1
|
Harris AJT, Santos GM, Malone KO, Van Der Meer MTJ, Riekenberg P, Fernandes R. A long-term study of stable isotope ratios of fingernail keratin and amino acids in a mother-infant dyad. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25021. [PMID: 39192684 DOI: 10.1002/ajpa.25021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE To evaluate the potential of compound-specific isotope analysis of amino acids (CSIA-AA) for investigating infant feeding practices, we conducted a long-term study that compared infant and maternal amino acid (AA) nitrogen isotope ratios. MATERIALS AND METHODS Fingernail samples were collected from a single mother-infant dyad over 19 months postpartum. Carbon and nitrogen stable isotope ratios were measured in the bulk keratin of the fingernail samples. Selected samples were then hydrolyzed and derivatized for compound-specific nitrogen isotope analysis of keratin AAs. RESULTS As in previous studies, infant bulk keratin nitrogen isotope values increased during exclusive breastfeeding and fell with the introduction of complementary foods and eventual cessation of breastfeeding. Infant trophic AAs had elevated nitrogen isotope values relative to the mother, while the source AAs were similar between the mother and infant. Proline and threonine appeared to track the presence of human milk in the infant's diet as the isotopic composition of these AAs remained offset from maternal isotope values until the cessation of breastfeeding. DISCUSSION Although CSIA-AA is costly and labor intensive, it appears to hold potential for estimating the duration of breastfeeding, even after the introduction of complementary foods. Through the analysis of a full suite of AAs, it may also yield insights into infant physiology and AA synthesis.
Collapse
Affiliation(s)
- Alison J T Harris
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeology, Memorial University of Newfoundland and Labrador, St. John's, Canada
| | - Guaciara M Santos
- Keck Carbon Cycle AMS Facility, University of California Irvine, Irvine, California, USA
| | - Kaelyn O Malone
- Keck Carbon Cycle AMS Facility, University of California Irvine, Irvine, California, USA
| | - Marcel T J Van Der Meer
- Marine Microbiology and Biogeochemistry Department, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Philip Riekenberg
- Marine Microbiology and Biogeochemistry Department, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Ricardo Fernandes
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw, Warsaw, Poland
- Arne Faculty of Arts, Masaryk University, Brno, Czechia
- Climate Change and History Research Initiative, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Ongena R, Dierick M, Vanrompay D, Cox E, Devriendt B. Lactoferrin impairs pathogen virulence through its proteolytic activity. Front Vet Sci 2024; 11:1428156. [PMID: 39176399 PMCID: PMC11339958 DOI: 10.3389/fvets.2024.1428156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Antibiotics, often hailed as 'miracle drugs' in the 20th century, have revolutionised medicine by saving millions of lives in human and veterinary medicine, effectively combatting bacterial infections. However, the escalating global challenge of antimicrobial resistance and the appearance and spread of multidrug-resistant pathogens necessitates research into alternatives. One such alternative could be lactoferrin. Lactoferrin, an iron-binding multifunctional protein, is abundantly present in mammalian secretions and exhibits antimicrobial and immunomodulatory activities. An often overlooked aspect of lactoferrin is its proteolytic activity, which could contribute to its antibacterial activity. The proteolytic activity of lactoferrin has been linked to the degradation of virulence factors from several bacterial pathogens, impeding their colonisation and potentially limiting their pathogenicity. Despite numerous studies, the exact proteolytically active site of lactoferrin, the specific bacterial virulence factors it degrades and the underlying mechanism remain incompletely understood. This review gives an overview of the current knowledge concerning the proteolytic activity of lactoferrins and summarises the bacterial virulence factors degraded by lactoferrins. We further detail how a deeper understanding of the proteolytic activity of lactoferrin might position it as a viable alternative for antibiotics, being crucial to halt the spread of multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Ruben Ongena
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Matthias Dierick
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Thesbjerg MN, Sundekilde UK, Poulsen NA, Larsen LB, Nielsen SDH. A novel proteomic approach for the identification and relative quantification of disulfide-bridges in the human milk proteome. J Proteomics 2024; 301:105194. [PMID: 38723850 DOI: 10.1016/j.jprot.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
This study explores the disulfide bridges present in the human milk proteome by a novel approach permitting both positional identification and relative quantification of the disulfide bridges. Human milk from six donors was subjected to trypsin digestion without reduction. The digested human milk proteins were analyzed by nanoLC-timsTOF Pro combined with data analysis using xiSEARCH. A total of 85 unique disulfide bridges were identified in 25 different human milk proteins. The total relative abundance of disulfide bridge-containing peptides constituted approximately 5% of the total amount of tryptic-peptides. Seven inter-molecular disulfide bridges were identified between either α-lactalbumin and lactotransferrin (5) or αS1-casein and κ-casein (2). All cysteines involved in the observed disulfide bridges of α-lactalbumin and lactotransferrin were mapped onto protein models using AlphaFold2 Multimer to estimate the length of the observed disulfide bridges. The lengths of the disulfide bridges of lactotransferrin indicate a potential for multi- or poly-merization of lactotransferrin. The high number of intramolecular lactotransferrin disulfide bridges identified, suggests that these are more heterogeneous than previously presumed. SIGNIFICANCE: Disulfide-bridges in the human milk proteome are an often overseen post-transaltional modification. Thus, mapping the disulfide-bridges, their positions and relative abundance, are valuable new knowledge needed for an improved understanding of human milk protein behaviour. Although glycosylation and phosphorylation have been described, even less information is available on the disulfide bridges and the disulfide-bridge derived protein complexes. This is important for future work in precision fermentation for recombinant production of human milk proteins, as this will highlight which disulfide-bridges are naturally occouring in human milk proteins. Further, this knowledge would be of value for the infant formula industry as it provides more information on how to humanize bovine-milk based infant formula. The novel method developed here can be broadly applied in other biological systems as the disulfid-brigdes are important for the structure and functionality of proteins.
Collapse
Affiliation(s)
- Martin Nørmark Thesbjerg
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Science, Huairou District, Beijing 101408, China.
| | | | - Nina Aagaard Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Lotte Bach Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | | |
Collapse
|
4
|
Li C, Zhou L, Yin X. Pathophysiological aspects of transferrin-A potential nano-based drug delivery signaling molecule in therapeutic target for varied diseases. Front Pharmacol 2024; 15:1342181. [PMID: 38500764 PMCID: PMC10944884 DOI: 10.3389/fphar.2024.1342181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Transferrin (Tf), widely known for its role as an iron-binding protein, exemplifies multitasking in biological processes. The role of Tf in iron metabolism involves both the uptake of iron from Tf by various cells, as well as the endocytosis mediated by the complex of Tf and the transferrin receptor (TfR). The direct conjugation of the therapeutic compound and immunotoxin studies using Tf peptide or anti-Tf receptor antibodies as targeting moieties aims to prolong drug circulation time and augment efficient cellular drug uptake, diminish systemic toxicity, traverse the blood-brain barrier, restrict systemic exposure, overcome multidrug resistance, and enhance therapeutic efficacy with disease specificity. This review primarily discusses the various biological actions of Tf, as well as the development of Tf-targeted nano-based drug delivery systems. The goal is to establish the use of Tf as a disease-targeting component, accentuating the potential therapeutic applications of this protein.
Collapse
Affiliation(s)
- Chang Li
- Basic Medical College, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Liya Zhou
- Basic Medical College, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Zhang Y, Zhang L, Xia S, Hou Y, Wu T, Zhou P. Site-specific glycoproteomic analysis of purified lactoferrin from human and animal milk. Int J Biol Macromol 2024; 254:127766. [PMID: 38287599 DOI: 10.1016/j.ijbiomac.2023.127766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Lactoferrin is a highly glycosylated protein, which have important biological functions in the growth and development of neonates. However, the glycoforms and glycosylation sites differed between species. The aim of the study was to identify the glycosylation profile (including glycosites, glycan structures, and glycoforms) of purified lactoferrin from human and animal (cow, goat, sheep) milk by using site-specific glycoproteomics technique. In total, a number of 89 N-glycans were identified in human and animal milk lactoferrin. We identified three N-glycosites with 23 different compositions of N-glycans in cow lactoferrin (CLF), four distinctive N-glycosites with 34 dissimilar N-glycan compositions in goat lactoferrin (GLF), five N-glycosites with 57 different N-glycan compositions in sheep lactoferrin (SLF), while five unique N-glycosites with 50 different N-glycan compositions were ascertained in human lactoferrin (HLF). HLF had the most complex glycan, while animal lactoferrin had the most high-mannose glycoforms. The results of this study further our understanding of lactoferrin differences between human and animal milk, which can provide a perspective on the analysis of differences in functional characteristics.
