characteristics of Algerian subjects with MODY p.R85W glucokinase mutation- in silico assessment of p.R85W effect on glucokinase structure and function. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Sediva H, Dusatkova P, Kanderova V, Obermannova B, Kayserova J, Sramkova L, Zemkova D, Elblova L, Svaton M, Zachova R, Kolouskova S, Fronkova E, Sumnik Z, Sediva A, Lebl J, Pruhova S. Short Stature in a Boy with Multiple Early-Onset Autoimmune Conditions due to a STAT3 Activating Mutation: Could Intracellular Growth Hormone Signalling Be Compromised?
. Horm Res Paediatr 2018; 88:160-166. [PMID: 28253502 DOI: 10.1159/000456544] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Germline STAT3 gain-of-function (GOF) mutations cause multiple endocrine and haematologic autoimmune disorders, lymphoproliferation, and growth impairment. As the JAK-STAT pathway is known to transduce the growth hormone (GH) signalling, and STAT3 interacts with STAT5 in growth regulation, we hypothesised that short stature in STAT3 GOF mutations results mostly from GH insensitivity via involving activation of STAT5. CASE REPORT A boy with a novel STAT3 c.2144C>T (p.Pro715Leu) mutation presented with short stature (-2.60 SD at 5.5 years). He developed diabetes mellitus at 11 months, generalised lympho-proliferation, autoimmune thyroid disease, and immune bicytopenia in the subsequent years. At 5.5 years, his insulin-like growth factor-1 (IGF-I) was 37 µg/L (-2.22 SD) but stimulated GH was 27.7 µg/L. Both a standard IGF-I generation test (GH 0.033 mg/kg/day sc; 4 days) and a high-dose prolonged IGF-I generation test (GH 0.067 mg/kg/day sc; 14 days) failed to significantly increase IGF-I levels (37-46 and 72-87 µg/L, respectively). The boy underwent haematopoietic stem cell transplantation at 6 years due to severe neutropenia and massive lymphoproliferation, but unfortunately deceased 42 days after transplantation from reactivated generalised adenoviral infection. CONCLUSIONS Our findings confirm the effect of STAT3 GOF mutation on the downstream activation of STAT5 resulting in partial GH insensitivity.
.
Collapse
Affiliation(s)
- Hana Sediva
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Veronika Kanderova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Barbora Obermannova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jana Kayserova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lucie Sramkova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Dana Zemkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Michal Svaton
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Radana Zachova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Stanislava Kolouskova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Eva Fronkova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
27
|
López GP, Quispe BV, Núñez MJC, Castaño L, Barrio R. Dysmorphic Features, Frontal Cerebral Cavernoma, and Hyperglycemia in a Girl with a De Novo Deletion of 7.23 Mb in Region 7p13-p12.1. J Clin Res Pediatr Endocrinol 2017; 9:355-359. [PMID: 28387648 PMCID: PMC5785643 DOI: 10.4274/jcrpe.4324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We describe the case of a 7-year-old girl referred to our diabetes unit for hyperglycemia associated with facial dysmorphic features, intellectual disability, and cerebral cavernomas. Based on presence of anti islet antigen-2 (IA2) antibodies and a human leukocyte antigen of DR3/DR4/DQ2, the patient was initially diagnosed to be a case of type 1 diabetes mellitus. At follow-up, the very good metabolic control on a low insulin dose and negative IA2 antibodies led to a suspicion of glucokinase (GCK)-related maturity-onset diabetes of the young (MODY 2). This suspicion was substantiated in multiplex ligation-dependent probe amplification (MLPA) which showed a heterozygous GCK deletion (exons 1 to 12). However, the patient's parents did not have such a deletion and were clinically euglycemic. Given the clinical picture and the MLPA findings, array based comparative genomic hybridization was performed showing a monoallelic deletion of 7.23 Mb in the short arm of chromosome 7 (7p13-p12.1). The deleted intervals contain 39 genes listed in the Online Mendelian Inheritance in Man list, including GCK associated with MODY 2, CCM2 associated with type 2 cerebral cavernous malformations, IGFBP-3 associated with decrease in postnatal growth, and OGD associated with alpha-ketoglutarate dehydrogenase deficiency, with cognitive impairment and movement abnormalities. This previously unreported deletion was considered to explain the clinical picture of the patient. Also, the findings suggest that 7p13-p12.1 contains genes involved in intellectual disability and craniofacial development.
