1
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
2
|
Macoveanu J, Damgaard V, Ysbæk-Nielsen AT, Frangou S, Yatham LN, Chakrabarty T, Stougaard ME, Knudsen GM, Vinberg M, Kessing LV, Kjærstad HL, Miskowiak KW. Early longitudinal changes in brain structure and cognitive functioning in remitted patients with recently diagnosed bipolar disorder. J Affect Disord 2023; 339:153-161. [PMID: 37442440 DOI: 10.1016/j.jad.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/08/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Patients with bipolar disorder (BD) who are presenting with cognitive impairment and associated structural brain abnormalities have generally a poorer clinical outcome. This study aims to map the early longitudinal trajectories in brain structure and cognition in patients with recently diagnosed BD. METHODS Fully or partially remitted patients with a recent diagnosis of BD and matched healthy controls (HC) underwent structural MRI and neuropsychological testing at baseline (BD n = 97; HC n = 66) and again following an average of 16 (range 6-27) months (BD n = 50; HC n = 38). We investigated the differential trajectories in BD vs. HC in cortical gray matter volume and thickness, total cerebral white matter, hippocampal and amygdala volumes, estimated brain age, and cognitive functioning using linear mixed models. Within patients, we further investigated whether brain structural abnormalities detected at baseline were associated with subsequent mood episodes. RESULTS Compared to HC, patients showed a decline in total white matter volume over time and they had a larger amygdala volume, both at baseline and at follow-up time. Patients further showed lower cognitive performance at both times of investigation with no significant change over time. There were no differences between patients and HC in cortical gray matter volume or thickness, hippocampal volume, or brain-aging patterns. CONCLUSIONS Cognitive impairment and amygdala enlargement may represent stable markers of BD early in the course of illness, whereas subtle white matter decline may result from illness progression.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Viktoria Damgaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Denmark
| | - Alexander Tobias Ysbæk-Nielsen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Denmark
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi N Yatham
- Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Canada
| | - Trisha Chakrabarty
- Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Canada
| | - Marie Eschau Stougaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Maj Vinberg
- Department of Clinical Medicine, University of Copenhagen, Denmark; Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Hanne Lie Kjærstad
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Melloni EMT, Paolini M, Dallaspezia S, Lorenzi C, Poletti S, d'Orsi G, Yoshiike T, Zanardi R, Colombo C, Benedetti F. Melatonin secretion patterns are associated with cognitive vulnerability and brain structure in bipolar depression. Chronobiol Int 2023; 40:1279-1290. [PMID: 37781880 DOI: 10.1080/07420528.2023.2262572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Circadian rhythm disruption is a core symptom of bipolar disorder (BD), also reflected in altered patterns of melatonin release. Reductions of grey matter (GM) volumes are well documented in BD. We hypothesized that levels and timing of melatonin secretion in bipolar depression could be associated with depressive psychopathology and brain GM integrity. The onset of melatonin secretion under dim light conditions (DLMO) and the amount of time between DLMO and midsleep (i.e. phase angle difference; PAD) were used as circadian rhythm markers. To study the time course of melatonin secretion, an exponential curve fitting the melatonin values was calculated, and the slope coefficients (SLP) were obtained for each participant. Significant differences were found between HC and BD in PAD measures and melatonin profiles. Correlations between PAD and depressive psychopathology were identified. Melatonin secretion patterns were found to be associated with GM volumes in the Striatum and Supramarginal Gyrus in BD. Our findings emphasized the role of melatonin secretion role as a biological marker of circadian synchronization in bipolar depression and provided a novel insight for a link between melatonin release and brain structure.
Collapse
Affiliation(s)
- Elisa M T Melloni
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Greta d'Orsi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Takuya Yoshiike
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Raffaella Zanardi
- University Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Mood Disorder Unit, Milano, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Mood Disorder Unit, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
4
|
Long X, Li L, Wang X, Cao Y, Wu B, Roberts N, Gong Q, Kemp GJ, Jia Z. Gray matter alterations in adolescent major depressive disorder and adolescent bipolar disorder. J Affect Disord 2023; 325:550-563. [PMID: 36669567 DOI: 10.1016/j.jad.2023.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gray matter volume (GMV) alterations in several emotion-related brain areas are implicated in mood disorders, but findings have been inconsistent in adolescents with major depressive disorder (MDD) or bipolar disorder (BD). METHODS We conducted a comprehensive meta-analysis of 35 region-of-interest (ROI) and 18 whole-brain voxel-based morphometry (VBM) MRI studies in adolescent MDD and adolescent BD, and indirectly compared the results in the two groups. The effects of age, sex, and other demographic and clinical scale scores were explored using meta-regression analysis. RESULTS In the ROI meta-analysis, right putamen volume was decreased in adolescents with MDD, while bilateral amygdala volume was decreased in adolescents with BD compared to healthy controls (HC). In the whole-brain VBM meta-analysis, GMV was increased in right middle frontal gyrus and decreased in left caudate in adolescents with MDD compared to HC, while in adolescents with BD, GMV was increased in left superior frontal gyrus and decreased in limbic regions compared with HC. MDD vs BD comparison revealed volume alteration in the prefrontal-limbic system. LIMITATION Different clinical features limit the comparability of the samples, and small sample size and insufficient clinical details precluded subgroup analysis or meta-regression analyses of these variables. CONCLUSIONS Distinct patterns of GMV alterations in adolescent MDD and adolescent BD could help to differentiate these two populations and provide potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lei Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xiuli Wang
- Department of Clinical Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610041, Sichuan, PR China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China
| | - Baolin Wu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, 699Jinyuan Xi Road, Jimei District, 361021 Xiamen, Fujian, PR China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Center (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
5
|
Investigation of endophenotype potential of decreased fractional anisotropy in pediatric bipolar disorder patients and unrelated offspring of bipolar disorder patients. CNS Spectr 2022; 27:709-715. [PMID: 34044907 DOI: 10.1017/s1092852921000584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a severe psychiatric disorder associated with structural and functional brain abnormalities, some of which have been found in unaffected relatives as well. In this study, we examined the potential role of decreased fractional anisotropy (FA) as a BD endophenotype, in adolescents at high risk for BD. METHODS We included 15 offspring of patients with BD, 16 pediatric BD patients, and 16 matched controls. Diffusion weighted scans were obtained on a 3T scanner using an echo-planar sequence. Scans were segmented using FreeSurfer. RESULTS Our results showed significantly decreased FA in six brain areas of offspring group; left superior temporal gyrus (LSTG; P < .0001), left transverse temporal gyrus (LTTG; P = .002), left banks of the superior temporal sulcus (LBSTS; P = .002), left anterior cingulum (LAC; P = .003), right temporal pole (RTP; P = .004) and left frontal pole (LFP; P = .017). On analysis, LSTG, LAC, and RTP demonstrated a potential to be an endophenotype when comparing all three groups. FA values in three regions, LBSTS, LTTG, and LFP were increased only in controls. CONCLUSION Our findings point at decreased FA as a possible endophenotype for BD, as they were found in children of patients with BD. Most of these areas were previously found to have morphological and functional changes in adult and pediatric BD, and are thought to play important roles in affected domains of functioning. Prospective follow up studies should be performed to detect reliability of decreased FA as an endophenotype and effects of treatment on FA.
Collapse
|
6
|
Bellani M, Perlini C, Zovetti N, Rossetti MG, Alessandrini F, Barillari M, Ricciardi GK, Konze A, Sberna M, Zoccatelli G, Lasalvia A, Miceli M, Neri G, Torresani S, Mazzi F, Scocco P, D'Agostino A, Imbesi M, Veronese A, Ruggeri M, Brambilla P. Incidental findings on brain MRI in patients with first-episode and chronic psychosis. Psychiatry Res Neuroimaging 2022; 326:111518. [PMID: 36037703 DOI: 10.1016/j.pscychresns.2022.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Brain incidental findings (IFs) are unexpected brain abnormalities detected by a structural magnetic resonance (MRI) examination. We conducted a study to assess whether brain IFs are associated with first-episode psychosis (FEP) and chronic psychosis (affective vs. non-affective) compared to healthy controls (HC). Chi-squared analyses were run to compare the frequency of several IFs across groups. Logistic regression analyses were run to explore the association between group and IFs, accounting for sex, age, MRI field strength. We observed a higher frequency of most IFs in both FEP and chronic psychosis groups compared to HC, however most of the chi-squared tests did not reach significance. Patients with FEP and chronic psychosis were 3-4 times more likely to show deep white matter hyperintensities (WMH) than HC. Patients with FEP and affective chronic psychosis were 3-4 times more likely to show ventricular asymmetries than HC. All chronic patients were more likely to show periventricular WMH, liquoral spaces enlargements and ventricular system enlargements respectively. Our results suggest that deep WMH and ventricular asymmetries are associated with both the early and the chronic stages of psychosis, thus representing potential vulnerability factors already present before the onset of the symptoms, possibly due to neurodevelopmental insults.
Collapse
Affiliation(s)
- Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, AOUI Verona, Verona, Italy.
| | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Niccolò Zovetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, AOUI Verona, Verona, Italy
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franco Alessandrini
- Neuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Marco Barillari
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Angela Konze
- Department of Radiology, Azienda USL Toscana Centro, Florence, Italy
| | - Maurizio Sberna
- Department of Neuroradiology, Niguarda Hospital, Milan, Italy
| | - Giada Zoccatelli
- Neuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Antonio Lasalvia
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, AOUI Verona, Verona, Italy
| | - Maurizio Miceli
- Department of Mental Health and Addiction, Azienda Sanitaria Toscana Centro, Firenze, Italy
| | - Giovanni Neri
- Agenzia Sanitaria e Sociale Regionale, Regione Emilia Romagna, Verona, Italy
| | - Stefano Torresani
- Department of Mental Health, District of Bolzano, Health Service of South Tyrol, Italy
| | | | - Paolo Scocco
- Department of Mental Health, AULSS 6 Euganea, Padua, Italy
| | - Armando D'Agostino
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | - Mirella Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, AOUI Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology. Commun Biol 2022; 5:1024. [PMID: 36168040 PMCID: PMC9515219 DOI: 10.1038/s42003-022-03963-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability.
