1
|
Knyazev DG, Silverstein TP, Brescia S, Maznichenko A, Pohl P. A New Theory about Interfacial Proton Diffusion Revisited: The Commonly Accepted Laws of Electrostatics and Diffusion Prevail. Biomolecules 2023; 13:1641. [PMID: 38002323 PMCID: PMC10669390 DOI: 10.3390/biom13111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The high propensity of protons to stay at interfaces has attracted much attention over the decades. It enables long-range interfacial proton diffusion without relying on titratable residues or electrostatic attraction. As a result, various phenomena manifest themselves, ranging from spillover in material sciences to local proton circuits between proton pumps and ATP synthases in bioenergetics. In an attempt to replace all existing theoretical and experimental insight into the origin of protons' preference for interfaces, TELP, the "Transmembrane Electrostatically-Localized Protons" hypothesis, has been proposed. The TELP hypothesis envisions static H+ and OH- layers on opposite sides of interfaces that are up to 75 µm thick. Yet, the separation at which the electrostatic interaction between two elementary charges is comparable in magnitude to the thermal energy is more than two orders of magnitude smaller and, as a result, the H+ and OH- layers cannot mutually stabilize each other, rendering proton accumulation at the interface energetically unfavorable. We show that (i) the law of electroneutrality, (ii) Fick's law of diffusion, and (iii) Coulomb's law prevail. Using them does not hinder but helps to interpret previously published experimental results, and also helps us understand the high entropy release barrier enabling long-range proton diffusion along the membrane surface.
Collapse
Affiliation(s)
- Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (D.G.K.); (S.B.); (A.M.)
| | | | - Stefania Brescia
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (D.G.K.); (S.B.); (A.M.)
| | - Anna Maznichenko
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (D.G.K.); (S.B.); (A.M.)
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (D.G.K.); (S.B.); (A.M.)
| |
Collapse
|
2
|
Ferretti G, Fagoni N, Taboni A, Vinetti G, di Prampero PE. A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol 2022; 122:1317-1365. [PMID: 35217911 PMCID: PMC9132876 DOI: 10.1007/s00421-022-04901-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022]
Abstract
After a short historical account, and a discussion of Hill and Meyerhof's theory of the energetics of muscular exercise, we analyse steady-state rest and exercise as the condition wherein coupling of respiration to metabolism is most perfect. The quantitative relationships show that the homeostatic equilibrium, centred around arterial pH of 7.4 and arterial carbon dioxide partial pressure of 40 mmHg, is attained when the ratio of alveolar ventilation to carbon dioxide flow ([Formula: see text]) is - 21.6. Several combinations, exploited during exercise, of pertinent respiratory variables are compatible with this equilibrium, allowing adjustment of oxygen flow to oxygen demand without its alteration. During exercise transients, the balance is broken, but the coupling of respiration to metabolism is preserved when, as during moderate exercise, the respiratory system responds faster than the metabolic pathways. At higher exercise intensities, early blood lactate accumulation suggests that the coupling of respiration to metabolism is transiently broken, to be re-established when, at steady state, blood lactate stabilizes at higher levels than resting. In the severe exercise domain, coupling cannot be re-established, so that anaerobic lactic metabolism also contributes to sustain energy demand, lactate concentration goes up and arterial pH falls continuously. The [Formula: see text] decreases below - 21.6, because of ensuing hyperventilation, while lactate keeps being accumulated, so that exercise is rapidly interrupted. The most extreme rupture of the homeostatic equilibrium occurs during breath-holding, because oxygen flow from ambient air to mitochondria is interrupted. No coupling at all is possible between respiration and metabolism in this case.
Collapse
Affiliation(s)
- Guido Ferretti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy.
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland.
| | - Nazzareno Fagoni
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | - Anna Taboni
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland
| | - Giovanni Vinetti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | | |
Collapse
|
3
|
Schicker K, Farr CV, Boytsov D, Freissmuth M, Sandtner W. Optimizing the Substrate Uptake Rate of Solute Carriers. Front Physiol 2022; 13:817886. [PMID: 35185619 PMCID: PMC8850955 DOI: 10.3389/fphys.2022.817886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity in solute carriers arose from evolutionary pressure. Here, we surmised that the adaptive search for optimizing the rate of substrate translocation was also shaped by the ambient extracellular and intracellular concentrations of substrate and co-substrate(s). We explored possible solutions by employing kinetic models, which were based on analytical expressions of the substrate uptake rate, that is, as a function of the microscopic rate constants used to parameterize the transport cycle. We obtained the defining terms for five reaction schemes with identical transport stoichiometry (i.e., Na+: substrate = 2:1). We then utilized an optimization algorithm to find the set of numeric values for the microscopic rate constants, which provided the largest value for the substrate uptake rate: The same optimized rate was achieved by different sets of numerical values for the microscopic rate constants. An in-depth analysis of these sets provided the following insights: (i) In the presence of a low extracellular substrate concentration, a transporter can only cycle at a high rate, if it has low values for both, the Michaelis-Menten constant (KM) for substrate and the maximal substrate uptake rate (Vmax). (ii) The opposite is true for a transporter operating at high extracellular substrate concentrations. (iii) Random order of substrate and co-substrate binding is superior to sequential order, if a transporter is to maintain a high rate of substrate uptake in the presence of accumulating intracellular substrate. Our kinetic models provide a framework to understand how and why the transport cycles of closely related transporters differ.
Collapse
Affiliation(s)
| | | | | | | | - Walter Sandtner
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Foundations of Biology. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is often stated that there are no laws in biology, where everything is contingent and could have been otherwise, being solely the result of historical accidents. Furthermore, the customary introduction of fundamental biological entities such as individual organisms, cells, genes, catalysts, and motors remains largely descriptive; constructive approaches involving deductive reasoning appear, in comparison, almost absent. As a consequence, both the logical content and principles of biology need to be reconsidered. The present article describes an inquiry into the foundations of biology. The foundations of biology are built in terms of elements, logic, and principles, using both the language and the general methods employed in other disciplines. This approach assumes the existence of a certain unity of human knowledge that transcends discipline boundaries. Leibniz’s principle of sufficient reason is revised through a study of the complementary concepts of symmetry and asymmetry and of necessity and contingency. This is used to explain how these concepts are involved in the elaboration of theories or laws of nature. Four fundamental theories of biology are then identified: cell theory, Darwin’s theory of natural selection, an informational theory of life (which includes Mendel’s theory of inheritance) and a physico-chemical theory of life. Atomism and deductive reasoning are shown to enter into the elaboration of the concepts of natural selection, individual living organisms, cells, and their reproduction, genes, as well as catalysts and motors. This work contributes to clarify the philosophical and logical structure of biology and its major theories. This should ultimately lead to a better understanding of the origin of life, of system and synthetic biology, and of artificial life.
