1
|
Huang W, He S, Liu M, Xu J. Comparative efficacy, safety, and tolerability of pharmacotherapies for acute mania in adults: a systematic review and network meta-analysis of randomized controlled trials. Mol Psychiatry 2024:10.1038/s41380-024-02705-3. [PMID: 39191865 DOI: 10.1038/s41380-024-02705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
The aim of this study was to provide evidence-based recommendations regarding the efficacy, safety, and tolerability of currently used pharmacological treatments for adults with acute bipolar mania. To achieve this, we conducted a systematic review and network meta-analysis (NMA) using R software and related packages. We searched primary clinical databases until February 2023 for reports of randomized controlled trials of drug treatments and adjunctive therapies for adults with acute bipolar mania, with outcomes including efficacy (mean change from baseline to endpoint in mania rating scores), safety (clinically significant adverse events from baseline to end of treatment), and tolerability (the proportion of patients who completed the whole trial to the planned endpoint). A total of 113 studies were included in our analysis, in which 23,491 participants (50.38% males; mean age = 38.6 years; mean study duration = 3.39 weeks; mean manic baseline score = 29.37) were randomly allocated to one of 51 monotherapies, adjunctive treatments, or placebo. Our results showed that tamoxifen (mean difference, -22.31 [-25.97, -18.63], N = 2, n1 = 43, n2 = 39) and tamoxifen+ lithium or valproate (LIT/VAL) (-16.37 [-22.55, -10.25], N = 1, n1 = 20, n2 = 20) had the best and second-best clinical efficacy in adults with acute bipolar mania over the placebo. Furthermore, olanzapine, paliperidone, quetiapine, ziprasidone, risperidone, divalproex, and haloperidol were significantly better tolerated than placebo. Combination therapies of antipsychotics and LIT/VAL appeared to be more effective than their corresponding monotherapies. While pharmacotherapies were associated with specific common adverse events, we found no evidence of increased incidence of headache or depression events compared to the placebo. Overall, our NMAs provided important insights into the effectiveness, safety, and tolerability of pharmacological treatments for acute bipolar mania and can help guide treatment decisions for clinicians.
Collapse
Affiliation(s)
- Wenbo Huang
- Department of Medicine, Beijing Municipal Welfare Medical Research Institute Ltd, Beijing, China.
| | - Shuyang He
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Mingxin Liu
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jilai Xu
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Machado-Vieira R, Courtes AC, Zarate CA, Henter ID, Manji HK. Non-canonical pathways in the pathophysiology and therapeutics of bipolar disorder. Front Neurosci 2023; 17:1228455. [PMID: 37592949 PMCID: PMC10427509 DOI: 10.3389/fnins.2023.1228455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Bipolar disorder (BD) is characterized by extreme mood swings ranging from manic/hypomanic to depressive episodes. The severity, duration, and frequency of these episodes can vary widely between individuals, significantly impacting quality of life. Individuals with BD spend almost half their lives experiencing mood symptoms, especially depression, as well as associated clinical dimensions such as anhedonia, fatigue, suicidality, anxiety, and neurovegetative symptoms. Persistent mood symptoms have been associated with premature mortality, accelerated aging, and elevated prevalence of treatment-resistant depression. Recent efforts have expanded our understanding of the neurobiology of BD and the downstream targets that may help track clinical outcomes and drug development. However, as a polygenic disorder, the neurobiology of BD is complex and involves biological changes in several organelles and downstream targets (pre-, post-, and extra-synaptic), including mitochondrial dysfunction, oxidative stress, altered monoaminergic and glutamatergic systems, lower neurotrophic factor levels, and changes in immune-inflammatory systems. The field has thus moved toward identifying more precise neurobiological targets that, in turn, may help develop personalized approaches and more reliable biomarkers for treatment prediction. Diverse pharmacological and non-pharmacological approaches targeting neurobiological pathways other than neurotransmission have also been tested in mood disorders. This article reviews different neurobiological targets and pathophysiological findings in non-canonical pathways in BD that may offer opportunities to support drug development and identify new, clinically relevant biological mechanisms. These include: neuroinflammation; mitochondrial function; calcium channels; oxidative stress; the glycogen synthase kinase-3 (GSK3) pathway; protein kinase C (PKC); brain-derived neurotrophic factor (BDNF); histone deacetylase (HDAC); and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Husseini K. Manji
- Deparment of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Hong Y, Huang W, Cao D, Xu J, Wei H, Zhang J, Wang L. A cumulative Bayesian network meta-analysis on the comparative efficacy of pharmacotherapies for mania over the last 40 years. Psychopharmacology (Berl) 2022; 239:3367-3375. [PMID: 36063207 DOI: 10.1007/s00213-022-06230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Mania (or manic episodes) is a common symptom of bipolar disorder and is frequently accompanied by hyperactivity and delusions; given the cost and resources available, there is a paucity of evidence for direct comparison of different drugs. OBJECTIVES We aimed to provide evidence-based recommendations on the efficacy of overall currently used pharmacological treatments for patients with acute bipolar mania. METHOD We conducted a systematic review and network meta-analysis (NMA) using a Bayesian network frame. We searched the primary literature databases without language restrictions until Dec 18, 2021, for reports of randomized controlled trials (RCTs) of suspected antimanic drugs used as monotherapy for patients with acute bipolar mania, with the primary outcomes being efficacy (mean difference (MD), standardized mean difference (SMD) in the change of mania score). RESULTS Eighty-seven studies were included in which 18,724 manic participants (mean age = 34.6 years, with 50.36% males) were allocated at random to one of 25 active medication drug therapies or placebo, resulting in 87 direct comparisons on 192 data points. Tamoxifen (- 22·00 [- 26·00 to - 18·00]) had the best efficacy over the placebo. Meanwhile, risperidone (- 6·60 [- 8·40 to - 4·90]) was substantially more effective than placebo in treating acute mania. Carbamazepine, haloperidol, ziprasidone, cariprazine, olanzapine, quetiapine, aripiprazole, lithium, paliperidone, asenapine, and divalproex were noticeably more effective than placebo. CONCLUSIONS Overall, tamoxifen appears to be the most effective of the currently known pharmaceutical therapy available to treat acute mania or manic episodes; however, this conclusion is restricted by the scale of RCTs conducted, and risperidone was found to be the most effective medication among antipsychotics. Carbamazepine, haloperidol, ziprasidone, cariprazine, olanzapine, quetiapine, aripiprazole, lithium, paliperidone, asenapine, and divalproex were noticeably effective in treating acute mania or manic episodes.
Collapse
Affiliation(s)
- Yu Hong
- Physical Education Department, Chengdu Sport University, Chengdu, Sichuan, China
| | - Wenbo Huang
- Clinical Translational Science, Juntendo University Graduate School of Medicine, Bunkyo City, 2 Chome-1-1 Hongo, Tokyo, 113-8421, Japan.
| | - Daiyin Cao
- Department of Physical Education, Southwest University, Chongqing, China
| | - Jilai Xu
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Huifan Wei
- Sports Department, Nanchang Institute of Science and Technology, Nanchang, Jiangxi, China
| | - Jie Zhang
- Medical & Nursing School, Chengdu University, Chengdu, Sichuan, China
| | - Li Wang
- Department of Physical Education, Hebei Institute of Physical Education, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Existing and emerging pharmacological approaches to the treatment of mania: A critical overview. Transl Psychiatry 2022; 12:169. [PMID: 35461339 PMCID: PMC9035148 DOI: 10.1038/s41398-022-01928-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Manic episodes are a defining, frequent and dramatically disabling occurrence in the course of Bipolar Disorder type I. Current pharmacotherapy of mania lists a good number of agents, but differences in efficacy and safety profiles among these agents must be considered in order to tailor personalized therapies, especially when the long-term course of the illness is considered. There is wide room and need to ameliorate current pharmacological approaches to mania, but ongoing pharmacological research on the topic is scant. In this work we try to critically assess clinical factors and patients' characteristics that may influence the treatment choice for manic episodes. In addition, we conduct a narrative review on experimental pharmacology of bipolar mania and psychotic disorders, presenting a critical overview on agents which could represent treatment alternatives for a manic episode in the next future. Results show limited novel or ongoing research on agents acting as mood stabilizers (Ebselen, Valnoctamide and Eslicarbazepine did not reach statistical significance in demonstrating antimanic efficacy). As for the emerging experimental antipsychotic, some of them (including KarXT, SEP-363856, RO6889450, ALKS3831) have demonstrated good antipsychotic efficacy and a favorable safety profile, but little is known about their use in patients with bipolar disorder and specifically designed trials are needed. Lastly, some benefits for the treatment of mania could be expected to come in the next future from non-mood stabilizers/non-antipsychotic agents (especially PKC inhibitors like Endoxifen): long-term trials are needed to confirm positive results in terms of long-term efficacy and safety.
Collapse
|
6
|
Lv T, Zhang Z, Yu H, Ren S, Wang J, Li S, Sun L. Tamoxifen Exerts Anticancer Effects on Pituitary Adenoma Progression via Inducing Cell Apoptosis and Inhibiting Cell Migration. Int J Mol Sci 2022; 23:ijms23052664. [PMID: 35269804 PMCID: PMC8910631 DOI: 10.3390/ijms23052664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Although pituitary adenomas are histologically benign, they are often accompanied by multiple complications, such as cardiovascular disease and metabolic dysfunction. In the present study, we repositioned the Food and Drug Administration -approved immune regulator tamoxifen to target STAT6 based on the genomics analysis of PAs. Tamoxifen inhibited the proliferation of GH3 and AtT-20 cells with respective IC50 values of 9.15 and 7.52 μM and increased their apoptotic rates in a dose-dependent manner. At the molecular level, tamoxifen downregulated phosphorylated PI3K, phosphorylated AKT and the anti-apoptotic protein Bcl-2 and increased the expression of pro-apoptotic proteins p53 and Bax in GH3 and AtT-20 cells. Furthermore, tamoxifen also inhibited the migration of both cell lines by reprogramming tumor-associated macrophages to the M1 phenotype through STAT6 inactivation and inhibition of the macrophage-specific immune checkpoint SHP1/SHP. Finally, administration of tamoxifen (20, 50, 100 mg·kg−1·d−1, for 21 days) inhibited the growth of pituitary adenomas xenografts in nude mice in a dose-dependent manner. Taken together, tamoxifen is likely to be a promising combination therapy for pituitary adenomas and should be investigated further.
