1
|
FitzPatrick JA, Doucet BI, Holt SD, Patterson CM, Kooyers NJ. Unique drought resistance strategies occur among monkeyflower populations spanning an aridity gradient. AMERICAN JOURNAL OF BOTANY 2023; 110:e16207. [PMID: 37347451 DOI: 10.1002/ajb2.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
PREMISE Annual plants often exhibit drought-escape and avoidance strategies to cope with limited water availability. Determining the extent of variation and factors underlying the evolution of divergent strategies is necessary for determining population responses to more frequent and severe droughts. METHODS We leveraged five Mimulus guttatus populations collected across an aridity gradient within manipulative drought and quantitative genetics experiments to examine constitutive and terminal-drought induced responses in drought resistance traits. RESULTS Populations varied considerably in drought-escape- and drought-avoidance-associated traits. The most mesic population demonstrated a unique resource conservative strategy. Xeric populations exhibited extreme plasticity when exposed to terminal drought that included flowering earlier at shorter heights, increasing water-use efficiency, and shifting C:N ratios. However, plasticity responses also differed between populations, with two populations slowing growth rates and flowering at earlier nodes and another population increasing growth rate. While nearly all traits were heritable, phenotypic correlations differed substantially between treatments and often, populations. CONCLUSIONS Our results suggest drought resistance strategies of populations may be finely adapted to local patterns of water availability. Substantial plastic responses suggest that xeric populations can already acclimate to drought through plasticity, but populations not frequently exposed to drought may be more vulnerable.
Collapse
Affiliation(s)
| | - Braden I Doucet
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| | - Stacy D Holt
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| | | | - Nicholas J Kooyers
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| |
Collapse
|
2
|
Draghi JA. Bet-hedging via dispersal aids the evolution of plastic responses to unreliable cues. J Evol Biol 2023. [PMID: 37224140 DOI: 10.1111/jeb.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023]
Abstract
Adaptive plasticity is expected to evolve when informative cues predict environmental variation. However, plastic responses can be maladaptive even when those cues are informative, if prediction mistakes are shared across members of a generation. These fitness costs can constrain the evolution of plasticity when initial plastic mutants use of cues of only moderate reliability. Here, we model the barriers to the evolution of plasticity produced by these constraints and show that dispersal across a metapopulation can overcome them. Constraints are also lessened, though not eliminated, when plastic responses are free to evolve gradually and in concert with increased reliability. Each of these factors be viewed as a form of bet-hedging: by lessening correlations in the fates of relatives, dispersal acts as diversifying bet-hedging, while producing submaximal responses to a cue can be understood as a conservative bet-hedging strategy. While poor information may constrain the evolution of plasticity, the opportunity for bet-hedging may predict when that constraint can be overcome.
Collapse
Affiliation(s)
- Jeremy A Draghi
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Wu Z, Jiang Z, Li Z, Jiao P, Zhai J, Liu S, Han X, Zhang S, Sun J, Gai Z, Qiu C, Xu J, Liu H, Qin R, Lu R. Multi-omics analysis reveals spatiotemporal regulation and function of heteromorphic leaves in Populus. PLANT PHYSIOLOGY 2023; 192:188-204. [PMID: 36746772 PMCID: PMC10152652 DOI: 10.1093/plphys/kiad063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 05/03/2023]
Abstract
Despite the high economic and ecological importance of forests, our knowledge of the adaptive evolution of leaf traits remains very limited. Euphrates poplar (Populus euphratica), which has high tolerance to arid environment, has evolved four heteromorphic leaf forms, including narrow (linear and lanceolate) and broad (ovate and broad-ovate) leaves on different crowns. Here, we revealed the significant functional divergence of four P. euphratica heteromorphic leaves at physiological and cytological levels. Through global analysis of transcriptome and DNA methylation across tree and leaf developmental stages, we revealed that gene expression and DNA epigenetics differentially regulated key processes involving development and functional adaptation of heteromorphic leaves, such as hormone signaling pathways, cell division, and photosynthesis. Combined analysis of gene expression, methylation, ATAC-seq, and Hi-C-seq revealed longer interaction of 3D genome, hypomethylation, and open chromatin state upregulates IAA-related genes (such as PIN-FORMED1 and ANGUSTIFOLIA3) and promotes the occurrence of broad leaves while narrow leaves were associated with highly concentrated heterochromatin, hypermethylation, and upregulated abscisic acid pathway genes (such as Pyrabactin Resistance1-like10). Therefore, development of P. euphratica heteromorphic leaves along with functional divergence was regulated by differentially expressed genes, DNA methylation, chromatin accessibility, and 3D genome remodeling to adapt to the arid desert. This study advances our understanding of differential regulation on development and functional divergence of heteromorphic leaves in P. euphratica at the multi-omics level and provides a valuable resource for investigating the adaptive evolution of heteromorphic leaves in Populus.
Collapse
Affiliation(s)
- Zhihua Wu
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Zhenbo Jiang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Zhijun Li
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Peipei Jiao
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Juntuan Zhai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Shuo Liu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiaoli Han
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Shanhe Zhang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Jianhao Sun
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Zhongshuai Gai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Chen Qiu
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Jindong Xu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Hong Liu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Rui Qin
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Rui Lu
- Wuhan Frasergen Bioinformatics, Wuhan 430074, China
| |
Collapse
|
4
|
Phenotypic variation in Xenopus laevis tadpoles from contrasting climatic regimes is the result of adaptation and plasticity. Oecologia 2022; 200:37-50. [PMID: 35996029 DOI: 10.1007/s00442-022-05240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Phenotypic variations between populations often correlate with climatic variables. Determining the presence of phenotypic plasticity and local adaptation of a species to different environments over a large spatial scale can provide insight on the persistence of a species across its range. Amphibians, and in particular their larvae, are good models for studies of phenotypic variation as they are especially sensitive to their immediate environment. Few studies have attempted to determine the mechanisms that drive phenotypic variation between populations of a single amphibian species over a large spatial scale especially across contrasting climatic regimes. The African clawed frog, Xenopus laevis, occurs in two regions with contrasting rainfall regimes in southern Africa. We hypothesised that the phenotypic variation of life-history traits of X. laevis tadpoles emerges from a combination of plastic and genetic responses. We predicted that plasticity would allow the development of tadpoles from both regions in each environment. We also predicted that local adaptation of larval traits would drive the differentiation of reaction norms between populations and lower survival in tadpoles reared away from their home environment. We measured growth, time to metamorphosis, and survival in a reciprocal transplant experiment using outdoor mesocosms. Supporting our prediction, we found that the measured variation of all traits was explained by both adaptation and plasticity. However, the reaction norms differed between populations suggesting adaptive and asymmetric plasticity. All tadpoles experienced lower survival when translocated, but only translocated tadpoles from the winter rainfall region matched survival of local tadpoles. This has implications for the dynamics of translocated X. laevis into novel environments, especially from the winter rainfall region. Our discovery of their asymmetric capacity to overcome novel environmental conditions by phenotypic plasticity alone provides insight into their invasion success.