Collapse
|
8
|
Zhang L, Wu H, Zhang A, Bai T, Ji GJ, Tian Y, Wang K. Aberrant brain network topology in the frontoparietal-limbic circuit in bipolar disorder: a graph-theory study. Eur Arch Psychiatry Clin Neurosci 2021; 271:1379-1391. [PMID: 33386961 DOI: 10.1007/s00406-020-01219-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Characterizing the properties of brain networks across mood states seen in bipolar disorder (BP) can provide a deeper insight into the mechanisms involved in this type of affective disorder. In this study, graph theoretical methods were used to examine global, modular and nodal brain network topology in the resting state using functional magnetic resonance imaging data acquired from 95 participants, including those with bipolar depression (BPD; n = 30) and bipolar mania (BPM; n = 39) and healthy control (HC) subjects (n = 26). The threshold value of the individual subjects' connectivity matrix varied from 0.15 to 0.30 with steps of 0.01. We found that: (1) at the global level, BP patients showed a significantly increased global efficiency and synchronization and a decreased path length; (2) at the nodal level, BP patients showed impaired nodal parameters, predominantly within the frontoparietal and limbic sub-network; (3) at the module level, BP patients were characterized by denser FCs (edges) between Module III (the front-parietal system) and Module V (limbic/paralimbic systems); (4) at the nodal level, the BPD and BPM groups showed state-specific differences in the orbital part of the left superior-frontal gyrus, right putamen, right parahippocampal gyrus and left fusiform gyrus. These results revealed abnormalities in topological organization in the whole brain, especially in the frontoparietal-limbic circuit in both BPD and BPM. These deficits may reflect the pathophysiological processes occurring in BP. In addition, state-specific regional nodal alterations in BP could potentially provide biomarkers of conversion across different mood states.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Huiling Wu
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Aiguo Zhang
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
9
|
Du M, Zhang L, Li L, Ji E, Han X, Huang G, Liang Z, Shi L, Yang H, Zhang Z. Abnormal transitions of dynamic functional connectivity states in bipolar disorder: A whole-brain resting-state fMRI study. J Affect Disord 2021; 289:7-15. [PMID: 33906006 DOI: 10.1016/j.jad.2021.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Dynamic functional connectivity (dFC) based on resting-state fMRI has attracted interest in the field of bipolar disorder (BD), because dFC can better capture the evolving processes of emotion and cognition, which are typically impaired in BD. However, previous dFC studies of BD have typically focused on specific seed brain regions or specific functional brain networks, and they have ignored global dynamic information interaction in the whole brain. This study is aimed to reveal aberrant and interpretable whole-brain dFC patterns of BD. METHODS The resting-state fMRI data collected from 35 euthymic BD patients and 30 healthy people. We developed a new dFC inference pipeline, including the sliding-window method, k-means clustering, a new permutation with zero-inflated Poisson regression method, and a similarity analysis for interpretable states, to examine the different patterns of dFC states between BD patients and healthy participants. RESULTS BD patients had significantly more frequent transitions between two specific dFC states, which were respectively close to high-level cognitive networks and low-level sensory networks, than healthy controls (p < 0.05, FDR). LIMITATIONS The size of samples and other BD types need to be expanded to validate the results of this study. Possible confounding effect of medication. CONCLUSIONS This study detected aberrant dFC pattern of BD, which indicated the increased lability of the processes of cognition and emotion in BD, and this finding could improve our understanding of the neuropathological mechanism of BD.
Collapse
Affiliation(s)
- Mengjiao Du
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Erni Ji
- Department for Bipolar Disorders, Shenzhen Mental Health Centre, Shenzhen Key Lab for Psychological Healthcare, Shenzhen 518020, China
| | - Xue Han
- Department of Mental Health, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518060, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Li Shi
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Haichen Yang
- Department for Bipolar Disorders, Shenzhen Mental Health Centre, Shenzhen Key Lab for Psychological Healthcare, Shenzhen 518020, China.
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China; Peng Cheng Laboratory, Shenzhen 518055, China.
| |
Collapse
|
10
|
Mana S, Paillère Martinot ML, Martinot JL. Brain imaging findings in children and adolescents with mental disorders: A cross-sectional review. Eur Psychiatry 2020; 25:345-54. [PMID: 20620025 DOI: 10.1016/j.eurpsy.2010.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/08/2010] [Accepted: 04/22/2010] [Indexed: 01/18/2023] Open
Abstract
AbstractBackgroundWhile brain imaging studies of juvenile patients has expanded in recent years to investigate the cerebral neurophysiologic correlates of psychiatric disorders, this research field remains scarce. The aim of the present review was to cluster the main mental disorders according to the differential brain location of the imaging findings recently reported in children and adolescents reports. A second objective was to describe the worldwide distribution and the main directions of the recent magnetic resonance imaging (MRI) and positron tomography (PET) studies in these patients.MethodsA survey of 423 MRI and PET articles published between 2005 and 2008 was performed. A principal component analysis (PCA), then an activation likelihood estimate (ALE) meta-analysis, were applied on brain regional information retrieved from articles in order to cluster the various disorders with respect to the cerebral structures where alterations were reported. Furthermore, descriptive analysis characterized the literature production.ResultsTwo hundred and seventy-four articles involving children and adolescent patients were analyzed. Both the PCA and ALE methods clustered, three groups of diagnosed psychiatric disorders, according to the brain structural and functional locations: one group of affective disorders characterized by abnormalities of the frontal-limbic regions; a group of mental disorders with “cognition deficits” mainly related to cortex abnormalities; and one psychomotor condition associated with abnormalities in the basal ganglia. The descriptive analysis indicates a focus on attention deficit hyperactivity disorders and autism spectrum disorders, a general steady rise in the number of annual reports, and lead of US research.ConclusionThis cross-sectional review of child and adolescent mental disorders based on neuroimaging findings suggests overlaps of brain locations that allow to cluster the diagnosed disorders into three sets with respectively marked affective, cognitive, and psychomotor phenomenology. Furthermore, the brain imaging research effort was unequally distributed across disorders, and did not reflect their prevalence.
Collapse
Affiliation(s)
- S Mana
- Service hospitalier central de médecine nucléaire et neurospin, INSERM-CEA, Research Unit 1000 Neuroimaging & psychiatry, University Paris Sud and University Paris Descartes, 4, place Gl.-Leclerc, 91401 Orsay, France.
| | | | | |
Collapse
|
11
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
12
|
Niida R, Yamagata B, Matsuda H, Niida A, Uechi A, Kito S, Mimura M. Regional brain volume reductions in major depressive disorder and bipolar disorder: An analysis by voxel-based morphometry. Int J Geriatr Psychiatry 2019; 34:186-192. [PMID: 30328161 DOI: 10.1002/gps.5009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The present study investigated the usefulness of evaluating the existence of volume reduction in brain regions using voxel-based morphometry (VBM) to dissociate major depressive disorder (MDD) from bipolar disorder (BD). METHODS/DESIGN This study enrolled 92 individuals with MDD, 32 individuals with BD, and 43 healthy controls (HCs). We focused on gray matter volume (GMV) of the subgenual anterior cingulate cortex (sgACC), subcallosal area (SCA), and hippocampus. The degree of volume reduction in these brain regions was calculated as the z score, and the differences of z scores in these regions were investigated among the MDD, BD, and HC groups. We then performed a receiver operating characteristic curve analysis to dissociate the individuals with MDD and BD from the HCs based on the z scores in the GMV of these brain regions. RESULTS While there were no significant differences in the z scores of the hippocampus among the three groups, the z score of the sgACC was significantly higher in the MDD group than in the BD and HC groups, and the SCA z score was significantly higher in the MDD and BD groups than in the HC group. CONCLUSIONS Our findings suggest that VBM evaluation of GMV reduction in the sgACC may be useful as an objective adjunctive tool to distinguish between MDD and BD.
Collapse
Affiliation(s)
- Richi Niida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Department of Radiology, Nanbu Hospital, Itoman, Okinawa, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Akira Niida
- Department of Radiology, Nanbu Hospital, Itoman, Okinawa, Japan
| | - Akihiko Uechi
- Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata, Osaka, Japan
| | - Shinsuke Kito
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Hajek T, Franke K, Kolenic M, Capkova J, Matejka M, Propper L, Uher R, Stopkova P, Novak T, Paus T, Kopecek M, Spaniel F, Alda M. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia. Schizophr Bull 2019; 45:190-198. [PMID: 29272464 PMCID: PMC6293219 DOI: 10.1093/schbul/sbx172] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The greater presence of neurodevelopmental antecedants may differentiate schizophrenia from bipolar disorders (BD). Machine learning/pattern recognition allows us to estimate the biological age of the brain from structural magnetic resonance imaging scans (MRI). The discrepancy between brain and chronological age could contribute to early detection and differentiation of BD and schizophrenia. METHODS We estimated brain age in 2 studies focusing on early stages of schizophrenia or BD. In the first study, we recruited 43 participants with first episode of schizophrenia-spectrum disorders (FES) and 43 controls. In the second study, we included 96 offspring of bipolar parents (48 unaffected, 48 affected) and 60 controls. We used relevance vector regression trained on an independent sample of 504 controls to estimate the brain age of study participants from structural MRI. We calculated the brain-age gap estimate (BrainAGE) score by subtracting the chronological age from the brain age. RESULTS Participants with FES had higher BrainAGE scores than controls (F(1, 83) = 8.79, corrected P = .008, Cohen's d = 0.64). Their brain age was on average 2.64 ± 4.15 years greater than their chronological age (matched t(42) = 4.36, P < .001). In contrast, participants at risk or in the early stages of BD showed comparable BrainAGE scores to controls (F(2,149) = 1.04, corrected P = .70, η2 = 0.01) and comparable brain and chronological age. CONCLUSIONS Early stages of schizophrenia, but not early stages of BD, were associated with advanced BrainAGE scores. Participants with FES showed neurostructural alterations, which made their brains appear 2.64 years older than their chronological age. BrainAGE scores could aid in early differential diagnosis between BD and schizophrenia.
Collapse
Affiliation(s)
- Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| | - Katja Franke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marian Kolenic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Jana Capkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Matejka
- National Institute of Mental Health, Klecany, Czech Republic.,Psychiatric Hospital Bohnice, Prague, Czech Republic
| | - Lukas Propper
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Paus
- Rotman Research Institute and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada.,Center for Developing Brain, Child Mind Institute, New York, NY
| | | | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
14
|
Beraldi GH, Prado KS, Amann BL, Radua J, Friedman L, Elkis H. Meta-analyses of cavum septum pellucidum in mood disorders in comparison with healthy controls or schizophrenia. Eur Neuropsychopharmacol 2018; 28:1325-1338. [PMID: 30472163 DOI: 10.1016/j.euroneuro.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/29/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
The cavum septum pellucidum (CSP) is a neurodevelopmental abnormality significantly more prevalent in subjects with schizophrenia (SCZ) than in healthy controls (HC). Using meta-analyses, we tested the hypotheses whether CSP would be more frequent in subjects with mood disorders when compared with HC or SCZ. We performed a search in MEDLINE and EMBASE followed by 10 meta-analyses of magnetic resonance imaging studies which examined the association of CSP in bipolar disorders (BD), major depressive disorder (MDD) or mood disorders (MD; considering MDD and BD combined) with either HC or SCZ. Nine studies were included, comprising 692 cases (363 with BD, 182 with MDD and 147 with MD), 463 with SCZ and 630 HC. CSP of any size was significantly associated with BD (OR = 2.07, 95% CI: 1.48-2.90) when compared with HC. Large CSP showed a trend to be associated with BD when compared with HC, but the association was not statistically significant (OR = 1.92, 95% CI 0.64-5.78). Large CSP was significantly associated with subjects with SCZ when compared with subjects with MD (OR = 0.57, 95% CI: 0.36-0.92). There was no association between CSP and MDD in comparison to HC or subjects with SCZ. Cortical structures are known to be altered in mood disorders. The present metanalysis found that certain midline brain abnormalities, such as CSP, are also associated with BD.