Collapse
Affiliation(s)
- Tingting Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zirui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haoying Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyue Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingrong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence:
| |
Collapse
|
7
|
Kishi T, Ikuta T, Matsuda Y, Sakuma K, Okuya M, Nomura I, Hatano M, Iwata N. Pharmacological treatment for bipolar mania: a systematic review and network meta-analysis of double-blind randomized controlled trials. Mol Psychiatry 2022; 27:1136-1144. [PMID: 34642461 PMCID: PMC9054678 DOI: 10.1038/s41380-021-01334-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
A systematic review and random-effects model network meta-analysis was conducted to compare the efficacy, acceptability, tolerability, and safety of pharmacological interventions for adults with acute bipolar mania. We searched PubMed, the Cochrane Library, and Embase databases for eligible studies published before March 14, 2021. Randomized controlled trials (RCTs) of oral medication monotherapy lasting ≥10 days in adults with mania were included, and studies that allowed the use of antipsychotics as a rescue medication during a trial were excluded. The primary outcomes were response to treatment (efficacy) and all-cause discontinuation (acceptability). The secondary outcomes were the improvement of mania symptoms and discontinuation due to inefficacy. Of the 79 eligible RCTs, 72 double-blind RCTs of 23 drugs and a placebo were included in the meta-analysis (mean study duration = 3.96 ± 2.39 weeks, n = 16442, mean age = 39.55 years, with 50.93% males). Compared with the placebo, aripiprazole, asenapine, carbamazepine, cariprazine, haloperidol, lithium, olanzapine, paliperidone, quetiapine, risperidone, tamoxifen, valproate, and ziprasidone outperformed response to treatment (N = 56, n = 14503); aripiprazole, olanzapine, quetiapine, and risperidone had lower all-cause discontinuation; however, topiramate had higher all-cause discontinuation (N = 70, n = 16324). Compared with the placebo, aripiprazole, asenapine, carbamazepine, cariprazine, haloperidol, lithium, olanzapine, paliperidone, quetiapine, risperidone, tamoxifen, valproate, and ziprasidone outperformed the improvement of mania symptoms (N = 61, n = 15466), and aripiprazole, asenapine, carbamazepine, cariprazine, haloperidol, lithium, olanzapine, paliperidone, quetiapine, risperidone, valproate, and ziprasidone had lower discontinuation due to inefficacy (N = 50, n = 14284). In conclusions, these antipsychotics, carbamazepine, lithium, tamoxifen, and valproate were effective for acute mania. However, only aripiprazole, olanzapine, quetiapine, and risperidone had better acceptability than the placebo.
Collapse
Affiliation(s)
- Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, Oxford, MS, 38677, USA
| | - Yuki Matsuda
- Department of Psychiatry, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Kenji Sakuma
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Makoto Okuya
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ikuo Nomura
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
- Department of Psychiatry, The Moriyama General Mental Hospital, Nagoya, Aichi, 463-8570, Japan
| | - Masakazu Hatano
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
- Department of Clinical Pharmacy, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
8
|
Jayaraman S, Reid JM, Hawse JR, Goetz MP. Endoxifen, an Estrogen Receptor Targeted Therapy: From Bench to Bedside. Endocrinology 2021; 162:6364076. [PMID: 34480554 PMCID: PMC8787422 DOI: 10.1210/endocr/bqab191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/19/2022]
Abstract
The selective estrogen receptor (ER) modulator, tamoxifen, is the only endocrine agent with approvals for both the prevention and treatment of premenopausal and postmenopausal estrogen-receptor positive breast cancer as well as for the treatment of male breast cancer. Endoxifen, a secondary metabolite resulting from CYP2D6-dependent biotransformation of the primary tamoxifen metabolite, N-desmethyltamoxifen (NDT), is a more potent antiestrogen than either NDT or the parent drug, tamoxifen. However, endoxifen's antitumor effects may be related to additional molecular mechanisms of action, apart from its effects on ER. In phase 1/2 clinical studies, the efficacy of Z-endoxifen, the active isomer of endoxifen, was evaluated in patients with endocrine-refractory metastatic breast cancer as well as in patients with gynecologic, desmoid, and hormone-receptor positive solid tumors, and demonstrated substantial oral bioavailability and promising antitumor activity. Apart from its potent anticancer effects, Z-endoxifen appears to result in similar or even greater bone agonistic effects while resulting in little or no endometrial proliferative effects compared with tamoxifen. In this review, we summarize the preclinical and clinical studies evaluating endoxifen in the context of breast and other solid tumors, the potential benefits of endoxifen in bone, as well as its emerging role as an antimanic agent in bipolar disorder. In total, the summarized body of literature provides compelling arguments for the ongoing development of Z-endoxifen as a novel drug for multiple indications.
Collapse
Affiliation(s)
| | - Joel M Reid
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew P Goetz
- Correspondence: Matthew P. Goetz, MD, Department of Medical Oncology and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
9
|
Ahmad A, Sheikh S, Khan MA, Chaturvedi A, Patel P, Patel R, Buch BC, Anand RS, Shah TC, Vora VN, Ramasubramanian V, Rao S, Kumar N, Prasad BSV, Sathianathan R, Verma KK, Jhanwar VG, Kumar N, Shah S, Dalal PK, Sindhu B, Talukdar P, Ahmad I. Endoxifen: A new, protein kinase C inhibitor to treat acute and mixed mania associated with bipolar I disorder. Bipolar Disord 2021; 23:595-603. [PMID: 33368969 DOI: 10.1111/bdi.13041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/19/2020] [Accepted: 12/20/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Endoxifen is a protein kinase C inhibitor. The objective of the present phase III study was to demonstrate the safety and efficacy of endoxifen in treating bipolar I disorder (BPD I) patients. METHODS A multicenter, double-blind, active-controlled study was conducted using a daily dose of 8 mg endoxifen compared to 1000 mg divalproex, the current standard treatment, in patients with BPD I acute manic episodes with/without mixed features. The primary endpoint of our study was the mean change in total Young Mania Rating Scale (YMRS) score at day 21. RESULTS Endoxifen (n = 116) significantly (p < 0.0001) reduced total YMRS score (from 33.1 to 17.8. A significant (p < 0.001) improvement in Montgomery-Åsberg Depression Rating Scale (MADRS) score was observed for endoxifen (4.8 to 2.5). Early time to remission of the disease was observed with endoxifen compared to divalproex. None of the patients required rescue medication and there was no drug-associated withdrawals. Changes in Clinical Global Impressions-Bipolar Disorder and Clinical Global Impression-Severity of Illness scores showed that treatment with endoxifen was well-tolerated. CONCLUSIONS Endoxifen at a low daily dose of 8 mg was as efficacious and safe in patients with BPD I acute manic episodes with/without mixed features.
Collapse
Affiliation(s)
- Ateeq Ahmad
- Jina Pharmaceuticals Inc, Libertyville, IL, USA
| | | | | | | | - Piyush Patel
- Intas Pharmaceuticals Ltd, Ahmedabad, Gujarat, India
| | - Ronak Patel
- Lambda Therapeutic Research Ltd, Ahmedabad, Gujarat, India
| | | | | | | | | | | | | | - Narendra Kumar
- Mysore Medical College and Research Institute, K.R. Hospital, Mysore, Karnataka, India
| | - B S V Prasad
- Sujata Birla Hospital and Medical Research Center, Nasik, Maharashtra, India
| | | | | | - Venu Gopal Jhanwar
- Deva Institute of Healthcare and Research, Varanasi, Uttar Pradesh, India
| | - Nand Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Sandip Shah
- Gujarat Medical Education & Research Society Medical College, Gotri, Vadodara, India
| | - Pronob Kumar Dalal
- King George's Medical University, G.M. Associated Hospitals, Lucknow, Uttar Pradesh, India
| | | | - Payel Talukdar
- Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | - Imran Ahmad
- Jina Pharmaceuticals Inc, Libertyville, IL, USA
| |
Collapse
|
10
|
Ochoa ELM. Lithium as a Neuroprotective Agent for Bipolar Disorder: An Overview. Cell Mol Neurobiol 2021; 42:85-97. [PMID: 34357564 DOI: 10.1007/s10571-021-01129-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
Lithium (Li+) is a first option treatment for adult acute episodes of Bipolar Disorder (BD) and for the prophylaxis of new depressed or manic episodes. It is also the preferred choice as maintenance treatment. Numerous studies have shown morphological abnormalities in the brains of BD patients, suggesting that this highly heritable disorder may exhibit progressive and deleterious changes in brain structure. Since treatment with Li+ ameliorates these abnormalities, it has been postulated that Li+ is a neuroprotective agent in the same way atypical antipsychotics are neuroprotective in patients diagnosed with schizophrenia spectrum disorders. Li+'s neuroprotective properties are related to its modulation of nerve growth factors, inflammation, mitochondrial function, oxidative stress, and programmed cell death mechanisms such as autophagy and apoptosis. Notwithstanding, it is not known whether Li+-induced neuroprotection is related to the inhibition of its putative molecular targets in a BD episode: the enzymes inositol-monophosphatase, (IMPase), glycogen-synthase-kinase 3β (GSK3), and Protein kinase C (PKC). Furthermore, it is uncertain whether these neuroprotective mechanisms are correlated with Li+'s clinical efficacy in maintaining mood stability. It is expected that in a nearby future, precision medicine approaches will improve diagnosis and expand treatment options. This will certainly contribute to ameliorating the medical and economic burden created by this devastating mood disorder.