Collapse
|
5
|
Zhu X, Sun F, Sang M, Ye M, Bo W, Dong A, Wu R. Genetic Architecture of Heterophylly: Single and Multi-Leaf Genome-Wide Association Mapping in Populus euphratica. FRONTIERS IN PLANT SCIENCE 2022; 13:870876. [PMID: 35783952 PMCID: PMC9240601 DOI: 10.3389/fpls.2022.870876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Heterophylly is an adaptive strategy used by some plants in response to environmental changes. Due to the lack of representative plants with typical heteromorphic leaves, little is known about the genetic architecture of heterophylly in plants and the genes underlying its control. Here, we investigated the genetic characteristics underlying changes in leaf shape based on the model species, Populus euphratica, which exhibits typical heterophylly. A set of 401,571 single-nucleotide polymorphisms (SNPs) derived from whole-genome sequencing of 860 genotypes were associated with nine leaf traits, which were related to descriptive and shape data using single- and multi-leaf genome-wide association studies (GWAS). Multi-leaf GWAS allows for a more comprehensive understanding of the genetic architecture of heterophylly by considering multiple leaves simultaneously. The single-leaf GWAS detected 140 significant SNPs, whereas the multi-leaf GWAS detected 200 SNP-trait associations. Markers were found across 19 chromosomes, and 21 unique genes were implicated in traits and serve as potential targets for selection. Our results provide novel insights into the genomic architecture of heterophylly, and provide candidate genes for breeding or engineering P. euphratica. Our observations also improve understanding of the intrinsic mechanisms of plant growth, evolution, and adaptation in response to climate change.
Collapse
Affiliation(s)
- Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Fengshuo Sun
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Wenhao Bo
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Nielsen ME, Papaj DR. Why study plasticity in multiple traits? New hypotheses for how phenotypically plastic traits interact during development and selection. Evolution 2022; 76:858-869. [PMID: 35274745 PMCID: PMC9313899 DOI: 10.1111/evo.14464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023]
Abstract
Organisms can often respond adaptively to a change in their environment through phenotypic plasticity in multiple traits, a phenomenon termed as multivariate plasticity. These different plastic responses could interact and affect each other's development as well as selection on each other, but the causes and consequences of these interactions have received relatively little attention. Here, we propose a new conceptual framework for understanding how different plastic responses can affect each other's development and why organisms should have multiple plastic responses. A plastic change in one trait could alter the phenotype of a second plastic trait by changing either the cue received by the organism (cue-mediated effect) or the response to that cue (response-mediated effect). Multivariate plasticity could benefit the organism either because the plastic responses work better when expressed together (synergy) or because each response is more effective under different environmental circumstances (complementarity). We illustrate these hypotheses with case studies, focusing on interactions between behavior and morphology, plastic traits that differ in their reversibility. Future empirical and theoretical research should investigate the consequences of these interactions for additional factors important for the evolution of plasticity, such as the limits and costs of plasticity.
Collapse
Affiliation(s)
- Matthew E. Nielsen
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721,Zoology DepartmentStockholm UniversityStockholm11419Sweden
| | - Daniel R. Papaj
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721
| |
Collapse
|
7
|
Temperature heterogeneity correlates with intraspecific variation in physiological flexibility in a small endotherm. Nat Commun 2021; 12:4401. [PMID: 34285216 PMCID: PMC8292308 DOI: 10.1038/s41467-021-24588-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Phenotypic flexibility allows individuals to reversibly modify trait values and theory predicts an individual's relative degree of flexibility positively correlates with the environmental heterogeneity it experiences. We test this prediction by integrating surveys of population genetic and physiological variation with thermal acclimation experiments and indices of environmental heterogeneity in the Dark-eyed Junco (Junco hyemalis) and its congeners. We combine field measures of thermogenic capacity for 335 individuals, 22,006 single nucleotide polymorphisms genotyped in 181 individuals, and laboratory acclimations replicated on five populations. We show that Junco populations: (1) differ in their thermogenic responses to temperature variation in the field; (2) harbor allelic variation that also correlates with temperature heterogeneity; and (3) exhibit intra-specific variation in thermogenic flexibility in the laboratory that correlates with the heterogeneity of their native thermal environment. These results provide comprehensive support that phenotypic flexibility corresponds with environmental heterogeneity and highlight its importance for coping with environmental change.
Collapse
|
8
|
Benítez HA, Sukhodolskaya RA, Órdenes-Claveria R, Vavilov DN, Ananina T. Assessing the shape plasticity between Russian biotopes in Pterostichus dilutipes (Motschulsky, 1844) (Coleoptera: Carabidae) a geometric morphometric approach. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Wathne I, Enberg K, Jensen KH, Heino M. Rapid life-history evolution in a wild Daphnia pulex population in response to novel size-dependent predation. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10031-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe effect of size-selective predation on prey communities and their traits is well documented, but the relative roles of genetic adaptation and phenotypic plasticity continue to be debated. We looked for evidence of genetic adaption in a population of the water flea Daphnia pulex that faced a novel, introduced predator, Eurasian perch (Perca fluviatilis), selectively preying upon large zooplankton. Theory predicts adaptive changes towards a faster life history. We compared growth, age and length at maturation, egg size, and fecundity of two groups of clones kept in common-garden conditions, 13 clones isolated at around the time of the perch introduction and 14 isolated 3 years after. All animals were photographed daily and observed every third hour to detect maturation and measure the clutch size. Post-introduction clones matured earlier, but this was an indirect response triggered by genetic change in growth: post-introduction clones had faster growth prior to maturation than pre-introduction ones, reaching earlier the size threshold for maturation, but the threshold itself remained unchanged. Post-introduction clones showed also higher clutch size for 2nd and 3rd clutch, and slower growth from maturation (first appearance of eggs) to the moult after the release of the first clutch. Egg size did not differ between the periods. The experiment shows how life-history responses to predation involve multiple interlinked traits and both direct and indirect genetic responses.
Collapse
|
10
|
Draghi J. Phenotypic variability can promote the evolution of adaptive plasticity by reducing the stringency of natural selection. J Evol Biol 2019; 32:1274-1289. [DOI: 10.1111/jeb.13527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Jeremy Draghi
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
- Department of Biology Brooklyn College CUNY Brooklyn NY USA
- The Graduate Center of the City University of New York New York NY USA
| |
Collapse
|
11
|
Liefting M, Rohmann JL, Le Lann C, Ellers J. What are the costs of learning? Modest trade-offs and constitutive costs do not set the price of fast associative learning ability in a parasitoid wasp. Anim Cogn 2019; 22:851-861. [PMID: 31222547 PMCID: PMC6687694 DOI: 10.1007/s10071-019-01281-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
Abstract
Learning ability has been associated with energetic costs that typically become apparent through trade-offs in a wide range of developmental, physiological, and life-history traits. Costs associated with learning ability can be either constitutive or induced, depending on whether they are always incurred or only when information is actively learned and memorized. Using lines of the parasitoid wasp Nasonia vitripennis that were selected for fast associative learning ability, we assessed a range of traits that have previously been identified as potential costs associated with learning. No difference in longevity, lipid reserves, tibia length, egg load, or fecundity was observed between the selected and control lines. All of these traits are considered to potentially lead to constitutive costs in the setup of this study. A gradual reversal to baseline learning after two forms of relaxed selection was indicative of a small constitutive cost of learning ability. We also tested for a trade-off with other memory types formed at later stages, but found no evidence that the mid-term memory that was selected for caused a decrease in performance of other memory types. In conclusion, we observe only one minor effect of a constitutive cost and none of the other costs and trade-offs that are reported in the literature to be of significant value in this case. We, therefore, argue for better inclusion of ecological and economic costs in studies on costs and benefits of learning ability.