Collapse
Affiliation(s)
- Gabriel H Beraldi
- Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kelly S Prado
- Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Benedikt L Amann
- Centre Fòrum Research Unit, Institut de Neuropsiquiatria i Addiccions (INAD), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Autonomous University of Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; FIDMAG Germanes Hospitalaries, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Lee Friedman
- Department of Computer Science, Texas State University, San Marcos, TX, US
| | - Helio Elkis
- Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Johnson CP, Christensen GE, Fiedorowicz JG, Mani M, Shaffer JJ, Magnotta VA, Wemmie JA. Alterations of the cerebellum and basal ganglia in bipolar disorder mood states detected by quantitative T1ρ mapping. Bipolar Disord 2018; 20:381-390. [PMID: 29316081 PMCID: PMC5995598 DOI: 10.1111/bdi.12581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/21/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Quantitative mapping of T1 relaxation in the rotating frame (T1ρ) is a magnetic resonance imaging technique sensitive to pH and other cellular and microstructural factors, and is a potentially valuable tool for identifying brain alterations in bipolar disorder. Recently, this technique identified differences in the cerebellum and cerebral white matter of euthymic patients vs healthy controls that were consistent with reduced pH in these regions, suggesting an underlying metabolic abnormality. The current study built upon this prior work to investigate brain T1ρ differences across euthymic, depressed, and manic mood states of bipolar disorder. METHODS Forty participants with bipolar I disorder and 29 healthy control participants matched for age and gender were enrolled. Participants with bipolar disorder were imaged in one or more mood states, yielding 27, 12, and 13 imaging sessions in euthymic, depressed, and manic mood states, respectively. Three-dimensional, whole-brain anatomical images and T1ρ maps were acquired for all participants, enabling voxel-wise evaluation of T1ρ differences between bipolar mood state and healthy control groups. RESULTS All three mood state groups had increased T1ρ relaxation times in the cerebellum compared to the healthy control group. Additionally, the depressed and manic groups had reduced T1ρ relaxation times in and around the basal ganglia compared to the control and euthymic groups. CONCLUSIONS The study implicated the cerebellum and basal ganglia in the pathophysiology of bipolar disorder and its mood states, the roles of which are relatively unexplored. These findings motivate further investigation of the underlying cause of the abnormalities, and the potential role of altered metabolic activity in these regions.
Collapse
Affiliation(s)
| | - Gary E. Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA,Department of Radiation Oncology, University of Iowa, Iowa City, IA
| | - Jess G. Fiedorowicz
- Department of Psychiatry, University of Iowa, Iowa City, IA,Department of Epidemiology, University of Iowa, Iowa City, IA,Department of Internal Medicine, University of Iowa, Iowa City, IA,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
| | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA
| | | | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA,Department of Psychiatry, University of Iowa, Iowa City, IA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA,Corresponding Authors: Vincent A. Magnotta, PhD, L311 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-335-5482, Fax: 319-353-6275, ; John A. Wemmie, MD, PhD, 1314 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-384-3174, Fax: 319-384-3176,
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA,Department of Neurosurgery, University of Iowa, Iowa City, IA,Veterans Affairs Medical Center, Iowa City, IA,Corresponding Authors: Vincent A. Magnotta, PhD, L311 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-335-5482, Fax: 319-353-6275, ; John A. Wemmie, MD, PhD, 1314 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-384-3174, Fax: 319-384-3176,
| |
Collapse
|
16
|
Muñoz-Estrada J, Lora-Castellanos A, Meza I, Alarcón Elizalde S, Benítez-King G. Primary cilia formation is diminished in schizophrenia and bipolar disorder: A possible marker for these psychiatric diseases. Schizophr Res 2018; 195:412-420. [PMID: 28927861 DOI: 10.1016/j.schres.2017.08.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/25/2023]
Abstract
Primary cilium (PC) is a microtubule-rich organelle that protrudes from the plasma membrane and acts as a cellular antenna sensing extracellular signals during brain development. DISC1 (Disrupted-in-Schizophrenia-1) is involved in PC formation and is considered a risk factor for neuropsychiatric disorders. We have previously described altered subcellular distribution of DISC1 and an aberrant microtubule organization in olfactory neuronal precursors (ONP) obtained from schizophrenia (SCZ) and bipolar disorder (BD) patients. Herein, we analyzed in vitro PC formation in healthy control subjects, SCZ and BD patients. The results indicated that 66.73±4.33% of ONP from control subjects showed immunostaining for the PC marker, acetylated α-tubulin. By contrast, only a small percentage of cells in culture from paranoid SCZ and BD patients showed PC staining (SCZ, 12.8±4.43%; BD, 12.32±5.86%). However, cells from an affected proband with disorganized SCZ and a subject with BD displayed a higher percentage of cells with cilia (SCZ, 42.20%; BD, 38.59%). Additionally, cilia elongation was observed in lithium-treated ONP derived from all groups, with a more evident response in cells from the BD group. The present study provides novel evidence that the molecular pathways involved in PC formation are defective in SCZ and BD, and impairment in these processes may be involved in the physiopathology of both diseases. Our observations also suggest that ONP is a patient-derived cell model with a potential use for diagnosis and high-throughput drug screening for brain diseases.
Collapse
Affiliation(s)
- Jesús Muñoz-Estrada
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | | | - Isaura Meza
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | | | - Gloria Benítez-King
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico.
| |
Collapse
|
17
|
Ohtani T, Del Re E, Levitt JJ, Niznikiewicz M, Konishi J, Asami T, Kawashima T, Roppongi T, Nestor PG, Shenton ME, Salisbury DF, McCarley RW. Progressive symptom-associated prefrontal volume loss occurs in first-episode schizophrenia but not in affective psychosis. Brain Struct Funct 2018; 223:2879-2892. [PMID: 29671056 DOI: 10.1007/s00429-018-1634-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 02/17/2018] [Indexed: 12/12/2022]
Abstract
Although smaller gray matter volumes (GMV) in the prefrontal cortex (PFC) in schizophrenia and bipolar disorder have been reported cross-sectionally, there are, to our knowledge, no reports of longitudinal comparisons using manually drawn, gyrally based ROI, and their associations with symptoms. The object of this study was to determine whether first-episode schizophrenia (FESZ) and first-episode affective psychosis (FEAFF) patients show initial and progressive PFC GMV reduction in bilateral frontal pole, superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG) and examine their symptom associations. Twenty-one FESZ, 24 FEAFF and 23 healthy control subjects (HC) underwent 1.5T MRI with follow-up imaging on the same scanner ~ 1.5 years later. Groups were strikingly different in progressive GMV loss. FESZ showed significant progressive GMV loss in the left SFG, bilateral MFG, and bilateral IFG. In addition, left MFG and/or IFG GMV loss was associated with worsening of withdrawal-retardation and total BPRS symptoms scores. In contrast, FEAFF showed no significant difference in GMV compared with HC, either cross-sectionally or longitudinally. Of note, FreeSurfer run on the same images showed no significant changes longitudinally.
Collapse
Affiliation(s)
- Toshiyuki Ohtani
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Safety and Health Organization, Chiba University, Chiba, Japan
| | - Elisabetta Del Re
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James J Levitt
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Konishi
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takeshi Asami
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Toshiro Kawashima
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomohide Roppongi
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Paul G Nestor
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Martha E Shenton
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Dean F Salisbury
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA, 02301, USA
| |
Collapse
|
18
|
Fornaro M, Solmi M, Veronese N, De Berardis D, Buonaguro EF, Tomasetti C, Perna G, Preti A, Carta MG. The burden of mood-disorder/cerebrovascular disease comorbidity: essential neurobiology, psychopharmacology, and physical activity interventions. Int Rev Psychiatry 2017; 29:425-435. [PMID: 28681620 DOI: 10.1080/09540261.2017.1299695] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardio-vascular diseases (CVDs) and CVD-related disorders (including cerebrovascular diseases; CBVDs) are a major public health concern as they represent the leading cause of mortality and morbidity in developed countries. Patients with CVDs and CBVDs co-morbid with mood disorders, especially bipolar disorder (BD) and major depressive disorder (MDD), suffer reduced quality-of-life and significant disability adjusted for years of life and mortality. The relationship between CVDs/CBVDs and mood disorders is likely to be bidirectional. Evidence for shared genetic risk of pathways involved in stress reaction, serotonin or dopamine signalling, circadian rhythms, and energy balance was reported in genome-wide association studies. There is some evidence of a neuroprotective effect of various antidepressants, which may be boosted by physical exercise, especially by aerobic ones. Patients with CVDs/CBVDs should be routinely attentively evaluated for the presence of mood disorders, with tools aimed at detecting both symptoms of depression and of hypomania/mania. Behavioural lifestyle interventions targeting nutrition and exercise, coping strategies, and attitudes towards health should be routinely provided to patients with mood disorders, to prevent the risk of CVDs/CBVDs. A narrative review of the evidence is herein provided, focusing on pharmacological and physical therapy interventions.