Collapse
Affiliation(s)
- Enrique L M Ochoa
- Department of Psychiatry and Behavioral Sciences, Volunteer Clinical Faculty, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
11
|
Prescribing Tamoxifen in Patients With Mood Disorders: A Systematic Review of Potential Antimanic Versus Depressive Effects. J Clin Psychopharmacol 2021; 41:450-460. [PMID: 34166298 DOI: 10.1097/jcp.0000000000001412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE/BACKGROUND Tamoxifen is a selective estrogen receptor modulator widely used for treatment and prevention of estrogenic receptor-positive breast cancer. Tamoxifen is an object of growing interest in psychopharmacology as an antimanic drug, because it inhibits the protein kinase C, a molecular target of bipolar disorder. Consistently, the potential depressive effect of tamoxifen has been repeatedly reported. METHODS/PROCEDURES This article systematically reviews studies examining tamoxifen impact on mood, exploring either its potential therapeutic use as antimanic agent or its potential depressive effect. FINDINGS Eight studies explored tamoxifen antimanic properties, all, but one, reported a rapid and efficacious antimanic action. As to the depressive effect, 9 cohort studies emerged among which 4 pointed out an increased risk of depression. Seven case reports described the onset or exacerbation of depressive episodes besides 1 case series study reported a high rate of depressive symptoms. In addition, 1 case report study described a tamoxifen-induced manic episode. IMPLICATIONS/CONCLUSIONS The present review highlights tamoxifen treatment as a possible trigger of mood symptoms onset or exacerbation in vulnerable patients. Accordingly, patients with a history of mood disorders may require a close clinical surveillance during tamoxifen use. At the same time, the use of tamoxifen as an antimanic agent in psychiatric settings requires caution, as available evidence came from small-sample studies with short observation time. More studies are needed to define how long-term tamoxifen use may affect the course of bipolar disorder.
Collapse
|
12
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
13
|
Wöhr M. Measuring mania-like elevated mood through amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Br J Pharmacol 2021; 179:4201-4219. [PMID: 33830495 DOI: 10.1111/bph.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Rats emit 50-kHz ultrasonic vocalizations (USV) in appetitive situations, reflecting a positive affective state. Particularly high rates of 50-kHz USV are elicited by the psychostimulant d-amphetamine. Exaggerated 50-kHz USV emission evoked by d-amphetamine is modulated by dopamine, noradrenaline and 5-hydroxytyrptamine receptor ligands and inhibited by the mood stabilizer lithium, the gold standard anti-manic drug for treating bipolar disorder. This indicates that exaggerated 50-kHz USV emission can serve as a reliable and valid measure for assessing mania-like elevated mood in rats with sufficient translational power for gaining a better understanding of relevant pathophysiological mechanisms and the identification of new therapeutic targets. The improved capacity to study the effects of anti-manic pharmacological interventions on a broader range of behaviours by including exaggerated 50-kHz USV emission as preclinical outcome measure complementary to locomotor hyperactivity will refine rodent models for mania.
Collapse
Affiliation(s)
- Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
14
|
Abstract
Tamoxifen is a synthetic, nonsteroidal antiestrogen widely used in the treatment of hormone-sensitive breast cancer that has also been shown to inhibit the enzyme protein kinase C (PKC). Upregulation of PKC is associated with disruption of prefrontal cortical regulation of thinking and behavior, which can lead to mania-like symptoms in animal models. Lithium and valproate, 2 mood stabilizers that are widely used in the treatment of bipolar disorder, have also been shown to inhibit PKC. We describe the case of a 48-year-old woman who entered a hypomanic state after discontinuation of tamoxifen while remaining on unopposed venlafaxine prescribed for depression. This case highlights the risk of misdiagnosing unipolar depression in breast cancer patients with undiagnosed bipolar disorder who are being treated with tamoxifen and subsequently started on antidepressants. The use of antidepressants in this population should be carefully monitored to avoid the development of manic, hypomanic, or mixed symptoms in patients with underlying bipolar disorder once tamoxifen is discontinued.
Collapse
|
15
|
Novick AM, Scott AT, Neill Epperson C, Schneck CD. Neuropsychiatric effects of tamoxifen: Challenges and opportunities. Front Neuroendocrinol 2020; 59:100869. [PMID: 32822707 PMCID: PMC7669724 DOI: 10.1016/j.yfrne.2020.100869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 02/08/2023]
Abstract
Epidemiological, clinical, and basic research over the past thirty years have described the benefits of estrogen on cognition, mood, and brain health. Less is known about tamoxifen, a selective estrogen receptor modifier (SERM) commonly used in breast cancer which is able to cross the blood-brain barrier. In this article, we review the basic pharmacology of tamoxifenas well as its effects on cognition and mood. The literature reveals an overall impairing effect of tamoxifen on cognition in breast cancer patients, hinting at central antiestrogen activity. On the other hand, tamoxifen demonstrates promising effects in psychiatric disorders, like bipolar disorder, where its therapeutic action may be independent of interaction with estrogen receptors. Understanding the neuropsychiatric properties of SERMs like tamoxifen can guide future research to ameliorate unwanted side-effects and provide novel options for difficult to treat disorders.
Collapse
Affiliation(s)
- Andrew M Novick
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States.
| | - Anthony T Scott
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| | - Christopher D Schneck
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| |
Collapse
|
16
|
Singh N, Serres F, Toker L, Sade Y, Blackburn V, Batra AS, Saiardi A, Agam G, Belmaker RH, Sharp T, Vasudevan SR, Churchill GC. Effects of the putative lithium mimetic ebselen on pilocarpine-induced neural activity. Eur J Pharmacol 2020; 883:173377. [PMID: 32687920 DOI: 10.1016/j.ejphar.2020.173377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023]
Abstract
Lithium, commonly used to treat bipolar disorder, potentiates the ability of the muscarinic agonist pilocarpine to induce seizures in rodents. As this potentiation by lithium is reversed by the administration of myo-inositol, the potentiation may be mediated by inhibition of inositol monophosphatase (IMPase), a known target of lithium. Recently, we demonstrated that ebselen is a 'lithium mimetic' in regard to behaviours in both mice and man. Ebselen inhibits IMPase in vitro and lowers myo-inositol in vivo in the brains of mice and men, making ebselen the only known inhibitor of IMPase, other than lithium, that penetrates the blood-brain barrier. Our objective was to determine the effects of ebselen on sensitization to pilocarpine-induced seizures and neural activity. We administered ebselen at different doses and time intervals to mice, followed by injection of a sub-seizure dose of pilocarpine. We assessed seizure and neural activity by a subjective seizure rating scale, by monitoring tremors, and by induction of the immediate early gene c-fos. In contrast to lithium, ebselen did not potentiate the ability of pilocarpine to induce seizures. Unexpectedly, ebselen inhibited pilocarpine-induced tremor as well as pilocarpine-induced increases in c-fos mRNA levels. Both lithium and ebselen inhibit a common target, IMPase, but only lithium potentiates pilocarpine-induced seizures, consistent with their polypharmacology at diverse molecular targets. We conclude that ebselen does not potentiate pilocarpine-induced seizures and instead, reduces pilocarpine-mediated neural activation. This lack of potentiation of muscarinic sensitization may be one reason for the lack of side-effects observed with ebselen treatment clinically.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Florence Serres
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lilah Toker
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences and Mental Health Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yeala Sade
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences and Mental Health Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, UK
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences and Mental Health Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Robert H Belmaker
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences and Mental Health Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
17
|
Cho W, Liu F, Hendrix A, McCray B, Asrat T, Connaughton V, Zestos AG. Timed Electrodeposition of PEDOT:Nafion onto Carbon Fiber-Microelectrodes Enhances Dopamine Detection in Zebrafish Retina. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:115501. [PMID: 33927449 PMCID: PMC8081298 DOI: 10.1149/1945-7111/aba33d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon fiber-microelectrodes (CFMEs) are one of the standards for the detection of neurotransmitters such as dopamine (DA). In this study, we demonstrate that CFMEs electrodeposited with poly (3,4-ethylenedioxythiophene) (PEDOT) in the presence of Nafion exhibit enhanced sensitivity for DA detection. Scanning electron microscopy (SEM) revealed the smooth outer surface morphologies of polymer coatings, which filled in the ridges and grooves of the bare unmodified carbon electrode and energy-dispersive X-ray spectroscopy (EDX) confirmed PEDOT:Nafion incorporation. PEDOT:Nafion coated CMFEs exhibited a statistically enhanced two-fold increase in DA sensitivity compared to unmodified microelectrodes, with stability and integrity of the coated microelectrodes maintained for at least 4 h. A scan rate test revealed a linear relationship with peak DA oxidative current (5 μM), indicating adsorption control of DA to the surface of the PEDOT:Nafion electrode. As proof of principle, PEDOT:Nafion coated electrodes were used to detect potassium chloride (KCl)-induced DA release in zebrafish (Danio rerio) retinal tissue ex vivo, thus illustrating their applicability as biosensors.