Collapse
|
5
|
Danger G, d’Hendecourt LLS, Pascal R. On the conditions for mimicking natural selection in chemical systems. Nat Rev Chem 2020; 4:102-109. [PMID: 37128049 DOI: 10.1038/s41570-019-0155-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
The emergence of natural selection, requiring that reproducing entities present variations that may be inherited and passed on, was arguably the most important breakthrough in the self-organization of life. In this Perspective, the assumptions governing biological reproduction are confronted with physico-chemical principles that control the evolution of material systems. In biology, the reproduction of living organisms is never considered to be reversible, whereas microscopic reversibility is an essential principle in the physical description of matter. Here, we show that this discrepancy places constraints on the possibility of finding kinetic processes in the chemical world that are equivalent to natural selection in the biological one. Chemical replicators can behave in a similar fashion to living entities, provided that the reproduction cycle proceeds in a unidirectional way. For this to be the case, kinetic barriers must hinder the reverse process. The system must, thus, be held far from equilibrium and fed with a non-degraded (low-entropy) form of energy. The ensuing constraints must be factored in when proposing scenarios that account for the origin of life at the molecular level.
Collapse
|
6
|
Rocco-Machado N, Cosentino-Gomes D, Nascimento MT, Paes-Vieira L, Khan YA, Mittra B, Andrews NW, Meyer-Fernandes JR. Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity. Free Radic Biol Med 2019; 143:341-353. [PMID: 31446054 DOI: 10.1016/j.freeradbiomed.2019.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023]
Abstract
Leishmania amazonensis is one of leishmaniasis' causative agents, a disease that has no cure and leads to the appearance of cutaneous lesions. Recently, our group showed that heme activates a Na+/K+ ATPase in these parasites through a signaling cascade involving hydrogen peroxide (H2O2) generation. Heme has a pro-oxidant activity and signaling capacity, but the mechanism by which this molecule increases H2O2 levels in L. amazonensis has not been elucidated. Here we investigated the source of H2O2 stimulated by heme, ruling out the participation of mitochondria and raising the possibility of a role for a NADPH oxidase (Nox) activity. Despite the absence of a classical Nox sequence in trypanosomatid genomes, L. amazonensis expresses a surface ferric iron reductase (LFR1). Interestingly, Nox enzymes are thought to have evolved from ferric iron reductases because they share same core domain and are very similar in structure. The main difference is that Nox catalyses electron flow from NADPH to oxygen, generating reactive oxygen species (ROS), while ferric iron reductase promotes electron flow to ferric iron, generating ferrous iron. Using L. amazonensis overexpressing or knockout for LFR1 and heterologous expression of LFR1 in mammalian embryonic kidney (HEK 293) cells, we show that this enzyme is bifunctional, being able to generate both ferrous iron and H2O2. It was previously described that protozoans knockout for LFR1 have their differentiation to virulent forms (amastigote and metacyclic promastigote) impaired. In this work, we observed that LFR1 overexpression stimulates protozoan differentiation to amastigote forms, reinforcing the importance of this enzyme in L. amazonensis life cycle regulation. Thus, we not only identified a new source of ROS production in Leishmania, but also described, for the first time, an enzyme with both ferric iron reductase and Nox activities.
Collapse
Affiliation(s)
- N Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - D Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of Chemistry, Department of Biochemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - M T Nascimento
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - L Paes-Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Y A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - B Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - J R Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Rudnick G, Sandtner W. Serotonin transport in the 21st century. J Gen Physiol 2019; 151:1248-1264. [PMID: 31570504 PMCID: PMC6829555 DOI: 10.1085/jgp.201812066] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Rudnick and Sandtner review the history of serotonin transporter research in light of structural and electrophysiological advances. Serotonin (5-hydroxytryptamine [5-HT]) is accumulated within nerve endings by the serotonin transporter (SERT), which terminates its extracellular action and provides cytoplasmic 5-HT for refilling of synaptic vesicles. SERT is the target for many antidepressant medications as well as psychostimulants such as cocaine and ecstasy (3,4-methylenedioxymethamphetamine). SERT belongs to the SLC6 family of ion-coupled transporters and is structurally related to several other transporter families. SERT was studied in the 1970s and 1980s using membrane vesicles isolated from blood platelets. These studies led to a proposed stoichiometry of transport that has been challenged by high-resolution structures of SERT and its homologues and by studies of SERT electrophysiology. Here, we review the original evidence alongside more recent structural and electrophysiological evidence. A self-consistent picture emerges with surprising insights into the ion fluxes that accompany 5-HT transport.
Collapse
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Kolarić TO, Ninčević V, Smolić R, Smolić M, Wu GY. Mechanisms of Hepatic Cholestatic Drug Injury. J Clin Transl Hepatol 2019; 7:86-92. [PMID: 30944824 PMCID: PMC6441637 DOI: 10.14218/jcth.2018.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Drug-induced cholestasis represents a form of drug-induced liver disease that can lead to severe impairment of liver function. Numerous drugs have been shown to cause cholestasis and consequently bile duct toxicity. However, there is still lack of therapeutic tools that can prevent progression to advanced stages of liver injury. This review focuses on the various pathological mechanisms by which drugs express their hepatotoxic effects, as well as consequences of increased bile acid and toxin accumulation in the hepatocytes.
Collapse
Affiliation(s)
- Tea Omanović Kolarić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Vjera Ninčević
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Robert Smolić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
| | - Martina Smolić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
- *Correspondence to: Martina Smolic, Department of Pharmacology, Faculty of Medicine Osijek, J. Huttlera 4, Osijek 31000, Croatia. Tel: +38-531512800, E-mail:
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
9
|
Danchin A. Archives or Palimpsests? Bacterial Genomes Unveil a Scenario for the Origin of Life. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot.2007.2.1.52] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Guzun R, Kaambre T, Bagur R, Grichine A, Usson Y, Varikmaa M, Anmann T, Tepp K, Timohhina N, Shevchuk I, Chekulayev V, Boucher F, Dos Santos P, Schlattner U, Wallimann T, Kuznetsov AV, Dzeja P, Aliev M, Saks V. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxf) 2015; 213:84-106. [PMID: 24666671 DOI: 10.1111/apha.12287] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/23/2013] [Accepted: 03/16/2014] [Indexed: 12/19/2022]
Abstract
To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure-function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis.