Collapse
Affiliation(s)
- Michele Fornaro
- a Department of Neuroscience, Reproductive Science and Odontostomatology , School of Medicine 'Federico II' Naples , Naples , Italy.,b Department of Psychiatry , Columbia University Medical Center, New York State Psychiatric Institute , New York , NY , USA
| | - Marco Solmi
- c Neuroscience Department , University of Padua , Padua , Italy.,d Institute for Clinical Research and Education in Medicine, I.R.E.M , Padua , Italy
| | - Nicola Veronese
- d Institute for Clinical Research and Education in Medicine, I.R.E.M , Padua , Italy.,e Department of Medicine (DIMED), Geriatrics Division , University of Padova , Padova , Italy
| | - Domenico De Berardis
- f Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment , Hospital 'G. Mazzini' , Teramo , Italy
| | - Elisabetta Filomena Buonaguro
- a Department of Neuroscience, Reproductive Science and Odontostomatology , School of Medicine 'Federico II' Naples , Naples , Italy
| | - Carmine Tomasetti
- a Department of Neuroscience, Reproductive Science and Odontostomatology , School of Medicine 'Federico II' Naples , Naples , Italy
| | - Giampaolo Perna
- g Department of Psychiatry and Neuropsychology , Maastricht University , Maastricht , Netherlands.,h Department of Clinical Neurosciences, FoRiPsi , Hermanas Hospitalarias-Villa San Benedetto Menni Hospital , Albese con Cassano , Como , Italy.,i Department of Psychiatry and Behavioural Sciences, Leonard Miller School of Medicine , University of Miami , Miami , FL , USA
| | - Antonio Preti
- j Center of Liaison Psychiatry and Psychosomatics , University Hospital, University of Cagliari , Monserrato , Cagliari , Italy
| | - Mauro Giovanni Carta
- k Department of Public Health, Clinical and Molecular Medicine , University of Cagliari , Monserrato , Cagliari , Italy
| |
Collapse
|
19
|
Lippard ETC, Jensen KP, Wang F, Johnston JAY, Spencer L, Pittman B, Gelernter J, Blumberg HP. Effects of ANK3 variation on gray and white matter in bipolar disorder. Mol Psychiatry 2017; 22:1345-1351. [PMID: 27240527 PMCID: PMC5133179 DOI: 10.1038/mp.2016.76] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/23/2016] [Accepted: 04/05/2016] [Indexed: 01/22/2023]
Abstract
The single-nucleotide polymorphism rs9804190 in the Ankyrin G (ANK3) gene has been reported in genome-wide association studies to be associated with bipolar disorder (BD). However, the neural system effects of rs9804190 in BD are not known. We investigated associations between rs9804190 and gray and white matter (GM and WM, respectively) structure within a frontotemporal neural system implicated in BD. A total of 187 adolescent and adult European Americans were studied: a group homozygous for the C allele (52 individuals with BD and 56 controls) and a T-carrier group, carrying the high-risk T allele (38 BD and 41 controls). Subjects participated in high-resolution structural magnetic resonance imaging and diffusion tensor imaging (DTI) scanning. Frontotemporal region of interest (ROI) and whole-brain exploratory analyses were conducted. DTI ROI-based analysis revealed a significant diagnosis by genotype interaction within the uncinate fasciculus (P⩽0.05), with BD subjects carrying the T (risk) allele showing decreased fractional anisotropy compared with other subgroups, independent of age. Genotype effects were not observed in frontotemporal GM volume. These findings support effects of rs9804190 on frontotemporal WM in adolescents and adults with BD and suggest a mechanism contributing to WM pathology in BD.
Collapse
Affiliation(s)
- E T C Lippard
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - K P Jensen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - F Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - J A Y Johnston
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - L Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - B Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - J Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - H P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
20
|
Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, Farias HR, de Souza CT, Carvalho AF, Quevedo J. Lithium and valproate act on the GSK-3β signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology 2017; 117:447-459. [DOI: 10.1016/j.neuropharm.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
21
|
Wu MJ, Mwangi B, Bauer IE, Passos IC, Sanches M, Zunta-Soares GB, Meyer TD, Hasan KM, Soares JC. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. Neuroimage 2017; 145:254-264. [PMID: 26883067 PMCID: PMC4983269 DOI: 10.1016/j.neuroimage.2016.02.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/14/2016] [Accepted: 02/08/2016] [Indexed: 12/28/2022] Open
Abstract
Diagnosis, clinical management and research of psychiatric disorders remain subjective - largely guided by historically developed categories which may not effectively capture underlying pathophysiological mechanisms of dysfunction. Here, we report a novel approach of identifying and validating distinct and biologically meaningful clinical phenotypes of bipolar disorders using both unsupervised and supervised machine learning techniques. First, neurocognitive data were analyzed using an unsupervised machine learning approach and two distinct clinical phenotypes identified namely; phenotype I and phenotype II. Second, diffusion weighted imaging scans were pre-processed using the tract-based spatial statistics (TBSS) method and 'skeletonized' white matter fractional anisotropy (FA) and mean diffusivity (MD) maps extracted. The 'skeletonized' white matter FA and MD maps were entered into the Elastic Net machine learning algorithm to distinguish individual subjects' phenotypic labels (e.g. phenotype I vs. phenotype II). This calculation was performed to ascertain whether the identified clinical phenotypes were biologically distinct. Original neurocognitive measurements distinguished individual subjects' phenotypic labels with 94% accuracy (sensitivity=92%, specificity=97%). TBSS derived FA and MD measurements predicted individual subjects' phenotypic labels with 76% and 65% accuracy respectively. In addition, individual subjects belonging to phenotypes I and II were distinguished from healthy controls with 57% and 92% accuracy respectively. Neurocognitive task variables identified as most relevant in distinguishing phenotypic labels included; Affective Go/No-Go (AGN), Cambridge Gambling Task (CGT) coupled with inferior fronto-occipital fasciculus and callosal white matter pathways. These results suggest that there may exist two biologically distinct clinical phenotypes in bipolar disorders which can be identified from healthy controls with high accuracy and at an individual subject level. We suggest a strong clinical utility of the proposed approach in defining and validating biologically meaningful and less heterogeneous clinical sub-phenotypes of major psychiatric disorders.
Collapse
Affiliation(s)
- Mon-Ju Wu
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA.
| | - Isabelle E Bauer
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Ives C Passos
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Marsal Sanches
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Giovana B Zunta-Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Thomas D Meyer
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Khader M Hasan
- Department of Diagnostic & Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| |
Collapse
|
22
|
Matsubara T, Matsuo K, Harada K, Nakano M, Nakashima M, Watanuki T, Egashira K, Furukawa M, Matsunaga N, Watanabe Y. Distinct and Shared Endophenotypes of Neural Substrates in Bipolar and Major Depressive Disorders. PLoS One 2016; 11:e0168493. [PMID: 28030612 PMCID: PMC5193412 DOI: 10.1371/journal.pone.0168493] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023] Open
Abstract
Little is known about disorder-specific biomarkers of bipolar disorder (BD) and major depressive disorder (MDD). Our aim was to determine a neural substrate that could be used to distinguish BD from MDD. Our study included a BD group (10 patients with BD, 10 first-degree relatives (FDRs) of individuals with BD), MDD group (17 patients with MDD, 17 FDRs of individuals with MDD), and 27 healthy individuals. Structural and functional brain abnormalities were evaluated by voxel-based morphometry and a trail making test (TMT), respectively. The BD group showed a significant main effect of diagnosis in the gray matter (GM) volume of the anterior cingulate cortex (ACC; p = 0.01) and left insula (p < 0.01). FDRs of individuals with BD showed significantly smaller left ACC GM volume than healthy subjects (p < 0.01), and patients with BD showed significantly smaller ACC (p < 0.01) and left insular GM volume (p < 0.01) than healthy subjects. The MDD group showed a tendency toward a main effect of diagnosis in the right and left insular GM volume. The BD group showed a significantly inverse correlation between the left insular GM volume and TMT-A scores (p < 0.05). Our results suggest that the ACC volume could be a distinct endophenotype of BD, while the insular volume could be a shared BD and MDD endophenotype. Moreover, the insula could be associated with cognitive decline and poor outcome in BD.
Collapse
Affiliation(s)
- Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Health Service Center, Yamaguchi University Organization for University Education, Yamaguchi, Yamaguchi, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail:
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Nakano
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Katakura Hospital, Ube, Yamaguchi, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Nagato-ichinomiya Hospital, Shimonoseki, Yamaguchi, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kazuteru Egashira
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Egashira Clinic, Kitakyusyu, Fukuoka, Japan
| | - Matakazu Furukawa
- Department of Radiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Naofumi Matsunaga
- Department of Radiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
23
|
Roberts G, Wen W, Frankland A, Perich T, Holmes-Preston E, Levy F, Lenroot RK, Hadzi-Pavlovic D, Nurnberger JI, Breakspear M, Mitchell PB. Interhemispheric white matter integrity in young people with bipolar disorder and at high genetic risk. Psychol Med 2016; 46:2385-2396. [PMID: 27291060 DOI: 10.1017/s0033291716001161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND White matter (WM) impairments have been reported in patients with bipolar disorder (BD) and those at high familial risk of developing BD. However, the distribution of these impairments has not been well characterized. Few studies have examined WM integrity in young people early in the course of illness and in individuals at familial risk who have not yet passed the peak age of onset. METHOD WM integrity was examined in 63 BD subjects, 150 high-risk (HR) individuals and 111 participants with no family history of mental illness (CON). All subjects were aged 12 to 30 years. RESULTS This young BD group had significantly lower fractional anisotropy within the genu of the corpus callosum (CC) compared with the CON and HR groups. Moreover, the abnormality in the genu of the CC was also present in HR participants with recurrent major depressive disorder (MDD) (n = 16) compared with CON participants. CONCLUSIONS Our findings provide important validation of interhemispheric abnormalities in BD patients. The novel finding in HR subjects with recurrent MDD - a group at particular risk of future hypo/manic episodes - suggests that this may potentially represent a trait marker for BD, though this will need to be confirmed in longitudinal follow-up studies.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - W Wen
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - A Frankland
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - T Perich
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - E Holmes-Preston
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - F Levy
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - R K Lenroot
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - D Hadzi-Pavlovic
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - J I Nurnberger
- Department of Psychiatry,Indiana University School of Medicine,Indianapolis, IN,USA
| | - M Breakspear
- Division of Mental Health Research,Queensland Institute of Medical Research,Brisbane,QLD,Australia
| | - P B Mitchell
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| |
Collapse
|
24
|
Roberts G, Lenroot R, Frankland A, Yeung PK, Gale N, Wright A, Lau P, Levy F, Wen W, Mitchell PB. Abnormalities in left inferior frontal gyral thickness and parahippocampal gyral volume in young people at high genetic risk for bipolar disorder. Psychol Med 2016; 46:2083-2096. [PMID: 27067698 DOI: 10.1017/s0033291716000507] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Fronto-limbic structural brain abnormalities have been reported in patients with bipolar disorder (BD), but findings in individuals at increased genetic risk of developing BD have been inconsistent. We conducted a study in adolescents and young adults (12-30 years) comparing measures of fronto-limbic cortical and subcortical brain structure between individuals at increased familial risk of BD (at risk; AR), subjects with BD and controls (CON). We separately examined cortical volume, thickness and surface area as these have distinct neurodevelopmental origins and thus may reflect differential effects of genetic risk. METHOD We compared fronto-limbic measures of grey and white matter volume, cortical thickness and surface area in 72 unaffected-risk individuals with at least one first-degree relative with bipolar disorder (AR), 38 BD subjects and 72 participants with no family history of mental illness (CON). RESULTS The AR group had significantly reduced cortical thickness in the left pars orbitalis of the inferior frontal gyrus (IFG) compared with the CON group, and significantly increased left parahippocampal gyral volume compared with those with BD. CONCLUSIONS The finding of reduced cortical thickness of the left pars orbitalis in AR subjects is consistent with other evidence supporting the IFG as a key region associated with genetic liability for BD. The greater volume of the left parahippocampal gyrus in those at high risk is in line with some prior reports of regional increases in grey matter volume in at-risk subjects. Assessing multiple complementary morphometric measures may assist in the better understanding of abnormal developmental processes in BD.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - R Lenroot
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P K Yeung
- Neuroscience Research Australia,Sydney,Australia
| | - N Gale
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - A Wright
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P Lau
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - F Levy
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - W Wen
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales,Sydney,Australia
| |
Collapse
|
25
|
nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology. Proc Natl Acad Sci U S A 2016; 113:6749-54. [PMID: 27226294 DOI: 10.1073/pnas.1600944113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neural Abelson-related gene-binding protein 2 (nArgBP2) was originally identified as a protein that directly interacts with synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3), a postsynaptic scaffolding protein critical for the assembly of glutamatergic synapses. Although genetic deletion of nArgBP2 in mice leads to manic/bipolar-like behaviors resembling many aspects of symptoms in patients with bipolar disorder, the actual function of nArgBP2 at the synapse is completely unknown. Here, we found that the knockdown (KD) of nArgBP2 by specific small hairpin RNAs (shRNAs) resulted in a dramatic change in dendritic spine morphology. Reintroducing shRNA-resistant nArgBP2 reversed these defects. In particular, nArgBP2 KD impaired spine-synapse formation such that excitatory synapses terminated mostly at dendritic shafts instead of spine heads in spiny neurons, although inhibitory synapse formation was not affected. nArgBP2 KD further caused a marked increase of actin cytoskeleton dynamics in spines, which was associated with increased Wiskott-Aldrich syndrome protein-family verprolin homologous protein 1 (WAVE1)/p21-activated kinase (PAK) phosphorylation and reduced activity of cofilin. These effects of nArgBP2 KD in spines were rescued by inhibiting PAK or activating cofilin combined with sequestration of WAVE. Together, our results suggest that nArgBP2 functions to regulate spine morphogenesis and subsequent spine-synapse formation at glutamatergic synapses. They also raise the possibility that the aberrant regulation of synaptic actin filaments caused by reduced nArgBP2 expression may contribute to the manifestation of the synaptic dysfunction observed in manic/bipolar disorder.