Collapse
Affiliation(s)
- Gilberto Pérez López
- Ramón y Cajal University Hospital, Department of Pediatrics, Pediatric Endocrinology and Diabetes Unit, Madrid, Spain
,* Address for Correspondence: Ramón y Cajal University Hospital, Department of Pediatrics, Pediatric Endocrinology and Diabetes Unit, Madrid, Spain Phone: +90 386 280 38 08 E-mail:
| | - Beatriz Villafuerte Quispe
- Ramón y Cajal University Hospital, Department of Pediatrics, Pediatric Endocrinology and Diabetes Unit, Madrid, Spain
| | | | - Luis Castaño
- Cruces University Hospital, Research Unit, Bilbao, Spain
| | - Raquel Barrio
- Ramón y Cajal University Hospital, Department of Pediatrics, Pediatric Endocrinology and Diabetes Unit, Madrid, Spain
| |
Collapse
|
28
|
Globa E, Zelinska N, Elblova L, Dusatkova P, Cinek O, Lebl J, Colclough K, Ellard S, Pruhova S. MODY in Ukraine: genes, clinical phenotypes and treatment. J Pediatr Endocrinol Metab 2017; 30:1095-1103. [PMID: 28862987 DOI: 10.1515/jpem-2017-0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/24/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) has not been previously studied in Ukraine. We investigated the genetic etiology in a selected cohort of patients with diabetes diagnosed before 18 years of age, and in their family members. METHODS Genetic testing of the most prevalent MODY genes (GCK, HNF1A, HNF4A, HNF1B and INS) was undertaken for 36 families (39 affected individuals) by Sanger or targeted next generation sequencing. RESULTS A genetic diagnosis of MODY was made in 15/39 affected individuals from 12/36 families (33%). HNF1A and HNF4A MODY were the most common subtypes, accounting for 9/15 of MODY cases. Eight patients with HNF1A or HNF4A MODY and inadequate glycemic control were successfully transferred to sulfonylureas. Median HbA1c decreased from 67 mmol/mol (range 58-69) to 47 mmol/mol (range 43-50) (8.3% [7.5-8.5] to 6.4% [6.1-6.7]) 3 months after transfer (p=0.006). CONCLUSIONS Genetic testing identified pathogenic HNF1A and HNF4A variants as the most common cause of MODY in Ukraine. Transfer to sulfonylureas substantially improved the glycemic control of these patients.
Collapse
|
29
|
Šimčíková D, Kocková L, Vackářová K, Těšínský M, Heneberg P. Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase. Sci Rep 2017; 7:9499. [PMID: 28842611 PMCID: PMC5573313 DOI: 10.1038/s41598-017-09810-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Computational methods that allow predicting the effects of nonsynonymous substitutions are an integral part of exome studies. Here, we validated and improved their specificity by performing a comprehensive bioinformatics analysis combined with experimental and clinical data on a model of glucokinase (GCK): 8835 putative variations, including 515 disease-associated variations from 1596 families with diagnoses of monogenic diabetes (GCK-MODY) or persistent hyperinsulinemic hypoglycemia of infancy (PHHI), and 126 variations with available or newly reported (19 variations) data on enzyme kinetics. We also proved that high frequency of disease-associated variations found in patients is closely related to their evolutionary conservation. The default set prediction methods predicted correctly the effects of only a part of the GCK-MODY-associated variations and completely failed to predict the normoglycemic or PHHI-associated variations. Therefore, we calculated evidence-based thresholds that improved significantly the specificity of predictions (≤75%). The combined prediction analysis even allowed to distinguish activating from inactivating variations and identified a group of putatively highly pathogenic variations (EVmutation score <−7.5 and SNAP2 score >70), which were surprisingly underrepresented among MODY patients and thus under negative selection during molecular evolution. We suggested and validated the first robust evidence-based thresholds, which allow improved, highly specific predictions of disease-associated GCK variations.
Collapse
Affiliation(s)
- Daniela Šimčíková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Lucie Kocková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | | | - Miroslav Těšínský
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Petr Heneberg
- Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
30
|
Kocova M, Elblova L, Pruhova S, Lebl J, Dusatkova P. Novel glucokinase gene mutation in the first Macedonian family tested for MODY. Diabetes Res Clin Pract 2017; 130:86-89. [PMID: 28575730 DOI: 10.1016/j.diabres.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/03/2017] [Indexed: 01/27/2023]
Abstract
We present a boy with mild hyperglycemia detected during an upper respiratory infection. Novel splicing mutation in the intron 1 of the GCK gene (c.45+1G>A) was detected, and was subsequently confirmed in his father. This is the first case of genetically confirmed Macedonian family with MODY.
Collapse
Affiliation(s)
- M Kocova
- University Pediatric Clinic, Skopje, The Former Yugolav Republic of Macedonia.