Collapse
Affiliation(s)
- Maartje Liefting
- Applied Zoology/Animal Ecology, Freie Universität Berlin, 12163, Berlin, Germany.
- Animal Ecology, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| | - Jessica L Rohmann
- Institute of Public Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Cécile Le Lann
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution) UMR 6553, 263 Avenue du Général Leclerc, 35000, Rennes, France
| | - Jacintha Ellers
- Animal Ecology, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Variation in plastic responses to light results from selection in different competitive environments-A game theoretical approach using virtual plants. PLoS Comput Biol 2019; 15:e1007253. [PMID: 31433817 PMCID: PMC6703680 DOI: 10.1371/journal.pcbi.1007253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Phenotypic plasticity is a vital strategy for plants to deal with changing conditions by inducing phenotypes favourable in different environments. Understanding how natural selection acts on variation in phenotypic plasticity in plants is therefore a central question in ecology, but is often ignored in modelling studies. Here we present a new modelling approach that allows for the analysis of selection for variation in phenotypic plasticity as a response strategy. We assess selection for shade avoidance strategies of Arabidopsis thaliana in response to future neighbour shading signalled through a decrease in red:far-red (R:FR) ratio. For this, we used a spatially explicit 3D virtual plant model that simulates individual Arabidopsis plants competing for light in different planting densities. Plant structure and growth were determined by the organ-specific interactions with the light environment created by the vegetation structure itself. Shade avoidance plastic responses were defined by a plastic response curve relating petiole elongation and lamina growth to R:FR perceived locally. Different plasticity strategies were represented by different shapes of the response curve that expressed different levels of R:FR sensitivity. Our analyses show that the shape of the selected shade avoidance strategy varies with planting density. At higher planting densities, more sensitive response curves are selected for than at lower densities. In addition, the balance between lamina and petiole responses influences the sensitivity of the response curves selected for. Combining computational virtual plant modelling with a game theoretical analysis represents a new step towards analysing how natural selection could have acted upon variation in shade avoidance as a response strategy, which can be linked to genetic variation and underlying physiological processes.
Collapse
|
13
|
Aluja M, Birke A, Díaz-Fleischer F, Rull J. Phenotypic plasticity in clutch size regulation among populations of a potential invasive fruit fly from environments that vary in host heterogeneity and isolation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:169-177. [PMID: 29781411 DOI: 10.1017/s0007485318000329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.
Collapse
Affiliation(s)
- M Aluja
- Instituto de Ecología, A.C.,Apartado Postal 63,91000 Xalapa,Veracruz,Mexico
| | - A Birke
- Instituto de Ecología, A.C.,Apartado Postal 63,91000 Xalapa,Veracruz,Mexico
| | | | - J Rull
- PROIMI Biotecnología-CONICET, LIEMEN-División Control Biológico de Plagas,Av. Belgrano y Pje. Caseros,T4001MVB San Miguel de Tucumán, Tucumán,Argentina
| |
Collapse
|
14
|
Landi P, Vonesh JR, Hui C. Variability in life-history switch points across and within populations explained by Adaptive Dynamics. J R Soc Interface 2018; 15:20180371. [PMID: 30429260 PMCID: PMC6283999 DOI: 10.1098/rsif.2018.0371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Understanding the factors that shape the timing of life-history switch points (SPs; e.g. hatching, metamorphosis and maturation) is a fundamental question in evolutionary ecology. Previous studies examining this question from a fitness optimization perspective have advanced our understanding of why the timing of life-history transitions may vary across populations and environments. However, in nature we also often observe variability among individuals within populations. Optimization theory, which typically predicts a single optimal SP under physiological and environmental constraints for a given environment, cannot explain this variability. Here, we re-examine the evolution of a single life-history SP between juvenile and adult stages from an Adaptive Dynamics (AD) perspective, which explicitly considers the feedback between the dynamics of population and the evolution of life-history strategy. The AD model, although simple in structure, exhibits a diverse range of evolutionary scenarios depending upon demographic and environmental conditions, including the loss of the juvenile stage, a single optimal SP, alternative optimal SPs depending on the initial phenotype, and sympatric coexistence of two SP phenotypes under disruptive selection. Such predictions are consistent with previous optimization approaches in predicting life-history SP variability across environments and between populations, and in addition they also explain within-population variability by sympatric disruptive selection. Thus, our model can be used as a theoretical tool for understanding life-history variability across environments and, especially, within species in the same environment.
Collapse
Affiliation(s)
- Pietro Landi
- Theoretical Ecology Group, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - James R Vonesh
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Cang Hui
- Theoretical Ecology Group, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences, Muizenberg 7945, South Africa
| |
Collapse
|
15
|
Antunes C, Chozas S, West J, Zunzunegui M, Diaz Barradas MC, Vieira S, Máguas C. Groundwater drawdown drives ecophysiological adjustments of woody vegetation in a semi-arid coastal ecosystem. GLOBAL CHANGE BIOLOGY 2018; 24:4894-4908. [PMID: 30030867 DOI: 10.1111/gcb.14403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 05/14/2023]
Abstract
Predicted droughts and anthropogenic water use will increase groundwater lowering rates and intensify groundwater limitation, particularly for Mediterranean semi-arid ecosystems. These hydrological changes may be expected to elicit differential functional responses of vegetation either belowground or aboveground. Yet, our ability to predict the impacts of groundwater changes on these ecosystems is still poor. Thus, we sought to better understand the impact of falling water table on the physiology of woody vegetation. We specifically ask (a) how is woody vegetation ecophysiological performance affected by water table depth during the dry season? and (b) does the vegetation response to increasing depth to groundwater differ among water-use functional types? We examined a suite of physiological parameters and water-uptake depths of the dominant, functionally distinct woody vegetation along a water-table depth gradient in a Mediterranean semi-arid coastal ecosystem that is currently experiencing anthropogenic groundwater extraction pressure. We found that groundwater drawdown did negatively affect the ecophysiological performance of the woody vegetation. Across all studied environmental factors, depth to groundwater was the most important driver of ecophysiological adjustments. Plant functional types, independent of groundwater dependence, showed consistent declines in water content and generally reduced C and N acquisition with increasing depths to groundwater. Functional types showed distinct operating physiological ranges, but common physiological sensitivity to greater water table depth. Thus, although differences in water-source use exist, a physiological convergence appeared to happen among different functional types. These results strongly suggest that hydrological drought has an important impact on fundamental physiological processes, constraining the performance of woody vegetation under semi-arid conditions. By disentangling the functional responses and vulnerability of woody vegetation to groundwater limitation, our study establishes the basis for predicting the physiological responses of woody vegetation in semi-arid coastal ecosystems to groundwater drawdown.