Collapse
|
26
|
Benítez-King G, Valdés-Tovar M, Trueta C, Galván-Arrieta T, Argueta J, Alarcón S, Lora-Castellanos A, Solís-Chagoyán H. The microtubular cytoskeleton of olfactory neurons derived from patients with schizophrenia or with bipolar disorder: Implications for biomarker characterization, neuronal physiology and pharmacological screening. Mol Cell Neurosci 2016; 73:84-95. [PMID: 26837043 DOI: 10.1016/j.mcn.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023] Open
Abstract
Schizophrenia (SZ) and Bipolar Disorder (BD) are highly inheritable chronic mental disorders with a worldwide prevalence of around 1%. Despite that many efforts had been made to characterize biomarkers in order to allow for biological testing for their diagnoses, these disorders are currently detected and classified only by clinical appraisal based on the Diagnostic and Statistical Manual of Mental Disorders. Olfactory neuroepithelium-derived neuronal precursors have been recently proposed as a model for biomarker characterization. Because of their peripheral localization, they are amenable to collection and suitable for being cultured and propagated in vitro. Olfactory neuroepithelial cells can be obtained by a non-invasive brush-exfoliation technique from neuropsychiatric patients and healthy subjects. Neuronal precursors isolated from these samples undergo in vitro the cytoskeletal reorganization inherent to the neurodevelopment process which has been described as one important feature in the etiology of both diseases. In this paper, we will review the current knowledge on microtubular organization in olfactory neurons of patients with SZ and with BD that may constitute specific cytoskeletal endophenotypes and their relation with alterations in L-type voltage-activated Ca(2+) currents. Finally, the potential usefulness of neuronal precursors for pharmacological screening will be discussed.
Collapse
Affiliation(s)
- G Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico.
| | - M Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - C Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, C.P. 14370, Tlalpan, Distrito Federal, Mexico
| | - T Galván-Arrieta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - J Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - S Alarcón
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - A Lora-Castellanos
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - H Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| |
Collapse
|
27
|
Pinacho R, Saia G, Meana JJ, Gill G, Ramos B. Transcription factor SP4 phosphorylation is altered in the postmortem cerebellum of bipolar disorder and schizophrenia subjects. Eur Neuropsychopharmacol 2015; 25:1650-1660. [PMID: 26049820 PMCID: PMC4600646 DOI: 10.1016/j.euroneuro.2015.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 12/12/2014] [Accepted: 05/13/2015] [Indexed: 11/27/2022]
Abstract
Transcription factors play important roles in the control of neuronal function in physiological and pathological conditions. We previously reported reduced levels of transcription factor SP4 protein, but not transcript, in the cerebellum in bipolar disorder and associated with more severe negative symptoms in schizophrenia. We have recently reported phosphorylation of Sp4 at S770, which is regulated by membrane depolarization and NMDA receptor activity. The aim of this study was to investigate SP4 S770 phosphorylation in bipolar disorder and its association with negative symptoms in schizophrenia, and to explore the potential relationship between phosphorylation and protein abundance. Here we report a significant increase in SP4 phosphorylation in the cerebellum, but not the prefrontal cortex, of bipolar disorder subjects (n=10) (80% suicide) compared to matched controls (n=10). We found that SP4 phosphorylation inversely correlated with SP4 levels independently of disease status in both areas of the human brain. Moreover, SP4 phosphorylation in the cerebellum positively correlated with negative symptoms in schizophrenia subjects (n=15). Further, we observed that a phospho-mimetic mutation in truncated Sp4 was sufficient to significantly decrease Sp4 steady-state levels, while a non-phosphorylatable mutant showed increased stability in cultured rat cerebellar granule neurons. Our results indicate that SP4 S770 phosphorylation is increased in the cerebellum in bipolar disorder subjects that committed suicide and in severe schizophrenia subjects, and may be part of a degradation signal that controls Sp4 abundance in cerebellar granule neurons. This opens the possibility that modulation of SP4 phosphorylation may contribute to the molecular pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830- Sant Boi de Llobregat, Barcelona, Spain
| | - Gregory Saia
- Department of Developmental, Molecular, and Chemical Biology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111.,Cell, Molecular and Developmental Biology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - J Javier Meana
- Departamento de Farmacología, Universidad del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, B Sarriena s/n 48940-Leioa, Bizkaia, Spain
| | - Grace Gill
- Department of Developmental, Molecular, and Chemical Biology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830- Sant Boi de Llobregat, Barcelona, Spain
| |
Collapse
|
28
|
Hajek T, Cooke C, Kopecek M, Novak T, Hoschl C, Alda M. Using structural MRI to identify individuals at genetic risk for bipolar disorders: a 2-cohort, machine learning study. J Psychiatry Neurosci 2015; 40:316-24. [PMID: 25853284 PMCID: PMC4543094 DOI: 10.1503/jpn.140142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Brain imaging is of limited diagnostic use in psychiatry owing to clinical heterogeneity and low sensitivity/specificity of between-group neuroimaging differences. Machine learning (ML) may better translate neuroimaging to the level of individual participants. Studying unaffected offspring of parents with bipolar disorders (BD) decreases clinical heterogeneity and thus increases sensitivity for detection of biomarkers. The present study used ML to identify individuals at genetic high risk (HR) for BD based on brain structure. METHODS We studied unaffected and affected relatives of BD probands recruited from 2 sites (Halifax, Canada, and Prague, Czech Republic). Each participant was individually matched by age and sex to controls without personal or family history of psychiatric disorders. We applied support vector machines (SVM) and Gaussian process classifiers (GPC) to structural MRI. RESULTS We included 45 unaffected and 36 affected relatives of BD probands matched by age and sex on an individual basis to healthy controls. The SVM of white matter distinguished unaffected HR from control participants (accuracy = 68.9%, p = 0.001), with similar accuracy for the GPC (65.6%, p = 0.002) or when analyzing data from each site separately. Differentiation of the more clinically heterogeneous affected familiar group from healthy controls was less accurate (accuracy = 59.7%, p = 0.05). Machine learning applied to grey matter did not distinguish either the unaffected HR or affected familial groups from controls. The regions that most contributed to between-group discrimination included white matter of the inferior/middle frontal gyrus, inferior/middle temporal gyrus and precuneus. LIMITATIONS Although we recruited 126 participants, ML benefits from even larger samples. CONCLUSION Machine learning applied to white but not grey matter distinguished unaffected participants at high and low genetic risk for BD based on regions previously implicated in the pathophysiology of BD.
Collapse
Affiliation(s)
- Tomas Hajek
- Correspondence to: T. Hajek, Department of Psychiatry, Dalhousie University, QEII HSC, A.J. Lane Bldg., Rm. 3093, 5909 Veteran’s Memorial Lane, Halifax, NS B3H 2E2;
| | | | | | | | | | | |
Collapse
|
29
|
Bauer IE, Meyer TD, Sanches M, Zunta-Soares G, Soares JC. Does a history of substance abuse and illness chronicity predict increased impulsivity in bipolar disorder? J Affect Disord 2015; 179:142-7. [PMID: 25863910 DOI: 10.1016/j.jad.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Impulsivity is a common feature shared by bipolar disorder (BD) and substance use disorder (SUD). SUD and recurrent mood episodes are considered to be risk factors for poor outcome in BD. However, the association between impulsivity, illness chronicity and SUD in BD remains unexplored. METHODS 103 BD patients with and without a lifetime history of SUD (36.82±11.34 years, 40 males) were recruited. Participants completed the SCID interview and were administered measures of impulsivity including the Barratt Impulsivity Scale (BIS) and selected tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB). Hierarchical regression analyses explored the relationship between illness chronicity, SUD, and impulsivity. RESULTS Variance in the BIS, number of false alarms on the Rapid Visual Processing task and other impulsivity indicators of the Cambridge Gambling Task (CGT) was not explained by the chosen variables. Only an increased number of commission errors in the negative condition of the Affective Go/No Go task was significantly associated with illness chronicity. Furthermore there was a trend suggesting a relationship between a lifetime history of SUD and increased propensity to risk-taking during the CGT. LIMITATIONS Potential limitations include medication and patients׳ remission status from SUD. CONCLUSIONS Contrary to our expectations impulsivity was generally not predicted by indicators of illness chronicity or SUD. While impulsivity could still be a marker of BD that is present before the onset of the disorder, the link between the number of mood episodes and specific indicators of impulsivity may be related to mechanisms of neuroprogression.