Collapse
Affiliation(s)
- Yiqian Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Siquan Xia
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, Hunan Province 410011, China
| | - Tong Wu
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, Hunan Province 410011, China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
6
|
Elizarova AY, Sokolov AV, Vasilyev VB. Ceruloplasmin Reduces the Lactoferrin/Oleic Acid Antitumor Complex-Mediated Release of Heme-Containing Proteins from Blood Cells. Int J Mol Sci 2023; 24:16711. [PMID: 38069040 PMCID: PMC10706732 DOI: 10.3390/ijms242316711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous study showed that not only bovine lactoferrin (LF), the protein of milk and neutrophils, but also the human species forms complexes with oleic acid (OA) that inhibit tumor growth. Repeated injections of human LF in complex with OA (LF/8OA) to hepatoma-carrying mice decelerated tumor growth and increased animals' longevity. However, whether the effect of the LF/8OA complex is directed exclusively against malignant cells was not studied. Hence, its effect on normal blood cells was assayed, along with its possible modulation of ceruloplasmin (CP), the preferred partner of LF among plasma proteins. The complex LF/8OA (6 μM) caused hemolysis, unlike LF alone or BSA/8OA (250 μM). The activation of neutrophils with exocytosis of myeloperoxidase (MPO), a potent oxidant, was induced by 1 μM LF/8OA, whereas BSA/8OA had a similar effect at a concentration increased by an order. The egress of heme-containing proteins, i.e., MPO and hemoglobin, from blood cells affected by LF/8OA was followed by a pronounced oxidative/halogenating stress. CP, which is the natural inhibitor of MPO, added at a concentration of 2 mol per 1 mol of LF/8OA abrogated its cytotoxic effect. It seems likely that CP can be used effectively in regulating the LF/8OA complex's antitumor activity.
Collapse
Affiliation(s)
| | - Alexey V. Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (A.Y.E.); (V.B.V.)
| | | |
Collapse
|
7
|
Regueiro U, López-López M, Varela-Fernández R, Otero-Espinar FJ, Lema I. Biomedical Applications of Lactoferrin on the Ocular Surface. Pharmaceutics 2023; 15:pharmaceutics15030865. [PMID: 36986726 PMCID: PMC10052036 DOI: 10.3390/pharmaceutics15030865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.
Collapse
Affiliation(s)
- Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, 15706 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| |
Collapse
|
8
|
Zeng Q, Liu Y, Sun J, Jin Y. Providing New Insights on the Molecular Properties and Thermal Stability of Ovotransferrin and Lactoferrin. Foods 2023; 12:532. [PMID: 36766060 PMCID: PMC9914018 DOI: 10.3390/foods12030532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Ovotransferrin (OVT) is a multi-functional protein showing over 50% homology with Bovine lactoferrin (BLF) and human lactoferrin (HLF), which have the potential to be a substitute for lactoferrin (LF) due to the limited production of LF. To explore the substitutability of OVT, the molecular properties and thermal stability of OVT, BLF and HLF were characterized because these properties will affect the processing quality and biological activities of protein products when exposed to different processing conditions (e.g., temperature, pH, ion strength). The results showed that although obviously different isoelectric point (5.31, 9.12 and 8.75 for OVT, BLF and HLF, respectively), particle size distribution and hydrophobicity were found, they exhibited good dispersity because of high potential value. They showed an endothermic peak at 80.64 °C, 65.71 °C and 90.01 °C, respectively, and the denaturation temperature varied at different pH and ionic strength. OVT and BLF were more susceptible to heating at pH 5.0 as reflected by the decline of denaturation temperature (21.78 °C shift for OVT and 5.81 °C shift for BLF), while HLF could remain stable. Compared with BLF, OVT showed higher secondary structure stability at pH 7.0 and 9.0 with heating. For example, the α-helix content of OVT changed from 20.35% to 15.4% at pH 7.0 after heating, while that of BLF changed from 20.05% to 6.65%. The increase on fluorescence intensity and redshifts on the maximum wavelength after heating indicated the changes of tertiary structure of them. The turbidity measurements showed that the thermal aggregation degree of OVT was lower than BLF and HLF at pH 7.0 (30.98%, 59.53% and 35.66%, respectively) and pH 9.0 (4.83%, 12.80% and 39.87%, respectively). This work demonstrated the similar molecular properties and comparable thermal stability of OVT to BLF and HLF, which can offer a useful reference for the substitute of LF by OVT.
Collapse
Affiliation(s)
- Qi Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jing Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430072, China
| | - Yongguo Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Avalos-Gómez C, Ramírez-Rico G, Ruiz-Mazón L, Sicairos NL, Serrano-Luna J, de la Garza M. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections. Curr Pharm Des 2022; 28:3243-3260. [PMID: 36284379 DOI: 10.2174/1381612829666221025153216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2023]
Abstract
The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico.,Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán- Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Nidia León Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| |
Collapse
|
10
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
11
|
A review on lactoferrin as a proton pump inhibitor. Int J Biol Macromol 2022; 202:309-317. [PMID: 35038474 DOI: 10.1016/j.ijbiomac.2022.01.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Lactoferrin (Lf) is a versatile natural milk-derived protein that exhibits multiple interesting biological activities. Since it is safe for human administration and currently manufactured using low cost and well-established large-scale processes, the Lf scientific community has been devoted at dissecting its mechanisms of action towards its more rational and efficient use for various applications. Emerging literature has identified proton pumping ATPases as molecular targets of Lf in different cellular models linked to distinct activities of this natural protein. Information on this subject has not been systematically analysed before, hence herein we review the current state of art on the effect of Lf on proton pumping ATPases. Though structurally different, we propose that Lf holds a proton pump inhibitor (PPI)-like activity based on the functional resemblance with the classical inhibitors of the stomach H+/K+-ATPase. The downstream events and outcomes of the PPI-like activity of Lf, as well as its impact for the development of improved Lf applications are also discussed.
Collapse
|
12
|
Olszewska P, Pazdrak B, Kruzel ML. A Novel Human Recombinant Lactoferrin Inhibits Lung Adenocarcinoma Cell Growth and Migration with No Cytotoxic Effect on Normal Human Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2021; 69:33. [PMID: 34748082 PMCID: PMC8575758 DOI: 10.1007/s00005-021-00637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Lung cancer remains the leading cause of cancer death worldwide. Despite the recent advances in cancer treatment, only a subset of patients responds to targeted and immune therapies, and many patients developing resistance after an initial response. Lactoferrin (Lf) is a natural glycoprotein with immunomodulatory and anticancer activities. We produced a novel recombinant human Lf (rhLf) that exhibits glycosylation profile compatible with the natural hLf for potential parenteral therapeutic applications. The aim of this study was to evaluate the anticancer effects of this novel rhLf in human lung adenocarcinoma cells and its mechanisms of action. The results showed a concentration-dependent inhibition of A549 cancer cell growth in response to rhLf. Treatment with 1 mg/ml of rhLf for 24 h and 72 h resulted in a significant inhibition of cancer cell growth by 32% and 25%, respectively. Moreover, rhLf increased fourfold the percentage of early and late apoptotic cells compared to the control. This effect was accompanied by increased levels of caspase-3 activity and cell cycle arrest at the S phase in rhLf-treated cancer cells. Furthermore, rhLf significantly attenuated A549 cell migration. Importantly, treatment of normal human bronchial epithelial (NHBE) cells with rhLf showed the cell viability and morphology comparable to the control. In contrast, chemotherapeutic etoposide induced cytotoxicity in NHBE cells and reduced the cell viability by 40%. These results demonstrate the selective anticancer effects of rhLf against lung adenocarcinoma cells without cytotoxicity on normal human cells. This study highlights a potential for clinical utility of this novel rhLf in patients with lung cancer.
Collapse
Affiliation(s)
- Paulina Olszewska
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Barbara Pazdrak
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
13
|
Singh J, Maurya A, Singh PK, Viswanathan V, Ahmad MI, Sharma P, Sharma S, Singh TP. A Peptide Bond from the Inter-lobe Segment in the Bilobal Lactoferrin Acts as a Preferred Site for Cleavage for Serine Proteases to Generate the Perfect C-lobe: Structure of the Pepsin Hydrolyzed Lactoferrin C-lobe at 2.28 Å Resolution. Protein J 2021; 40:857-866. [PMID: 34734372 DOI: 10.1007/s10930-021-10028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
C-lobe represents the C-terminal half of lactoferrin which is a bilobal 80 kDa iron binding glycoprotein. The two lobes are designated as N-lobe (Ser1-Glu333) and C-lobe (Arg344-Arg689). The N- and C-lobes are connected by a 10-residue long α-helical peptide (Thr334-Thr343). Both lobes adopt similar conformations and have identical iron binding sites. The bilobal lactoferrin was hydrolyzed in a limited proteolysis using pepsin at pH 2.0. It produced a 40 kDa and fully functional C-lobe which was purified and crystallized at pH 8.0. The structure determination revealed that the structure contained residues from Tyr342 to Arg689 representing a fully functional monoferric C-lobe. It showed that pepsin cleaved lactoferrin at the peptide bond Arg341-Tyr342 which is part of the inter-lobe decapeptide. Interestingly, the two previously determined structures of the enzymatically produced C-lobe using trypsin and proteinase K also cleaved lactoferrin at the same peptide bond Arg341-Tyr342. This was a striking result as the three enzymes, pepsin, trypsin and proteinase K have different specificity requirements and yet they cleaved the bilobal lactoferrin at the same peptide bond and generated an identical and fully functional C-lobe. This shows that the observed cleavage site in lactoferrin adopts a highly favourable conformation for proteolysis. It is noteworthy that the three enzymes with different specificities cut the protein at the same peptide bond which may be of physiological significance because the antibacterial action of lactoferrin is extended further through the C-lobe.
Collapse
Affiliation(s)
- Jiya Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Prashant K Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - V Viswanathan
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Md Irshad Ahmad
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India.