Collapse
Affiliation(s)
- R. Guzun
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
- Department of Rehabilitation and Physiology; University Hospital; Grenoble France
| | - T. Kaambre
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - R. Bagur
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - A. Grichine
- Life Science Imaging - In Vitro Platform; IAB CRI INSERM U823; Joseph Fourier University; Grenoble France
| | - Y. Usson
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - M. Varikmaa
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - T. Anmann
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - K. Tepp
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - N. Timohhina
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - I. Shevchuk
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - V. Chekulayev
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - F. Boucher
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - P. Dos Santos
- University of Bordeaux Segalen; INSERM U1045; Bordeaux France
| | - U. Schlattner
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
| | - T. Wallimann
- Emeritus; Biology Department; ETH; Zurich Switzerland
| | - A. V. Kuznetsov
- Cardiac Surgery Research Laboratory; Department of Heart Surgery; Innsbruck Medical University; Innsbruck Austria
| | - P. Dzeja
- Division of Cardiovascular Diseases; Department of Medicine; Mayo Clinic; Rochester MN USA
| | - M. Aliev
- Institute of Experimental Cardiology; Cardiology Research Center; Moscow Russia
| | - V. Saks
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
| |
Collapse
|
11
|
Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I. The drive to life on wet and icy worlds. ASTROBIOLOGY 2014; 14:308-43. [PMID: 24697642 PMCID: PMC3995032 DOI: 10.1089/ast.2013.1110] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/02/2014] [Indexed: 05/22/2023]
Abstract
This paper presents a reformulation of the submarine alkaline hydrothermal theory for the emergence of life in response to recent experimental findings. The theory views life, like other self-organizing systems in the Universe, as an inevitable outcome of particular disequilibria. In this case, the disequilibria were two: (1) in redox potential, between hydrogen plus methane with the circuit-completing electron acceptors such as nitrite, nitrate, ferric iron, and carbon dioxide, and (2) in pH gradient between an acidulous external ocean and an alkaline hydrothermal fluid. Both CO2 and CH4 were equally the ultimate sources of organic carbon, and the metal sulfides and oxyhydroxides acted as protoenzymatic catalysts. The realization, now 50 years old, that membrane-spanning gradients, rather than organic intermediates, play a vital role in life's operations calls into question the idea of "prebiotic chemistry." It informs our own suggestion that experimentation should look to the kind of nanoengines that must have been the precursors to molecular motors-such as pyrophosphate synthetase and the like driven by these gradients-that make life work. It is these putative free energy or disequilibria converters, presumably constructed from minerals comprising the earliest inorganic membranes, that, as obstacles to vectorial ionic flows, present themselves as the candidates for future experiments. Key Words: Methanotrophy-Origin of life. Astrobiology 14, 308-343. The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. (Fuchs, 2011 ) Further significant progress with the tightly membrane-bound H(+)-PPase family should lead to an increased insight into basic requirements for the biological transport of protons through membranes and its coupling to phosphorylation. (Baltscheffsky et al., 1999 ).
Collapse
|
12
|
Le Saux T, Plasson R, Jullien L. Energy propagation throughout chemical networks. Chem Commun (Camb) 2014; 50:6189-95. [PMID: 24681890 DOI: 10.1039/c4cc00392f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to maintain their metabolism from an energy source, living cells rely on chains of energy transfer involving functionally identified components and organizations. However, propagation of a sustained energy flux through a cascade of reaction cycles has only been recently reproduced at a steady state in simple chemical systems. As observed in living cells, the spontaneous onset of energy-transfer chains notably drives local generation of singular dissipative chemical structures: continuous matter fluxes are dynamically maintained at boundaries between spatially and chemically segregated zones but in the absence of any membrane or predetermined material structure.
Collapse
Affiliation(s)
- Thomas Le Saux
- École Normale Supérieure-PSL Research University, Department of Chemistry, 24, rue Lhomond, 75005 Paris, France.
| | | | | |
Collapse
|
13
|
Spitzer J, Poolman B. How crowded is the prokaryotic cytoplasm? FEBS Lett 2013; 587:2094-8. [DOI: 10.1016/j.febslet.2013.05.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 11/26/2022]
|
14
|
Shnyrova AV, Bashkirov PV, Akimov SA, Pucadyil TJ, Zimmerberg J, Schmid SL, Frolov VA. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science 2013; 339:1433-6. [PMID: 23520112 PMCID: PMC3980720 DOI: 10.1126/science.1233920] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.
Collapse
Affiliation(s)
- Anna V. Shnyrova
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Pavel V. Bashkirov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey A. Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra L. Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Vadim A. Frolov
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Emond M, Le Saux T, Allemand JF, Pelupessy P, Plasson R, Jullien L. Energy Propagation Through a Protometabolism Leading to the Local Emergence of Singular Stationary Concentration Profiles. Chemistry 2012; 18:14375-83. [DOI: 10.1002/chem.201201974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Indexed: 02/03/2023]
|
16
|
Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int J Mol Sci 2012; 13:1858-1885. [PMID: 22408429 PMCID: PMC3291998 DOI: 10.3390/ijms13021858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.
Collapse
|
17
|
Abbrescia DI, La Piana G, Lofrumento NE. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems. Arch Biochem Biophys 2012; 518:157-63. [PMID: 22239987 DOI: 10.1016/j.abb.2011.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 11/29/2022]
Abstract
In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase.
Collapse
Affiliation(s)
- Daniela Isabel Abbrescia
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari, Bari, Italy
| | | | | |
Collapse
|
18
|
Molecular system bioenergics of the heart: experimental studies of metabolic compartmentation and energy fluxes versus computer modeling. Int J Mol Sci 2011; 12:9296-331. [PMID: 22272134 PMCID: PMC3257131 DOI: 10.3390/ijms12129296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 12/11/2022] Open
Abstract
In this review we analyze the recent important and remarkable advancements in studies of compartmentation of adenine nucleotides in muscle cells due to their binding to macromolecular complexes and cellular structures, which results in non-equilibrium steady state of the creatine kinase reaction. We discuss the problems of measuring the energy fluxes between different cellular compartments and their simulation by using different computer models. Energy flux determinations by 18O transfer method have shown that in heart about 80% of energy is carried out of mitochondrial intermembrane space into cytoplasm by phosphocreatine fluxes generated by mitochondrial creatine kinase from adenosine triphosphate (ATP), produced by ATP Synthasome. We have applied the mathematical model of compartmentalized energy transfer for analysis of experimental data on the dependence of oxygen consumption rate on heart workload in isolated working heart reported by Williamson et al. The analysis of these data show that even at the maximal workloads and respiration rates, equal to 174 μmol O2 per min per g dry weight, phosphocreatine flux, and not ATP, carries about 80–85% percent of energy needed out of mitochondria into the cytosol. We analyze also the reasons of failures of several computer models published in the literature to correctly describe the experimental data.