Collapse
Affiliation(s)
- Isabelle E Bauer
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Road, Houston, TX 77054, United States.
| | - Thomas D Meyer
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Road, Houston, TX 77054, United States.
| | - Marsal Sanches
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Road, Houston, TX 77054, United States
| | - Giovana Zunta-Soares
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Road, Houston, TX 77054, United States
| | - Jair C Soares
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 1941 East Road, Houston, TX 77054, United States
| |
Collapse
|
30
|
Dong XH, Zhen XC. Glial pathology in bipolar disorder: potential therapeutic implications. CNS Neurosci Ther 2015; 21:393-7. [PMID: 25753128 DOI: 10.1111/cns.12390] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BD) is a chronic and severe mental disorder with recurrent episodes of mania and depression. In addition to neuronal alterations, accumulating evidences have revealed the importance of glial system in pathophysiology and phenotype of the illness. Postmortem studies have repeatedly demonstrated the alterations in glial cells and its functions in patients with BD. The activated microglia and inflammatory cytokines are proposed to be the potential biomarkers that may help to predict disease exacerbation in BD. On the other hand, anti-BD drugs have been shown to produce profound effects on glial activity, which not only contributes to the therapeutic efficacy, but may also provide a potential target for the drug development of BD. We will focus on the recent development of glial abnormalities and potential therapeutic benefits targeted to glial modulation in BD.
Collapse
Affiliation(s)
- Xiao-Hua Dong
- Jiangsu Key Laboratory for Translational Research for Neuropsycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmacy, Hebei North University, Zhangjiakou, Hebei, China
| | | |
Collapse
|
31
|
Arat HE, Chouinard VA, Cohen BM, Lewandowski KE, Öngür D. Diffusion tensor imaging in first degree relatives of schizophrenia and bipolar disorder patients. Schizophr Res 2015; 161:329-39. [PMID: 25542860 PMCID: PMC4308443 DOI: 10.1016/j.schres.2014.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES White matter (WM) abnormalities are one of the most widely and consistently reported findings in schizophrenia (SZ) and bipolar disorder (BD). If these abnormalities are inherited determinants of illness, suitable to be classified as an endophenotype, relatives of patients must also have them at higher rate compared to the general population. In this review, we evaluate published diffusion tensor imaging (DTI) studies comparing first degree relatives of SZ and BD patients and healthy control subjects. METHODS We searched PubMed, Embase and PsychInfo for DTI studies which included an unaffected relative and a healthy comparison group. RESULTS 22 studies fulfilled the inclusion criteria. WM abnormalities were found in many diverse regions in relatives of SZ patients. Although the findings were not completely consistent across studies, the most implicated areas were the frontal and temporal WM regions and the corpus callosum. Studies in relatives of BD patients were fewer in number with less consistent findings reported across studies. CONCLUSIONS Our review supports the concept of WM abnormalities as an endophenotype in SZ, with somewhat weaker evidence in BD, but larger and higher quality studies are needed to make a definitive comment.
Collapse
Affiliation(s)
- Hidayet E. Arat
- Dokuz Eylul University, Faculty of Medicine Department of Psychiatry, Izmir, Turkey,McLean Hospital, 115 Mill St., Belmont, MA, 02478 USA
| | - Virginie-Anne Chouinard
- McLean Hospital, 115 Mill St., Belmont, MA, 02478 USA,Harvard Medical School, Department of Psychiatry, Boston, MA, 02114 USA
| | - Bruce M. Cohen
- McLean Hospital, 115 Mill St., Belmont, MA, 02478 USA,Harvard Medical School, Department of Psychiatry, Boston, MA, 02114 USA
| | - Kathryn E. Lewandowski
- McLean Hospital, 115 Mill St., Belmont, MA, 02478 USA,Harvard Medical School, Department of Psychiatry, Boston, MA, 02114 USA
| | - Dost Öngür
- McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Harvard Medical School, Department of Psychiatry, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Arnold SJM, Ivleva EI, Gopal TA, Reddy AP, Jeon-Slaughter H, Sacco CB, Francis AN, Tandon N, Bidesi AS, Witte B, Poudyal G, Pearlson GD, Sweeney JA, Clementz BA, Keshavan MS, Tamminga CA. Hippocampal volume is reduced in schizophrenia and schizoaffective disorder but not in psychotic bipolar I disorder demonstrated by both manual tracing and automated parcellation (FreeSurfer). Schizophr Bull 2015; 41:233-49. [PMID: 24557771 PMCID: PMC4266285 DOI: 10.1093/schbul/sbu009] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study examined hippocampal volume as a putative biomarker for psychotic illness in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) psychosis sample, contrasting manual tracing and semiautomated (FreeSurfer) region-of-interest outcomes. The study sample (n = 596) included probands with schizophrenia (SZ, n = 71), schizoaffective disorder (SAD, n = 70), and psychotic bipolar I disorder (BDP, n = 86); their first-degree relatives (SZ-Rel, n = 74; SAD-Rel, n = 62; BDP-Rel, n = 88); and healthy controls (HC, n = 145). Hippocampal volumes were derived from 3Tesla T1-weighted MPRAGE images using manual tracing/3DSlicer3.6.3 and semiautomated parcellation/FreeSurfer5.1,64bit. Volumetric outcomes from both methodologies were contrasted in HC and probands and relatives across the 3 diagnoses, using mixed-effect regression models (SAS9.3 Proc MIXED); Pearson correlations between manual tracing and FreeSurfer outcomes were computed. SZ (P = .0007-.02) and SAD (P = .003-.14) had lower hippocampal volumes compared with HC, whereas BDP showed normal volumes bilaterally (P = .18-.55). All relative groups had hippocampal volumes not different from controls (P = .12-.97) and higher than those observed in probands (P = .003-.09), except for FreeSurfer measures in bipolar probands vs relatives (P = .64-.99). Outcomes from manual tracing and FreeSurfer showed direct, moderate to strong, correlations (r = .51-.73, P < .05). These findings from a large psychosis sample support decreased hippocampal volume as a putative biomarker for schizophrenia and schizoaffective disorder, but not for psychotic bipolar I disorder, and may reflect a cumulative effect of divergent primary disease processes and/or lifetime medication use. Manual tracing and semiautomated parcellation regional volumetric approaches may provide useful outcomes for defining measurable biomarkers underlying severe mental illness.
Collapse
Affiliation(s)
- Sara J. M. Arnold
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Elena I. Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235;,*To whom correspondence should be addressed; tel: 214-645-8942, fax: 214-648-5321, e-mail:
| | - Tejas A. Gopal
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Anil P. Reddy
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Haekyung Jeon-Slaughter
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Carolyn B. Sacco
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Alan N. Francis
- Department of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA
| | - Anup S. Bidesi
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Bradley Witte
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Gaurav Poudyal
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Godfrey D. Pearlson
- Department of Psychiatry, Institute of Living/Hartford Hospital, Yale School of Medicine, New Haven, CT
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | | | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| |
Collapse
|
33
|
Niida A, Niida R, Matsuda H, Motomura M, Uechi A. Analysis of the presence or absence of atrophy of the subgenual and subcallosal cingulate cortices using voxel-based morphometry on MRI is useful to select prescriptions for patients with depressive symptoms. Int J Gen Med 2014; 7:513-24. [PMID: 25506239 PMCID: PMC4259869 DOI: 10.2147/ijgm.s72736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective We objectively evaluated the presence or absence of atrophy of the subgenual anterior cingulate cortex (sgACC) and the subcallosal anterior cingulate cortex (scACC), using new voxel-based morphometry (VBM) software employing Statistical Parametric Mapping software v8 and diffeomorphic anatomic registration through an exponentiated lie algebra. We prepared a database covering young-mature adulthood and investigated the clinical usefulness of the evaluation. Subjects and methods One hundred seven patients with major depressive disorder (MDD), 74 patients with bipolar disorder (BD), and 240 healthy control subjects underwent 1.5T magnetic resonance imaging scanning. Using new VBM software and databases covering young-mature adults and the elderly, target volumes of interest were set in the sgACC and scACC, four indicators (severity, extent, ratio, and whole-brain extent) were determined, and the presence or absence of atrophy of the sgACC and scACC was evaluated on the basis of the indicators. In addition, the relationships between the presence or absence of atrophy of the sgACC and scACC and performance of diagnosing MDD and BD and therapeutic drugs were investigated. Results It was clarified that the disease is likely to be MDD when atrophy is detected in the sgACC, and likely to be BD when no atrophy is detected in the sgACC but is detected in the scACC. Regarding the relationship with therapeutic drugs, it was clarified that, when atrophy is detected in both the sgACC and the scACC, concomitant administration of mood stabilizers and atypical antipsychotics acting as dopamine-system stabilizers is necessary in many cases. Conclusion VBM on magnetic resonance imaging enabled automatic analysis of atrophy in the sgACC and scACC, and findings obtained by this procedure are useful not only for differentiation of MDD and BD patients but also for selection of prescriptions.
Collapse
Affiliation(s)
- Akira Niida
- Department of Radiology, Nanbu Hospital, Itoman City, Okinawa, Japan
| | - Richi Niida
- Department of Psychiatry, Nanto Clinic, Urasoe City, Okinawa, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan
| | - Makoto Motomura
- Department of Human Sciences, University of the Ryukyus, Nakagami County, Okinawa, Japan
| | - Akihiko Uechi
- Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata City, Osaka, Japan
| |
Collapse
|
34
|
Amygdala enlargement in unaffected offspring of bipolar parents. J Psychiatr Res 2014; 59:200-5. [PMID: 25263277 PMCID: PMC4254042 DOI: 10.1016/j.jpsychires.2014.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/23/2014] [Accepted: 08/28/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a devastating disorder with a strong genetic component. While the frontolimbic profile of individuals suffering from BD is relatively well-established, there is still disagreement over the neuroanatomical features of unaffected BD offspring. MATERIAL AND METHODS Brain volumetric measures were obtained for 82 children and adolescents including 18 unaffected BD offspring (10.50 ± 3.37 years), 19 BD offspring suffering from psychiatric disorders (12.87 ± 3.28 years) and 45 healthy controls (HC-10.50 ± 3.37 years). Clinical diagnoses were established according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Cortical reconstruction and volumetric segmentation were performed with the Freesurfer image analysis suite. Profile analyses compared frontolimbic volumes across groups. Age, gender, testing site, ethnicity and intracranial volume were entered as covariates. RESULTS The right amygdala was significantly larger in unaffected BD offspring compared to BD offspring with psychiatric disorders and HC. Volumes of striatal, hippocampal, cingulate, and temporal regions were comparable across groups. DISCUSSION The size of the amygdala may be a marker of disease susceptibility in offspring of BD parents. Longitudinal studies are needed to examine rates of conversion to BD as related to specific pre-morbid brain abnormalities.