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India.
| |
Collapse
|
14
|
Reseco L, Atienza M, Fernandez-Alvarez M, Carro E, Cantero JL. Salivary lactoferrin is associated with cortical amyloid-beta load, cortical integrity, and memory in aging. ALZHEIMERS RESEARCH & THERAPY 2021; 13:150. [PMID: 34488875 PMCID: PMC8422723 DOI: 10.1186/s13195-021-00891-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aging is associated with declining protective immunity and persistent low-grade inflammatory responses, which significantly contribute to Alzheimer's disease (AD) pathogenesis. Detecting aging-related cerebral vulnerability associated with deterioration of the immune system requires from non-invasive biomarkers able to detect failures in the brain-immunity connection. Reduced levels of salivary lactoferrin (sLF), an iron-binding protein with immunomodulatory activity, have been related to AD diagnosis. However, it remains unknown whether decreased sLF is associated with increased cortical amyloid-beta (Aβ) load and/or with loss of cortical integrity in normal aging. METHODS Seventy-four cognitively normal older adults (51 females) participated in the study. We applied multiple linear regression analyses to assess (i) whether sLF is associated with cortical Aβ load measured by 18F-Florbetaben (FBB)-positron emission tomography (PET), (ii) whether sLF-related variations in cortical thickness and cortical glucose metabolism depend on global Aβ burden, and (iii) whether such sLF-related cortical abnormalities moderate the relationship between sLF and cognition. RESULTS sLF was negatively associated with Aβ load in parieto-temporal regions. Moreover, sLF was related to thickening of the middle temporal cortex, increased FDG uptake in the posterior cingulate cortex, and poorer memory. These associations were stronger in individuals showing the highest Aβ burden. CONCLUSIONS sLF levels are sensitive to variations in cortical Aβ load, structural and metabolic cortical abnormalities, and subclinical memory impairment in asymptomatic older adults. These findings provide support for the use of sLF as a non-invasive biomarker of cerebral vulnerability in the general aging population.
Collapse
Affiliation(s)
- Lucia Reseco
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Eva Carro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain. .,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
15
|
Scavello F, Mutschler A, Hellé S, Schneider F, Chasserot-Golaz S, Strub JM, Cianferani S, Haikel Y, Metz-Boutigue MH. Catestatin in innate immunity and Cateslytin-derived peptides against superbugs. Sci Rep 2021; 11:15615. [PMID: 34341386 PMCID: PMC8329280 DOI: 10.1038/s41598-021-94749-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Chromogranin A (CgA) is the precursor of several antimicrobial peptides, such as Catestatin (Cts, bovine CgA344-364), initially described as a potent inhibitor of catecholamines. This peptide displays direct antimicrobial activities and contributes to immune system regulation. The aim of the present study is to investigate a designed peptide based on Cts to fight infections against superbugs and more particularly Staphylococcus aureus. In addition to Cateslytin (Ctl, bovine CgA344-358), the active domain of Catestatin, several peptides including dimers, D-isomer and the new designed peptide DOPA-K-DOPA-K-DOPA-TLRGGE-RSMRLSFRARGYGFR (Dopa5T-Ctl) were prepared and tested. Cateslytin is resistant to bacterial degradation and does not induce bacterial resistance. The interaction of Catestatin with immune dermal cells (dendritic cells DC1a, dermal macrophages CD14 and macrophages) was analyzed by using confocal microscopy and cytokine release assay. The dimers and D-isomer of Ctl were tested against a large variety of bacteria showing the potent antibacterial activity of the D-isomer. The peptide Dopa5T-Ctl is able to induce the self-killing of S. aureus after release of Ctl by the endoprotease Glu-C produced by this pathogen. It permits localized on-demand delivery of the antimicrobial drug directly at the infectious site.
Collapse
Affiliation(s)
- Francesco Scavello
- BioMaterials and BioEngeneering, Institut National de la Santé et de la Recherche Médicale UMR_S 1121, Federation of Translational Medicine Faculty, of Odontology, University of Strasbourg, Hôpital Civil, Porte de L'Hôpital, 67000, Strasbourg, France
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, Italy
| | - Angela Mutschler
- BioMaterials and BioEngeneering, Institut National de la Santé et de la Recherche Médicale UMR_S 1121, Federation of Translational Medicine Faculty, of Odontology, University of Strasbourg, Hôpital Civil, Porte de L'Hôpital, 67000, Strasbourg, France
| | - Sophie Hellé
- BioMaterials and BioEngeneering, Institut National de la Santé et de la Recherche Médicale UMR_S 1121, Federation of Translational Medicine Faculty, of Odontology, University of Strasbourg, Hôpital Civil, Porte de L'Hôpital, 67000, Strasbourg, France
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Francis Schneider
- BioMaterials and BioEngeneering, Institut National de la Santé et de la Recherche Médicale UMR_S 1121, Federation of Translational Medicine Faculty, of Odontology, University of Strasbourg, Hôpital Civil, Porte de L'Hôpital, 67000, Strasbourg, France
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Médecine Intensive-Réanimation, Hautepierre Hospital, Hôpitaux Universitaires, Strasbourg, Federation of Translational Medicine, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Strasbourg, France
| | - Jean-Marc Strub
- Centre National de la Recherche Scientifique, Laboratory of Bio-Organic Mass Spectrometry, Analytical Sciences Department, Pluridisciplinary Institute Hubert Curien, UMR 7178, University of Strasbourg, Strasbourg, France
| | - Sarah Cianferani
- Centre National de la Recherche Scientifique, Laboratory of Bio-Organic Mass Spectrometry, Analytical Sciences Department, Pluridisciplinary Institute Hubert Curien, UMR 7178, University of Strasbourg, Strasbourg, France
| | - Youssef Haikel
- BioMaterials and BioEngeneering, Institut National de la Santé et de la Recherche Médicale UMR_S 1121, Federation of Translational Medicine Faculty, of Odontology, University of Strasbourg, Hôpital Civil, Porte de L'Hôpital, 67000, Strasbourg, France
- Faculty of Odontology, University of Strasbourg, Strasbourg, France
| | - Marie-Hélène Metz-Boutigue
- BioMaterials and BioEngeneering, Institut National de la Santé et de la Recherche Médicale UMR_S 1121, Federation of Translational Medicine Faculty, of Odontology, University of Strasbourg, Hôpital Civil, Porte de L'Hôpital, 67000, Strasbourg, France.
| |
Collapse
|
16
|
Goulding DA, O'Regan J, Bovetto L, O'Brien NM, O'Mahony JA. Influence of thermal processing on the physicochemical properties of bovine lactoferrin. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Lactoferrin and Its Detection Methods: A Review. Nutrients 2021; 13:nu13082492. [PMID: 34444652 PMCID: PMC8398339 DOI: 10.3390/nu13082492] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Lactoferrin (LF) is one of the major functional proteins in maintaining human health due to its antioxidant, antibacterial, antiviral, and anti-inflammatory activities. Abnormal levels of LF in the human body are related to some serious diseases, such as inflammatory bowel disease, Alzheimer’s disease and dry eye disease. Recent studies indicate that LF can be used as a biomarker for diagnosis of these diseases. Many methods have been developed to detect the level of LF. In this review, the biofunctions of LF and its potential to work as a biomarker are introduced. In addition, the current methods of detecting lactoferrin have been presented and discussed. We hope that this review will inspire efforts in the development of new sensing systems for LF detection.
Collapse
|
18
|
Li YQ, Guo C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021; 10:cells10071810. [PMID: 34359979 PMCID: PMC8307123 DOI: 10.3390/cells10071810] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Central nervous system (CNS) diseases are currently one of the major health issues around the world. Most CNS disorders are characterized by high oxidative stress levels and intense inflammatory responses in affected tissues. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, plays a significant role in anti-inflammatory, antibacterial, antiviral, reactive oxygen species (ROS) modulator, antitumor immunity, and anti-apoptotic processes. Previous studies have shown that Lf is abnormally expressed in a variety of neurological diseases, especially neurodegenerative diseases. Recently, the promotion of neurodevelopment and neuroprotection by Lf has attracted widespread attention, and Lf could be exploited both as an active therapeutic agent and drug nanocarrier. However, our understanding of the roles of Lf proteins in the initiation or progression of CNS diseases is limited, especially the roles of Lf in regulating neurogenesis. This review highlights recent advances in the understanding of the major pharmacological effects of Lf in CNS diseases, including neurodegenerative diseases, cerebrovascular disease, developmental delays in children, and brain tumors.