Collapse
Affiliation(s)
- Whirang Cho
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Favian Liu
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Aaron Hendrix
- Department of Biology, American University, Washington, D.C. 20016, United States of America
| | - Brazil McCray
- Department of Biology, American University, Washington, D.C. 20016, United States of America
| | - Thomas Asrat
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Victoria Connaughton
- Department of Biology, American University, Washington, D.C. 20016, United States of America
- Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
- Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States of America
| |
Collapse
|
18
|
Sakuma W, Nakagawasai O, Nemoto W, Odaira T, Ogawa T, Ohta K, Endo Y, Tan-No K. Antidepressant effect of BE360, a new selective estrogen receptor modulator, activated via CREB/BDNF, Bcl-2 signaling pathways in ovariectomized mice. Behav Brain Res 2020; 393:112764. [PMID: 32535181 DOI: 10.1016/j.bbr.2020.112764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022]
Abstract
We have previously reported that the carborane compound BE360, a novel selective estrogen receptor modulator, has a therapeutic potential against dementia. This study aimed to explore the effects and underlying mechanisms of BE360 on depression-like behaviors in ovariectomized (OVX) mice subjected to subchronic stress, which are postmenopausal depression models. BE360 was subcutaneously administrated using a mini-osmotic pump, for 2 weeks. Depression-like behaviors were evaluated using the forced swimming test. Neurogenesis in the hippocampal dentate gyrus (DG) was measured by analyzing cells expressing doublecortin (DCX) following 5-bromo-2'-deoxyuridine (BrdU) uptake. The levels of phosphorylated cyclic-AMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 were measured using immunohistochemistry or immunoblotting. Depression-like behaviors in OVX + Stress-exposed mice improved after chronic treatment with BE360. BE360 treatment in OVX + Stress-exposed mice increased p-CREB, BDNF, and Bcl-2 expressions in the hippocampus. Immunohistochemistry showed that the number of BrdU/DCX double-positive cells in the DG of the hippocampus, which decreased significantly in OVX + Stress-exposed mice, increased after subchronic treatment with BE360. The present study demonstrates that BE360 exerts antidepressant effects via hippocampal neurogenesis, potentially activated through CREB/BDNF, Bcl-2 signaling pathways. These results indicate that BE360 may have therapeutic potential against postmenopausal depression.
Collapse
Affiliation(s)
- Wakana Sakuma
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Wataru Nemoto
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takayo Odaira
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takumi Ogawa
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kiminori Ohta
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yasuyuki Endo
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
19
|
Antipsychotic effects of sex hormones and atypical hemispheric asymmetries. Cortex 2020; 127:313-332. [DOI: 10.1016/j.cortex.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
|
20
|
Laird S, Ney LJ, Felmingham KL, Gogos A. Hormonal Contraception and the Brain: Examining Cognition and Psychiatric Disorders. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190521113841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:The combined oral contraceptive pill (OC), containing synthetic estrogens and progestins, is used by millions of women worldwide, yet little is known about its effects on cognition or on psychiatric disorders. The progestin component of OCs determines their androgenicity, i.e. whether the OC has androgen binding components with masculinising effects or antiandrogenic components with feminising effects.Objective:The present review discusses the literature surrounding OC use and cognition in healthy women. Given the important role that sex hormones play in psychiatric disorders, we also consider the influence of OCs on symptoms of schizophrenia, post-traumatic stress disorder, depression, bipolar disorder, anxiety disorders and indirectly, sleep quality.Results:Research has shown that while there are no differences between OC users and non-users, androgenic OCs enhance visuospatial ability and anti-androgenic OCs enhance verbal fluency. Little is known about OCs effects on other cognitive domains, such as memory and executive function. There is little research examining OC use in schizophrenia, post-traumatic stress disorder, bipolar disorder and anxiety disorders. There is some evidence that OC use is associated with depression, however the exact causality of this association remains to be verified.Conclusion:We maintain that future studies need to address several methodological limitations, such as separating OCs based on androgenicity to avoid the masking effects that occur when various OCs are considered as one group. As this review highlights several significant effects of OC use on the brain, the implications of OC use needs to be considered in future research.
Collapse
Affiliation(s)
- Stephanie Laird
- School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Luke J. Ney
- School of Medicine (Psychology), University of Tasmania, Sandy Bay, TAS, Australia
| | - Kim L. Felmingham
- School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Andrea Gogos
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
21
|
Goldberg JF. Complex Combination Pharmacotherapy for Bipolar Disorder: Knowing When Less Is More or More Is Better. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:218-231. [PMID: 32047367 PMCID: PMC6999211 DOI: 10.1176/appi.focus.20190008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combination pharmacotherapy for bipolar disorder is commonplace and often reflects the severity and complexity of the illness and the comorbid conditions frequently associated with it. Across treatment settings, about one-fifth of patients with bipolar disorder appear to receive four or more psychotropic medications. Practice patterns often outpace the evidence-based literature, insofar as few systematic studies have examined the efficacy and safety of two or more medications for any given phase of illness. Most randomized trials of combination pharmacotherapy focus on the utility of pairing a mood stabilizer with a second-generation antipsychotic for prevention of either acute mania or relapse. In real-world practice, patients with bipolar disorder often take more elaborate combinations of mood stabilizers, antipsychotics, antidepressants, anxiolytics, stimulants, and other psychotropics for indefinite periods that do not necessarily arise purposefully and logically. In this article, I identify clinical factors associated with complex combination pharmacotherapy for patients with bipolar disorder; describe approaches to ensuring that each component of a treatment regimen has a defined role; discuss the elimination of unnecessary, ineffective, or redundant drugs in a regimen; and address complementary, safe, rationale-based drug combinations that target specific domains of psychopathology for which monotherapies often provide inadequate benefit.
Collapse
Affiliation(s)
- Joseph F Goldberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City
| |
Collapse
|
22
|
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol 2019; 56:3295-3312. [PMID: 30117106 PMCID: PMC6476855 DOI: 10.1007/s12035-018-1283-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment. Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this review will address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
23
|
Raju D, Mendoza A, Wonnenberg P, Mohanaraj S, Sarbanes M, Truong C, Zestos AG. Polymer Modified Carbon Fiber-Microelectrodes and Waveform Modifications Enhance Neurotransmitter Metabolite Detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:1620-1630. [PMID: 34079589 PMCID: PMC8168831 DOI: 10.1039/c8ay02737d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Carbon-fiber microelectrodes (CFMEs) have been used for several years for the detection of neurotransmitters such as dopamine. Dopamine is a fundamentally important neurotransmitter and is also metabolized at a subsecond timescale. Recently, several metabolites of dopamine have been shown to be physiologically important such as 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA). Many of these neurotransmitter metabolites are currently only detected with microdialysis coupled with liquid chromatography with relatively low temporal and spatial resolution. Current electrochemical methods such as the dopamine waveform (scanning from -0.4 to 1.3 V at 400 V/sec) are utilized to electrostatically repel anions such as DOPAC and promote dopamine adsorption to the surface of the electrode. Moreover, polymer coatings such as Nafion have been shown to electrostatically repel anions such as 5-hydroxyindoleacetic acid (5-HIAA). In this study, we develop novel polymer and waveform modifications for enhanced DOPAC detection. Applying the DOPAC waveform (scanning from 0 to 1.3 V at 400 V/sec) enhances DOPAC detection significantly because it does not include the negative holding potential of the dopamine waveform. Moreover, positively charged cationic polymers such as polyethyleneimine (PEI) allow for the preconcentration of DOPAC to the surface of the carbon fiber through an electrostatic attraction. The limit of detection for DOPAC for PEI coated CFMEs with the DOPAC waveform applied is 58.2 ± 2 nM as opposed to 291 ± 10 nM for unmodified electrodes applying the dopamine waveform (n = 4). This work offers promise for the development of novel electrode materials and waveforms for the specific detection of several important biomolecules such as dopamine metabolite neurotransmitters.
Collapse
Affiliation(s)
- Dilpreet Raju
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Alexander Mendoza
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Pauline Wonnenberg
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Sanuja Mohanaraj
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Mulugeta Sarbanes
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Carly Truong
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| | - Alexander G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016
| |
Collapse
|
24
|
Ryskalin L, Limanaqi F, Frati A, Busceti CL, Fornai F. mTOR-Related Brain Dysfunctions in Neuropsychiatric Disorders. Int J Mol Sci 2018; 19:ijms19082226. [PMID: 30061532 PMCID: PMC6121884 DOI: 10.3390/ijms19082226] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an ubiquitously expressed serine-threonine kinase, which senses and integrates several intracellular and environmental cues to orchestrate major processes such as cell growth and metabolism. Altered mTOR signalling is associated with brain malformation and neurological disorders. Emerging evidence indicates that even subtle defects in the mTOR pathway may produce severe effects, which are evident as neurological and psychiatric disorders. On the other hand, administration of mTOR inhibitors may be beneficial for a variety of neuropsychiatric alterations encompassing neurodegeneration, brain tumors, brain ischemia, epilepsy, autism, mood disorders, drugs of abuse, and schizophrenia. mTOR has been widely implicated in synaptic plasticity and autophagy activation. This review addresses the role of mTOR-dependent autophagy dysfunction in a variety of neuropsychiatric disorders, to focus mainly on psychiatric syndromes including schizophrenia and drug addiction. For instance, amphetamines-induced addiction fairly overlaps with some neuropsychiatric disorders including neurodegeneration and schizophrenia. For this reason, in the present review, a special emphasis is placed on the role of mTOR on methamphetamine-induced brain alterations.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy.
| |
Collapse
|
25
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Dean OM, Gliddon E, Van Rheenen TE, Giorlando F, Davidson SK, Kaur M, Ngo TT, Williams LJ. An update on adjunctive treatment options for bipolar disorder. Bipolar Disord 2018; 20:87-96. [PMID: 29369487 DOI: 10.1111/bdi.12601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/19/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Bipolar disorder is a complex illness often requiring combinations of therapies to successfully treat symptoms. In recent years, there have been significant advancements in a number of therapies for bipolar disorder. It is therefore timely to provide an overview of current adjunctive therapeutic options to help treating clinicians to inform their patients and work towards optimal outcomes. METHODS Publications were identified from PubMed searches on bipolar disorder and pharmacotherapy, nutraceuticals, hormone therapy, psychoeducation, interpersonal and social rhythm therapy, cognitive remediation, mindfulness, e-Health and brain stimulation techniques. Relevant articles in these areas were selected for further review. This paper provides a narrative review of adjunctive treatment options and is not a systematic review of the literature. RESULTS A number of pharmacotherapeutic, psychological and neuromodulation treatment options are available. These have varying efficacy but all have shown benefit to people with bipolar disorder. Due to the complex nature of treating the disorder, combination treatments are often required. Adjunctive treatments to traditional pharmacological and psychological therapies are proving useful in closing the gap between initial symptom remission and full functional recovery. CONCLUSIONS Given that response to monotherapy is often inadequate, combination regimens for bipolar disorder are typical. Correspondingly, psychiatric research is working towards a better understanding of the disorder's underlying biology. Therefore, treatment options are changing and adjunctive therapies are being increasingly recognized as providing significant tools to improve patient outcomes. Towards this end, this paper provides an overview of novel treatments that may improve clinical outcomes for people with bipolar disorder.