| | - L Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - S Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - J Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - P Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| |
Collapse
|
31
|
Giuffrida FMA, Moises RS, Weinert LS, Calliari LE, Manna TD, Dotto RP, Franco LF, Caetano LA, Teles MG, Lima RA, Alves C, Dib SA, Silveiro SP, Dias-da-Silva MR, Reis AF. Maturity-onset diabetes of the young (MODY) in Brazil: Establishment of a national registry and appraisal of available genetic and clinical data. Diabetes Res Clin Pract 2017; 123:134-142. [PMID: 28012402 DOI: 10.1016/j.diabres.2016.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023]
Abstract
AIMS Maturity-Onset Diabetes of the Young (MODY) comprises a heterogeneous group of monogenic forms of diabetes caused by mutations in at least 14 genes, but mostly by mutations in Glucokinase (GCK) and hepatocyte nuclear factor-1 homeobox A (HNF1A). This study aims to establish a national registry of MODY cases in Brazilian patients, assessing published and unpublished data. METHODS 311 patients with clinical characteristics of MODY were analyzed, with unpublished data on 298 individuals described in 12 previous publications and 13 newly described cases in this report. RESULTS 72 individuals had GCK mutations, 9 described in Brazilian individuals for the first time. One previously unpublished novel GCK mutation, Gly178Ala, was found in one family. 31 individuals had HNF1A mutations, 2 described for the first time in Brazilian individuals. Comparisons of GCK probands vs HNF1A: age 16±11 vs 35±20years; age at diagnosis 11±8 vs 21±7years; BMI 19±6 vs 25±6kg/m2; sulfonylurea users 5 vs 83%; insulin users 5 vs 17%; presence of arterial hypertension 0 vs. 33%, all p<0.05. No differences were observed in lipids and C-peptide. CONCLUSIONS Most MODY cases in Brazil are due to GCK mutations. In agreement with other studied populations, novel mutations are common. Only 14% of patients with familial diabetes carry a HNF1A mutation. Diagnosis of other rare forms of MODY is still a challenge in Brazilian population, as well as adequate strategies to screen individuals for molecular diagnosis.
Collapse
Affiliation(s)
- Fernando M A Giuffrida
- Universidade do Estado da Bahia (UNEB), Salvador, Brazil; Disciplina de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| | - Regina S Moises
- Disciplina de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Leticia S Weinert
- Endocrinology Unit - Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis E Calliari
- Faculdade de Medicina da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Thais Della Manna
- Instituto da Criança, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Renata P Dotto
- Disciplina de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luciana F Franco
- Disciplina de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lilian A Caetano
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Diabetes Unit, University of Sao Paulo (USP) Medical School, Sao Paulo, Brazil
| | - Milena G Teles
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Diabetes Unit, University of Sao Paulo (USP) Medical School, Sao Paulo, Brazil
| | - Renata Andrade Lima
- Pediatric Endocrinology Unit, University Hospital Prof. Edgard Santos, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Crésio Alves
- Pediatric Endocrinology Unit, University Hospital Prof. Edgard Santos, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Sergio A Dib
- Disciplina de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sandra P Silveiro
- Endocrinology Unit - Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Magnus R Dias-da-Silva
- Disciplina de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andre F Reis
- Disciplina de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
32
|
Petruzelkova L, Dusatkova P, Cinek O, Sumnik Z, Pruhova S, Hradsky O, Vcelakova J, Lebl J, Kolouskova S. Substantial proportion of MODY among multiplex families participating in a Type 1 diabetes prediction programme. Diabet Med 2016; 33:1712-1716. [PMID: 26641800 DOI: 10.1111/dme.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
AIMS Patients with maturity-onset diabetes of the young (MODY) might be over-represented in families with histories of Type 1 diabetes. Our aim was to re-evaluate families participating in the Czech T1D Prediction Programme (PREDIA.CZ) with at least two members affected with diabetes to assess the proportion of MODY among these families and determine its most significant clinical predictors. METHODS Of the 557 families followed up by the PREDIA.CZ, 53 (9.5%) had two or more family members with diabetes. One proband with diabetes from these families was chosen for direct sequencing of the GCK, HNF1A, HNF4A and INS genes. Non-parametric tests and a linear logistic regression model were used to evaluate differences between MODY and non-MODY families. RESULTS MODY was genetically diagnosed in 24 of the 53 families with multiple occurrences of diabetes (45%). Mutations were detected most frequently in GCK (58%), followed by HNF1A (38%) and INS (4%). MODY families were more likely to have a parent with diabetes and had a higher proportion of females with diabetes than non-MODY families. Higher age (P < 0.001), a lower level of HbA1c (P < 0.001) at clinical onset and at least two generations affected by diabetes were the variables most predictive for probands of MODY families already presenting with diabetes. CONCLUSIONS A prediction programme for Type 1 diabetes would provide a useful new source of patients with MODY most likely to benefit from an accurate diagnosis. This identification has implications for patient treatment and disease prognosis.
Collapse
Affiliation(s)
- L Petruzelkova
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - P Dusatkova
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - O Cinek
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Z Sumnik
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - S Pruhova
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - O Hradsky
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - J Vcelakova
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - J Lebl
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - S Kolouskova
- Department of Paediatrics, University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
33
|
Ağladıoğlu SY, Aycan Z, Çetinkaya S, Baş VN, Önder A, Peltek Kendirci HN, Doğan H, Ceylaner S. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing. J Pediatr Endocrinol Metab 2016; 29:487-96. [PMID: 26669242 DOI: 10.1515/jpem-2015-0039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 10/19/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Maturity-onset diabetes of the youth (MODY), is a genetically and clinically heterogeneous group of diseasesand is often misdiagnosed as type 1 or type 2 diabetes. The aim of this study is to investigate both novel and proven mutations of 11 MODY genes in Turkish children by using targeted next generation sequencing. METHODS A panel of 11 MODY genes were screened in 43 children with MODY diagnosed by clinical criterias. Studies of index cases was done with MISEQ-ILLUMINA, and family screenings and confirmation studies of mutations was done by Sanger sequencing. RESULTS We identified 28 (65%) point mutations among 43 patients. Eighteen patients have GCK mutations, four have HNF1A, one has HNF4A, one has HNF1B, two have NEUROD1, one has PDX1 gene variations and one patient has both HNF1A and HNF4A heterozygote mutations. CONCLUSIONS This is the first study including molecular studies of 11 MODY genes in Turkish children. GCK is the most frequent type of MODY in our study population. Very high frequency of novel mutations (42%) in our study population, supports that in heterogenous disorders like MODY sequence analysis provides rapid, cost effective and accurate genetic diagnosis.