Collapse
|
35
|
Singh MK, Gotlib IH. The neuroscience of depression: implications for assessment and intervention. Behav Res Ther 2014; 62:60-73. [PMID: 25239242 PMCID: PMC4253641 DOI: 10.1016/j.brat.2014.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
Major Depressive Disorder (MDD) is among the most prevalent of all psychiatric disorders and is the single most burdensome disease worldwide. In attempting to understand the profound deficits that characterize MDD across multiple domains of functioning, researchers have identified aberrations in brain structure and function in individuals diagnosed with this disorder. In this review we synthesize recent data from human neuroimaging studies in presenting an integrated neural network framework for understanding the impairments experienced by individuals with MDD. We discuss the implications of these findings for assessment of and intervention for MDD. We conclude by offering directions for future research that we believe will advance our understanding of neural factors that contribute to the etiology and course of depression, and to recovery from this debilitating disorder.
Collapse
Affiliation(s)
| | - Ian H Gotlib
- Department of Psychology, Stanford University, United States
| |
Collapse
|
36
|
Hajek T, Calkin C, Blagdon R, Slaney C, Uher R, Alda M. Insulin resistance, diabetes mellitus, and brain structure in bipolar disorders. Neuropsychopharmacology 2014; 39:2910-8. [PMID: 25074491 PMCID: PMC4200504 DOI: 10.1038/npp.2014.148] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/27/2014] [Accepted: 06/05/2014] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) damages the brain, especially the hippocampus, and frequently co-occurs with bipolar disorders (BD). Reduced hippocampal volumes are found only in some studies of BD subjects and may thus be secondary to the presence of certain clinical variables. Studying BD patients with abnormal glucose metabolism could help identify preventable risk factors for hippocampal atrophy in BD. We compared brain structure using optimized voxel-based morphometry of 1.5T MRI scans in 33 BD subjects with impaired glucose metabolism (19 with insulin resistance/glucose intolerance (IR/GI), 14 with T2DM), 15 euglycemic BD participants and 11 euglycemic, nonpsychiatric controls. The group of BD patients with IR, GI or T2DM had significantly smaller hippocampal volumes than the euglycemic BD participants (corrected p=0.02) or euglycemic, nonpsychiatric controls (corrected p=0.004). Already the BD subjects with IR/GI had smaller hippocampal volumes than euglycemic BD participants (t(32)=-3.15, p=0.004). Age was significantly more negatively associated with hippocampal volumes in BD subjects with IR/GI/T2DM than in the euglycemic BD participants (F(2, 44)=9.96, p=0.0003). The gray matter reductions in dysglycemic subjects extended to the cerebral cortex, including the insula. In conclusion, this is the first study demonstrating that T2DM or even prediabetes may be risk factors for smaller hippocampal and cortical volumes in BD. Abnormal glucose metabolism may accelerate the age-related decline in hippocampal volumes in BD. These findings raise the possibility that improving diabetes care among BD subjects and intervening already at the level of prediabetes could slow brain aging in BD.
Collapse
Affiliation(s)
- Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada,Prague Psychiatric Center, Department of Psychiatry and Medical Psychology, 3rd School of Medicine, Charles University, Prague, Czech Republic,Department of Psychiatry, Dalhousie University, QEII HSC, A.J.Lane Bldg., Room 3093, 5909 Veteran's Memorial Lane, Halifax, NS B3H 2E2, Canada, Tel: +1 902 473 8299, Fax: +1 902 473 1583, E-mail:
| | - Cynthia Calkin
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Ryan Blagdon
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada,Prague Psychiatric Center, Department of Psychiatry and Medical Psychology, 3rd School of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
37
|
Munkholm K, Pedersen BK, Kessing LV, Vinberg M. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients. Psychoneuroendocrinology 2014; 47:199-211. [PMID: 25001969 DOI: 10.1016/j.psyneuen.2014.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 12/31/2022]
Abstract
Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3 were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder patients during a 6-12 months period and compared with repeated measurements in healthy control subjects. Careful attention was given to standardization of all procedures and adjustment for potential confounders of BDNF and NT-3. In linear mixed models, adjusting for demographical and lifestyle factors, levels of BDNF were significantly elevated in bipolar disorder patients in euthymic- (p<0.05), depressed- (p<0.005) and manic/hypomanic (p<0.005) states compared with healthy control subjects. Within bipolar disorder patients, adjusting for medication, there was no significant difference in BDNF levels between affective states, with equally elevated levels present in euthymic-, depressive- and manic/hypomanic patients. Levels of BDNF were higher in patients with longer duration of illness compared with patients with shorter duration of illness. We found no difference in NT-3 levels between bipolar disorder patients in any affective state compared with healthy control subjects and no difference in NT-3 levels between affective states in bipolar disorder patients. The results suggest that BDNF may be a marker related to illness stage in bipolar disorder, not varying with affective states in rapid cycling bipolar disorder patients. Due to the nature of comparison, it cannot be excluded that the finding of elevated BDNF levels in bipolar disorder patients compared with healthy controls could be influenced by medication.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark.
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark
| | - Maj Vinberg
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
38
|
Weber AM, Soreni N, Noseworthy MD. A preliminary study of functional connectivity of medication naïve children with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:129-36. [PMID: 24726812 DOI: 10.1016/j.pnpbp.2014.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/07/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Evidence suggests that obsessive-compulsive disorder (OCD) is associated with a dysfunction in the cortico-striatal-thalamic-cortical (CSTC) circuitry. Resting state functional connectivity magnetic resonance imaging (rs-fcMRI) allows measurements of resting state networks (RSNs), brain networks that are present at 'rest'. However, although OCD has a typical onset during childhood or adolescence, only two other studies have performed rs-fcMRI comparisons of RSNs in children and adolescents with OCD against healthy controls. METHODS In the present study, we performed resting state functional magnetic resonance imaging using a 3 Tesla MRI, in 11 medication-naïve children and adolescents with OCD and 9 healthy controls. In contrast to previous studies that relied on a priori determination of RSNs, we determined resting state functional connectivity with a data-driven independent component analysis (ICA). RESULTS Consistent with previous reports in healthy adults, we identified 13 RSNs. Case-control un-adjusted statistical significance (p<0.05) was found for two networks. Firstly, increased connectivity (OCD>control) in the right section of Brodmann area 43 of the auditory network; Secondly, decreased connectivity in the right section of Brodmann area 8 and Brodmann area 40 in the cingulate network. CONCLUSIONS Our preliminary findings of case-control differences in RSNs lend further support to the CSTC hypothesis of OCD, as well as implicating other regions of the brain outside of the CSTC.
Collapse
Affiliation(s)
- Alexander Mark Weber
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Noam Soreni
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada; Offord Centre for Child Studies, McMaster Children's Hospital, Hamilton, Ontario, Canada.
| | - Michael David Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Electrical & Computer Engineering, McMaster University, Hamilton, Ontario, Canada; Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
39
|
Individual differences in brain structure and resting-state functional connectivity associated with Type A behavior pattern. Neuroscience 2014; 272:217-28. [DOI: 10.1016/j.neuroscience.2014.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 11/21/2022]
|
40
|
Weber AM, Soreni N, Stanley JA, Greco A, Mendlowitz S, Szatmari P, Schachar R, Mannasis K, Pires P, Swinson R, Noseworthy MD. Proton magnetic resonance spectroscopy of prefrontal white matter in psychotropic naïve children and adolescents with obsessive-compulsive disorder. Psychiatry Res 2014; 222:67-74. [PMID: 24602517 DOI: 10.1016/j.pscychresns.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/13/2013] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Obsessive-compulsive disorder (OCD) has a typical onset during childhood or adolescence. Although recent in-vivo proton magnetic resonance spectroscopy ((1)H-MRS) studies report gray matter metabolite abnormalities in children and adolescents with OCD, there are no existing (1)H-MRS studies that measure white matter (WM) metabolite levels in this population. In the present study, we measured metabolite levels in the left and right prefrontal WM (LPFWM and RPFWM, respectively) of psychotropic-naïve children and adolescents with OCD (LPFWM: N=15, mean age 13.3±2.4 years; right RPFWM: N=14, mean age 13.0±2.3 years) and healthy controls (LPFWM: N=17, mean age 11.8±2.7 years; RPFWM: N=18, mean age 12.2±2.8 years). Spectra were acquired using a 3T single voxel PRESS sequence (1.5×2.0×2.0cm(3)). When age and sex effects were controlled, OCD patients had higher levels of RPFWM choline and N-acetyl-aspartate (NAA). In addition, RPFWM levels of NAA, creatine and myo-inositol were positively and significantly correlated with severity of OCD symptoms. In summary, this is the first published study of WM metabolite levels in children and adolescents with OCD. Our preliminary findings lend further support to the previous findings of WM abnormalities in OCD.
Collapse
Affiliation(s)
| | - Noam Soreni
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada; Anxiety Treatment and Research Center, St. Joseph׳s Healthcare, Hamilton, ON, Canada.
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Alessia Greco
- Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada
| | - Sandra Mendlowitz
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Szatmari
- Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada
| | - Russell Schachar
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katharina Mannasis
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paulo Pires
- Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada
| | - Richard Swinson
- Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada; Anxiety Treatment and Research Center, St. Joseph׳s Healthcare, Hamilton, ON, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Electrical & Computer Engineering, McMaster University, Hamilton, ON, Canada; Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada; Diagnostic Imaging, St. Joseph׳s Healthcare, Hamilton, ON, Canada; Department of Radiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
41
|
Noto MN, de Souza Noto C, de Jesus DR, Zugman A, Mansur RB, Berberian AA, Leclerc E, McIntyre RS, Correll CU, Brietzke E. Recognition of bipolar disorder type I before the first manic episode: challenges and developments. Expert Rev Neurother 2014; 13:795-806; quiz 807. [DOI: 10.1586/14737175.2013.811132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Ren X, Rizavi HS, Khan MA, Bhaumik R, Dwivedi Y, Pandey GN. Alteration of cyclic-AMP response element binding protein in the postmortem brain of subjects with bipolar disorder and schizophrenia. J Affect Disord 2014; 152-154:326-33. [PMID: 24148789 PMCID: PMC3878615 DOI: 10.1016/j.jad.2013.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). METHODS We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n=19), SZ (n=20), and normal control (NC, n=20) subjects. RESULTS We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. CONCLUSION These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness.