Collapse
Affiliation(s)
- Olivia M Dean
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic., Australia.,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Vic., Australia.,Department of Psychiatry, University of Melbourne, Parkville, Vic., Australia
| | - Emma Gliddon
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic., Australia.,Department of Psychiatry, University of Melbourne, Parkville, Vic., Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Vic., Australia.,Centre for Mental Health, Swinburne University, Melbourne, Vic., Australia.,Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, Vic., Australia
| | - Francesco Giorlando
- Department of Psychiatry, University of Melbourne, Parkville, Vic., Australia
| | - Sandra K Davidson
- Department of General Practice, Melbourne Medical School, University of Melbourne, Carlton, Vic., Australia
| | - Manreena Kaur
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, Vic., Australia
| | - Trung T Ngo
- Mater Research Institute-UQ, Faculty of Medicine, The University of Queensland and Translational Research Institute, Brisbane, Qld, Australia.,Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - Lana J Williams
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic., Australia
| |
Collapse
|
27
|
Dowling CM, Phelan J, Callender JA, Cathcart MC, Mehigan B, McCormick P, Dalton T, Coffey JC, Newton AC, O'Sullivan J, Kiely PA. Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival. Oncotarget 2018; 7:20919-33. [PMID: 26989024 PMCID: PMC4991501 DOI: 10.18632/oncotarget.8062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/31/2016] [Indexed: 12/11/2022] Open
Abstract
Despite extensive efforts, cancer therapies directed at the Protein Kinase C (PKC) family of serine/threonine kinases have failed in clinical trials. These therapies have been directed at inhibiting PKC and have, in some cases, worsened disease outcome. Here we examine colon cancer patients and show not only that PKC Beta II is a tumour suppressor, but patients with low levels of this isozyme have significantly decreased disease free survival. Specifically, analysis of gene expression levels of all PKC genes in matched normal and cancer tissue samples from colon cancer patients revealed a striking down-regulation of the gene coding PKC Beta in the cancer tissue (n = 21). Tissue microarray analysis revealed a dramatic down-regulation of PKC Beta II protein levels in both the epithelial and stromal diseased tissue (n = 166). Of clinical significance, low levels of the protein in the normal tissue of patients is associated with a low (10%) 10 year survival compared with a much higher (60%) survival in patients with relatively high levels of the protein. Consistent with PKC Beta II levels protecting against colon cancer, overexpression of PKC Beta II in colon cancer cell lines reveals that PKC Beta II reverses transformation in cell based assays. Further to this, activation of PKC Beta II results in a dramatic downregulation of IGF-I-induced AKT, indicating a role for PKCs in regulating IGF-1 mediated cell survival. Thus, PKC Beta II is a tumour suppressor in colon cancer and low levels serve as a predictor for poor survival outcome.
Collapse
Affiliation(s)
- Catríona M Dowling
- Graduate Entry Medical School and Health Research Institute (HRI), University of Limerick, Limerick, Ireland.,Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.,Stokes Research Institute, University of Limerick, Limerick, Ireland
| | - James Phelan
- Department of Surgery, Trinity College Dublin, Dublin, Ireland
| | - Julia A Callender
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | - Tara Dalton
- Stokes Research Institute, University of Limerick, Limerick, Ireland
| | - John C Coffey
- 4i Centre for Interventions in Infection, Inflammation and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, USA
| | | | - Patrick A Kiely
- Graduate Entry Medical School and Health Research Institute (HRI), University of Limerick, Limerick, Ireland.,Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.,Stokes Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
28
|
Abstract
The development of atypical antipsychotics has stimulated research on the treatment of mania. Several well-established options now exist for monotherapy of mania. None of the atypicals has shown greater efficacy than haloperidol in improving manic symptoms, but they all produce fewer extrapyramidal side-effects and they may differ in their effects on depressive symptoms. Combinations of an antipsychotic with lithium or valproate offer further options, with somewhat greater efficacy in treating mania but also with more side-effects.
Collapse
|
29
|
Shagufta, Ahmad I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem 2018; 143:515-531. [DOI: 10.1016/j.ejmech.2017.11.056] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/25/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
|
30
|
Khan MM. Translational Significance of Selective Estrogen Receptor Modulators in Psychiatric Disorders. Int J Endocrinol 2018; 2018:9516592. [PMID: 30402099 PMCID: PMC6196929 DOI: 10.1155/2018/9516592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating data from various clinical trial studies suggests that adjuvant therapy with ovarian hormones (estrogens) could be effective in reducing cognitive deficit and psychopathological symptoms in women with psychiatric disorders. However, estrogen therapy poses serious limitations and health issues including feminization in men and increased risks of thromboembolism, hot flashes, breast hyperplasia, and endometrium hyperplasia when used for longer duration in older women (aged ≥ 60 years) or in women who have genetic predispositions. On the other hand, selective estrogen receptor modulators (SERMs), which may (or may not) carry some risks of hot flashes, thromboembolism, breast hyperplasia, and endometrial hyperplasia, are generally devoid of feminization effect. In clinical trial studies, adjuvant therapy with tamoxifen, a triphenylethylene class of SERM, has been found to reduce the frequency of manic episodes in patients with bipolar disorder, whereas addition of raloxifene, a benzothiophene class of SERM, to regular doses of antipsychotic drugs has been found to reduce cognitive deficit and psychological symptoms in men and women with schizophrenia, including women with treatment refractory psychosis. These outcomes together with potent neurocognitive, neuroprotective, and cardiometabolic properties suggest that SERMs could be the potential targets for designing effective and safer therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Mohammad M. Khan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Zawia, P.O. Box 16418, Az-Zawiyah, Libya
| |
Collapse
|
31
|
Orhan FÖ, Kurutaş EB, Doğaner A, Türker E, Özcü SŞT, Güngör M, Çakmak S. Serum levels of GPER-1 in euthymic bipolar patients. Neuropsychiatr Dis Treat 2018; 14:855-862. [PMID: 29618927 PMCID: PMC5875407 DOI: 10.2147/ndt.s158822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Estrogen and its receptors have been suggested as playing a role in the pathogenesis of bipolar disorder (BD). Estrogen functions through the estrogen receptors alpha and beta and the recently discovered G-protein-coupled estrogen receptor-1 (GPER-1). The aim of this study was to evaluate serum GPER-1 levels in euthymic BD patients. PATIENTS AND METHODS The study population consisted of 38 euthymic outpatients meeting the criteria for BD in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and 35 age- and gender-matched healthy controls. Medical histories were obtained and physical examinations and laboratory tests conducted. RESULTS Serum GPER-1 levels were measured in both patients and controls and found to be significantly higher in the BD patients than in controls. These results were not influenced by the medications in use. CONCLUSION The results of this study demonstrated that GPER-1 may play a role in BD pathophysiology.
Collapse
Affiliation(s)
- Fatma Özlem Orhan
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Ergül Belge Kurutaş
- Department of Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Adem Doğaner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Ebru Türker
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Safiye Şeyma Taner Özcü
- Department of Bioengineering, Institute of Science, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Meltem Güngör
- Vocational High School, Toros University, Mersin, Turkey
| | - Seyfettin Çakmak
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| |
Collapse
|
32
|
Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassori SS, Carvalho AF, Quevedo J. Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. MOLECULAR NEUROPSYCHIATRY 2017; 3:108-124. [PMID: 29230399 DOI: 10.1159/000480349] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a major health problem. It causes significant morbidity and imposes a burden on the society. Available treatments help a substantial proportion of patients but are not beneficial for an estimated 40-50%. Thus, there is a great need to further our understanding the pathophysiology of BD to identify new therapeutic avenues. The preponderance of evidence pointed towards a role of protein kinase C (PKC) in BD. We reviewed the literature pertinent to the role of PKC in BD. We present recent advances from preclinical and clinical studies that further support the role of PKC. Moreover, we discuss the role of PKC on synaptogenesis and neuroplasticity in the context of BD. The recent development of animal models of BD, such as stimulant-treated and paradoxical sleep deprivation, and the ability to intervene pharmacologically provide further insights into the involvement of PKC in BD. In addition, the effect of PKC inhibitors, such as tamoxifen, in the resolution of manic symptoms in patients with BD further points in that direction. Furthermore, a wide variety of growth factors influence neurotransmission through several molecular pathways that involve downstream effects of PKC. Our current understanding identifies the PKC pathway as a potential therapeutic avenue for BD.
Collapse
Affiliation(s)
- Ashwini Saxena
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela V Bavaresco
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Camila Leite
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
33
|
Carpenter C, Zestos AG, Altshuler R, Sorenson RJ, Guptaroy B, Showalter HD, Kennedy RT, Jutkiewicz E, Gnegy ME. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects. Neuropsychopharmacology 2017; 42:1940-1949. [PMID: 28492278 PMCID: PMC5561350 DOI: 10.1038/npp.2017.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 01/09/2023]
Abstract
Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [3H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [3H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.