Collapse
Affiliation(s)
- Cristina Antunes
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- PPG - Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Sergio Chozas
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Jason West
- Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas
| | - Maria Zunzunegui
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | | | - Simone Vieira
- Núcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas, Brazil
| | - Cristina Máguas
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Pfennigwerth AA, Bailey JK, Schweitzer JA. Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AOB PLANTS 2017; 9:plx027. [PMID: 28721188 PMCID: PMC5509947 DOI: 10.1093/aobpla/plx027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/15/2017] [Indexed: 05/24/2023]
Abstract
Elevation gradients are frequently used as space-for-time substitutions to infer species' trait responses to climate change. However, studies rarely investigate whether trait responses to elevation are widespread or population-specific within a species, and the relative genetic and plastic contributions to such trait responses may not be well understood. Here, we examine plant trait variation in the dominant woody shrub, Rhododendron maximum, along elevation gradients in three populations in the South Central Appalachian Mountains, USA, in both field and common garden environments. We ask the following: (i) do plant traits vary along elevation? (ii) do trait responses to elevation differ across populations, and if so, why? and (iii) does genetic differentiation or phenotypic plasticity drive trait variation within and among populations? We found that internode length, shoot length, leaf dry mass, and leaf area varied along elevation, but that these responses were generally unique to one population, suggesting that trait responses to environmental gradients are population-specific. A common garden experiment identified no genetic basis to variation along elevation or among populations in any trait, suggesting that plasticity drives local and regional trait variation and may play a key role in the persistence of plant species such as R. maximum with contemporary climate change. Overall, our findings highlight the importance of examining multiple locations in future elevation studies and indicate that, for a given plant species, the magnitude of trait responses to global climate change may vary by location.
Collapse
Affiliation(s)
- Alix A. Pfennigwerth
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996-0001, USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996-0001, USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996-0001, USA
| |
Collapse
|
17
|
Siljestam M, Östman Ö. The combined effects of temporal autocorrelation and the costs of plasticity on the evolution of plasticity. J Evol Biol 2017; 30:1361-1371. [PMID: 28485061 DOI: 10.1111/jeb.13114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Adaptive phenotypic plasticity is an important source of intraspecific variation, and for many plastic traits, the costs or factors limiting plasticity seem cryptic. However, there are several different factors that may constrain the evolution of plasticity, but few models have considered costs and limiting factors simultaneously. Here we use a simulation model to investigate how the optimal level of plasticity in a population depends on a fixed maintenance fitness cost for plasticity or an incremental fitness cost for producing a plastic response in combination with environmental unpredictability (environmental fluctuation speed) limiting plasticity. Our model identifies two mechanisms that act, almost separately, to constrain the evolution of plasticity: (i) the fitness cost of plasticity scaled by the nonplastic environmental tolerance, and (ii) the environmental fluctuation speed scaled by the rate of phenotypic change. That is, the evolution of plasticity is constrained by the high cost of plasticity in combination with high tolerance for environmental variation, or fast environmental changes in combination with slow plastic response. Qualitatively similar results are found when maintenance and incremental fitness costs of plasticity are incorporated, although a larger degree of plasticity is selected for with an incremental cost. Our model highlights that it is important to consider direct fitness costs and phenotypic limitations in relation to nonplastic environmental tolerance and environmental fluctuations, respectively, to understand what constrains the evolution of phenotypic plasticity.
Collapse
Affiliation(s)
- M Siljestam
- Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden
| | - Ö Östman
- Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Head shape variation in response to diet in Triatoma williami (Hemiptera, Reduviidae: Triatominae), a possible Chagas disease vector of legal Amazônia. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Nakayama H, Sinha NR, Kimura S. How Do Plants and Phytohormones Accomplish Heterophylly, Leaf Phenotypic Plasticity, in Response to Environmental Cues. FRONTIERS IN PLANT SCIENCE 2017; 8:1717. [PMID: 29046687 PMCID: PMC5632738 DOI: 10.3389/fpls.2017.01717] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 05/05/2023]
Abstract
Plant species are known to respond to variations in environmental conditions. Many plant species have the ability to alter their leaf morphology in response to such changes. This phenomenon is termed heterophylly and is widespread among land plants. In some cases, heterophylly is thought to be an adaptive mechanism that allows plants to optimally respond to environmental heterogeneity. Recently, many research studies have investigated the occurrence of heterophylly in a wide variety of plants. Several studies have suggested that heterophylly in plants is regulated by phytohormones. Herein, we reviewed the existing knowledge on the relationship and role of phytohormones, especially abscisic acid, ethylene, gibberellins, and auxins (IAA), in regulating heterophylly and attempted to elucidate the mechanisms that regulate heterophylly.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Department of Plant Biology, University of California, Davis, Davis CA, United States
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, Davis CA, United States
| | - Seisuke Kimura
- Department of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kyoto, Japan
- *Correspondence: Seisuke Kimura,
| |
Collapse
|
20
|
Stojanova B, Maurice S, Cheptou PO. Is plasticity across seasons adaptive in the annual cleistogamous plant Lamium amplexicaule? ANNALS OF BOTANY 2016; 117:681-91. [PMID: 26995537 PMCID: PMC4817529 DOI: 10.1093/aob/mcw013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Many angiosperms exhibit cleistogamy, the production of both cleistogamous flowers (CL), which remain closed and obligately self-pollinated, and chasmogamous flowers (CH), which are potentially open-pollinated. The CH proportion can be plastic. Plasticity is adaptive if environmental changes can be reliably assessed and responded to with an appropriate phenotype and if plastic genotypes have higher fitness in variable environments than non-plastic ones. METHODS We studied the plastic response of four natural populations from northern and southern France of an annual cleistogamous plant, Lamium amplexicaule, to predictable seasonal variation. Plants were grown in a semi-controlled environment in spring and in autumn. We assessed the variation in flower number, phenology and cleistogamy-related traits, which were all plastic with respect to season. The CH proportion was higher in spring than in autumn in all four populations. KEY RESULTS We showed significant stabilizing selection for cleistogamy traits, with higher optimal CH proportions and more pronounced stabilizing selection in spring than in autumn. Observed CH proportions were close to the predicted optimal CH proportions in each season except in autumn for southern populations, which do not experience the autumnal growing season in nature. CONCLUSIONS These results are consistent with adaptive plasticity across seasons of cleistogamy in L. amplexicaule.We propose that adaptive plasticity of cleistogamy could be driven by pollination environment variation, with CL flowers providing reproductive assurance when pollinators are scarce and CH flowers reducing the inbreeding depression in offspring when pollinators are abundant.