Collapse
Affiliation(s)
- Xinguo Ren
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
43
|
Hajek T, Alda M, Hajek E, Ivanoff J. Functional neuroanatomy of response inhibition in bipolar disorders--combined voxel based and cognitive performance meta-analysis. J Psychiatr Res 2013; 47:1955-66. [PMID: 24070910 DOI: 10.1016/j.jpsychires.2013.08.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Impaired response inhibition underlies symptoms and altered functioning in patients with bipolar disorders (BD). The interpretation of fMRI studies requires an accurate estimation of neurocognitive performance, for which individual studies are typically underpowered. Thus, we performed the first combined meta-analysis of fMRI activations and neurocognitive performance in studies investigating response inhibition in BD. METHODS We used signed differential mapping to combine anatomical coordinates of activation and standardized differences between means to evaluate neurocognitive performance in 30 fMRI studies of response inhibition comparing controls (n = 667) and patients with BD (n = 635). RESULTS Relative to controls, BD patients underactivated the right inferior frontal gyrus (rIFG) regardless of current mood state and behavioral performance. Unique to euthymia were cortical hyperactivations (left superior temporal, right middle frontal gyri) combined with subcortical hypoactivations (basal ganglia), whereas unique to mania were subcortical hyperactivations (bilateral basal ganglia), combined with cortical hypoactivations (right inferior and medial frontal gyri). The fMRI changes in euthymia were associated with normal cognitive performance, whereas manic patients committed more errors during response inhibition. CONCLUSIONS The rIFG hypoactivations were congruent with a BD trait, which may underlie the impaired response inhibition in mania. Euthymic BD subjects may compensate for the rIFG hypoactivations by hyperactivations of adjacent cortical areas, yielding comparable performance in inhibitory functions and suggesting possibilities for neuromodulation treatment of these cognitive impairments. The reversal of the activation pattern between mania and euthymia has implications for monitoring of treatment response and identification of imminent relapse.
Collapse
Affiliation(s)
- Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Canada; Prague Psychiatric Centre, Department of Psychiatry and Medical Psychology, 3rd School of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
44
|
Ahrendsen JT, Macklin W. Signaling mechanisms regulating myelination in the central nervous system. Neurosci Bull 2013; 29:199-215. [PMID: 23558589 DOI: 10.1007/s12264-013-1322-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/22/2013] [Indexed: 12/19/2022] Open
Abstract
The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis, cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. in this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination.
Collapse
Affiliation(s)
- Jared T Ahrendsen
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
45
|
Takeuchi H, Taki Y, Nouchi R, Hashizume H, Sekiguchi A, Kotozaki Y, Nakagawa S, Miyauchi CM, Sassa Y, Kawashima R. Anatomical correlates of self-handicapping tendency. Cortex 2013; 49:1148-54. [PMID: 23465364 DOI: 10.1016/j.cortex.2013.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 01/07/2013] [Accepted: 01/29/2013] [Indexed: 11/16/2022]
Abstract
Self-handicaps are obstacles created (or claimed) by individuals in anticipation of failure. Despite the vast amount of psychological research on self-handicapping tendency, the neural mechanisms underlying individual differences in self-handicapping tendency in young and healthy subjects are unknown. We used voxel-based morphometry (VBM) and a questionnaire to measure individual self-handicapping tendency, and we investigated the association between regional gray matter volume (rGMV) and self-handicapping tendency across the brain in healthy young adult (mean age, 21.3 years; standard deviation - SD = 1.9) men (n = 94) and women (n = 91). We discovered that higher individual self-handicapping tendency was associated with larger rGMV in the subgenual cingulate gyrus (sgCG). A wide range of previous studies showed (a) the opposite pattern is seen in the association between rGMV in the sgCG and depression and (b) this area is active when negative emotions are suppressed. The present results suggest that the sgCG is also involved in self-handicapping, which is a behavior thought to be engaged in the protection of self-esteem.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hajek T, Cullis J, Novak T, Kopecek M, Blagdon R, Propper L, Stopkova P, Duffy A, Hoschl C, Uher R, Paus T, Young LT, Alda M. Brain structural signature of familial predisposition for bipolar disorder: replicable evidence for involvement of the right inferior frontal gyrus. Biol Psychiatry 2013; 73:144-52. [PMID: 22818781 PMCID: PMC4830692 DOI: 10.1016/j.biopsych.2012.06.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/01/2012] [Accepted: 06/01/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND To translate our knowledge about neuroanatomy of bipolar disorder (BD) into a diagnostic tool, it is necessary to identify the neural signature of predisposition for BD and separate it from effects of long-standing illness and treatment. Thus, we examined the associations among genetic risk, illness burden, lithium treatment, and brain structure in BD. METHODS This is a two-center, replication-design, structural magnetic resonance imaging study. First, we investigated neuroanatomic markers of familial predisposition by comparing 50 unaffected and 36 affected relatives of BD probands as well as 49 control subjects using modulated voxel-based morphometry. Second, we investigated effects of long-standing illness and treatment on the identified markers in 19 young participants early in the course of BD, 29 subjects with substantial burden of long-lasting BD and either minimal lifetime (n = 12), or long-term ongoing (n = 17) lithium treatment. RESULTS Five groups, including the unaffected and affected relatives of BD probands from each center as well as participants early in the course of BD showed larger right inferior frontal gyrus (rIFG) volumes than control subjects (corrected p < .001). The rIFG volume correlated negatively with illness duration (corrected p < .01) and, relative to the controls, was smaller among BD individuals with long-term illness burden and minimal lifetime lithium exposure (corrected p < .001). Li-treated subjects had normal rIFG volumes despite substantial illness burden. CONCLUSIONS Brain structural changes in BD may result from interplay between illness burden and compensatory processes, which may be enhanced by lithium treatment. The rIFG volume could aid in identification of subjects at risk for BD even before any behavioral manifestations.
Collapse
Affiliation(s)
- Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Neurophysiological findings in patients with bipolar disorder. APPLICATION OF BRAIN OSCILLATIONS IN NEUROPSYCHIATRIC DISEASES - SELECTED PAPERS FROM “BRAIN OSCILLATIONS IN COGNITIVE IMPAIRMENT AND NEUROTRANSMITTERS” CONFERENCE, ISTANBUL, TURKEY, 29 APRIL–1 MAY 2011 2013; 62:197-206. [DOI: 10.1016/b978-0-7020-5307-8.00013-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Abstract
BACKGROUND Brain volumetric magnetic resonance imaging (MRI) studies of adult bipolar disorder samples, compared with healthy controls, have reported conflicting results in hippocampal and amygdala volumes. Among these, few have studied older bipolar samples, which would allow for examination of the effects of greater duration in mood episodes on brain volumes. The aim of this study was to compare hippocampal and amygdala volumes in older bipolar patients with controls. METHODS High-resolution MRI scans were used to determine hippocampal and amygdala volumes that were manually traced using established protocols in 18 euthymic patients with DSM-IV bipolar I disorder (mean age 57 years) and 21 healthy controls (mean age 61 years). Analysis of covariance (ANCOVA) was used to explore group differences while controlling for intracranial volume (ICV), age, sex, and years of education. RESULTS While gray matter, white matter, and cerebrospinal fluid volumes did not differ between the groups, bipolar disorder patients had smaller ICV (t = 2.54, p = 0.015). After correcting for ICV, the bipolar group had smaller hippocampal (left hippocampus F = 13.944, p = 0.001; right hippocampus F = 10.976, p = 0.002; total hippocampus F = 13.566; p = 0.001) and right amygdala (F = 13.317, p = 0.001) volumes. Total hippocampal volume was negatively associated with the duration of depressive (r = -0.636; p = 0.035) and manic (r = -0.659; p = 0.027) episodes, but not lithium use. Amygdala volumes were not associated with the duration of mood episodes. CONCLUSIONS Older bipolar disorder patients had smaller hippocampal and amygdala volumes. That smaller hippocampal volume was associated with the duration of mood episodes may suggest a neuroprogressive course related to the severity of the disorder.
Collapse
|
49
|
Soeiro-de-Souza MG, Dias VV, Figueira ML, Forlenza OV, Gattaz WF, Zarate CA, Machado-Vieira R. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder. Acta Psychiatr Scand 2012; 126:332-41. [PMID: 22676371 PMCID: PMC3936785 DOI: 10.1111/j.1600-0447.2012.01889.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. METHODS We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' RESULTS The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. CONCLUSION Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder.
Collapse
Affiliation(s)
- M. G. Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - V. V. Dias
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - M. L. Figueira
- Bipolar Disorder Research Program, Hospital Santa Maria, Faculty of Medicine, University of Lisbon, (FMUL), Lisbon, Portugal
| | - O. V. Forlenza
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - W. F. Gattaz
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - C. A. Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - R. Machado-Vieira
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
50
|
HAJEK TOMAS, KOPECEK MILOSLAV, HÖSCHL CYRIL. Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: meta-analysis. World J Biol Psychiatry 2012; 13:178-87. [PMID: 21722019 PMCID: PMC4831902 DOI: 10.3109/15622975.2011.580005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Converging evidence suggests that the brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects brain structure. Yet the majority of studies have shown no effect of this polymorphism on hippocampal volumes, perhaps due to small effect size. METHODS We performed a meta-analysis of studies investigating the association between Val66Met BDNF polymorphism and hippocampal volumes in healthy subjects by combining standardized differences between means (SDM) from individual studies using random effect models. RESULTS Data from 399 healthy subjects (255 Val-BDNF homozygotes and 144 carriers of at least one Met-BDNF allele) in seven studies were meta-analysed. Both the left and right hippocampi were significantly larger in Val-BDNF homozygotes than in carriers of at least one Met-BDNF allele (SDM = 0.41, 95% Confidence Interval = 0.20; 0.62, z = 3.86, P = 0.0001; SDM = 0.41; 95% Confidence Interval = 0.20; 0.61, z = 3.81, P = 0.0001, respectively), with no evidence of publication bias. CONCLUSIONS Healthy carriers of BDNF gene Val66Met polymorphism show bilateral hippocampal volume reduction. The effect size was small, but the same direction of effect was seen in all meta-analyzed studies. The association with the BDNF gene Val66Met polymorphism makes hippocampal volume a potential candidate for an endophenotype of disorders presenting with reduced hippocampal volumes.
Collapse
Affiliation(s)
- TOMAS HAJEK
- Department of Psychiatry, Dalhousie University, Halifax, Canada,Prague Psychiatric Centre, Department of Psychiatry and Medical Psychology, 3rd School of Medicine, Charles University, Prague, Czech Republic
| | - MILOSLAV KOPECEK
- Prague Psychiatric Centre, Department of Psychiatry and Medical Psychology, 3rd School of Medicine, Charles University, Prague, Czech Republic
| | - CYRIL HÖSCHL
- Prague Psychiatric Centre, Department of Psychiatry and Medical Psychology, 3rd School of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|