Collapse
|
19
|
Spitzer J. From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 2011; 75:491-506, second page of table of contents. [PMID: 21885682 PMCID: PMC3165543 DOI: 10.1128/mmbr.00010-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions and processes which structure prokaryotic cytoplasm (water, ions, metabolites, and biomacromolecules) and ensure the fidelity of the cell cycle are reviewed from a physicochemical perspective. Recent spectroscopic and biological evidence shows that water has no active structuring role in the cytoplasm, an unnecessary notion still entertained in the literature; water acts only as a normal solvent and biochemical reactant. Subcellular structuring arises from localizations and interactions of biomacromolecules and from the growth and modifications of their surfaces by catalytic reactions. Biomacromolecular crowding is a fundamental physicochemical characteristic of cells in vivo. Though some biochemical and physiological effects of crowding (excluded volume effect) have been documented, crowding assays with polyglycols, dextrans, etc., do not properly mimic the compositional variety of biomacromolecules in vivo. In vitro crowding assays are now being designed with proteins, which better reflect biomacromolecular environments in vivo, allowing for hydrophobic bonding and screened electrostatic interactions. I elaborate further the concept of complex vectorial biochemistry, where crowded biomacromolecules structure the cytosol into electrolyte pathways and nanopools that electrochemically "wire" the cell. Noncovalent attractions between biomacromolecules transiently supercrowd biomacromolecules into vectorial, semiconducting multiplexes with a high (35 to 95%)-volume fraction of biomacromolecules; consequently, reservoirs of less crowded cytosol appear in order to maintain the experimental average crowding of ∼25% volume fraction. This nonuniform crowding model allows for fast diffusion of biomacromolecules in the uncrowded cytosolic reservoirs, while the supercrowded vectorial multiplexes conserve the remarkable repeatability of the cell cycle by preventing confusing cross talk of concurrent biochemical reactions.
Collapse
Affiliation(s)
- Jan Spitzer
- Mallard Creek Polymers, Inc., 14700 Mallard Creek Road, Charlotte, NC 28262, USA.
| |
Collapse
|
20
|
Lemaire S, Van Bambeke F, Pierard D, Appelbaum PC, Tulkens PM. Activity of fusidic acid against extracellular and intracellular Staphylococcus aureus: influence of pH and comparison with linezolid and clindamycin. Clin Infect Dis 2011; 52 Suppl 7:S493-503. [PMID: 21546626 DOI: 10.1093/cid/cir165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Emergence of multidrug-resistant Staphylococcus aureus has triggered a reassessment of fusidic acid (CEM-102, sodium fusidate). METHODS Fusidic acid was examined for (1) activity against recent methicillin-resistant S. aureus (MRSA) isolates; (2) modulation of activity by acidic pH; and (3) accumulation by phagocytic cells and intracellular activity against methicillin-susceptible S. aureus (MSSA) and MRSA. RESULTS About 96% of strains (N = 94) were susceptible (European Committee on Antimicrobial Susceptibility Testing breakpoint [≤ 1 mg/L]). Activity was enhanced at pH 5.5 (6 dilutions decrease for minimum inhibitory concentration) in parallel with an increase of drug bacterial accumulation (opposite effects for clindamycin; linezolid remained unaffected). Fusidic acid accumulated in THP-1 cells (about 5.5 fold), with further accumulation at pH 5.5 vs pH 7.4. The intracellular activity of Fusidic acid was similar to that of clindamycin and linezolid (maximal relative activity, 0.4-0.6 log(10) colony-forming unit decrease). No cross-resistance to vancomycin or daptomycin was observed. CONCLUSIONS Fusidic acid is active against S. aureus in broth as well as intracellularly, with no cross-resistance to other antibiotics.
Collapse
Affiliation(s)
- Sandrine Lemaire
- Cellular and Molecular Pharmacology, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
21
|
Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Karu-Varikmaa M, Kaambre T, Dos Santos P, Boucher F, Guzun R. Intracellular Energetic Units regulate metabolism in cardiac cells. J Mol Cell Cardiol 2011; 52:419-36. [PMID: 21816155 DOI: 10.1016/j.yjmcc.2011.07.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/20/2011] [Accepted: 07/18/2011] [Indexed: 12/30/2022]
Abstract
This review describes developments in historical perspective as well as recent results of investigations of cellular mechanisms of regulation of energy fluxes and mitochondrial respiration by cardiac work - the metabolic aspect of the Frank-Starling law of the heart. A Systems Biology solution to this problem needs the integration of physiological and biochemical mechanisms that take into account intracellular interactions of mitochondria with other cellular systems, in particular with cytoskeleton components. Recent data show that different tubulin isotypes are involved in the regular arrangement exhibited by mitochondria and ATP-consuming systems into Intracellular Energetic Units (ICEUs). Beta II tubulin association with the mitochondrial outer membrane, when co-expressed with mitochondrial creatine kinase (MtCK) specifically limits the permeability of voltage-dependent anion channel for adenine nucleotides. In the MtCK reaction this interaction changes the regulatory kinetics of respiration through a decrease in the affinity for adenine nucleotides and an increase in the affinity for creatine. Metabolic Control Analysis of the coupled MtCK-ATP Synthasome in permeabilized cardiomyocytes showed a significant increase in flux control by steps involved in ADP recycling. Mathematical modeling of compartmentalized energy transfer represented by ICEUs shows that cyclic changes in local ADP, Pi, phosphocreatine and creatine concentrations during contraction cycle represent effective metabolic feedback signals when amplified in the coupled non-equilibrium MtCK-ATP Synthasome reactions in mitochondria. This mechanism explains the regulation of respiration on beat to beat basis during workload changes under conditions of metabolic stability. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 2011; 54:773-94. [PMID: 21145849 DOI: 10.1016/j.jhep.2010.11.006] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Numerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis).
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
23
|
van Dam K, Westerhoff HV. A description of biological energy transduction by “mechanistic thermodynamics”. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19800991102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Affiliation(s)
- J L Milner
- Department of Chemistry and Biochemistry, University of Guelph Guelph, Ontario, Canada
| | | | | |
Collapse
|
25
|
|
26
|
Guzun R, Saks V. Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo. Int J Mol Sci 2010; 11:982-1019. [PMID: 20479996 PMCID: PMC2869234 DOI: 10.3390/ijms11030982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 02/26/2010] [Accepted: 02/26/2010] [Indexed: 01/21/2023] Open
Abstract
The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.