Collapse
|
34
|
Rozenkova K, Malikova J, Nessa A, Dusatkova L, Bjørkhaug L, Obermannova B, Dusatkova P, Kytnarova J, Aukrust I, Najmi LA, Rypackova B, Sumnik Z, Lebl J, Njølstad PR, Hussain K, Pruhova S. High Incidence of Heterozygous ABCC8 and HNF1A Mutations in Czech Patients With Congenital Hyperinsulinism. J Clin Endocrinol Metab 2015; 100:E1540-9. [PMID: 26431509 DOI: 10.1210/jc.2015-2763] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT Congenital hyperinsulinism of infancy (CHI) represents a group of heterogeneous disorders characterized by oversecretion of insulin from pancreatic β-cells causing severe hypoglycemia. OBJECTIVE We studied the distribution of genetic causes of CHI in a Czech population. METHODS Countrywide collection of patients with CHI included 40 subjects (12 females, median age of diagnosis, 1 wk [interquartile range, 1-612 wk]). We sequenced the ABCC8, KCNJ11, GLUD1, GCK, HADH, UCP2, SLC16A1, HNF4A, and HNF1A genes and investigated structural changes in the ABCC8 gene. We functionally tested novel variants in the ABCC8 gene by Rb(86+) efflux assay and novel variants in the HNF1A gene by transcriptional activation and DNA-binding tests. RESULTS We found causal mutations in 20 subjects (50%): 19 carried a heterozygous mutation while one patient was homozygous for mutation in the ABCC8 gene. Specifically, we detected 11 mutations (seven novel) in ABCC8, one novel mutation in KCNJ11, five mutations (two novel) in HNF1A, two novel mutations in HNF4A, and one in GCK. We showed a decrease of activation by diazoxide in mutant KATP channels with novel ABCC8 variants by 41-91% (median, 82%) compared with wild-type (WT) channels and reduced transcriptional activity of mutant HNF1A proteins (2.9% for p.Asn62Lysfs93* and 22% for p.Leu254Gln) accompanied by no DNA-binding ability compared with WT HNF1A. CONCLUSION We detected a higher proportion of heterozygous mutations causing CHI compared with other cohorts probably due to lack of consanguinity and inclusion of milder CHI forms. Interestingly, HNF1A gene mutations represented the second most frequent genetic cause of CHI in the Czech Republic. Based on our results we present a genetic testing strategy specific for similar populations.
Collapse
Affiliation(s)
- Klara Rozenkova
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Jana Malikova
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Azizun Nessa
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Lenka Dusatkova
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Lise Bjørkhaug
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Barbora Obermannova
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Petra Dusatkova
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Jitka Kytnarova
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Ingvild Aukrust
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Laeya A Najmi
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Blanka Rypackova
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Zdenek Sumnik
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Jan Lebl
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Pål R Njølstad
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Khalid Hussain
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| | - Stepanka Pruhova
- Department of Paediatrics, Second Faculty of Medicine (K.R., J.M., L.D., B.O., P.D., Z.S., J.L., S.P.), Charles University in Prague and University Hospital in Motol, Prague 150 06, Czech Republic; Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme (A.N., K.H.), Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; KG Jebsen Center for Diabetes Research, Department of Clinical Science (L.B., I.A., L.A.N., P.R.N.), University of Bergen, Bergen N-5021, Norway; Department of Biomedicine (L.B.), University of Bergen, Bergen N-5021, Norway; Department of Paediatrics, First Faculty of Medicine (J.K.), Charles University in Prague and the General University Hospital in Prague, Prague 121 08, Czech Republic; Center for Medical Genetics and Molecular Medicine (I.A., L.A.N.), Haukeland University Hospital, Bergen N-5021, Norway; Center for Research of Diabetes, Metabolism and Nutrition and Second Department of Internal Medicine FNKV, Third Faculty of Medicine (B.R.), Charles University in Prague, Prague 100 00, Czech Republic; Department of Pediatrics (P.R.N.), Haukeland University Hospital, Bergen, N-5020 Norway; and Department of Paediatric Endocrinology (K.H.), Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom
| |
Collapse
|
35
|
Dusatkova L, Dusatkova P, Vosahlo J, Vesela K, Cinek O, Lebl J, Pruhova S. Frameshift mutations in the insulin gene leading to prolonged molecule of insulin in two families with Maturity-Onset Diabetes of the Young. Eur J Med Genet 2015; 58:230-4. [PMID: 25721872 DOI: 10.1016/j.ejmg.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023]
Abstract
Mutations in the insulin (INS) gene rarely occur in patients with Maturity-Onset Diabetes of the Young (MODY). We aimed to describe in detail two MODY families with INS mutations. The INS gene was screened by direct sequencing. The probands and their affected relatives underwent a mixed-meal test. Mutation predictions were modeled using I-TASSER and were visualized by Swiss-PdbViewer. A novel heterozygous frameshift mutation p.Gln78fs in the INS gene was found in three generations of patients with clinically distinct diabetes. The single nucleotide deletion (c.233delA) is predicted to change and prolong amino acid sequence, resulting in aberrant proinsulin without native structures of C-peptide and A-chain. In the second family, the heterozygous mutation c.188-31G>A within the terminal intron was detected. The mother and her daughter were misdiagnosed as having type 1 diabetes since the ages of 6 and 2 years, respectively. This result is in contrast to the previously described carrier of the same mutation who was diagnosed with permanent neonatal diabetes. We identified a novel coding frameshift mutation and an intronic mutation in the INS gene leading to childhood-onset diabetes. INS mutations may result in various phenotypes, suggesting that additional mechanisms may be involved in the pathogenesis and clinical manifestation of diabetes.