Collapse
Affiliation(s)
| | - Chuang Guo
- Correspondence: ; Tel.: +86-24-8365-6109
| |
Collapse
|
19
|
Leischner C, Egert S, Burkard M, Venturelli S. Potential Protective Protein Components of Cow's Milk against Certain Tumor Entities. Nutrients 2021; 13:1974. [PMID: 34201342 PMCID: PMC8228601 DOI: 10.3390/nu13061974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Milk and dairy products, especially from cow's milk, play a major role in the daily human diet. It is therefore hardly surprising that the subject of milk is being extensively researched and that many effects of individual milk components have been characterized as a result. With the wealth of results available today, the influence of milk on the development of various types of cancer and, in particular, its often protective effects have been shown both in vitro and in vivo and in the evaluation of large-scale cohort and case-control studies. Various caseins, diverse whey proteins such as α-lactalbumin (α-LA), bovine α-lactalbumin made lethal to tumor cells (BAMLET), β-lactoglobulin (β-LG), or bovine serum albumin (BSA), and numerous milk fat components, such as conjugated linoleic acid (CLA), milk fat globule membrane (MFGM), or butyrate, as well as calcium and other protein components such as lactoferrin (Lf), lactoferricin (Lfcin), and casomorphines, show antitumor or cytotoxic effects on cells from different tumor entities. With regard to a balanced and health-promoting diet, milk consumption plays a major role in a global context. This work provides an overview of what is known about the antitumoral properties of proteins derived from cow's milk and their modes of action.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sarah Egert
- Institute of Nutritional Medicine, Nutritional Science/Dietetics 180c, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany;
| | - Markus Burkard
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sascha Venturelli
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tuebingen, Wilhelmstr. 56, 72074 Tuebingen, Germany
| |
Collapse
|
20
|
Wei YS, Feng K, Li SF, Hu TG, Linhardt RJ, Zong MH, Wu H. Oral fate and stabilization technologies of lactoferrin: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6341-6358. [PMID: 33749401 DOI: 10.1080/10408398.2021.1900774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
21
|
El-Fakharany EM. Nanoformulation of lactoferrin potentiates its activity and enhances novel biotechnological applications. Int J Biol Macromol 2020; 165:970-984. [PMID: 33011258 DOI: 10.1016/j.ijbiomac.2020.09.235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
|
22
|
Wuersching SN, Huth KC, Hickel R, Kollmuss M. Inhibitory effect of LL-37 and human lactoferricin on growth and biofilm formation of anaerobes associated with oral diseases. Anaerobe 2020; 67:102301. [PMID: 33249255 DOI: 10.1016/j.anaerobe.2020.102301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/24/2023]
Abstract
This study was conducted to evaluate the antimicrobial potential of the antimicrobial peptides (AMP) LL-37 and human Lactoferricin (LfcinH) on the planktonic growth and biofilm formation of oral pathogenic anaerobes related to caries and periodontitis. Multi-species bacterial suspensions of either facultative anaerobic bacteria (FAB: Streptococcus mutans, Streptococcus sanguinis, Actinomyces naeslundii) or obligate anaerobic bacteria (OAB: Veillonella parvula, Parvimonas micra, Fusobacterium nucleatum) were incubated with different concentrations of AMP solutions for 8 h. Planktonic growth was registered with an ATP-based cell viability assay for FAB and via plate counting for OAB. Biofilms were grown on ZrO2 discs for 4 days in a mixture of the multi-species bacterial suspensions and AMP solutions. Biofilm mass was quantified using a microtiter plate biofilm assay with crystal violet staining. An overall planktonic growth inhibition and biofilm mass reduction of FAB and OAB was registered for LL-37 and LfcinH. Significant inhibitory threshold concentrations of LL-37 were observed in all experiments (p < 0.0001). No significant threshold was observed for LfcinH. Biofilm mass of OAB was barely reduced by LfcinH. The complete mechanisms of the AMPs are not fully understood yet. While LL-37 shows promising features as potential therapeutic for biofilm-associated oral diseases, LfcinH seems unsuitable for this particular indication. For clinical AMP use, further investigations will be necessary.
Collapse
Affiliation(s)
- Sabina Noreen Wuersching
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Karin Christine Huth
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Maximilian Kollmuss
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany.
| |
Collapse
|
23
|
Icriverzi M, Dinca V, Moisei M, Evans RW, Trif M, Roseanu A. Lactoferrin in Bone Tissue Regeneration. Curr Med Chem 2020; 27:838-853. [PMID: 31258057 DOI: 10.2174/0929867326666190503121546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/15/2018] [Accepted: 12/13/2018] [Indexed: 11/22/2022]
Abstract
Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.
Collapse
Affiliation(s)
- Madalina Icriverzi
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania.,University of Bucharest, Faculty of Biology, Bucharest, Romania
| | - Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Romania
| | - Magdalena Moisei
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robert W Evans
- Brunel University, School of Engineering and Design, London, United Kingdom
| | - Mihaela Trif
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anca Roseanu
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
24
|
Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Musci G. Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020; 10:biom10030456. [PMID: 32183434 PMCID: PMC7175311 DOI: 10.3390/biom10030456] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| |
Collapse
|
25
|
Asztalos EV, Barrington K, Lodha A, Tarnow-Mordi W, Martin A. Lactoferrin infant feeding trial_Canada (LIFT_Canada): protocol for a randomized trial of adding lactoferrin to feeds of very-low-birth-weight preterm infants. BMC Pediatr 2020; 20:40. [PMID: 31996186 PMCID: PMC6988327 DOI: 10.1186/s12887-020-1938-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In Canada alone, almost 3000 VLBW infants are born and treated annually with almost 1200 going onto death or survival with severe brain injury, chronic lung disorders, aggressive retinopathy of prematurity, late-onset sepsis, or significant necrotizing enterocolitis. Lactoferrin is an antimicrobial, antioxidant, anti-inflammatory iron-carrying, bifidogenic glycoprotein found in all vertebrates and in mammalian milk, leukocytes and exocrine secretions. Lactoferrin aids in creating an environment for growth of beneficial bacteria in the gut, thus reducing colonization with pathogenic bacteria. It is hypothesized that oral bovine lactoferrin (bLF), through its antimicrobial, antioxidant and anti-inflammatory properties, will reduce the rate of mortality or major morbidity in very low birth weight preterm infants. METHOD Lactoferrin Infant Feeding Trial_Canada (LIFT_Canada) is a multi-centre, double-masked, randomized controlled trial with the aim to enroll 500 infants whose data will be combined with the data of the 1542 infants enrolled from Lactoferrin Infant Feeding Trial_Australia/New Zealand (LIFT_ANZ) in a pooled intention-to-treat analysis. Eligible infants will be randomized and allocated to one of two treatment groups: 1) a daily dose of 200 mg/kg bLF in breast/donor human milk or formula milk until 34 weeks corrected gestation or for a minimum of 2 weeks, whichever is longer, or until discharge home or transfer, if earlier; 2) no bLF with daily feeds. The primary outcome will be determined at 36 weeks corrected gestation for the presence of neonatal morbidity and at discharge for survival and treated retinopathy of prematurity. The duration of the trial is expected to be 36 months. DISCUSSION Currently, there continues to be no clear answer related to the benefit of bLF in reducing mortality or any or all of the significant neonatal morbidities in very low birth weight infants. LIFT_Canada is designed with the hope that the pooled results from Australia, New Zealand, and Canada may help to clarify the situation. TRIAL REGISTRATION Clinical Trials.Gov, Identifier: NCT03367013, Registered December 8, 2017.
Collapse
MESH Headings
- Female
- Humans
- Infant, Newborn
- Male
- Anti-Infective Agents/administration & dosage
- Brain Injuries/epidemiology
- Brain Injuries/prevention & control
- Canada
- Cerebral Palsy/epidemiology
- Double-Blind Method
- Enteral Nutrition
- Enterocolitis, Necrotizing/prevention & control
- Hospital Mortality
- Infant Formula
- Infant, Premature
- Infant, Premature, Diseases/epidemiology
- Infant, Premature, Diseases/mortality
- Infant, Premature, Diseases/prevention & control
- Infant, Very Low Birth Weight
- Intention to Treat Analysis
- Lactoferrin/administration & dosage
- Milk, Human
- Sepsis/prevention & control
- Randomized Controlled Trials as Topic
- Multicenter Studies as Topic
Collapse
Affiliation(s)
- Elizabeth V Asztalos
- Department of Newborn and Developmental Paediatrics, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, M4-230, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada.