Collapse
Affiliation(s)
- Rita Guzun
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E221, Joseph Fourier University, 2280 Rue de la Piscine BP53X 38041, Grenoble Cedex 9, France; E-Mail:
| | - Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E221, Joseph Fourier University, 2280 Rue de la Piscine BP53X 38041, Grenoble Cedex 9, France; E-Mail:
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +33-476-635-627; Fax: +33-476-514-218
| |
Collapse
|
27
|
Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:678-97. [PMID: 20096261 DOI: 10.1016/j.bbabio.2010.01.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 12/13/2022]
Abstract
The aim of this review is to analyze the results of experimental research of mechanisms of regulation of mitochondrial respiration in cardiac and skeletal muscle cells in vivo obtained by using the permeabilized cell technique. Such an analysis in the framework of Molecular Systems Bioenergetics shows that the mechanisms of regulation of energy fluxes depend on the structural organization of the cells and interaction of mitochondria with cytoskeletal elements. Two types of cells of cardiac phenotype with very different structures were analyzed: adult cardiomyocytes and continuously dividing cancerous HL-1 cells. In cardiomyocytes mitochondria are arranged very regularly, and show rapid configuration changes of inner membrane but no fusion or fission, diffusion of ADP and ATP is restricted mostly at the level of mitochondrial outer membrane due to an interaction of heterodimeric tubulin with voltage dependent anion channel, VDAC. VDAC with associated tubulin forms a supercomplex, Mitochondrial Interactosome, with mitochondrial creatine kinase, MtCK, which is structurally and functionally coupled to ATP synthasome. Due to selectively limited permeability of VDAC for adenine nucleotides, mitochondrial respiration rate depends almost linearly upon the changes of cytoplasmic ADP concentration in their physiological range. Functional coupling of MtCK with ATP synthasome amplifies this signal by recycling adenine nucleotides in mitochondria coupled to effective phosphocreatine synthesis. In cancerous HL-1 cells this complex is significantly modified: tubulin is replaced by hexokinase and MtCK is lacking, resulting in direct utilization of mitochondrial ATP for glycolytic lactate production and in this way contributing in the mechanism of the Warburg effect. Systemic analysis of changes in the integrated system of energy metabolism is also helpful for better understanding of pathogenesis of many other diseases.
Collapse
|
28
|
Timohhina N, Guzun R, Tepp K, Monge C, Varikmaa M, Vija H, Sikk P, Kaambre T, Sackett D, Saks V. Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for Mitochondrial Interactosome. J Bioenerg Biomembr 2009; 41:259-75. [PMID: 19597977 DOI: 10.1007/s10863-009-9224-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 06/13/2009] [Indexed: 11/25/2022]
Abstract
The aim of this study was to measure energy fluxes from mitochondria in isolated permeabilized cardiomyocytes. Respiration of permeabilized cardiomyocytes and mitochondrial membrane potential were measured in presence of MgATP, pyruvate kinase - phosphoenolpyruvate and creatine. ATP and phosphocreatine concentrations in medium surrounding cardiomyocytes were determined. While ATP concentration did not change in time, mitochondria effectively produced phosphocreatine (PCr) with PCr/O(2) ratio equal to 5.68 +/- 0.14. Addition of heterodimeric tubulin to isolated mitochondria was found to increase apparent Km for exogenous ADP from 11 +/- 2 microM to 330 +/- 47 microM, but creatine again decreased it to 23 +/- 6 microM. These results show directly that under physiological conditions the major energy carrier from mitochondria into cytoplasm is PCr, produced by mitochondrial creatine kinase (MtCK), which functional coupling to adenine nucleotide translocase is enhanced by selective limitation of permeability of mitochondrial outer membrane within supercomplex ATP Synthasome-MtCK-VDAC-tubulin, Mitochondrial Interactosome.
Collapse
Affiliation(s)
- Natalia Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bolognani L, Monte VD, Francia F, Venturelli T, Volpi N, Costato M. Low-Frequency Electromagnetic Pulsed Field Stimulation of Yeast. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379209012847] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence. Microbiol Mol Biol Rev 2009; 73:371-88. [PMID: 19487732 DOI: 10.1128/mmbr.00010-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general scenario of prebiotic physicochemical evolution during the Earth's Hadean eon and reviewed the relevant literature. We suggest that prebiotic chemical evolution started in microspaces with membranous walls, where external temperature and osmotic gradients were coupled to free-energy gradients of potential chemical reactions. The key feature of this scenario is the onset of an emergent evolutionary transition within the microspaces that is described by the model of complex vectorial chemistry. This transition occurs at average macromolecular crowding of 20 to 30% of the cell volume, when the ranges of action of stabilizing colloidal forces (screened electrostatic forces, hydration, and excluded volume forces) become commensurate. Under these conditions, the macromolecules divide the interior of microspaces into dynamically crowded macromolecular regions and topologically complementary electrolyte pools. Small ions and ionic metabolites are transported vectorially between the electrolyte pools and through the (semiconducting) electrolyte pathways of the crowded macromolecular regions from their high electrochemical potential (where they are biochemically produced) to their lower electrochemical potential (where they are consumed). We suggest a sequence of tentative transitions between major evolutionary periods during the Hadean eon as follows: (i) the early water world, (ii) the appearance of land masses, (iii) the pre-RNA world, (iv) the onset of complex vectorial chemistry, and (v) the RNA world and evolution toward Darwinian thresholds. We stress the importance of high ionic strength of the Hadean ocean (short Debye's lengths) and screened electrostatic interactions that enabled the onset of the vectorial structure of the cytoplasm and the possibility of life's emergence.
Collapse
|
31
|
Metabolic compartmentation - a system level property of muscle cells: real problems of diffusion in living cells. Int J Mol Sci 2008; 9:751-767. [PMID: 19325782 PMCID: PMC2635703 DOI: 10.3390/ijms9050751] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 02/05/2023] Open
Abstract
Problems of quantitative investigation of intracellular diffusion and compartmentation of metabolites are analyzed. Principal controversies in recently published analyses of these problems for the living cells are discussed. It is shown that the formal theoretical analysis of diffusion of metabolites based on Fick's equation and using fixed diffusion coefficients for diluted homogenous aqueous solutions, but applied for biological systems in vivo without any comparison with experimental results, may lead to misleading conclusions, which are contradictory to most biological observations. However, if the same theoretical methods are used for analysis of actual experimental data, the apparent diffusion constants obtained are orders of magnitude lower than those in diluted aqueous solutions. Thus, it can be concluded that local restrictions of diffusion of metabolites in a cell are a system-level properties caused by complex structural organization of the cells, macromolecular crowding, cytoskeletal networks and organization of metabolic pathways into multienzyme complexes and metabolons. This results in microcompartmentation of metabolites, their channeling between enzymes and in modular organization of cellular metabolic networks. The perspectives of further studies of these complex intracellular interactions in the framework of Systems Biology are discussed.