Collapse
Affiliation(s)
- Colleen Carpenter
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander G Zestos
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Altshuler
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Roderick J Sorenson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI, USA
| | - Bipasha Guptaroy
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI, USA
| | - Robert T Kennedy
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Emily Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Margaret E Gnegy
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Valvassori SS, Borges CP, Varela RB, Bavaresco DV, Bianchini G, Mariot E, Arent CO, Resende WR, Budni J, Quevedo J. The different effects of lithium and tamoxifen on memory formation and the levels of neurotrophic factors in the brain of male and female rats. Brain Res Bull 2017; 134:228-235. [DOI: 10.1016/j.brainresbull.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
|
35
|
Zestos AG, Kennedy RT. Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical Monitoring. AAPS JOURNAL 2017; 19:1284-1293. [PMID: 28660399 DOI: 10.1208/s12248-017-0114-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
Microdialysis is a powerful sampling technique used to monitor small molecules in vivo. Despite the many applications of microdialysis sampling, it is limited by the method of analyzing the resulting samples. An emerging technique for analysis of microdialysis samples is liquid chromatography-tandem mass spectrometry (LC-MS/MS). This technique is highly versatile, allowing multiplexed analysis of neurotransmitters, metabolites, and neuropeptides. Using LC-MS/MS for polar neurotransmitters is hampered by weak retention reverse phase LC columns. Several derivatization reagents have been utilized to enhance separation and resolution of neurochemicals in dialysate samples including benzoyl chloride (BzCl), dansyl chloride, formaldehyde, ethylchloroformate, and propionic anhydride. BzCl reacts with amine and phenol groups so that many neurotransmitters can be labeled. Besides improving separation on reverse phase columns, this reagent also increases sensitivity. It is available in a heavy form so that it can be used to make stable-isotope labeled internal standard for improved quantification. Using BzCl with LC-MS/MS has allowed for measuring as many as 70 neurochemicals in a single assay. With slightly different conditions, LC-MS/MS has also been used for monitoring endocannabinoids. LC-MS/MS is also useful for neuropeptide assay because it allows for highly sensitive, sequence specific measurement of most peptides. These advances have allowed for multiplexed neurotransmitter measurements in behavioral, circuit analysis, and drug effect studies.
Collapse
Affiliation(s)
- Alexander G Zestos
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan, 48109-1055, USA.,Department of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109-1055, USA.,Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, District of Columbia, 20016, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan, 48109-1055, USA. .,Department of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109-1055, USA.
| |
Collapse
|
36
|
Abstract
Originally thought to be nondruggable, kinases represent attractive drug targets for pharmaceutical companies and academia. To date, there are over 40 kinase inhibitors approved by the US FDA, with 32 of these being small molecules, in addition to the three mammalian target of rapamycin inhibitor macrolides (sirolimus, temsirolimus and everolimus). Despite the rapid development of kinase inhibitors for cancer, presently none of these agents are approved for CNS indications. This mini perspective highlights selected kinase targets for CNS disorders, of which brain-permeable small-molecule inhibitors are reported, with demonstrated preclinical proof-of-concept efficacy. This is followed by a brief discussion on the key challenges of blood–brain barrier penetration and selectivity profiles in developing kinase inhibitors for CNS disorders.
Collapse
|
37
|
Fountoulakis KN, Yatham L, Grunze H, Vieta E, Young A, Blier P, Kasper S, Moeller HJ. The International College of Neuro-Psychopharmacology (CINP) Treatment Guidelines for Bipolar Disorder in Adults (CINP-BD-2017), Part 2: Review, Grading of the Evidence, and a Precise Algorithm. Int J Neuropsychopharmacol 2017; 20:121-179. [PMID: 27816941 PMCID: PMC5409012 DOI: 10.1093/ijnp/pyw100] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/29/2016] [Accepted: 11/03/2016] [Indexed: 02/05/2023] Open
Abstract
Background The current paper includes a systematic search of the literature, a detailed presentation of the results, and a grading of treatment options in terms of efficacy and tolerability/safety. Material and Methods The PRISMA method was used in the literature search with the combination of the words 'bipolar,' 'manic,' 'mania,' 'manic depression,' and 'manic depressive' with 'randomized,' and 'algorithms' with 'mania,' 'manic,' 'bipolar,' 'manic-depressive,' or 'manic depression.' Relevant web pages and review articles were also reviewed. Results The current report is based on the analysis of 57 guideline papers and 531 published papers related to RCTs, reviews, posthoc, or meta-analysis papers to March 25, 2016. The specific treatment options for acute mania, mixed episodes, acute bipolar depression, maintenance phase, psychotic and mixed features, anxiety, and rapid cycling were evaluated with regards to efficacy. Existing treatment guidelines were also reviewed. Finally, Tables reflecting efficacy and recommendation levels were created that led to the development of a precise algorithm that still has to prove its feasibility in everyday clinical practice. Conclusions A systematic literature search was conducted on the pharmacological treatment of bipolar disorder to identify all relevant random controlled trials pertaining to all aspects of bipolar disorder and graded the data according to a predetermined method to develop a precise treatment algorithm for management of various phases of bipolar disorder. It is important to note that the some of the recommendations in the treatment algorithm were based on the secondary outcome data from posthoc analyses.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, School of Medicine, Aristotle University, Thessaloniki, Greece; Department of Psychiatry, University of British Columbia, Mood Disorders Centre of Excellence, Djavad Mowafaghian Centre for Brain Health, Canada; Paracelsus Medical University, Salzburg, Austria; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; The Royal Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada; Department of Psychiatry and Psychotherapy, Medical University Vienna, MUV, AKH, Vienna, Austria; Psychiatric Department Ludwig Maximilians University, Munich, Germany
| | - Lakshmi Yatham
- 3rd Department of Psychiatry, School of Medicine, Aristotle University, Thessaloniki, Greece; Department of Psychiatry, University of British Columbia, Mood Disorders Centre of Excellence, Djavad Mowafaghian Centre for Brain Health, Canada; Paracelsus Medical University, Salzburg, Austria; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; The Royal Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada; Department of Psychiatry and Psychotherapy, Medical University Vienna, MUV, AKH, Vienna, Austria; Psychiatric Department Ludwig Maximilians University, Munich, Germany
| | - Heinz Grunze
- 3rd Department of Psychiatry, School of Medicine, Aristotle University, Thessaloniki, Greece; Department of Psychiatry, University of British Columbia, Mood Disorders Centre of Excellence, Djavad Mowafaghian Centre for Brain Health, Canada; Paracelsus Medical University, Salzburg, Austria; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; The Royal Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada; Department of Psychiatry and Psychotherapy, Medical University Vienna, MUV, AKH, Vienna, Austria; Psychiatric Department Ludwig Maximilians University, Munich, Germany
| | - Eduard Vieta
- 3rd Department of Psychiatry, School of Medicine, Aristotle University, Thessaloniki, Greece; Department of Psychiatry, University of British Columbia, Mood Disorders Centre of Excellence, Djavad Mowafaghian Centre for Brain Health, Canada; Paracelsus Medical University, Salzburg, Austria; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; The Royal Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada; Department of Psychiatry and Psychotherapy, Medical University Vienna, MUV, AKH, Vienna, Austria; Psychiatric Department Ludwig Maximilians University, Munich, Germany
| | - Allan Young
- 3rd Department of Psychiatry, School of Medicine, Aristotle University, Thessaloniki, Greece; Department of Psychiatry, University of British Columbia, Mood Disorders Centre of Excellence, Djavad Mowafaghian Centre for Brain Health, Canada; Paracelsus Medical University, Salzburg, Austria; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; The Royal Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada; Department of Psychiatry and Psychotherapy, Medical University Vienna, MUV, AKH, Vienna, Austria; Psychiatric Department Ludwig Maximilians University, Munich, Germany
| | - Pierre Blier
- 3rd Department of Psychiatry, School of Medicine, Aristotle University, Thessaloniki, Greece; Department of Psychiatry, University of British Columbia, Mood Disorders Centre of Excellence, Djavad Mowafaghian Centre for Brain Health, Canada; Paracelsus Medical University, Salzburg, Austria; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; The Royal Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada; Department of Psychiatry and Psychotherapy, Medical University Vienna, MUV, AKH, Vienna, Austria; Psychiatric Department Ludwig Maximilians University, Munich, Germany
| | - Siegfried Kasper
- 3rd Department of Psychiatry, School of Medicine, Aristotle University, Thessaloniki, Greece; Department of Psychiatry, University of British Columbia, Mood Disorders Centre of Excellence, Djavad Mowafaghian Centre for Brain Health, Canada; Paracelsus Medical University, Salzburg, Austria; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; The Royal Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada; Department of Psychiatry and Psychotherapy, Medical University Vienna, MUV, AKH, Vienna, Austria; Psychiatric Department Ludwig Maximilians University, Munich, Germany
| | - Hans Jurgen Moeller
- 3rd Department of Psychiatry, School of Medicine, Aristotle University, Thessaloniki, Greece; Department of Psychiatry, University of British Columbia, Mood Disorders Centre of Excellence, Djavad Mowafaghian Centre for Brain Health, Canada; Paracelsus Medical University, Salzburg, Austria; Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; The Royal Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada; Department of Psychiatry and Psychotherapy, Medical University Vienna, MUV, AKH, Vienna, Austria; Psychiatric Department Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
38
|
Fizikova I, Dragasek J. Mitochondrial Dysfunction and New Therapeutic Targets in Bipolar Affective Disorder. Psychiatr Ann 2017. [DOI: 10.3928/00485713-20170103-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Arnsten AFT, Wang M. Targeting Prefrontal Cortical Systems for Drug Development: Potential Therapies for Cognitive Disorders. Annu Rev Pharmacol Toxicol 2016; 56:339-60. [PMID: 26738476 DOI: 10.1146/annurev-pharmtox-010715-103617] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medications to treat cognitive disorders are increasingly needed, yet researchers have had few successes in this challenging arena. Cognitive abilities in primates arise from highly evolved N-methyl-d-aspartate (NMDA) receptor circuits in layer III of the dorsolateral prefrontal cortex. These circuits have unique modulatory needs that can differ from the layer V neurons that predominate in rodents, but they offer multiple therapeutic targets. Cognitive improvement often requires low doses that enhance the pattern of information held in working memory, whereas higher doses can produce nonspecific changes that obscure information. Identifying appropriate doses for clinical trials may be helped by assessments in monkeys and by flexible, individualized dose designs. The use of guanfacine (Intuniv) for prefrontal cortical disorders was based on research in monkeys, supporting this approach. Coupling our knowledge of higher primate circuits with the powerful methods now available in drug design will help create effective treatments for cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; ,
| | - Min Wang
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; ,
| |
Collapse
|
40
|
Carpenter C, Sorenson RJ, Jin Y, Klossowski S, Cierpicki T, Gnegy M, Showalter HD. Design and synthesis of triarylacrylonitrile analogues of tamoxifen with improved binding selectivity to protein kinase C. Bioorg Med Chem 2016; 24:5495-5504. [PMID: 27647375 DOI: 10.1016/j.bmc.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
The clinical selective estrogen receptor modulator tamoxifen is also a modest inhibitor of protein kinase C, a target implicated in several untreatable brain diseases such as amphetamine abuse. This inhibition and tamoxifen's ability to cross the blood brain barrier make it an attractive scaffold to conduct further SAR studies toward uncovering effective therapies for such diseases. Utilizing the known compound 6a as a starting template and guided by computational tools to derive physicochemical properties known to be important for CNS permeable drugs, the design and synthesis of a small series of novel triarylacrylonitrile analogues have been carried out providing compounds with enhanced potency and selectivity for PKC over the estrogen receptor relative to tamoxifen. Shortened synthetic routes compared to classical procedures have been developed for analogues incorporating a β-phenyl ring, which involve installing dialkylaminoalkoxy side chains first off the α and/or α' rings of a precursor benzophenone and then condensing the resultant ketones with phenylacetonitrile anion. A second novel, efficient and versatile route utilizing Suzuki chemistry has also been developed, which will allow for the introduction of a wide range of β-aryl or β-heteroaryl moieties and side-chain substituents onto the acrylonitrile core. For analogues possessing a single side chain off the α- or α'-ring, novel 2D NMR experiments have been carried out that allow for unambiguous assignment of E- and Z-stereochemistry. From the SAR analysis, one compound, 6c, shows markedly increased potency and selectivity for inhibiting PKC with an IC50 of 80nM for inhibition of PKC protein substrate and >10μM for binding to the estrogen receptor α (tamoxifen IC50=20μM and 222nM, respectively). The data on 6c provide support for further exploration of PKC as a druggable target for the treatment of amphetamine abuse.