| | - Keith Barrington
- Department of Pediatrics, Université de Montréal, Montréal, PQ, Canada
| | - Abhay Lodha
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | | | - Andrew Martin
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Wang C, Wang Q, Li R, Qin J, Song L, Zhang Q, Liu M, Chen J, Wang C. LTF, PRTN3, and MNDA in Synovial Fluid as Promising Biomarkers for Periprosthetic Joint Infection: Identification by Quadrupole Orbital-Trap Mass Spectrometry. J Bone Joint Surg Am 2019; 101:2226-2234. [PMID: 31644522 DOI: 10.2106/jbjs.18.01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Diagnosing periprosthetic joint infection (PJI) requires various laboratory and clinical criteria. The purpose of this study was to explore novel biomarkers that could rapidly diagnose PJI with high accuracy. METHODS In this retrospective study of prospectively collected samples, 50 synovial fluid aspirates, 20 from the hip and 30 from the knee, were collected before surgery; 25 of the patients were diagnosed as having aseptic loosening (non-PJI) and 25, as having PJI according to the Musculoskeletal Infection Society criteria. A quadrupole orbital-trap mass spectrometry (MS) instrument was used to compare expression of proteins in patients with and without PJI. Proteins that were most efficacious for diagnosis of PJI were then determined using prediction analysis of microarray software and a random forest model. The most promising proteins were selected, and altered expression of these selected proteins was verified by ELISA (enzyme-linked immunosorbent assay) in an extended sample cohort. RESULTS A total of 256 proteins were significantly upregulated (≥3.0-fold) and 14 proteins were downregulated in synovial fluid of patients with PJI compared with patients without PJI. The 3 most promising proteins were lactoferrin (LTF), polymorphonuclear leukocyte serine protease 3 (PRTN3), and myeloid nuclear differentiation antigen (MNDA). When MS was used for diagnosis of PJI, the area under the curve was 0.9888 for LTF, 0.9488 for PRTN3, and 0.9632 for MNDA. ELISA results verified that LTF, MNDA, and PRTN3 were sensitive, while LTF and MNDA were specific, for diagnosis of PJI. CONCLUSIONS This proteomic study identified a previously noted protein and 2 novel candidate proteins as promising synovial fluid biomarkers for PJI diagnosis, and they should be further validated in future clinical trials. LEVEL OF EVIDENCE Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Chi Wang
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Qi Wang
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Rui Li
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Lei Song
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Qian Zhang
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Jiying Chen
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Chengbin Wang
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| |
Collapse
|
27
|
Darwish AM, Fouly HA, Saied WH, Farah E. Lactoferrin plus health education versus total dose infusion (TDI) of low-molecular weight (LMW) iron dextran for treating iron deficiency anemia (IDA) in pregnancy: a randomized controlled trial. J Matern Fetal Neonatal Med 2019; 32:2214-2220. [PMID: 29338568 DOI: 10.1080/14767058.2018.1429396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Iron deficiency anemia (IDA) is one of the most common medical disorder disturbing pregnancies particularly in low resources countries, and contributes significantly to morbidities and mortalities. Thus, early diagnosis and prompt management of IDA is highly recommended. AIM To Test the efficacy and safety of oral lactoferrin plus health education provided by a nurse versus total dose infusion (TDI) of low-molecular weight (LMW) iron dextran for treating IDA in the second and third trimester of pregnancy. DESIGN A prospective interventional, randomized, parallel-group, single-center longitudinal study. SETTING Woman's Health Assiut University Hospital, Assiut, Egypt, at the outpatient clinic and inpatient unit. It comprised 120 cases divided into two groups as pineapple flavored lactoferrin oral sachets 100 mg twice daily with health education (group A) and TDI of LMW iron dextran (group B). MAIN OUTCOME MEASURES The primary efficacy parameter was clinical improvement and the amount of increase in hemoglobin concentration by 4 weeks after therapy, secondary outcome measures included measurement of the rest of RBC, and iron indices, the adverse effects related to iron therapy and the patient compliance to the treatment. RESULTS There was insignificant difference between both groups regarding sociodemographic data, parity and mean gestational age. Both groups showed a significant clinical improvement of anemia 4 weeks post-therapy. There was no statistically significant difference in mean Hb level improvement in both groups after 1 month of therapy. However, mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) improved significantly more in group B than A while iron indices (serum iron and serum ferritin) were significantly more in group A than group B. CONCLUSIONS Pineapple flavored lactoferrin oral sachets plus health education can be widely used as an alternative to TDI iron dextran supplementation due to clinical as well as laboratory improvement of IDA during pregnancy after 1 month of treatment. Proper health education of the pregnant women with nurse recommendations of balanced diet containing good sources of iron would increase awareness of pregnant women and help eradicate IDA with its serious sequel during pregnancy.
Collapse
Affiliation(s)
- A M Darwish
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Woman's Health University Hospital , Assiut , Egypt
| | - H A Fouly
- b Faculty of Nursing , Assiut University , Assiut , Egypt
| | - W H Saied
- b Faculty of Nursing , Assiut University , Assiut , Egypt
| | - E Farah
- c Department of Clinical Pathology , Faculty of Medicine, Aswan University , Assiut , Egypt
| |
Collapse
|
28
|
Da Silva M, Dombre C, Brionne A, Monget P, Chessé M, De Pauw M, Mills M, Combes-Soia L, Labas V, Guyot N, Nys Y, Réhault-Godbert S. The Unique Features of Proteins Depicting the Chicken Amniotic Fluid. Mol Cell Proteomics 2019; 18:S174-S190. [PMID: 29444982 PMCID: PMC6427230 DOI: 10.1074/mcp.ra117.000459] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/18/2018] [Indexed: 11/06/2022] Open
Abstract
In many amniotes, the amniotic fluid is depicted as a dynamic milieu that participates in the protection of the embryo (cushioning, hydration, and immunity). However, in birds, the protein profile of the amniotic fluid remains unexplored, even though its proteomic signature is predicted to differ compared with that of humans. In fact, unlike humans, chicken amniotic fluid does not collect excretory products and its protein composition strikingly changes at mid-development because of the massive inflow of egg white proteins, which are thereafter swallowed by the embryo to support its growth. Using GeLC-MS/MS and shotgun strategies, we identified 91 nonredundant proteins delineating the chicken amniotic fluid proteome at day 11 of development, before egg white transfer. These proteins were essentially associated with the metabolism of nutrients, immune response and developmental processes. Forty-eight proteins were common to both chicken and human amniotic fluids, including serum albumin, apolipoprotein A1 and alpha-fetoprotein. We further investigated the effective role of chicken amniotic fluid in innate defense and revealed that it exhibits significant antibacterial activity at day 11 of development. This antibacterial potential is drastically enhanced after egg white transfer, presumably due to lysozyme, avian beta-defensin 11, vitelline membrane outer layer protein 1, and beta-microseminoprotein-like as the most likely antibacterial candidates. Interestingly, several proteins recovered in the chicken amniotic fluid prior and after egg white transfer are uniquely found in birds (ovalbumin and related proteins X and Y, avian beta-defensin 11) or oviparous species (vitellogenins 1 and 2, riboflavin-binding protein). This study provides an integrative overview of the chicken amniotic fluid proteome and opens stimulating perspectives in deciphering the role of avian egg-specific proteins in embryonic development, including innate immunity. These proteins may constitute valuable biomarkers for poultry production to detect hazardous situations (stress, infection, etc.), that may negatively affect the development of the chicken embryo.
Collapse
Affiliation(s)
| | - Clara Dombre
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France
| | | | - Philippe Monget
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France
| | - Magali Chessé
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | | | - Maryse Mills
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | - Lucie Combes-Soia
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France;; INRA, Plate-forme de Chirurgie et Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), F-37380 Nouzilly, France
| | - Valérie Labas
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France;; INRA, Plate-forme de Chirurgie et Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), F-37380 Nouzilly, France
| | - Nicolas Guyot
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | - Yves Nys
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | | |
Collapse
|
29
|
Kühnle A, Veelken R, Galuska CE, Saftenberger M, Verleih M, Schuppe HC, Rudloff S, Kunz C, Galuska SP. Polysialic acid interacts with lactoferrin and supports its activity to inhibit the release of neutrophil extracellular traps. Carbohydr Polym 2019; 208:32-41. [DOI: 10.1016/j.carbpol.2018.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/13/2023]
|
30
|
Ndayisaba A, Kaindlstorfer C, Wenning GK. Iron in Neurodegeneration - Cause or Consequence? Front Neurosci 2019; 13:180. [PMID: 30881284 PMCID: PMC6405645 DOI: 10.3389/fnins.2019.00180] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Iron dyshomeostasis can cause neuronal damage to iron-sensitive brain regions. Neurodegeneration with brain iron accumulation reflects a group of disorders caused by iron overload in the basal ganglia. High iron levels and iron related pathogenic triggers have also been implicated in sporadic neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple system atrophy (MSA). Iron-induced dyshomeostasis within vulnerable brain regions is still insufficiently understood. Here, we summarize the modes of action by which iron might act as primary or secondary disease trigger in neurodegenerative disorders. In addition, available treatment options targeting brain iron dysregulation and the use of iron as biomarker in prodromal stages are critically discussed to address the question of cause or consequence.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Zavatski S, Khinevich N, Girel K, Redko S, Kovalchuk N, Komissarov I, Lukashevich V, Semak I, Mamatkulov K, Vorobyeva M, Arzumanyan G, Bandarenka H. Surface Enhanced Raman Spectroscopy of Lactoferrin Adsorbed on Silvered Porous Silicon Covered with Graphene. BIOSENSORS 2019; 9:E34. [PMID: 30823455 PMCID: PMC6468514 DOI: 10.3390/bios9010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
We registered surface enhanced Raman scattering (SERS) spectra of the human lactoferrin molecules adsorbed on a silvered porous silicon (por-Si) from 10-6⁻10-18 M solutions. It was found that the por-Si template causes a negative surface potential of silver particles and their chemical resistivity to oxidation. These properties provided to attract positively charged lactoferrin molecules and prevent their interaction with metallic particles upon 473 nm laser excitation. The SERS spectra of lactoferrin adsorbed from 10-6 M solution were rather weak but a decrease of the concentration to 10-10 M led to an enormous growth of the SERS signal. This effect took place as oligomers of lactoferrin were broken down to monomeric units while its concentration was reduced. Oligomers are too large for a uniform overlap with electromagnetic field from silver particles. They cannot provide an intensive SERS signal from the top part of the molecules in contrast to monomers that can be completely covered by the electromagnetic field. The SERS spectra of lactoferrin at the 10-14 and 10-16 M concentrations were less intensive and started to change due to increasing contribution from the laser burned molecules. To prevent overheating the analyte molecules on the silvered por-Si were protected with graphene, which allowed the detection of lactoferrin adsorbed from the 10-18 M solution.