Collapse
|
32
|
Danchin A, Fang G, Noria S. The extant core bacterial proteome is an archive of the origin of life. Proteomics 2007; 7:875-89. [PMID: 17370266 DOI: 10.1002/pmic.200600442] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genes consistently present in a clique of genomes, preferring the leading DNA strands are deemed persistent. The persistent bacterial proteome organises around intermediary and RNA metabolism, and RNA-related information transfer, with a significant contribution to compartmentalisation. Despite inevitable losses during evolution, the extant persistent proteome displays functions present early on. Proteins coded by genes staying clustered in a majority of genomes constitute a network of mutual attraction made up of three concentric circles. The outer one, mostly devoted to metabolism, breaks into small pieces and fades away. The second, more continuous, one organises around class I tRNA synthetases. The well-connected inner circle comprises the ribosome and information transfer. This reflects the progressive construction of cells, starting from the metabolism of coenzymes, nucleotides and fatty acids-related molecules. Subsequently, a core set of aminoacyl-tRNA synthetases scaffolded around RNA, connected to cell division machinery and organised metabolism around translation. This remarkable organisation reflects the evolution of life from small molecules metabolism to the RNA world, suggesting that extant microorganisms carry the marks of the ancient processes that created life. Further analysis suggests that RNA degradation, associated to the presence of iron, still plays a role in extant metabolism, including the evolution of genome structures.
Collapse
Affiliation(s)
- Antoine Danchin
- Génétique des Génomes Bactériens, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
33
|
Oberholzer M, Bregy P, Marti G, Minca M, Peier M, Seebeck T. Trypanosomes and mammalian sperm: one of a kind? Trends Parasitol 2006; 23:71-7. [PMID: 17174157 DOI: 10.1016/j.pt.2006.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/02/2006] [Accepted: 12/06/2006] [Indexed: 01/20/2023]
Abstract
Flagellar-mediated motility is an indispensable function for cell types as evolutionarily distant as mammalian sperm and kinetoplastid parasites, a large group of flagellated protozoa that includes several important human pathogens. Despite the obvious importance of flagellar motility, little is known about the signalling processes that direct the frequency and wave shape of the flagellar beat, or those that provide the motile cell with the necessary environmental cues that enable it to aim its movement. Similarly, the energetics of the flagellar beat and the problem of a sufficient ATP supply along the entire length of the beating flagellum remain to be explored. Recent proteome projects studying the flagella of mammalian sperm and kinetoplastid parasites have provided important information and have indicated a surprising degree of similarities between the flagella of these two cell types.
Collapse
Affiliation(s)
- Michael Oberholzer
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 2006; 571:253-73. [PMID: 16410283 PMCID: PMC1796789 DOI: 10.1113/jphysiol.2005.101444] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Accepted: 01/12/2006] [Indexed: 12/18/2022] Open
Abstract
The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation-contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for 'metabolic pacing', synchronizing the cellular electrical and mechanical activities with energy supply processes.
Collapse
Affiliation(s)
- Valdur Saks
- Structural and Quantitative Bioenergetics Research Group, Laboratory of Bioenergetics, Joseph Fourier University, 2280, Rue de la Piscine, BP53X -38041, Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The dynamics of proton dissociation from an acidic moiety and its subsequent dispersion in the bulk is regulated by the physical chemical properties of the solvent. The solvent has to provide a potential well to accommodate the discharged proton, screen it from the negative charge of the conjugated base, and provide an efficient mode for the diffusion of the proton to the bulk. On measuring the dynamics of proton dissociation in the time-resolved domain, the kinetic analysis of the reaction can quantitate the properties of the immediate environment. In this review we implement the kinetic analysis for evaluating the properties of small cavities in proteins and the diffusion of protons within narrow channels. On the basis of this analysis,we discuss how the clustering of proton-binding sites on a surface can endow the surface with enhanced capacity to attract protons and to funnel them toward a specific site.
Collapse
Affiliation(s)
- M Gutman
- Laser Laboratory for Fast Reactions in Biochemical Systems, Department of Biochemistry, Tel-Aviv University, Tel-Aviv, Israel 69978
| | | |
Collapse
|
36
|
Xavier AV. A mechano-chemical model for energy transduction in cytochrome c oxidase: the work of a Maxwell's god. FEBS Lett 2002; 532:261-6. [PMID: 12482576 DOI: 10.1016/s0014-5793(02)03692-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome c3 has a central role in the energetics of Desulfovibrio sp., where it performs an electroprotonic energy transduction step. This process uses a network of cooperativities, largely based on anti-Coulomb components, resulting from a mechano-chemical energy coupling mechanism. This mechanism provides a model coherent with the data available for the redox chemistry of haem a of cytochrome c oxidase and its link to the activation of protons. A crucial feature of the model is an anti-Coulomb effect that sets the stage for a molecular ratchet, ensuring vectoriality for the redox-driven localised movement of protons across the membrane, against an electrochemical gradient.
Collapse
Affiliation(s)
- António V Xavier
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 - Apt. 127, 2780-156, Oeiras, Portugal.
| |
Collapse
|
37
|
Westerhoff HV, Getz WM, van Verseveld HW, Hofmeyr JHS, Snoep JL. Bioinformatics, cellular flows, and calculation. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:221-43. [PMID: 12061004 DOI: 10.1007/978-3-662-04747-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- H V Westerhoff
- BioCentrum Amsterdam, Free University, De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Koefoed S, Otten M, Koebmann B, Bruggeman F, Bakker B, Snoep J, Krab K, van Spanning R, van Verseveld H, Jensen P, Koster J, Westerhoff H. A turbo engine with automatic transmission? How to marry chemicomotion to the subtleties and robustness of life. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:75-82. [PMID: 12206895 DOI: 10.1016/s0005-2728(02)00258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most genomes are much more complex than required for the minimum chemistry of life. Evolution has selected sophistication more than life itself. Could this also apply to bioenergetics? We first examine mechanisms through which bioenergetics could deliver sophistication. We illustrate possible benefits of the turbo-charging of catabolic pathways, of loose coupling, low-gear catabolism, automatic transmission in energy coupling, and of homeostasis. Mechanisms for such phenomena may reside at the level of individual proton pumps, or consist of rerouting of electrons over parallel pathways. The mechanisms may be confined to preexisting components, or involve the plasticity of gene expression that is so characteristic of most living organisms. These possible benefits lead us to the conjecture that also bioenergetics has evolved more for sophistication than for necessity. We next discuss a hitherto unresolved enigma, i.e. that bioenergetics does not seem to be critical for the physiological state. To decide on how critical bioenergetics is, we quantified the control exerted by catabolism on important physiological functions such as growth rate and growth yield. We also determined whether a growth inhibition mostly affected bioenergetics (catabolism) or anabolism; if ATP increases with growth rate, then growth should be considered energy (catabolism) limited. The experimental results for Escherichia coli pinpoint the enigma: its energy metabolism (catabolism) is not critical for growth rate. These results might suggest that because it has no direct control over cell function, bioenergetics is unimportant. Paradoxically however, in biology, highly important mechanisms tend to have little control on cell function, precisely because of that importance. Sophistication in terms of homeostatic mechanisms has evolved to guarantee robustness of the most important functions: The most important mechanisms are redundant in biology. Bioenergetics may be an excellent example of this paradox, in line with the above conjecture. It may be highly important and sophisticated. We then discuss work that has begun to focus on the sophistication of bioenergetics. Homeostasis of the energetics of DNA structure in E. coli is extensive. It relies both on preexisting components and on responsive gene expression. The vastly parallel electron-transfer network of Paracoccus denitrificans engages in sophisticated dynamic and hierarchical regulation. The growth yield of the organism can depend on which terminal oxidases are active. Effective proton translocation may vary due to rerouting of electrons. We conclude that much sophistication of bioenergetics will be discovered in this era of functional genomics.