Collapse
Affiliation(s)
- B Stojanova
- LBPV LUNAM Université de Nantes, 2 chemin de la Houssinière, 44000 Nantes, France, Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE - C.C. 065, Place Eugène Bataillon - 34095 Montpellier cedex 05, France and CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE - 1919, route de Mende - 34293 Montpellier cedex 05, France
| | - S Maurice
- Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE - C.C. 065, Place Eugène Bataillon - 34095 Montpellier cedex 05, France and
| | - P-O Cheptou
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE - 1919, route de Mende - 34293 Montpellier cedex 05, France
| |
Collapse
|
21
|
Ab Ghani NI, Herczeg G, Merilä J. Effects of perceived predation risk and social environment on the development of three-spined stickleback (Gasterosteus aculeatus) morphology. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nurul I. Ab Ghani
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; PO Box 65 FI-00014 Helsinki Finland
- Department of Biology; Faculty of Science; University of Putra Malaysia; 43400 UPM Serdang Selangor Darul Ehsan Malaysia
| | - Gábor Herczeg
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; PO Box 65 FI-00014 Helsinki Finland
- Behavioural Ecology Group; Department of Systematic Zoology and Ecology; Eötvös Loránd University; Pázmány Péter sétány 1/c H-1117 Budapest Hungary
| | - Juha Merilä
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; PO Box 65 FI-00014 Helsinki Finland
| |
Collapse
|
22
|
Grenier S, Barre P, Litrico I. Phenotypic Plasticity and Selection: Nonexclusive Mechanisms of Adaptation. SCIENTIFICA 2016; 2016:7021701. [PMID: 27313957 PMCID: PMC4895053 DOI: 10.1155/2016/7021701] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 05/07/2023]
Abstract
Selection and plasticity are two mechanisms that allow the adaptation of a population to a changing environment. Interaction between these nonexclusive mechanisms must be considered if we are to understand population survival. This review discusses the ways in which plasticity and selection can interact, based on a review of the literature on selection and phenotypic plasticity in the evolution of populations. The link between selection and phenotypic plasticity is analysed at the level of the individual. Plasticity can affect an individual's response to selection and so may modify the end result of genetic diversity evolution at population level. Genetic diversity increases the ability of populations or communities to adapt to new environmental conditions. Adaptive plasticity increases individual fitness. However this effect must be viewed from the perspective of the costs of plasticity, although these are not easy to estimate. It is becoming necessary to engage in new experimental research to demonstrate the combined effects of selection and plasticity for adaptation and their consequences on the evolution of genetic diversity.
Collapse
Affiliation(s)
- S. Grenier
- INRA, UR004, P3F, RD 150, Site du Chêne, BP 86006, 86600 Lusignan, France
| | - P. Barre
- INRA, UR004, P3F, RD 150, Site du Chêne, BP 86006, 86600 Lusignan, France
| | - I. Litrico
- INRA, UR004, P3F, RD 150, Site du Chêne, BP 86006, 86600 Lusignan, France
- *I. Litrico:
| |
Collapse
|
23
|
Okamoto KW, Langerhans RB, Rashid R, Amarasekare P. Microevolutionary patterns in the common caiman predict macroevolutionary trends across extant crocodilians. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kenichi W. Okamoto
- Department of Ecology and Evolutionary Biology; University of California, Los Angeles; Los Angeles CA 90095 USA
- Department of Entomology; North Carolina State University; Raleigh NC 27695 USA
| | - R. Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology; North Carolina State University; Raleigh NC 27695 USA
| | - Rezoana Rashid
- Department of Ecology and Evolutionary Biology; University of California, Los Angeles; Los Angeles CA 90095 USA
- USC School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology; University of California, Los Angeles; Los Angeles CA 90095 USA
| |
Collapse
|
24
|
Li XY, Giaimo S, Baudisch A, Traulsen A. Modeling evolutionary games in populations with demographic structure. J Theor Biol 2015; 380:506-15. [PMID: 26055649 DOI: 10.1016/j.jtbi.2015.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Classic life history models are often based on optimization algorithms, focusing on the adaptation of survival and reproduction to the environment, while neglecting frequency dependent interactions in the population. Evolutionary game theory, on the other hand, studies frequency dependent strategy interactions, but usually omits life history and the demographic structure of the population. Here we show how an integration of both aspects can substantially alter the underlying evolutionary dynamics. We study the replicator dynamics of strategy interactions in life stage structured populations. Individuals have two basic strategic behaviours, interacting in pairwise games. A player may condition behaviour on the life stage of its own, or that of the opponent, or the matching of life stages between both players. A strategy is thus defined as the set of rules that determines a player׳s life stage dependent behaviours. We show that the diversity of life stage structures and life stage dependent strategies can promote each other, and the stable frequency of basic strategic behaviours can deviate from game equilibrium in populations with life stage structures.
Collapse
Affiliation(s)
- Xiang-Yi Li
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.
| | - Stefano Giaimo
- Max Planck Research Group on Modeling the Evolution of Aging, Max Planck Institute for Demographic Research, Konrad Zuse Str. 1, 18057, Rostock, Germany
| | - Annette Baudisch
- Max Planck Research Group on Modeling the Evolution of Aging, Max Planck Institute for Demographic Research, Konrad Zuse Str. 1, 18057, Rostock, Germany; University of Southern Denmark, Biology Department, Max-Planck Odense Center on the Biodemography of Aging, Campusvej 55, 5230 Odense M, Denmark
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.
| |
Collapse
|
25
|
Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet 2015; 61:383-404. [PMID: 25791499 DOI: 10.1007/s00294-015-0477-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
Abstract
The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.
Collapse
|
26
|
van Heerwaarden B, Lee RFH, Overgaard J, Sgrò CM. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. J Evol Biol 2014; 27:2541-53. [PMID: 25262984 DOI: 10.1111/jeb.12510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 11/27/2022]
Abstract
Phenotypic plasticity may be an important initial mechanism to counter environmental change, yet we know relatively little about the evolution of plasticity in nature. Species with widespread distributions are expected to have evolved higher levels of plasticity compared with those with more restricted, tropical distributions. At the intraspecific level, temperate populations are expected to have evolved higher levels of plasticity than their tropical counterparts. However, empirical support for these expectations is limited. In addition, no studies have comprehensively examined the evolution of thermal plasticity across life stages. Using populations of Drosophila simulans collected from a latitudinal cline spanning the entire east coast of Australia, we assessed thermal plasticity, measured as hardening capacity (the difference between basal and hardened thermal tolerance) for multiple measures of heat and cold tolerance across both adult and larval stages of development. This allowed us to explicitly ask whether the evolution of thermal plasticity is favoured in more variable, temperate environments. We found no relationship between thermal plasticity and latitude, providing little support for the hypothesis that temperate populations have evolved higher levels of thermal plasticity than their tropical counterparts. With the exception of adult heat survival, we also found no association between plasticity and ten climatic variables, indicating that the evolution of thermal plasticity is not easily predicted by the type of environment that a particular population occupies. We discuss these results in the context of the role of plasticity in a warming climate.