Collapse
Affiliation(s)
- Lenka Dusatkova
- Department of Pediatrics, Charles University in Prague, 2nd Faculty of Medicine and University Hospital Motol, Prague, CZ-150 06, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, Charles University in Prague, 2nd Faculty of Medicine and University Hospital Motol, Prague, CZ-150 06, Czech Republic.
| | - Jan Vosahlo
- Department of Pediatrics, Charles University in Prague, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, CZ-100 34, Czech Republic
| | - Klara Vesela
- Department of Pediatrics, Charles University in Prague, 2nd Faculty of Medicine and University Hospital Motol, Prague, CZ-150 06, Czech Republic
| | - Ondrej Cinek
- Department of Pediatrics, Charles University in Prague, 2nd Faculty of Medicine and University Hospital Motol, Prague, CZ-150 06, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, Charles University in Prague, 2nd Faculty of Medicine and University Hospital Motol, Prague, CZ-150 06, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, Charles University in Prague, 2nd Faculty of Medicine and University Hospital Motol, Prague, CZ-150 06, Czech Republic
| |
Collapse
|
36
|
Naylor RN, John PM, Winn AN, Carmody D, Greeley SAW, Philipson LH, Bell GI, Huang ES. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications. Diabetes Care 2014; 37:202-9. [PMID: 24026547 PMCID: PMC3867988 DOI: 10.2337/dc13-0410] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate the cost-effectiveness of a genetic testing policy for HNF1A-, HNF4A-, and GCK-MODY in a hypothetical cohort of type 2 diabetic patients 25-40 years old with a MODY prevalence of 2%. RESEARCH DESIGN AND METHODS We used a simulation model of type 2 diabetes complications based on UK Prospective Diabetes Study data, modified to account for the natural history of disease by genetic subtype to compare a policy of genetic testing at diabetes diagnosis versus a policy of no testing. Under the screening policy, successful sulfonylurea treatment of HNF1A-MODY and HNF4A-MODY was modeled to produce a glycosylated hemoglobin reduction of -1.5% compared with usual care. GCK-MODY received no therapy. Main outcome measures were costs and quality-adjusted life years (QALYs) based on lifetime risk of complications and treatments, expressed as the incremental cost-effectiveness ratio (ICER) (USD/QALY). RESULTS The testing policy yielded an average gain of 0.012 QALYs and resulted in an ICER of 205,000 USD. Sensitivity analysis showed that if the MODY prevalence was 6%, the ICER would be ~50,000 USD. If MODY prevalence was >30%, the testing policy was cost saving. Reducing genetic testing costs to 700 USD also resulted in an ICER of ~50,000 USD. CONCLUSIONS Our simulated model suggests that a policy of testing for MODY in selected populations is cost-effective for the U.S. based on contemporary ICER thresholds. Higher prevalence of MODY in the tested population or decreased testing costs would enhance cost-effectiveness. Our results make a compelling argument for routine coverage of genetic testing in patients with high clinical suspicion of MODY.