Collapse
Affiliation(s)
- Colleen Carpenter
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Roderick J Sorenson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States; Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yafei Jin
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States; Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States
| | - Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Margaret Gnegy
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States; Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
41
|
Mikelman S, Mardirossian N, Gnegy ME. Tamoxifen and amphetamine abuse: Are there therapeutic possibilities? J Chem Neuroanat 2016; 83-84:50-58. [PMID: 27585851 DOI: 10.1016/j.jchemneu.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/05/2016] [Accepted: 08/14/2016] [Indexed: 12/11/2022]
Abstract
Although best known as a selective estrogen receptor modulator (SERM), tamoxifen is a drug with a wide range of activities. Tamoxifen has demonstrated some efficacy has a therapeutic for bipolar mania and is believed to exert these effects through inhibition of protein kinase C (PKC). As the symptoms of amphetamine treatment in rodents are believed to mimic the symptoms of a manic episode, many of the preclinical studies for this indication have demonstrated that tamoxifen inhibits amphetamine action. The amphetamine-induced increase in extracellular dopamine which gives rise to the 'manic' effects is due to interaction of amphetamine with the dopamine transporter. We and others have demonstrated that PKC reduces amphetamine-induced reverse transport through the dopamine transporter. In this review, we will outline the actions of tamoxifen as a SERM and further detail another known action of tamoxifen-inhibition of PKC. We will summarize the literature showing how tamoxifen affects amphetamine action. Finally, we will present our hypothesis that tamoxifen, or an analog, could be used therapeutically to reduce amphetamine abuse in addition to treating mania.
Collapse
Affiliation(s)
- Sarah Mikelman
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Natalie Mardirossian
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Margaret E Gnegy
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States.
| |
Collapse
|
42
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
43
|
Ahmad A, Sheikh S, Shah T, Reddy MS, Prasad B, Verma KK, Chandrakant BB, Paithankar M, Kale P, Solanki RV, Patel R, Barkate H, Ahmad I. Endoxifen, a New Treatment Option for Mania: A Double-Blind, Active-Controlled Trial Demonstrates the Antimanic Efficacy of Endoxifen. Clin Transl Sci 2016; 9:252-259. [PMID: 27346789 PMCID: PMC5350997 DOI: 10.1111/cts.12407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/24/2016] [Indexed: 11/30/2022] Open
Abstract
The protein kinase C (PKC) signaling system plays a role in mood disorders and PKC inhibitors such as endoxifen may be an innovative medicine for bipolar disorder (BP) patients. In this study we show for the first time the antimanic properties of endoxifen in patients with bipolar I disorder (BPD I) with current manic or mixed episode. In a double-blind, active-controlled study, 84 subjects with BPD I were randomly assigned to receive endoxifen (4 mg/day or 8 mg/day) or divalproex in a 2:1 ratio. Patients orally administered 4 mg/day or 8 mg/day endoxifen showed significant improvement in mania assessed by the Young Mania Rating Scale as early as 4 days. The effect remained significant throughout the 21-day period. At study end point, response rates were 44.44% and 64.29% at 4 mg/day and 8 mg/day of endoxifen treatment, respectively. Thus, endoxifen has been shown as a promising novel antimanic or mood stabilizing agent.
Collapse
Affiliation(s)
- A Ahmad
- Jina Pharmaceuticals Inc, Libertyville, Illinois, USA
| | - S Sheikh
- Jina Pharmaceuticals Inc, Libertyville, Illinois, USA
| | - T Shah
- Divyam Hospital, Surat, GJ, India
| | | | - Bsv Prasad
- Sujata Birla Hospital and Medical Research Centre, Nashik, MH, India
| | - K K Verma
- S. P. Medical College & A G Hospitals, Bikaner, RJ, India
| | | | | | - P Kale
- Lambda Therapeutic Research Ltd, Ahmedabad, GJ, India
| | - R V Solanki
- Lambda Therapeutic Research Ltd, Ahmedabad, GJ, India
| | - R Patel
- Lambda Therapeutic Research Ltd, Ahmedabad, GJ, India
| | - H Barkate
- Intas Pharmaceuticals Ltd, Ahmedabad, GJ, India
| | - I Ahmad
- Jina Pharmaceuticals Inc, Libertyville, Illinois, USA
| |
Collapse
|
44
|
Tamoxifen: A Protein Kinase C Inhibitor to Treat Mania: A Systematic Review and Meta-Analysis of Randomized, Placebo-Controlled Trials. J Clin Psychopharmacol 2016; 36:272-5. [PMID: 27088436 DOI: 10.1097/jcp.0000000000000492] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to conduct a systematic review of literature to retrieve all randomized controlled trials that evaluated the efficacy of tamoxifen on manic mood episodes and meta-analyze their quantitative results. METHODS Four electronic databases were systematically searched from their inception to March 2014: PubMed, Cochrane Library (Cochrane Central Register of Controlled Trials), Scopus, and PsychINFO. Pooled difference in means of changes in mania scores and pooled odds ratio of treatment response (for tamoxifen monotherapy) were calculated as the main effect size. A random effects model was used to pool the data across studies. Quantitative syntheses were expressed by forest plots. RESULTS Five randomized controlled trials (3 adjunct trials and 2 monotherapy trials) were included. Regarding adjunct tamoxifen, the standardized difference in mean of mania score changes in tamoxifen arm as compared with control arm was 0.669 (95% confidence interval [CI], 0.15-1.189; P = 0.012). Regarding monotherapy, the pooled difference in means of mania score changes in the tamoxifen arm as compared with the placebo arm was 22.09 (95% CI, 20.98-23.192; P < 0.000000001). Pooled odds ratio of response to treatment was 15.36 (95% CI, 2.99-78.73; P = 0.001) in the tamoxifen group as compared with the placebo group. CONCLUSIONS Tamoxifen can be considered an effective treatment for manic bipolar patients. Making a conclusion regarding the efficacy and safety for longer periods warrants further studies with a larger sample size and longer follow-up duration.
Collapse
|
45
|
Sharma AN, Fries GR, Galvez JF, Valvassori SS, Soares JC, Carvalho AF, Quevedo J. Modeling mania in preclinical settings: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:22-34. [PMID: 26545487 PMCID: PMC4728043 DOI: 10.1016/j.pnpbp.2015.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
Abstract
The current pathophysiological understanding of mechanisms leading to onset and progression of bipolar manic episodes remains limited. At the same time, available animal models for mania have limited face, construct, and predictive validities. Additionally, these models fail to encompass recent pathophysiological frameworks of bipolar disorder (BD), e.g. neuroprogression. Therefore, there is a need to search for novel preclinical models for mania that could comprehensively address these limitations. Herein we review the history, validity, and caveats of currently available animal models for mania. We also review new genetic models for mania, namely knockout mice for genes involved in neurotransmission, synapse formation, and intracellular signaling pathways. Furthermore, we review recent trends in preclinical models for mania that may aid in the comprehension of mechanisms underlying the neuroprogressive and recurring nature of BD. In conclusion, the validity of animal models for mania remains limited. Nevertheless, novel (e.g. genetic) animal models as well as adaptation of existing paradigms hold promise.