Collapse
Affiliation(s)
- B van Heerwaarden
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | | | | | | |
Collapse
|
27
|
Nonaka E, Brännström Å, Svanbäck R. Assortative mating can limit the evolution of phenotypic plasticity. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9728-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. PLANT, CELL & ENVIRONMENT 2014; 37:1440-51. [PMID: 24329726 DOI: 10.1111/pce.12251] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/30/2013] [Indexed: 05/08/2023]
Abstract
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south-eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ(13)C and δ(18)O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.
Collapse
Affiliation(s)
- Elizabeth H McLean
- Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia, 6983, Australia; CSIRO Ecosystem Sciences, Private Bag 5, Wembley, Western Australia, 6913, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Emaresi G, Bize P, Altwegg R, Henry I, van den Brink V, Gasparini J, Roulin A. Melanin-specific life-history strategies. Am Nat 2013; 183:269-80. [PMID: 24464200 DOI: 10.1086/674444] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The maintenance of genetic variation is a long-standing issue because the adaptive value of life-history strategies associated with each genetic variant is usually unknown. However, evidence for the coexistence of alternative evolutionary fixed strategies at the population level remains scarce. Because in the tawny owl (Strix aluco) heritable melanin-based coloration shows different physiological and behavioral norms of reaction, we investigated whether coloration is associated with investment in maintenance and reproduction. Light melanic owls had lower adult survival compared to dark melanic conspecifics, and color variation was related to the trade-off between offspring number and quality. When we experimentally enlarged brood size, light melanic males produced more fledglings but in poorer condition, and they were less often recruited in the local breeding population than those of darker melanic conspecifics. Our results also suggest that dark melanic males allocate a constant effort to raise their brood independently of environmental conditions, whereas lighter melanic males finely adjust reproductive effort in relation to changes in environmental conditions. Color traits can therefore be associated with life-history strategies, and stochastic environmental perturbation can temporarily favor one phenotype over others. The existence of fixed strategies implies that some phenotypes can sometimes display a "maladapted" strategy. Long-term population monitoring is therefore vital for a full understanding of how different genotypes deal with trade-offs.
Collapse
Affiliation(s)
- Guillaume Emaresi
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Fischer B, van Doorn GS, Dieckmann U, Taborsky B. The evolution of age-dependent plasticity. Am Nat 2013; 183:108-25. [PMID: 24334740 DOI: 10.1086/674008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
When organisms encounter environments that are heterogeneous in time, phenotypic plasticity is often favored by selection. The degree of such plasticity can vary during an organism's lifetime, but the factors promoting differential plastic responses at different ages or life stages remain poorly understood. Here we develop and analyze an evolutionary model to investigate how environmental information is optimally collected and translated into phenotypic adjustments at different ages. We demonstrate that plasticity must often be expected to vary with age in a nonmonotonic fashion. Early in life, it is generally optimal to delay phenotypic adjustments until sufficient information has been collected about the state of the environment to warrant a costly phenotypic adjustment. Toward the end of life, phenotypic adjustments are disfavored as well because their beneficial effects can no longer be fully reaped before death. Our analysis clarifies how patterns of age-dependent plasticity are shaped by the interplay of environmental uncertainty, the accuracy of perceived information, and the costs of phenotypic adjustments with life-history determinants such as the relative strengths of fecundity and viability selection experienced by the organism over its lifetime. We conclude by comparing our results with expectations for alternative mechanisms, including developmental constraints, that promote age-dependent plasticity.
Collapse
Affiliation(s)
- Barbara Fischer
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
31
|
Foray V, Desouhant E, Gibert P. The impact of thermal fluctuations on reaction norms in specialist and generalist parasitic wasps. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vincent Foray
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS; UMR5558; Laboratoire de Biométrie et Biologie Evolutive; F-69622 Villeurbanne France
| | - Emmanuel Desouhant
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS; UMR5558; Laboratoire de Biométrie et Biologie Evolutive; F-69622 Villeurbanne France
| | - Patricia Gibert
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS; UMR5558; Laboratoire de Biométrie et Biologie Evolutive; F-69622 Villeurbanne France
| |
Collapse
|
32
|
Ferriere R, Legendre S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120081. [PMID: 23209163 PMCID: PMC3538448 DOI: 10.1098/rstb.2012.0081] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause 'evolutionary suicide'. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called 'evolutionary trapping'. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps.
Collapse
Affiliation(s)
- Regis Ferriere
- Ecole Normale Supérieure, Laboratoire Ecologie-Evolution, UMR 7625 UPMC-ENS-CNRS, 46 rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
33
|
van Gestel J, Nowak MA, Tarnita CE. The evolution of cell-to-cell communication in a sporulating bacterium. PLoS Comput Biol 2012; 8:e1002818. [PMID: 23284278 PMCID: PMC3527279 DOI: 10.1371/journal.pcbi.1002818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022] Open
Abstract
Traditionally microorganisms were considered to be autonomous organisms that could be studied in isolation. However, over the last decades cell-to-cell communication has been found to be ubiquitous. By secreting molecular signals in the extracellular environment microorganisms can indirectly assess the cell density and respond in accordance. In one of the best-studied microorganisms, Bacillus subtilis, the differentiation processes into a number of distinct cell types have been shown to depend on cell-to-cell communication. One of these cell types is the spore. Spores are metabolically inactive cells that are highly resistant against environmental stress. The onset of sporulation is dependent on cell-to-cell communication, as well as on a number of other environmental cues. By using individual-based simulations we examine when cell-to-cell communication that is involved in the onset of sporulation can evolve. We show that it evolves when three basic premises are satisfied. First, the population of cells has to affect the nutrient conditions. Second, there should be a time-lag between the moment that a cell decides to sporulate and the moment that it turns into a mature spore. Third, there has to be environmental variation. Cell-to-cell communication is a strategy to cope with environmental variation, by allowing cells to predict future environmental conditions. As a consequence, cells can anticipate environmental stress by initiating sporulation. Furthermore, signal production could be considered a cooperative trait and therefore evolves when it is not too costly to produce signal and when there are recurrent colony bottlenecks, which facilitate assortment. Finally, we also show that cell-to-cell communication can drive ecological diversification. Different ecotypes can evolve and be maintained due to frequency-dependent selection. Biological systems are characterized by communication; humans talk, insects produce pheromones and birds sing. Over the last decades it has been shown that even the simplest organisms on earth, the bacteria, communicate. Despite the prevalence of communication, it is often hard to explain how communicative systems evolve. In bacteria, communication results from the secretion of molecular signals that accumulate in the environment. Cells can assess the concentration of these signals, which indicate cell density, and respond in accordance. This form of cell-to-cell communication is responsible for the regulation of numerous bacterial behaviors, such as sporulation. Spores are metabolically inactive cells that are highly resistant against environmental stress. It is adaptive for a cell to sporulate when it struggles to survive. We show, via individual-based simulations, that cell-to-cell communication evolves because it allows cells to predict future environmental conditions. As a consequence, cells are capable of anticipating environmental stress by initiating sporulation before conditions are actually harmful. Furthermore, our model shows that cell-to-cell communication can even drive ecological diversification, since it facilitates the evolution of individuals that specialize on distinct ecological conditions.