Collapse
|
37
|
Delvecchio M, Ludovico O, Bellacchio E, Stallone R, Palladino T, Mastroianno S, Zelante L, Sacco M, Trischitta V, Carella M. MODY type 2 P59S GCK mutant: founder effect in South of Italy. Clin Genet 2013; 83:83-7. [DOI: 10.1111/j.1399-0004.2012.01856.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Pruhova S, Dusatkova P, Kraml PJ, Kulich M, Prochazkova Z, Broz J, Zikmund J, Cinek O, Andel M, Pedersen O, Hansen T, Lebl J. Chronic Mild Hyperglycemia in GCK-MODY Patients Does Not Increase Carotid Intima-Media Thickness. Int J Endocrinol 2013; 2013:718254. [PMID: 24101925 PMCID: PMC3786513 DOI: 10.1155/2013/718254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022] Open
Abstract
Aim. GCK-MODY is an autosomal dominant form of diabetes caused by heterozygous mutations in the glucokinase gene leading to a lifelong mild hyperglycemia. The risk of macrovascular complications is considered low, but studies are limited. We, therefore, investigated the carotid intima-media thickness (CIMT) as an indicator of macrovascular complications in a group of patients with GCK-MODY. Methods. Twenty-seven GCK mutation carriers and 24 controls recruited among their first-degree relatives were compared, all aging over 35 years. The CIMT was tested using a high-resolution B-mode carotid ultrasonography. Medical history, anthropometry, and biochemical blood workup were obtained. Results. The mean CIMT was 0.707 ± 0.215 mm (mean ± SD) in GCK mutation carriers and 0.690 ± 0.180 mm in control individuals. When adjusted for age, gender, and family status, the estimated mean difference in CIMT between the two groups increased to 0.049 mm (P = 0.19). No difference was detected for other characteristics, with the exception of fasting blood glucose (GCK-MODY 7.6 mmol/L ± 1.2 (136.4 mg/dL); controls 5.3 mmol/L ± 0.3 (95.4 mg/dL); P < 0.0001) and glycated hemoglobin HbA1c (GCK-MODY 6.9% ± 1.0%, 52 mmol/mol ± 10; controls 5.7% ± 0.4%, 39 mmol/mol ± 3; P < 0.0001). The frequency of myocardial infarction and ischemic stroke did not differ between groups. Conclusion. Our data indicate that the persistent hyperglycemia in GCK-MODY is associated with a low risk of developing diabetic macrovascular complications.
Collapse
Affiliation(s)
- Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague, Czech Republic
- *Stepanka Pruhova:
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Pavel J. Kraml
- 2nd Department of Internal Medicine, 3rd Faculty of Medicine, Charles University in Prague and University Hospital Kralovské Vinohrady, 100 81 Prague, Czech Republic
| | - Michal Kulich
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, 186 75 Prague, Czech Republic
| | - Zdena Prochazkova
- 2nd Department of Internal Medicine, 3rd Faculty of Medicine, Charles University in Prague and University Hospital Kralovské Vinohrady, 100 81 Prague, Czech Republic
| | - Jan Broz
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Jaroslav Zikmund
- Department of Pediatrics, 3rd Faculty of Medicine, Charles University in Prague and University Hospital Kralovské Vinohrady, 100 81 Prague, Czech Republic
| | - Ondrej Cinek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Michal Andel
- 2nd Department of Internal Medicine, 3rd Faculty of Medicine, Charles University in Prague and University Hospital Kralovské Vinohrady, 100 81 Prague, Czech Republic
| | - Oluf Pedersen
- Hagedorn Research Institute, 2820 Gentofte, Denmark
- Institute of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, 2200 N Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, 2820 Odense, Denmark
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague, Czech Republic
| |
Collapse
|
39
|
Borowiec M, Fendler W, Dusatkova P, Antosik K, Pruhova S, Cinek O, Mysliwiec M, Jarosz-Chobot P, Malecki MT, Mlynarski W. HbA1c-based diabetes diagnosis among patients with glucokinase mutation (GCK-MODY) is affected by a genetic variant of glucose-6-phosphatase (G6PC2). Diabet Med 2012; 29:1465-9. [PMID: 22486180 DOI: 10.1111/j.1464-5491.2012.03671.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Genetic variation at the rs560887 locus of the glucose-6-phosphatase, catalytic 2 gene (G6PC2) is known to affect regulation of fasting glycaemia. We determined the rs560887 genotype of patients with monogenic diabetes and glucokinase gene mutations (GCK-MODY) and correlated the genotypes with HbA(1c) levels. METHODS Patients from families with GCK-MODY were recruited from two large cohorts from Poland (n = 128) and the Czech Republic (n = 154). Genotypes at the rs560887 polymorphic site in G6PC2 were examined using real-time quantitative polymerase chain reaction. The effect of rs560887 genotype on age at diagnosis of GCK-MODY and initial HbA(1c) levels were evaluated separately within both cohorts. Following that, a meta-analysis of rs560887 genotype-HbA(1c) associations of both Polish and Czech cohorts was performed to confirm homogeneity of findings and validate cohort-specific results. RESULTS GG homozygosity at rs560887 was associated with marginally elevated HbA(1c) levels (P = 0.07 in both cohorts). The effects observed in both groups were very homogeneous (Q = 0.18; P = 0.68). Meta-analysis showed that GG homozygosity at rs560887 was associated with mean HbA(1c) levels higher by 2.4 mmol/mol (0.24%), 95% CI 0.5-4.4 mmol/mol (0.05-0.44%) than in individuals with other genotypes. Additionally, meta-analysis of both cohorts showed that GG homozygous individuals had higher odds of reaching the 48 mmol/mol (6.5%) diagnostic threshold of diabetes; (odds ratio 1.90; 95% CI 1.07-3.36; P = 0.03). No such effects were observed for age at diagnosis of diabetes. CONCLUSIONS Variation at the rs560887 locus of G6PC2 is associated with worse glycated haemoglobin levels in individuals with GCK mutations; GG homozygotes are more likely to meet diagnostic criteria for diabetes based on HbA(1c) level.