Collapse
Affiliation(s)
- Sergey Zavatski
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Nadia Khinevich
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Kseniya Girel
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Sergey Redko
- Laboratory of Materials and Structures of Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Nikolai Kovalchuk
- Laboratory of Integrated Micro- and Nanosystems, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Ivan Komissarov
- Laboratory of Integrated Micro- and Nanosystems, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Vladimir Lukashevich
- Laboratory of Nutrition and Sports Physiology, Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, 220030 Minsk, Belarus.
| | - Kahramon Mamatkulov
- Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| | - Maria Vorobyeva
- Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| | - Grigory Arzumanyan
- Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
- Dubna State University, 141982 Dubna, Russia.
| | - Hanna Bandarenka
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| |
Collapse
|
32
|
Adnane M, Meade KG, O'Farrelly C. Cervico-vaginal mucus (CVM) - an accessible source of immunologically informative biomolecules. Vet Res Commun 2018; 42:255-263. [PMID: 30117040 PMCID: PMC6244541 DOI: 10.1007/s11259-018-9734-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023]
Abstract
Cervico-vaginal mucus (CVM), the product of epithelial cells lining the uterus, cervix and vagina, is secreted to facilitate uterine lubrication and microbial clearance. Predominantly composed of water and mucins, CVM also contains high levels of immuno-active proteins such as immunoglobulin A (IgA), lactoferrin and lysozyme which protect against infection by blocking adhesion and mediating microbial killing. The repertoire of cytokines, chemokines and antimicrobial peptides is predominantly generated by the secretions of endometrial epithelial cells into the uterine lumen and concentrated in the CVM. The quantity and relative proportions of these inflammatory biomarkers are affected by diverse factors including the estrus cycle and health status of the animal and therefore potentially provide important diagnostic and prognostic indicators. We propose that measuring molecular signatures in bovine CVM could be a useful approach to identifying and monitoring genital tract pathologies in beef and dairy cows.
Collapse
Affiliation(s)
- Mounir Adnane
- School of Biochemistry and Immunology & School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
- Institute of Veterinary Sciences, Tiaret, Algeria
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology & School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
33
|
Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Res 2018; 28:51-76. [PMID: 30374651 DOI: 10.1007/s11248-018-0101-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.
Collapse
|
34
|
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Front Neurosci 2018; 12:632. [PMID: 30250423 PMCID: PMC6139360 DOI: 10.3389/fnins.2018.00632] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
As people age, iron deposits in different areas of the brain may impair normal cognitive function and behavior. Abnormal iron metabolism generates hydroxyl radicals through the Fenton reaction, triggers oxidative stress reactions, damages cell lipids, protein and DNA structure and function, and ultimately leads to cell death. There is an imbalance in iron homeostasis in Alzheimer's disease (AD). Excessive iron contributes to the deposition of β-amyloid and the formation of neurofibrillary tangles, which in turn, promotes the development of AD. Therefore, iron-targeted therapeutic strategies have become a new direction. Iron chelators, such as desferoxamine, deferiprone, deferasirox, and clioquinol, have received a great deal of attention and have obtained good results in scientific experiments and some clinical trials. Given the limitations and side effects of the long-term application of traditional iron chelators, alpha-lipoic acid and lactoferrin, as self-synthesized naturally small molecules, have shown very intriguing biological activities in blocking Aβ-aggregation, tauopathy and neuronal damage. Despite a lack of evidence for any clinical benefits, the conjecture that therapeutic chelation, with a special focus on iron ions, is a valuable approach for treating AD remains widespread.
Collapse
Affiliation(s)
- Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zheng-Sheng Yang
- Department of Dermatology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Medical Cell Biology of Ministry of Education, Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
35
|
Mladěnka P, Hrdina R, Hübl M, Šimůnek T. The Fate of Iron in The Organism and Its Regulatory Pathways. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Iron is an essential element involved in many life-necessary processes. Interestingly, in mammals there is no active excretion mechanism for iron. Therefore iron kinetics has to be meticulously regulated. The most important step for regulation of iron kinetics is absorption. The absorption takes place in small intestine and it is implicated that it requires several proteins. Iron is then released from enterocytes into the circulation and delivered to the cells. Iron movement inside the cell is only partially elucidated and its traffic to mitochondia is not known. Surprisingly, the regulation of various proteins related to iron kinetics and energy metabolism at the molecular level is better described. On contrary, the complex control of iron absorption cannot be fully explicated with present knowledge.
Collapse
|
36
|
Molecular mechanism of inhibitory effects of bovine lactoferrin on the growth of oral squamous cell carcinoma. PLoS One 2018; 13:e0191683. [PMID: 29381751 PMCID: PMC5790278 DOI: 10.1371/journal.pone.0191683] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Lactoferrin (LF), a member of the transferrin family, recently has been demonstrated to have anticancer effects on various cancers including oral squamous cell carcinoma (OSCC). However, little is known about the underlying mechanisms of its effects on OSCC. Therefore, we aimed to investigate the mechanism of the suppressive effects of bovine LF (bLF) on the growth of OSCC cells. Methods In the current study, HSC2, HSC3, HSC4 and normal human oral keratinocytes (RT7) cell lines were tested with bLF 1, 10, and 100 μg/ml. The effects and detail mechanisms of bLF on proliferation and apoptosis of cells were investigated using flow cytometry and western blotting. Results We found that bLF (1, 10, and 100 μg/ml) induced activation of p53, a tumor suppressor gene, is associated with the induction of cell cycle arrest in G1/S phase and apoptosis in OSCC. Moreover, bLF downregulated the phosphorylation of Akt and activated suppressor of cytokine signaling 3 (SOCS3), thereby attenuating multiple signaling pathways including mTOR/S6K and JAK/STAT3. Interestingly, we revealed that bLF exerted its effect selectively against HSC3 but not on RT7 via different effects on the phosphorylation status of NF-κB and Akt. Conclusion This is the first report showing that bLF selectively suppresses proliferation through mTOR/S6K and JAK/STAT3 pathways and induction of apoptosis in OSCC. This study provides important new findings, which might be useful in the prevention and treatment of OSCC.
Collapse
|
37
|
Mohamed WA, Schaalan MF. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway. Diabetol Metab Syndr 2018; 10:89. [PMID: 30534206 PMCID: PMC6280363 DOI: 10.1186/s13098-018-0390-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
The current study aims to investigate the antidiabetic efficacy of camel milk-derived lactoferrin and potential involvement of PPAR-γ and SIRT-1 via TLR-4/NFκB signaling pathway in obese diabetic pediatric population. Sixty young obese patients with type 2 diabetes were selected from the Pediatric Endocrine Metabolic Unit, Cairo University and were randomly divided among two age and sex-matched groups so as to receive either standard therapy without lactoferrin in one arm or to be treated with oral lactoferrin capsules (250 mg/day, p.o) for 3 months in the other arm. Both groups were compared to 50 control healthy volunteers. Measurements of HbA1c, lipid profile, antioxidant capacity (SOD, Nrf2), proinflammatory interleukins; (IL-1β, IL-6, IL-18), Cyclin D-1, lipocalin-2, and PPAR-γ expression levels were done at the beginning and 3 months after daily consumption of lactoferrin. The mechanistic involvement of TLR4-SIRT-1-NFκB signaling cascade was also investigated. The antidiabetic efficacy of lactoferrin was confirmed by significant improvement of the baseline levels of HbA1c, BMI and lipid profile of the obese pediatric cohort, which is evidenced by increased PPAR-γ and SIRT-1 expression. Moreover, the anti-inflammatory effect was evident by the significant decrease in serum levels of IL-1β, IL-6, IL-18, TNF-α, lipocalin 2 in type 2 diabetic post-treatment group, which corresponded by decreased NFκB downstream signaling indicators. The antioxidant efficacy was evident by stimulated SOD levels and NrF2 expression; compared with the pre-treatment group (all at P ≤ 0.001). The consumption of high concentrations of lactoferrin explains its hypoglycemic efficacy and counts for its insulin-sensitizing, anti-inflammatory and immunomodulatory effects via TLR4-NFκB-SIRT-1 signaling cascade. Recommendations on regular intake of lactoferrin could ensure better glycemic control, compared to conventional antidiabetics alone.
Collapse
Affiliation(s)
- Waleed A. Mohamed
- Department of Chemistry, Kasr El Aini Teaching Hospitals, Cairo University, Cairo, Egypt
| | - Mona F. Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
38
|
Njunge JM, Oyaro IN, Kibinge NK, Rono MK, Kariuki SM, Newton CR, Berkley JA, Gitau EN. Cerebrospinal fluid markers to distinguish bacterial meningitis from cerebral malaria in children. Wellcome Open Res 2017; 2:47. [PMID: 29181450 PMCID: PMC5686508 DOI: 10.12688/wellcomeopenres.11958.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/23/2022] Open
Abstract
Background. Few hospitals in high malaria endemic countries in Africa have the diagnostic capacity for clinically distinguishing acute bacterial meningitis (ABM) from cerebral malaria (CM). As a result, empirical use of antibiotics is necessary. A biochemical marker of ABM would facilitate precise clinical diagnosis and management of these infections and enable rational use of antibiotics. Methods. We used label-free protein quantification by mass spectrometry to identify cerebrospinal fluid (CSF) markers that distinguish ABM (n=37) from CM (n=22) in Kenyan children. Fold change (FC) and false discovery rates (FDR) were used to identify differentially expressed proteins. Subsequently, potential biomarkers were assessed for their ability to discriminate between ABM and CM using receiver operating characteristic (ROC) curves. Results. The host CSF proteome response to ABM ( Haemophilusinfluenza and Streptococcuspneumoniae) is significantly different to CM. Fifty two proteins were differentially expressed (FDR<0.01, Log FC≥2), of which 83% (43/52) were upregulated in ABM compared to CM. Myeloperoxidase and lactotransferrin were present in 37 (100%) and 36 (97%) of ABM cases, respectively, but absent in CM (n=22). Area under the ROC curve (AUC), sensitivity, and specificity were assessed for myeloperoxidase (1, 1, and 1; 95% CI, 1-1) and lactotransferrin (0.98, 0.97, and 1; 95% CI, 0.96-1). Conclusion. Myeloperoxidase and lactotransferrin have a high potential to distinguish ABM from CM and thereby improve clinical management. Their validation requires a larger cohort of samples that includes other bacterial aetiologies of ABM.