Collapse
|
39
|
Swem DL, Bauer CE. Coordination of ubiquinol oxidase and cytochrome cbb(3) oxidase expression by multiple regulators in Rhodobacter capsulatus. J Bacteriol 2002; 184:2815-20. [PMID: 11976311 PMCID: PMC135010 DOI: 10.1128/jb.184.10.2815-2820.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2001] [Accepted: 01/24/2002] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus utilizes two terminal oxidases for aerobic respiration, cytochrome cbb(3) and ubiquinol oxidase. To determine the transcription factors involved in terminal oxidase expression, ccoN-lacZ and cydA-lacZ protein fusions were assayed in a variety of regulatory mutants. The results of this and previous studies indicate that cytochrome cbb(3) expression is controlled by regB-regA, fnrL, and hvrA and that ubiquinol oxidase expression is controlled by regB-regA, fnrL, hvrA, crtJ, and aerR.
Collapse
Affiliation(s)
- Danielle L Swem
- Department of Biology, Jordan Hall, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
40
|
Kurauchi N, Yoshida Y, Ichieda N, Kasuno M, Banu K, Maeda K, Kihara S. Membrane transport in the presence of an applied electrical potential gradient parallel to the aqueous∣membrane interface. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)00761-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Mehdi K, Thierie J, Penninckx MJ. gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem J 2001; 359:631-7. [PMID: 11672438 PMCID: PMC1222185 DOI: 10.1042/0264-6021:3590631] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the yeast Saccharomyces cerevisiae, the enzyme gamma-glutamyl transpeptidase (gamma-GT; EC 2.3.2.2) is a glycoprotein that is bound to the vacuolar membrane. The kinetic parameters of GSH transport into isolated vacuoles were measured using intact vacuoles isolated from the wild-type yeast strain Sigma 1278b, under conditions of gamma-GT synthesis (nitrogen starvation) and repression (growth in the presence of ammonium ions). Vacuoles devoid of gamma-GT displayed a K(m) (app) of 18+/-2 mM and a V(max) (app) of 48.5+/-5 nmol of GSH/min per mg of protein. Vacuoles containing gamma-GT displayed practically the same K(m), but a higher V(max) (app) (150+/-12 nmol of GSH/min per mg of protein). Vacuoles prepared from a disruptant lacking gamma-GT showed no increase in V(max) (app) with nitrogen starvation. From a comparison of the transport data obtained for vacuoles isolated from various reference and mutant strains, it appears that the yeast cadmium factor 1 (YCF1) transport system accounts for approx. 70% of the GSH transport capacity of the vacuoles, the remaining 30% being due to a vacuolar (H(+)) ATPase-coupled system. The V(max) (app)-increasing effect of gamma-GT concerns only the YCF1 system. gamma-GT in the vacuolar membrane activates the Ycf1p transporter, either directly or indirectly. Moreover, GSH accumulating in the vacuolar space may exert a feedback effect on its own entry. Excretion of glutamate from radiolabelled GSH in isolated vacuoles containing gamma-GT was also measured. It is proposed that gamma-GT and a L-Cys-Gly dipeptidase catalyse the complete hydrolysis of GSH stored in the central vacuole of the yeast cell, prior to release of its constitutive amino acids L-glutamate, L-cysteine and glycine into the cytoplasm. Yeast appears to be a useful model for studying gamma-GT physiology and GSH metabolism.
Collapse
Affiliation(s)
- K Mehdi
- Université Libre de Bruxelles, Laboratoire de Physiologie et d'Ecologie Microbiennes, Institut Pasteur de Bruxelles, 642 Rue Engeland, B-1180 Brussels, Belgium
| | | | | |
Collapse
|
42
|
Abstract
In 1961, an inventive Englishman, named Peter Mitchell, proposed a radically novel hypothesis to explain how energy is conserved during respiration and photosynthesis, and applied to the generation of ATP and other kinds of functional work. The chemiosmotic hypothesis sparked an intense controversy that lasted for 15 years. Today, Mitchell's conception of proton currents and their role in phosphorylation and active transport is generally accepted, and has ramified into many corners of cellular physiology. His most profound contribution may have been to introduce spatial direction into biochemistry, and thereby transform our perception of the relationship between molecules and cells.
Collapse
Affiliation(s)
- F M Harold
- Department of Microbiology, University of Washington-Seattle, 98195 226th Street SW, Edmonds, WA 98020.
| |
Collapse
|
43
|
Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M, Sahlin K, Kay L, Appaix F, Braun U, Eimre M, Saks VA. Functional complexes of mitochondria with Ca,MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:379-95. [PMID: 11245802 DOI: 10.1016/s0005-2728(00)00269-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Regulation of mitochondrial respiration in situ in the muscle cells was studied by using fully permeabilized muscle fibers and cardiomyocytes. The results show that the kinetics of regulation of mitochondrial respiration in situ by exogenous ADP are very different from the kinetics of its regulation by endogenous ADP. In cardiac and m. soleus fibers apparent K(m) for exogenous ADP in regulation of respiration was equal to 300-400 microM. However, when ADP production was initiated by intracellular ATPase reactions, the ADP concentration in the medium leveled off at about 40 microM when about 70% of maximal rate of respiration was achieved. Respiration rate maintained by intracellular ATPases was suppressed about 20-30% during exogenous trapping of ADP with excess pyruvate kinase (PK, 20 IU/ml) and phosphoenolpyruvate (PEP, 5 mM). ADP flux via the external PK+PEP system was decreased by half by activation of mitochondrial oxidative phosphorylation. Creatine (20 mM) further activated the respiration in the presence of PK+PEP. It is concluded that in oxidative muscle cells mitochondria behave as if they were incorporated into functional complexes with adjacent ADP producing systems - with the MgATPases in myofibrils and Ca,MgATPases of sarcoplasmic reticulum.