Collapse
Affiliation(s)
- M Borowiec
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gozlan Y, Tenenbaum A, Shalitin S, Lebenthal Y, Oron T, Cohen O, Phillip M, Gat-Yablonski G. The glucokinase mutation p.T206P is common among MODY patients of Jewish Ashkenazi descent. Pediatr Diabetes 2012; 13:e14-21. [PMID: 21978167 DOI: 10.1111/j.1399-5448.2011.00822.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is characterized by an autosomal dominant mode of inheritance; a primary defect in insulin secretion with non-ketotic hyperglycemia, age of onset under 25 yr; and lack of autoantibodies. Heterozygous mutations in glucokinase (GCK) are associated with mild fasting hyperglycemia and gestational diabetes mellitus while homozygous or compound heterozygous GCK mutations result in permanent neonatal diabetes mellitus. Given that both the Israeli-Arabic and the various Israeli-Jewish communities tend to maintain ethnic seclusion, we speculated that it would be possible to identify a relatively narrow spectrum of mutations in the Israeli population. OBJECTIVE To characterize the genetic basis of GCK-MODY in the different ethnic groups of the Israeli population. SUBJECTS Patients with clinically identified GCK-MODY and their first degree family members. METHODS Molecular analysis of GCK was performed on genomic DNA using polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE), and sequencing. Bioinformatic model was preformed using the NEST program. RESULTS Mutations in GCK were identified in 25 families and were all family-specific, except c.616A>C. p.T206P. This mutation was identified in six unrelated families, all patients from a Jewish-Ashkenazi descent, thus indicating an ethno-genetic correlation. A simple, fast, and relatively cheap DGGE/restriction-digestion assay was developed. CONCLUSIONS The high incidence of the mutant allele in GCK-MODY patients of Jewish-Ashkenazi descent suggests a founder effect. We propose that clinically identified GCK-MODY patients of Jewish-Ashkenazi origin be first tested for this mutation.
Collapse
Affiliation(s)
- Yael Gozlan
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dusatkova P, Pruhova S, Borowiec M, Vesela K, Antosik K, Lebl J, Mlynarski W, Cinek O. Ancestral mutations may cause a significant proportion of GCK-MODY. Pediatr Diabetes 2012; 13:489-98. [PMID: 22332836 DOI: 10.1111/j.1399-5448.2011.00845.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/02/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Although the literature indicates that ancestral mutations in the glucokinase (GCK) gene are rare, we have detected a high frequency of four prevalent mutations that together are responsible for over one third of the GCK mutations in our Czech National Register of monogenic diabetes. Therefore, we studied their potential ancestral origin in our and neighbouring Polish populations. METHODS We analysed the lineage of four mutations in the GCK gene - p.Glu40Lys (21 apparently unrelated families), p.Leu315His (15 families), p.Gly318Arg (26 families), and p.Val33Ala (10 families) - using genotypes of 16 single nucleotide polymorphisms that span a 14 Mb region around the gene. Haplotypes were reconstructed using Phase and Haploview programmes, and their age was estimated using dmle+. RESULTS We found strong evidence that supports ancestral origin of three of the four mutations: the p.Glu40Lys mutation was associated with an 11-marker long conserved haplotype, the p.Leu315His mutation was associated with a 7-marker haplotype, and the p.Gly318Arg mutation was associated with an 8-marker haplotype. None of these haplotypes were detected in the general population with a frequency >0.5%. The ages of the mutations were roughly estimated to be between 82 and 110 generations old (95% credible sets 65-151). The fourth prevalent mutation, p.Val33Ala, lacked statistically significant evidence for the founder effect, although there were some indications for its common origin. CONCLUSIONS The large proportion of families carrying three ancestral mutations in GCK indicates that the previously assumed rarity of the founder effect with regard to GCK-maturity onset diabetes of the young (MODY) should be reconsidered.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Capuano M, Garcia-Herrero CM, Tinto N, Carluccio C, Capobianco V, Coto I, Cola A, Iafusco D, Franzese A, Zagari A, Navas MA, Sacchetti L. Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS One 2012; 7:e38906. [PMID: 22761713 PMCID: PMC3385652 DOI: 10.1371/journal.pone.0038906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/14/2012] [Indexed: 01/24/2023] Open
Abstract
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.
Collapse
Affiliation(s)
- Marina Capuano
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Carmen Maria Garcia-Herrero
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Nadia Tinto
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Carla Carluccio
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Valentina Capobianco
- Fondazione SDN-IRCSS (Istituto di Diagnostica Nucleare-Istituto di Ricerca e Cura a Carattere Scientifico), Naples, Italy
| | - Iolanda Coto
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Arturo Cola
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Dario Iafusco
- Department of Pediatrics, Second University of Naples, Naples, Italy
| | - Adriana Franzese
- Department of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Adriana Zagari
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Maria Angeles Navas
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lucia Sacchetti
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| |
Collapse
|
43
|
Identification and functional characterisation of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia. PLoS One 2012; 7:e34541. [PMID: 22493702 PMCID: PMC3321013 DOI: 10.1371/journal.pone.0034541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/01/2012] [Indexed: 11/19/2022] Open
Abstract
Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113-1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) -mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC(50) 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.