Collapse
Affiliation(s)
- James M Njunge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Ian N Oyaro
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,University of Nairobi, Nairobi, Kenya
| | - Nelson K Kibinge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Martin K Rono
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,Pwani University Health and Research Institute, Pwani University, Kilifi, Kenya
| | - Symon M Kariuki
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Charles R Newton
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, OX3 7JX, UK
| | - James A Berkley
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - Evelyn N Gitau
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,Alliance for Accelerating Excellence in Science in Africa (AESA), Nairobi, Kenya
| |
Collapse
|
39
|
Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int J Mol Sci 2017; 18:1985. [PMID: 28914813 PMCID: PMC5618634 DOI: 10.3390/ijms18091985&n948647=v984776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 μg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| |
Collapse
|
40
|
Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int J Mol Sci 2017; 18:E1985. [PMID: 28914813 PMCID: PMC5618634 DOI: 10.3390/ijms18091985] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 μg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| |
Collapse
|
41
|
Abstract
Heparin and heparan sulfate glycosaminoglycans are long, linear polysaccharides that are made up of alternating dissacharide sequences of sulfated uronic acid and amino sugars. Unlike heparin, which is only found in mast cells, heparan sulfate is ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These negatively-charged glycans play essential roles in important cellular functions such as cell growth, adhesion, angiogenesis, and blood coagulation. These biomolecules are also involved in pathophysiological conditions such as pathogen infection and human disease. This review discusses past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection.
Collapse
Affiliation(s)
- Ryan J Weiss
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
42
|
Njunge JM, Oyaro IN, Kibinge NK, Rono MK, Kariuki SM, Newton CR, Berkley JA, Gitau EN. Cerebrospinal fluid markers to distinguish bacterial meningitis from cerebral malaria in children. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.11958.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background. Few hospitals in high malaria endemic countries in Africa have the diagnostic capacity for clinically distinguishing acute bacterial meningitis (ABM) from cerebral malaria (CM). As a result, empirical use of antibiotics is necessary. A biochemical marker of ABM would facilitate precise clinical diagnosis and management of these infections and enable rational use of antibiotics. Methods. We used label-free protein quantification by mass spectrometry to identify cerebrospinal fluid (CSF) markers that distinguish ABM (n=37) from CM (n=22) in Kenyan children. Fold change (FC) and false discovery rates (FDR) were used to identify differentially expressed proteins. Subsequently, potential biomarkers were assessed for their ability to discriminate between ABM and CM using receiver operating characteristic (ROC) curves. Results. The host CSF proteome response to ABM (Haemophilus influenza and Streptococcus pneumoniae) is significantly different to CM. Fifty two proteins were differentially expressed (FDR<0.01, Log FC≥2), of which 83% (43/52) were upregulated in ABM compared to CM. Myeloperoxidase and lactotransferrin were present in 37 (100%) and 36 (97%) of ABM cases, respectively, but absent in CM (n=22). Area under the ROC curve (AUC), sensitivity, and specificity were assessed for myeloperoxidase (1, 1, and 1; 95% CI, 1-1) and lactotransferrin (0.98, 0.97, and 1; 95% CI, 0.96-1). Conclusion. Myeloperoxidase and lactotransferrin have a high potential to distinguish ABM from CM and thereby improve clinical management. Their validation requires a larger cohort of samples that includes other bacterial aetiologies of ABM.
Collapse
|
43
|
Li Q, Zhao J, Hu W, Wang J, Yu T, Dai Y, Li N. Effects of Recombinant Human Lactoferrin on Osteoblast Growth and Bone Status in Piglets. Anim Biotechnol 2017; 29:90-99. [PMID: 28494220 DOI: 10.1080/10495398.2017.1313269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lactoferrin (LF), an ~80 kDa iron-binding glycoprotein, modulates many biological effects, including antimicrobial and immunomodulatory activities. Recently, it was shown that LF also regulates bone cell activity, suggesting its therapeutic effect on postmenopausal bone loss. However, a minimal amount is known regarding the effects of recombinant human LF (rhLF) supplementation on bone status in young healthy infants. We found osteoblast cell differentiation was significantly promoted in vitro. Furthermore, treatment of human osteoblast cells with rhLF rapidly induced phosphorylation of p44/p42 mitogen-activated protein kinase (p44/p42 MAPK, ERK1/2). In order to investigate the effects of rhLF on bone status in vivo, we used a piglet model, which is a useful model for human infants. Piglets were supplemented with rhLF milk for 30 days. Bone formation markers, Serum calcium concentration, bone mineral density (BMD), bone mineral content (BMC), tibia bone strength, and the overall metabolite profile analysis showed that rhLF was advantageous to the bone growth in piglets. These findings suggest that rhLF supplementation benefits neonate bone health by modulating bone formation.
Collapse
Affiliation(s)
- Qiuling Li
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China.,b College of Life Sciences , Langfang Teachers University , Langfang , China
| | - Jie Zhao
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China
| | - Wenping Hu
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China
| | - Jianwu Wang
- c Wuxi Kingenew Biotechnology Company , Wuxi , China
| | - Tian Yu
- c Wuxi Kingenew Biotechnology Company , Wuxi , China
| | - Yunping Dai
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China
| | - Ning Li
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China
| |
Collapse
|
44
|
Karav S, German JB, Rouquié C, Le Parc A, Barile D. Studying Lactoferrin N-Glycosylation. Int J Mol Sci 2017; 18:E870. [PMID: 28425960 PMCID: PMC5412451 DOI: 10.3390/ijms18040870] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
Lactoferrin is a multifunctional glycoprotein found in the milk of most mammals. In addition to its well-known role of binding iron, lactoferrin carries many important biological functions, including the promotion of cell proliferation and differentiation, and as an anti-bacterial, anti-viral, and anti-parasitic protein. These functions differ among lactoferrin homologs in mammals. Although considerable attention has been given to the many functions of lactoferrin, its primary nutritional contribution is presumed to be related to its iron-binding characteristics, whereas the role of glycosylation has been neglected. Given the critical role of glycan binding in many biological processes, the glycan moieties in lactoferrin are likely to contribute significantly to the biological roles of lactoferrin. Despite the high amino acid sequence homology in different lactoferrins (up to 99%), each exhibits a unique glycosylation pattern that may be responsible for heterogeneity of the biological properties of lactoferrins. An important task for the production of biotherapeutics and medical foods containing bioactive glycoproteins is the assessment of the contributions of individual glycans to the observed bioactivities. This review examines how the study of lactoferrin glycosylation patterns can increase our understanding of lactoferrin functionality.
Collapse
Affiliation(s)
- Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey.
| | - J Bruce German
- Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA.
- Foods for Health Institute, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Camille Rouquié
- Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Annabelle Le Parc
- Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Daniela Barile
- Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA.
- Foods for Health Institute, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Rybarczyk J, Kieckens E, Vanrompay D, Cox E. In vitro and in vivo studies on the antimicrobial effect of lactoferrin against Escherichia coli O157:H7. Vet Microbiol 2017; 202:23-28. [DOI: 10.1016/j.vetmic.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
46
|
Aquino-Cortez A, Pinheiro BQ, Lima DBC, Silva HVR, Mota-Filho AC, Martins JAM, Rodriguez-Villamil P, Moura AA, Silva LDM. Proteomic characterization of canine seminal plasma. Theriogenology 2017; 95:178-186. [PMID: 28460673 DOI: 10.1016/j.theriogenology.2017.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
The present study was conducted to identify the major proteome of the sperm-rich fraction and prostatic fraction of canine seminal plasma. Three semen samples from four healthy dogs were obtained by digital manipulation. The pre-sperm fraction, sperm-rich fraction and prostatic fraction were separated from each ejaculate. Immediately after sperm analysis, a protease inhibitor was added to the sperm-rich fraction and prostatic fraction, and the fractions were separately centrifuged and frozen at -80 °C. The samples were thawed, re-centrifuged, and the total protein concentration was determined. Samples were subjected to 1D SDS-PAGE and Coomassie-blue stained gels, were analyzed by Quantity One 1D Analysis Software. Bands detected in the gels were excised and proteins subjected to digestion with trypsin. Proteins were identified by nano-HPLC-MS and tools of bioinformatics. Tandem mass spectrometry allowed the detection of 268 proteins in the gels of sperm-rich fraction and prostatic fraction of canine ejaculate. A total of 251 proteins were common to the sperm-rich and prostatic fractions, while 17 proteins were present in the sperm-rich fraction and absent in the prostatic fraction. The intensity of the bands detected in range 1 and 2 represented 46.5% of all of the band intensities detected in the 1D gels for proteins of the sperm-rich fraction and 53.0% of all bands in the prostatic fraction. Arginine esterase and lactotransferrin precursor were the protein with the highest intensity observed in the both fractions. Among the proteins present only in the sperm-rich fraction, the proteins UPF0764 protein C16orf89 homolog and epididymal-specific lipocalin-9 were the most abundant. In conclusion, canine sperm-rich fraction and prostatic fraction express a very diverse set of proteins, with unique biochemical properties and functions. Moreover, although most proteins are common to both sperm-rich fraction and prostatic fraction, there are some exclusive proteins in sperm-rich fraction.