Collapse
Affiliation(s)
- Jordi van Gestel
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
34
|
Predator-induced changes in the boldness of naïve field crickets, Gryllus integer, depends on behavioural type. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.04.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström A, Dybzinski R. Modeling carbon allocation in trees: a search for principles. TREE PHYSIOLOGY 2012; 32:648-66. [PMID: 22278378 DOI: 10.1093/treephys/tpr138] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We review approaches to predicting carbon and nitrogen allocation in forest models in terms of their underlying assumptions and their resulting strengths and limitations. Empirical and allometric methods are easily developed and computationally efficient, but lack the power of evolution-based approaches to explain and predict multifaceted effects of environmental variability and climate change. In evolution-based methods, allocation is usually determined by maximization of a fitness proxy, either in a fixed environment, which we call optimal response (OR) models, or including the feedback of an individual's strategy on its environment (game-theoretical optimization, GTO). Optimal response models can predict allocation in single trees and stands when there is significant competition only for one resource. Game-theoretical optimization can be used to account for additional dimensions of competition, e.g., when strong root competition boosts root allocation at the expense of wood production. However, we demonstrate that an OR model predicts similar allocation to a GTO model under the root-competitive conditions reported in free-air carbon dioxide enrichment (FACE) experiments. The most evolutionarily realistic approach is adaptive dynamics (AD) where the allocation strategy arises from eco-evolutionary dynamics of populations instead of a fitness proxy. We also discuss emerging entropy-based approaches that offer an alternative thermodynamic perspective on allocation, in which fitness proxies are replaced by entropy or entropy production. To help develop allocation models further, the value of wide-ranging datasets, such as FLUXNET, could be greatly enhanced by ancillary measurements of driving variables, such as water and soil nitrogen availability.
Collapse
Affiliation(s)
- Oskar Franklin
- IIASA, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria.
| | | | | | | | | | | | | |
Collapse
|
36
|
Porlier M, Charmantier A, Bourgault P, Perret P, Blondel J, Garant D. Variation in phenotypic plasticity and selection patterns in blue tit breeding time: between- and within-population comparisons. J Anim Ecol 2012; 81:1041-51. [PMID: 22568778 DOI: 10.1111/j.1365-2656.2012.01996.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Phenotypic plasticity, the response of individual phenotypes to their environment, can allow organisms to cope with spatio-temporal variation in environmental conditions. Recent studies have shown that variation exists among individuals in their capacity to adjust their traits to environmental changes and that this individual plasticity can be under strong selection. Yet, little is known on the extent and ultimate causes of variation between populations and individuals in plasticity patterns. 2. In passerines, timing of breeding is a key life-history trait strongly related to fitness and is known to vary with the environment, but few studies have investigated the within-species variation in individual plasticity. 3. Here, we studied between- and within-population variation in breeding time, phenotypic plasticity and selection patterns for this trait in four Mediterranean populations of blue tits (Cyanistes caeruleus) breeding in habitats varying in structure and quality. 4. Although there was no significant warming over the course of the study, we found evidence for earlier onset of breeding in warmer years in all populations, with reduced plasticity in the less predictable environment. In two of four populations, there was significant inter-individual variation in plasticity for laying date. Interestingly, selection for earlier laying date was significant only in populations where there was no inter-individual differences in plasticity. 5. Our results show that generalization of plasticity patterns among populations of the same species might be challenging even at a small spatial scale and that the amount of within-individual variation in phenotypic plasticity may be linked to selective pressures acting on these phenotypic traits.
Collapse
Affiliation(s)
- Melody Porlier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Välimäki K, Herczeg G. Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size. J Anim Ecol 2012; 81:859-67. [DOI: 10.1111/j.1365-2656.2012.01971.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
|
39
|
Svennungsen TO, Holen ØH, Leimar O. Inducible Defenses: Continuous Reaction Norms or Threshold Traits? Am Nat 2011; 178:397-410. [DOI: 10.1086/661250] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Heat tolerance, temperature acclimation, acute oxidative damage and canalization of haemoglobin expression in Daphnia. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9506-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Springate DA, Scarcelli N, Rowntree J, Kover PX. Correlated response in plasticity to selection for early flowering in Arabidopsis thaliana. J Evol Biol 2011; 24:2280-8. [PMID: 21812854 DOI: 10.1111/j.1420-9101.2011.02360.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phenotypic plasticity is an important strategy for coping with changing environments. However, environmental change usually results in strong directional selection, and little is known empirically about how this affects plasticity. If genes affecting a trait value also affect its plasticity, selection on the trait should influence plasticity. Synthetic outbred populations of Arabidopsis thaliana were selected for earlier flowering under simulated spring- and winter-annual conditions to investigate the correlated response of flowering time plasticity and its effect on family-by-environment variance (Vg×e) within each selected line. We found that selection affected plasticity in an environmentally dependent manner: under simulated spring-annual conditions, selection increased the magnitude of plastic response but decreased Vg×e; selection under simulated winter-annual conditions reduced the magnitude of plastic response but did not alter Vg×e significantly. As selection may constrain future response to environmental change, the environment for crop breeding and ex situ conservation programmes should be carefully chosen. Models of species persistence under environmental change should also consider the interaction between selection and plasticity.
Collapse
Affiliation(s)
- D A Springate
- School of Life Sciences, University of Manchester, Manchester, UK IRD Montpellier, Montpellier Cedex, France
| | | | | | | |
Collapse
|
42
|
Marty L, Dieckmann U, Rochet MJ, Ernande B. Impact of environmental covariation in growth and mortality on evolving maturation reaction norms. Am Nat 2011; 177:E98-118. [PMID: 21460562 DOI: 10.1086/658988] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Maturation age and size have important fitness consequences through their effects on survival probabilities and body sizes. The evolution of maturation reaction norms in response to environmental covariation in growth and mortality is therefore a key subject of life-history theory. The eco-evolutionary model we present and analyze here incorporates critical features that earlier studies of evolving maturation reaction norms have often neglected: the trade-off between growth and reproduction, source-sink population structure, and population regulation through density-dependent growth and fecundity. We report the following findings. First, the evolutionarily optimal age at maturation can be decomposed into the sum of a density-dependent and a density-independent component. These components measure, respectively, the hypothetical negative age at which an individual's length would be 0 and the delay in maturation relative to this offset. Second, along any growth trajectory, individuals mature earlier when mortality is higher. This allows us to deduce, third, how the shapes of evolutionarily optimal maturation reaction norms depend on the covariation between growth and mortality (positive or negative, linear or curvilinear, and deterministic or probabilistic). Providing eco-evolutionary explanations for many alternative reaction-norm shapes, our results appear to be in good agreement with current empirical knowledge on maturation dynamics.