Collapse
Affiliation(s)
- E K Seppet
- Department of Pathophysiology, University of Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Videla LA. Energy metabolism, thyroid calorigenesis, and oxidative stress: functional and cytotoxic consequences. Redox Rep 2001; 5:265-75. [PMID: 11145101 DOI: 10.1179/135100000101535807] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- L A Videla
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago.
| |
Collapse
|
45
|
Kurauchi N, Yoshida Y, Ichieda N, Ohde H, Shirai O, Maeda K, Kihara S. Membrane transport processes in the presence of an applied electrical potential gradient parallel to the aqueous∣membrane interface. J Electroanal Chem (Lausanne) 2001. [DOI: 10.1016/s0022-0728(00)00385-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, 92093-0116, USA.
| |
Collapse
|
47
|
Kudo S, Morigaki R, Saito J, Ikeda M, Oka K, Tanishita K. Shear-stress effect on mitochondrial membrane potential and albumin uptake in cultured endothelial cells. Biochem Biophys Res Commun 2000; 270:616-21. [PMID: 10753672 DOI: 10.1006/bbrc.2000.2482] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cells (ECs) that line the inner surface of blood vessels are continuously exposed to shear stress induced by blood flow in vivo, and shear stress affects ATP-dependent macromolecular transport in ECs. However, the relationship between the ATP production and shear stress is still unclear. We, therefore, evaluated mitochondrial ATP synthesis activity in cultured endothelial cells exposed to shear stress, using a confocal laser scanning microscope (CLSM) and a mitochondrial membrane potential probe (5,5',6,6'-tetrachloro-1,1',3, 3'-tetraethyl-benzimidazolycarbocyanine iodide, JC-1). Low shear stress (10 dyn/cm(2)) increased mitochondrial membrane potential by 30%. On the contrary, high shear stress (60 dyn/cm(2)) decreased it by 20%. This observation was consistent with the ATP-dependent albumin uptake into endothelial cells. Our results indicate that ATP synthetic activity is related to the albumin uptake into endothelial cells.
Collapse
Affiliation(s)
- S Kudo
- Institute of Biomedical Engineering, Department of Mechanical Engineering, Keio University, 3-14-1 Kohoku-ku, Yokohama, 223-8522, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Vendelin M, Kongas O, Saks V. Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am J Physiol Cell Physiol 2000; 278:C747-64. [PMID: 10751324 DOI: 10.1152/ajpcell.2000.278.4.c747] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study is to investigate theoretically which intracellular factors may be important for regulation of mitochondrial respiration in working heart cells in vivo. We have developed a model that describes quantitatively the published experimental data on dependence of the rate of oxygen consumption and metabolic state of working isolated perfused rat heart on workload over its physiological range (Williamson JR, Ford G, Illingworth J, Safer B. Circ Res 38, Suppl I, I39-I51, 1976). Analysis of this model shows that for phosphocreatine, creatine, and ATP the equilibrium assumption is an acceptable approximation with respect to their diffusion in the intracellular bulk water phase. However, the ADP concentration changes in the contraction cycle in a nonequilibrium workload-dependent manner, showing the existence of the intracellular concentration gradients. The model shows that workload-dependent alteration of ADP concentration in the compartmentalized creatine kinase system may be taken, together with the changes in P(i) concentration, to be among the major components of the metabolic feedback signal for regulation of respiration in muscle cells.
Collapse
Affiliation(s)
- M Vendelin
- Institute of Cybernetics, Institute of Chemical and Biological Physics, Tallinn, Estonia
| | | | | |
Collapse
|
49
|
Bakker SJ, IJzerman RG, Teerlink T, Westerhoff HV, Gans RO, Heine RJ. Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis 2000; 148:17-21. [PMID: 10580166 DOI: 10.1016/s0021-9150(99)00329-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central obesity is increasingly recognized as a risk factor for atherosclerosis and type 2 diabetes mellitus. Here we present a hypothesis that may explain the excess atherosclerosis, endothelial dysfunction and progressive beta-cell failure. Central obesity is associated with increased cytosolic triglyceride stores in non-adipose tissues such as muscles, liver and pancreatic beta-cells. A high cytosolic triglyceride content is accompanied by elevated concentrations of cytosolic long-chain acyl-CoA esters, the metabolically active form of fatty acids. These esters inhibit mitochondrial adenine nucleotide translocators, resulting in an intramitochondrial ADP deficiency. In vitro, such ADP deficiency is a potent stimulator of mitochondrial oxygen free radical production, and we assume that this mechanism is also active in vivo. The decline of organ function with normal ageing is thought to be due, at least partly, to a continuous low-grade mitochondrial oxygen free radical production. In tissues containing increased cytosolic triglyceride stores this process will be accelerated. Tissues with a high-energy demand or poor free radical scavenging capacity, such as pancreatic beta-cells, are likely to be more susceptible to this process. This is how we explain their gradual dysfunctioning in central obesity. Likewise we propose that the enhanced production of oxygen free radicals in endothelial cells, or vascular smooth muscle cells, leads to the increased subendothelial oxidation of LDL and atherosclerosis, as well as to the endothelial dysfunction and microalbuminuria.
Collapse
Affiliation(s)
- S J Bakker
- Research Institute for Endocrinology, Reproduction and Metabolism, University Hospital Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Poranen MM, Daugelavičius R, Ojala PM, Hess MW, Bamford DH. A novel virus-host cell membrane interaction. Membrane voltage-dependent endocytic-like entry of bacteriophage straight phi6 nucleocapsid. J Cell Biol 1999; 147:671-82. [PMID: 10545509 PMCID: PMC2151191 DOI: 10.1083/jcb.147.3.671] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies on the virus-cell interactions have proven valuable in elucidating vital cellular processes. Interestingly, certain virus-host membrane interactions found in eukaryotic systems seem also to operate in prokaryotes (Bamford, D.H., M. Romantschuk, and P. J. Somerharju, 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1467-1473; Romantschuk, M., V.M. Olkkonen, and D.H. Bamford. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1821-1829). straight phi6 is an enveloped double-stranded RNA virus infecting a gram-negative bacterium. The viral entry is initiated by fusion between the virus membrane and host outer membrane, followed by delivery of the viral nucleocapsid (RNA polymerase complex covered with a protein shell) into the host cytosol via an endocytic-like route. In this study, we analyze the interaction of the nucleocapsid with the host plasma membrane and demonstrate a novel approach for dissecting the early events of the nucleocapsid entry process. The initial binding of the nucleocapsid to the plasma membrane is independent of membrane voltage (DeltaPsi) and the K(+) and H(+) gradients. However, the following internalization is dependent on plasma membrane voltage (DeltaPsi), but does not require a high ATP level or K(+) and H(+) gradients. Moreover, the nucleocapsid shell protein, P8, is the viral component mediating the membrane-nucleocapsid interaction.
Collapse
Affiliation(s)
- Minna M. Poranen
- Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
- Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Rimantas Daugelavičius
- Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Biophysics, Vilnius University, LT-2009 Vilnius, Lithuania
| | - Päivi M. Ojala
- Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
- Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Michael W. Hess
- Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Dennis H. Bamford
- Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
- Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|