Collapse
Affiliation(s)
- Annice Aquino-Cortez
- Laboratory of Carnivores Reproduction, State University of Ceara, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Loux SC, Scoggin KE, Troedsson MHT, Squires EL, Ball BA. Characterization of the cervical mucus plug in mares. Reproduction 2017; 153:197-210. [DOI: 10.1530/rep-16-0396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023]
Abstract
The cervical mucus plug (CMP) is believed to play an integral role in the maintenance of pregnancy in the mare, primarily by inhibiting microbial entry. Unfortunately, very little is known about its composition or origin. To determine the proteomic composition of the CMP, we collected CMPs from mares (n = 4) at 9 months of gestation, and proteins were subsequently analyzed by nano-LC–MS/MS. Results were searched against EquCab2.0, and proteomic pathways were predicted by Ingenuity Pathway Analysis. Histologic sections of the CMP were stained with H&E and PAS. To identify the origin of highly abundant proteins in the CMP, we performed qPCR on endometrial and cervical mucosal mRNA from mares in estrus, diestrus as well as mares at 4 and 10 m gestation on transcripts for lactotransferrin, uterine serpin 14, uteroglobin, uteroferrin, deleted in malignant brain tumors 1 and mucins 4, 5b and 6. Overall, we demonstrated that the CMP is composed of a complex milieu of proteins during late gestation, many of which play an important role in immune function. Proteins traditionally considered to be endometrial proteins were found to be produced by the cervical mucosa suggesting that the primary source of the CMP is the cervical mucosa itself. In summary, composition of the equine CMP is specifically regulated not only during pregnancy but also throughout the estrous cycle. The structural and compositional changes serve to provide both a structural barrier as well as a physiological barrier during pregnancy to prevent infection of the fetus and fetal membranes.
Collapse
|
48
|
Sill C, Biehl R, Hoffmann B, Radulescu A, Appavou MS, Farago B, Merkel R, Richter D. Structure and domain dynamics of human lactoferrin in solution and the influence of Fe(III)-ion ligand binding. BMC BIOPHYSICS 2016; 9:7. [PMID: 27822363 PMCID: PMC5095980 DOI: 10.1186/s13628-016-0032-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
Background Human lactoferrin is an iron-binding protein of the innate immune system consisting of two connected lobes, each with a binding site located in a cleft. The clefts in each lobe undergo a hinge movement from open to close when Fe3+ is present in the solution and can be bound. The binding mechanism was assumed to relate on thermal domain fluctuations of the cleft domains prior to binding. We used Small Angle Neutron Scattering and Neutron Spin Echo Spectroscopy to determine the lactoferrin structure and domain dynamics in solution. Results When Fe3+ is present in solution interparticle interactions change from repulsive to attractive in conjunction with emerging metas aggregates, which are not observed without Fe3+. The protein form factor shows the expected change due to lobe closing if Fe3+ is present. The dominating motions of internal domain dynamics with relaxation times in the 30–50 ns range show strong bending and stretching modes with a steric suppressed torsion, but are almost independent of the cleft conformation. Thermally driven cleft closing motions of relevant amplitude are not observed if the cleft is open. Conclusion The Fe3+ binding mechanism is not related to thermal equilibrium fluctuations closing the cleft. A likely explanation may be that upon entering the cleft the iron ion first binds weakly which destabilizes and softens the hinge region and enables large fluctuations that then close the cleft resulting in the final formation of the stable iron binding site and, at the same time, stable closed conformation. Electronic supplementary material The online version of this article (doi:10.1186/s13628-016-0032-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clemens Sill
- JCNS-1 & ICS-1, Forschungszentrum Jülich GmbH, Leo-Brandt Strasse, 52425 Jülich, Germany
| | - Ralf Biehl
- JCNS-1 & ICS-1, Forschungszentrum Jülich GmbH, Leo-Brandt Strasse, 52425 Jülich, Germany
| | - Bernd Hoffmann
- ICS-7, Forschungszentrum Jülich GmbH, Leo-Brandt Strasse, 52425 Jülich, Germany
| | - Aurel Radulescu
- JCNS-MLZ, Forschungszentrum Jülich GmbH Outstation at MLZ, Lichtenbergstraße, 1 85747 Garching, Germany
| | - Marie-Sousai Appavou
- JCNS-MLZ, Forschungszentrum Jülich GmbH Outstation at MLZ, Lichtenbergstraße, 1 85747 Garching, Germany
| | - Bela Farago
- Institute Laue-Langevin, CS 20156, 38042 Grenoble, France
| | - Rudolf Merkel
- ICS-7, Forschungszentrum Jülich GmbH, Leo-Brandt Strasse, 52425 Jülich, Germany
| | - Dieter Richter
- JCNS-1 & ICS-1, Forschungszentrum Jülich GmbH, Leo-Brandt Strasse, 52425 Jülich, Germany
| |
Collapse
|
49
|
Terrill JR, Duong MN, Turner R, Le Guiner C, Boyatzis A, Kettle AJ, Grounds MD, Arthur PG. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy. Redox Biol 2016; 9:276-286. [PMID: 27611888 PMCID: PMC5018082 DOI: 10.1016/j.redox.2016.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 01/29/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD) dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl). There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia; School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia, Australia.
| | - Marisa N Duong
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| | - Rufus Turner
- Centre for Free Radical Research, Department of Pathology, the University of Otago, Christchurch, New Zealand
| | - Caroline Le Guiner
- Atlantic Gene Therapies, INSERM UMR1089, Nantes, France; Genethon, Evry, France
| | - Amber Boyatzis
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, the University of Otago, Christchurch, New Zealand
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
50
|
Sharma D, Shastri S, Sharma P. Role of lactoferrin in neonatal care: a systematic review. J Matern Fetal Neonatal Med 2016; 30:1920-1932. [PMID: 27593940 DOI: 10.1080/14767058.2016.1232384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lactoferrin (LF) is present in breast milk and have numerous properties including antimicrobial, antiviral, antifungal, and anticancer. Recent studies have emphasized the role of LF in neonatal care Aims and objective: To evaluate the various roles of LF in neonatal care in preterm infants. SEARCH METHODS The literature search was done for this systematic review by searching the electronic database namely Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, Web of Science, Scopus, Index Copernicus, African Index Medicus (AIM), Thomson Reuters (ESCI), Chemical Abstracts Service (CAS), SCIWIN (Scientific World Index), Google Scholar, Latin American and Caribbean Health Sciences Information System (LILACS), Index Medicus for the Eastern Mediterranean Region (IMEMR), Index Medicus for the South-East Asian Region (IMSEAR), Western Pacific Region Index Medicus (WPRIM), various sites for ongoing trials namely clinical trial registry ( www.clinicaltrials.gov , www.controlled-trials.com , Australian and New Zealand Clinical Trials Registry ( http://www.anzctr.org.au ), Indian Clinical Trials Registry ( http://ctri.nic.in/Clinicaltrials ), and the World Health Organization (WHO) International Clinical Trials Registry, and Platform ( http://www.who.int/ictrp/search/en/ ) and abstracts of conferences namely proceedings of Pediatric Academic Societies (American Pediatric Society, Society for Pediatric Research, and European Society for Pediatric Research). RESULTS Nine eligible studies were analyzed that fulfilled the inclusion criteria of the systematic review. Six duplicate publications were excluded from review. Four studies were excluded due to nonfulfillment of inclusion criteria. All of the studies had more than one outcome of interest. Four studies showed reduction in late onset sepsis (LOS), one showed reduction in invasive fungal infection (IFI), three showed significant decrease in incidence of necrotizing enterocolitis (NEC), one showed reduction in NEC scares, and two showed decrease in mortality, and one showed decrease in combined death and/or NEC. Only one study evaluated role of LF for ventilator-associated pneumonia (VAP) reduction and showed lower rate of VAP. Still the role of LF in Bronchopulmonary dysplasia (BPD) and Retinopathy of prematurity (ROP) is unclear. CONCLUSION LF has shown to be promising agent for reduction of LOS and NEC. The role of LF in prevention of neonatal mortality, BPD, and ROP needs further studies. The trials that are going on around the world may be able to give reply of this question in future.
Collapse
Affiliation(s)
- Deepak Sharma
- a Consultant Neonatologist, NEOCLINIC, Plot number 3 & 4, Everest Vihar, TN Mishra Marg, Nirman Nagar , Jaipur , Rajasthan , India
| | - Sweta Shastri
- b Department of Pathology , N.K.P Salve Medical College , Nagpur , Maharashtra , India , and
| | - Pradeep Sharma
- c Department of Medicine , Mahatma Gandhi Medical College , Jaipur , Rajasthan , India
| |
Collapse
|