Collapse
Affiliation(s)
- Lise Marty
- Laboratoire Ressources Halieutiques, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), 150 Quai Gambetta, Boulogne-sur-mer, France.
| | | | | | | |
Collapse
|
43
|
Foray V, Gibert P, Desouhant E. Differential thermal performance curves in response to different habitats in the parasitoid Venturia canescens. Naturwissenschaften 2011; 98:683-91. [PMID: 21713525 DOI: 10.1007/s00114-011-0818-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
|
44
|
Chen X, Visser EJW, de Kroon H, Pierik R, Voesenek LACJ, Huber H. Fitness consequences of natural variation in flooding-induced shoot elongation in Rumex palustris. THE NEW PHYTOLOGIST 2011; 190:409-420. [PMID: 21261627 DOI: 10.1111/j.1469-8137.2010.03639.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• Plants can respond to their environment by morphological plasticity. Generally, the potential benefits of adaptive plastic responses are beyond doubt under predictable environmental changes. However, the net benefits may be less straightforward when plants encounter temporal stresses, such as flooding in river flood plains. • Here, we tested whether the balance of costs and benefits associated with flooding-induced shoot elongation depends on the flooding regime, by subjecting Rumex palustris plants with different elongation capacity to submergence of different frequency and duration. • Our results showed that reaching the surface by shoot elongation is associated with fitness benefits, as under less frequent, but longer, flooding episodes plants emerging above the floodwater had greater biomass production than plants that were kept below the surface. As we predicted, slow-elongating plants had clear advantages over fast-elongating ones if submergence was frequent but of short duration, indicating that elongation also incurs costs. • Our data suggest that high costs select for weak plasticity under frequent environmental change. In contrast to our predictions, however, fast-elongating plants did not have an overall advantage over slow-elongating plants when floods lasted longer. This indicates that the delicate balance between benefits and costs of flooding-induced elongation depends on the specific characteristics of the flooding regime.
Collapse
Affiliation(s)
- Xin Chen
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Malaria and trypanosome transmission: different parasites, same rules? Trends Parasitol 2011; 27:197-203. [PMID: 21345732 PMCID: PMC3087881 DOI: 10.1016/j.pt.2011.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/04/2022]
Abstract
African trypanosomes produce different specialized stages for within-host replication and between-host transmission and therefore face a resource allocation trade-off between maintaining the current infection (survival) and investment into transmission (reproduction). Evolutionary theory predicts the resolution of this trade-off will significantly affect virulence and infectiousness. The application of life history theory to malaria parasites has provided novel insight into their strategies for survival and reproduction; how this framework can now be applied to trypanosomes is discussed. Specifically, predictions for how parasites trade-off investment in survival and transmission in response to variation in the within-host environment are outlined. An evolutionary approach has the power to explain why patterns of investment vary between strains and during infections, giving important insights into parasite biology.
Collapse
|
46
|
Menge DNL, Ballantyne F, Weitz JS. Dynamics of nutrient uptake strategies: lessons from the tortoise and the hare. THEOR ECOL-NETH 2011; 4:163-177. [PMID: 25540674 PMCID: PMC4270431 DOI: 10.1007/s12080-010-0110-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/17/2010] [Indexed: 11/28/2022]
Abstract
Many autotrophs vary their allocation to nutrient uptake in response to environmental cues, yet the dynamics of this plasticity are largely unknown. Plasticity dynamics affect the extent of single versus multiple nutrient limitation and thus have implications for plant ecology and biogeochemical cycling. Here we use a model of two essential nutrients cycling through autotrophs and the environment to determine conditions under which different plastic or fixed nutrient uptake strategies are adaptive. Our model includes environment-independent costs of being plastic, environment-dependent costs proportional to the rate of plastic change, and costs of being mismatched to the environment, the last of which is experienced by both fixed and plastic types. In equilibrium environments, environment-independent costs of being plastic select for tortoise strategies-fixed or less plastic types-provided that they are sufficiently close to co-limitation. At intermediate levels of environmental fluctuation forced by periodic nutrient inputs, more hare-like plastic strategies prevail because they remain near co-limitation. However, the fastest is not necessarily the best. The most adaptive strategy is an intermediate level of plasticity that keeps pace with environmental fluctuations, but is not faster. At high levels of environmental fluctuation, the environment-dependent cost of changing rapidly to keep pace with the environment becomes prohibitive and tortoise strategies again dominate. The existence and location of these thresholds depend on plasticity costs and rate, which are largely unknown empirically. These results suggest that the expectations for single nutrient limitation versus co-limitation and therefore biogeochemical cycling and autotroph community dynamics depend on environmental heterogeneity and plasticity costs.Electronic supplementary material The online version of this article (doi:10.1007/s12080-010-0110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duncan N. L. Menge
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA USA
| | - Ford Ballantyne
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS USA
- Kansas Biological Survey, University of Kansas, Lawrence, KS USA
| | - Joshua S. Weitz
- School of Biology, Georgia Institute of Technology, Atlanta, GA USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
47
|
Abstract
The ability to store energy enables organisms to deal with temporarily harsh and uncertain conditions. Empirical studies have demonstrated that organisms adapted to fluctuating energy availability plastically adjust their storage strategies. So far, however, theoretical studies have investigated general storage strategies only in constant or deterministically varying environments. In this study, we analyze how the ability to store energy influences optimal energy allocation to storage, reproduction, and maintenance in environments in which energy availability varies stochastically. We find that allocation to storage is evolutionarily optimal when environmental energy availability is intermediate and energy stores are not yet too full. In environments with low variability and low predictability of energy availability, it is not optimal to store energy. As environments become more variable or more predictable, energy allocation to storage is increasingly favored. By varying environmental variability, environmental predictability, and the cost of survival, we obtain a variety of different optimal life-history strategies, from highly iteroparous to semelparous, which differ significantly in their storage patterns. Our results demonstrate that in a stochastically varying environment simultaneous allocation to reproduction, maintenance, and storage can be optimal, which contrasts with previous findings obtained for deterministic environments.
Collapse
Affiliation(s)
- Barbara Fischer
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | | | | |
Collapse
|
48
|
Sasaki A, Dieckmann U. Oligomorphic dynamics for analyzing the quantitative genetics of adaptive speciation. J Math Biol 2010; 63:601-35. [DOI: 10.1007/s00285-010-0380-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/08/2010] [Indexed: 10/18/2022]
|
49
|
Affiliation(s)
- X Thibert-Plante
- Redpath Museum and Department of Biology, McGill University, Montréal, QC, Canada.
| | | |
Collapse
|
50
|
Michel MJ. Spatial dependence of phenotype-environment associations for tadpoles in natural ponds. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9441-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|