Collapse
Affiliation(s)
- Ajaykumar N. Sharma
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Gabriel R. Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Juan F. Galvez
- Department of Psychiatry, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Samira S. Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jair C. Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - André F. Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Joao Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
46
|
Yildiz A, Aydin B, Gökmen N, Yurt A, Cohen B, Keskinoglu P, Öngür D, Renshaw P. Antimanic Treatment With Tamoxifen Affects Brain Chemistry: A Double-Blind, Placebo-Controlled Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:125-131. [PMID: 27231722 DOI: 10.1016/j.bpsc.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The antimanic efficacy of a protein kinase C (PKC) inhibitor, tamoxifen, has been tested in several clinical trials, all reporting positive results. However, mechanisms underlying the observed clinical effects requires further confirmation through studies of biological markers. METHODS We investigated the effect of tamoxifen versus placebo on brain metabolites via a proton (1H) magnetic resonance spectroscopy (MRS) study. Forty-eight adult bipolar I manic patients (mean Young Mania Rating Scale (YMRS) score of 37.8±5.8) were scanned at baseline and following 3 weeks of double-blind treatment. We hypothesized that manic symptom alleviation would improve the levels of markers associated with brain energy metabolism (creatine plus phosphocreatine [total creatine; tCr]) and neuronal viability (N-acetylaspartate [NAA]). RESULTS The YMRS scores decreased from 38.6±4.5 to 20.0±11.1 in the tamoxifen group and increased from 37.0±6.8 to 43.1±7.8 in the placebo group (p<0.001). 1H MRS measurements revealed a 5.5±13.8% increase in the dorsomedial prefrontal cortex (DMPFC) tCr levels in the tamoxifen group and a 5.3±13.1% decrease in tCr in the placebo group (p=0.027). A significant correlation between the YMRS score change and tCr percent change was observed in the whole group (Spearman ρ=0.341, p=0.029). Both tCr and NAA levels in the responder group were increased by 9.4±15.2% and 6.1±11.7%, whereas levels in the non-responder group were decreased by 2.1±13.2% and 6.5±10.5%, respectively (p<0.05). CONCLUSIONS Tamoxifen effectively treated mania while it also increased brain tCr levels, consistent with involvement of both excessive PKC activation and impaired brain energy metabolism in the development of bipolar mania. CLINICAL TRIAL REGISTRATION Registry name: ClinicalTrials.gov URL: https://clinicaltrials.gov/ct2/show/NCT00411203?term=NCT00411203&rank=1 Registration number: NCT00411203.
Collapse
Affiliation(s)
- Ayşegül Yildiz
- Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Burç Aydin
- Department of Medical Pharmacology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Necati Gökmen
- Department of Anesthesiology and Reanimation, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşegül Yurt
- Department of Medical Physics, Health Sciences Institute, Dokuz Eylul University, İzmir, Turkey
| | - Bruce Cohen
- Schizophrenia and Bipolar Disorder Program, Mclean Hospital, Belmont, MA, USA
| | - Pembe Keskinoglu
- Department of Biostatistics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, Mclean Hospital, Belmont, MA, USA
| | - Perry Renshaw
- Brain Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
47
|
Tamoxifen promotes differentiation of oligodendrocyte progenitors in vitro. Neuroscience 2016; 319:146-54. [PMID: 26820594 DOI: 10.1016/j.neuroscience.2016.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
The most promising therapeutic approach to finding the cure for devastating demyelinating conditions is the identification of clinically safe pharmacological agents that can promote differentiation of endogenous oligodendrocyte precursor cells (OPCs). Here we show that the breast cancer medication tamoxifen (TMX), with well-documented clinical safety and confirmed beneficial effects in various models of demyelinating conditions, stimulates differentiation of rat glial progenitors to mature oligodendrocytes in vitro. Clinically applicable doses of TMX significantly increased both the number of CNPase-positive oligodendrocytes and protein levels of myelin basic protein, measured with Western blots. Furthermore, we also found that OPC differentiation was stimulated, not only by the pro-drug TMX-citrate (TMXC), but also by two main TMX metabolites, 4-hydroxy-TMX and endoxifen. Differentiating effects of TMXC and its metabolites were completely abolished in the presence of estrogen receptor (ER) antagonist, ICI182780. In contrast to TMXC and 4-hydroxy-TMX, endoxifen also induced astrogliogenesis, but independent of the ER activation. In sum, we showed that the TMX prodrug and its two main metabolites (4-hydroxy-TMX and endoxifen) promote ER-dependent oligodendrogenesis in vitro, not reported before. Given that differentiating effects of TMX were achieved with clinically safe doses, TMX is likely one of the most promising FDA-approved drugs for the possible treatment of demyelinating diseases.
Collapse
|
48
|
Brady RO, Keshavan M. Emergent treatments based on the pathophysiology of bipolar disorder: A selective review. Asian J Psychiatr 2015; 18:15-21. [PMID: 26525885 PMCID: PMC4745256 DOI: 10.1016/j.ajp.2015.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022]
Abstract
Bipolar disorder is a chronic psychiatric disorder that is a cause of significant symptomatology even in the setting of optimal treatment. Most current treatments are developed from serendipity, and not based on known pathophysiology. In this review we examine a number of somatic and pharmacologic therapies that are poised to become part of the armamentarium of interventions to treat bipolar illness. As a group, these interventions are derived from a growing understanding of the biological underpinnings of bipolar disorders. We will look at emergent treatments based on our understanding of the molecular biology, neuroanatomy, and the genetics of bipolar disorder.
Collapse
Affiliation(s)
- Roscoe O Brady
- Department of Psychiatry, Beth-Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| | - Matcheri Keshavan
- Department of Psychiatry, Beth-Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Malhi GS, Bassett D, Boyce P, Bryant R, Fitzgerald PB, Fritz K, Hopwood M, Lyndon B, Mulder R, Murray G, Porter R, Singh AB. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust N Z J Psychiatry 2015; 49:1087-206. [PMID: 26643054 DOI: 10.1177/0004867415617657] [Citation(s) in RCA: 511] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To provide guidance for the management of mood disorders, based on scientific evidence supplemented by expert clinical consensus and formulate recommendations to maximise clinical salience and utility. METHODS Articles and information sourced from search engines including PubMed and EMBASE, MEDLINE, PsycINFO and Google Scholar were supplemented by literature known to the mood disorders committee (MDC) (e.g., books, book chapters and government reports) and from published depression and bipolar disorder guidelines. Information was reviewed and discussed by members of the MDC and findings were then formulated into consensus-based recommendations and clinical guidance. The guidelines were subjected to rigorous successive consultation and external review involving: expert and clinical advisors, the public, key stakeholders, professional bodies and specialist groups with interest in mood disorders. RESULTS The Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders (Mood Disorders CPG) provide up-to-date guidance and advice regarding the management of mood disorders that is informed by evidence and clinical experience. The Mood Disorders CPG is intended for clinical use by psychiatrists, psychologists, physicians and others with an interest in mental health care. CONCLUSIONS The Mood Disorder CPG is the first Clinical Practice Guideline to address both depressive and bipolar disorders. It provides up-to-date recommendations and guidance within an evidence-based framework, supplemented by expert clinical consensus. MOOD DISORDERS COMMITTEE Professor Gin Malhi (Chair), Professor Darryl Bassett, Professor Philip Boyce, Professor Richard Bryant, Professor Paul Fitzgerald, Dr Kristina Fritz, Professor Malcolm Hopwood, Dr Bill Lyndon, Professor Roger Mulder, Professor Greg Murray, Professor Richard Porter and Associate Professor Ajeet Singh. INTERNATIONAL EXPERT ADVISORS Professor Carlo Altamura, Dr Francesco Colom, Professor Mark George, Professor Guy Goodwin, Professor Roger McIntyre, Dr Roger Ng, Professor John O'Brien, Professor Harold Sackeim, Professor Jan Scott, Dr Nobuhiro Sugiyama, Professor Eduard Vieta, Professor Lakshmi Yatham. AUSTRALIAN AND NEW ZEALAND EXPERT ADVISORS Professor Marie-Paule Austin, Professor Michael Berk, Dr Yulisha Byrow, Professor Helen Christensen, Dr Nick De Felice, A/Professor Seetal Dodd, A/Professor Megan Galbally, Dr Josh Geffen, Professor Philip Hazell, A/Professor David Horgan, A/Professor Felice Jacka, Professor Gordon Johnson, Professor Anthony Jorm, Dr Jon-Paul Khoo, Professor Jayashri Kulkarni, Dr Cameron Lacey, Dr Noeline Latt, Professor Florence Levy, A/Professor Andrew Lewis, Professor Colleen Loo, Dr Thomas Mayze, Dr Linton Meagher, Professor Philip Mitchell, Professor Daniel O'Connor, Dr Nick O'Connor, Dr Tim Outhred, Dr Mark Rowe, Dr Narelle Shadbolt, Dr Martien Snellen, Professor John Tiller, Dr Bill Watkins, Dr Raymond Wu.
Collapse
Affiliation(s)
- Gin S Malhi
- Discipline of Psychiatry, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Darryl Bassett
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia School of Medicine, University of Notre Dame, Perth, WA, Australia
| | - Philip Boyce
- Discipline of Psychiatry, Sydney Medical School, Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred, Melbourne, VIC, Australia
| | - Kristina Fritz
- CADE Clinic, Discipline of Psychiatry, Sydney Medical School - Northern, University of Sydney, Sydney, NSW, Australia
| | - Malcolm Hopwood
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Bill Lyndon
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia Mood Disorders Unit, Northside Clinic, Greenwich, NSW, Australia ECT Services Northside Group Hospitals, Greenwich, NSW, Australia
| | - Roger Mulder
- Department of Psychological Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - Greg Murray
- Department of Psychological Sciences, School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Richard Porter
- Department of Psychological Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - Ajeet B Singh
- School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
50
|
Khan MH, Allerton R, Pettit L. Hormone Therapy for Breast Cancer in Men. Clin Breast Cancer 2015; 15:245-50. [PMID: 26165199 DOI: 10.1016/j.clbc.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/26/2015] [Accepted: 01/31/2015] [Indexed: 01/19/2023]
Abstract
Breast cancer in men is rare, but its incidence is increasing, in keeping with the aging population. The majority of breast cancers in men are estrogen receptor positive. There is a paucity of clinical trials to inform practice, and much has been extrapolated from breast cancer in women. Hormone therapy represents the mainstay of adjuvant and palliative therapy but may have contraindications or poor tolerability. We review the evidence for choice of hormone therapy in both the adjuvant and palliative setting in breast cancer in men.
Collapse
Affiliation(s)
| | | | - Laura Pettit
- Royal Shrewsbury Hospital NHS Trust, Shropshire, UK.
| |
Collapse
|