Collapse
|
44
|
A De Novo Whole GCK Gene Deletion Not Detected by Gene Sequencing, in a Boy with Phenotypic GCK Insufficiency. Case Rep Genet 2011; 2011:768610. [PMID: 23074679 PMCID: PMC3447227 DOI: 10.1155/2011/768610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/18/2011] [Indexed: 11/17/2022] Open
Abstract
We report on a boy with diabetes mellitus and a phenotype indicating glucokinase (GCK) insufficiency, but a normal GCK gene examination applying direct gene sequencing. The boy was referred for diabetes mellitus at 7.5 years old. His father, grandfather and great grandfather suffered type 2 DM. Several blood glucose profiles showed (BG) of 6.5–10 mmol/L L. After three years on neutral insulin Hagedorn (NPH) in a dose of 0.3 IU/kg/day haemoglobin A1c (HbA1c) was 6.8%. Treatment was changed to sulphonylurea 750 mg a day, and after 4 years HbA1c was 7%. At that time a multiplex ligation-dependent amplification gene dosage assay (MLPA) was done, revealing a whole GCK gene deletion. Medical treatment was ceased, and after one year HbA1c was 6.8%. This case underscores the importance of a MLPA examination if the phenotype of a patient is strongly indicative of GCK insufficiency and no mutation is identified using direct sequencing.
Collapse
|
45
|
Borowiec M, Antosik K, Fendler W, Deja G, Jarosz-Chobot P, Mysliwiec M, Zmyslowska A, Malecki M, Szadkowska A, Mlynarski W. Novel glucokinase mutations in patients with monogenic diabetes - clinical outline of GCK-MD and potential for founder effect in Slavic population. Clin Genet 2011; 81:278-83. [PMID: 21348868 DOI: 10.1111/j.1399-0004.2011.01656.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucokinase (GCK) gene mutations are the causative factor of GCK-MD (monogenic diabetes) characterized by a mild clinical phenotype and potential for insulin withdrawal. This study presents the results of a nationwide genetic screening for GCK-MD performed in Poland. A group of 194 patients with clinical suspicion of GCK-MD and 17 patients with neonatal diabetes were subjected to GCK sequencing. Patients negative for GCK mutations were subjected to multiplex ligation-dependent probe amplification (MLPA) to detect deletions or insertions. A total of 44 GCK heterozygous mutations were found in 68 probands (35%). Among those, 20 mutations were novel ones: A282fs, D198V, E158X, G246V, G249R, I348N, L165V, L315Q, M115I, N254S, P284fs, Q338P, R377L, R43C, R46S, S212fs, S212P, T255N, V406A and Y214D. No abnormalities were detected in MLPA analysis. Homozygous D278E mutation was found in one patient with neonatal diabetes. The most frequently observed combinations of symptoms typical for GCK-MD were mild diabetes and/or fasting hyperglycaemia (98.3%), positive C-peptide at diagnosis (76%) and dominant mode of inheritance (59%). This study outlines numerous novel mutations of the GCK gene present in white Caucasians of Slavic origin. Thorough clinical assessment of known factors associated with GCK-MD may facilitate patient selection.
Collapse
Affiliation(s)
- M Borowiec
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yokota I, Moritani M, Nishisho K, Miyoshi T, Kotani Y, Kagami S. Detection of glucokinase gene defects in non-obese Japanese children diagnosed with diabetes by school medical examinations. Endocr J 2011; 58:741-6. [PMID: 21720051 DOI: 10.1507/endocrj.k11e-062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We examined children who were diagnosed with asymptomatic type 2 diabetes by school medical examinations to investigate the existence of glucokinase (GCK) gene defects in this group. Among 20 children diagnosed with asymptomatic type 2 diabetes by school medical examinations between 2003 and 2009 at our 2 hospitals, 8 were classified as non-obese type. Among them, we screened 5 children (2 boys and 3 girls; age: 8-13 years) who had mild elevation of fasting plasma glucose (108-134 mg/dL) with slightly high internationally standardized HbA1c levels (6.3-6.9%) at first close examination. Written informed consent was obtained and all families agreed to participate in this study. We found 4 different mutations (G223S, G81C, S336X and T228M) in 4 of the examined children. The blood glucose control levels had not become worse in any children during the 2-6 years follow-up period. The inheritance of diabetes with GCK gene defect was later confirmed in 1 family. These results suggest that GCK gene defects exist in non-obese children who are diagnosed with asymptomatic diabetes by school medical examinations. Cases of diabetes that are caused by GCK mutations may not be as rare in Japanese subjects as previously described and could be found in patients tentatively diagnosed as type 2 diabetes.
Collapse
Affiliation(s)
- Ichiro Yokota
- Institute of Clinical Research, Kagawa National Children's Hospital, Zentsuji, Kagawa, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
|