1
|
Simón-Carrasco L, Pietrini E, López-Contreras AJ. Integrated analysis of FHIT gene alterations in cancer. Cell Cycle 2024; 23:92-113. [PMID: 38234243 PMCID: PMC11005815 DOI: 10.1080/15384101.2024.2304509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The Fragile Histidine Triad Diadenosine Triphosphatase (FHIT) gene is located in the Common Fragile Site FRA3B and encodes an enzyme that hydrolyzes the dinucleotide Ap3A. Although FHIT loss is one of the most frequent copy number alterations in cancer, its relevance for cancer initiation and progression remains unclear. FHIT is frequently lost in cancers from the digestive tract, which is compatible with being a cancer driver event in these tissues. However, FHIT loss could also be a passenger event due to the inherent fragility of the FRA3B locus. Moreover, the physiological relevance of FHIT enzymatic activity and the levels of Ap3A is largely unclear. We have conducted here a systematic pan-cancer analysis of FHIT status in connection with other mutations and phenotypic alterations, and we have critically discussed our findings in connection with the literature to provide an overall view of FHIT implications in cancer.
Collapse
Affiliation(s)
- Lucía Simón-Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Elena Pietrini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Andrés J. López-Contreras
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
Soslau G. Extracellular adenine compounds within the cardiovascular system: Their source, metabolism and function. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2020.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
3
|
Lee SY, Lévesque SA, Sévigny J, Müller CE. A highly sensitive capillary electrophoresis method using p-nitrophenyl 5'-thymidine monophosphate as a substrate for the monitoring of nucleotide pyrophosphatase/phosphodiesterase activities. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:162-9. [PMID: 23217320 DOI: 10.1016/j.jchromb.2012.10.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/14/2012] [Accepted: 10/26/2012] [Indexed: 12/23/2022]
Abstract
A highly sensitive capillary electrophoresis method has been developed to monitor the activity of nucleotide pyrophosphatases/phosphodiesterases (NPPs) and screen for NPP inhibitors. In this method, p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) was used as an artificial substrate, and separation of reaction products was performed on a dynamically coated capillary. We found that the optimal capillary electrophoresis (CE) conditions were as follows: fused-silica capillary (20cm effective length×75.5μm (id)), electrokinetic injection for 60s, 70mM phosphate buffer containing polybrene 0.002%, pH 9.2, constant current of -80μA, constant capillary temperature of 15°C and detection at 400nm. To allow precise quantification, 2-methyl-4,6-dinitrophenol (dinitrocresol) was applied as an internal standard. The limit of detection (LOD) and the limit of quantification (LOQ) were 137 and 415nM, respectively. This new method was shown to be over 8-fold more sensitive than the conventional spectrophotometric assays and 16-fold more than the previously reported CE procedure, and the results (K(m) values for NPP1 and NPP3, K(i) values for standard inhibitors) obtained were in accordance with previous literature data. Therefore, this new method is an improvement of actual techniques and could be used as a quick and standard analytical technique for the identification and characterization of NPP inhibitors.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | |
Collapse
|
4
|
Jankowski V, van der Giet M, Mischak H, Morgan M, Zidek W, Jankowski J. Dinucleoside polyphosphates: strong endogenous agonists of the purinergic system. Br J Pharmacol 2009; 157:1142-53. [PMID: 19563527 DOI: 10.1111/j.1476-5381.2009.00337.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The purinergic system is composed of mononucleosides, mononucleoside polyphosphates and dinucleoside polyphosphates as agonists, as well as the respective purinergic receptors. Interest in the role of the purinergic system in cardiovascular physiology and pathophysiology is on the rise. This review focuses on the overall impact of dinucleoside polyphosphates in the purinergic system. Platelets, adrenal glands, endothelial cells, cardiomyocytes and tubular cells release dinucleoside polyphosphates. Plasma concentrations of dinucleoside polyphosphates are sufficient to cause direct vasoregulatory effects and to induce proliferative effects on vascular smooth muscle cells and mesangial cells. In addition, increased plasma concentrations of a dinucleoside polyphosphate were recently demonstrated in juvenile hypertensive patients. In conclusion, the current literature accentuates the strong physiological and pathophysiological impact of dinucleoside polyphosphates on the cardiovascular system.
Collapse
Affiliation(s)
- Vera Jankowski
- Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Medizinische Klinik IV, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Lévesque SA, Lavoie ÉG, Lecka J, Bigonnesse F, Sévigny J. Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol 2007; 152:141-50. [PMID: 17603550 PMCID: PMC1978278 DOI: 10.1038/sj.bjp.0707361] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 04/20/2007] [Accepted: 05/30/2007] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE ARL 67156, 6-N,N-Diethyl-D-beta-gamma-dibromomethylene adenosine triphosphate, originally named FPL 67156, is the only commercially available inhibitor of ecto-ATPases. Since the first report on this molecule, various ectonucleotidases responsible for the hydrolysis of ATP at the cell surface have been cloned and characterized. In this work, we identified the ectonucleotidases inhibited by ARL 67156. EXPERIMENTAL APPROACH The effect of ARL 67156 on recombinant NTPDase1, 2, 3 & 8 (mouse and human), NPP1, NPP3 and ecto-5'-nucleotidase (human) have been evaluated. The inhibition of the activity of NTPDases (using the following substrates: ATP, ADP, UTP), NPPs (pnp-TMP, Ap(3)A) and ecto-5'-nucleotidase (AMP) was measured by colorimetric or HPLC assays. KEY RESULTS ARL 67156 was a weak competitive inhibitor of human NTPDase1, NTPDase3 and NPP1 with K(i) of 11+/-3, 18+/-4 and 12+/-3 microM, respectively. At concentrations used in the literature (50-100 microM), ARL 67156 partially but significantly inhibited the mouse and human forms of these enzymes. NTPDase2, NTPDase8, NPP3 and ecto-5'-nucleotidase activities were less affected. Importantly, ARL 67156 was not hydrolysed by either human NTPDase1, 2, 3, 8, NPP1 or NPP3. CONCLUSIONS AND IMPLICATIONS In cell environments where NTPDase1, NTPDase3, NPP1 or mouse NTPDase8 are present, ARL 67156 would prolong the effect of endogenously released ATP on P2 receptors. However, it does not block any ectonucleotidases efficiently when high concentrations of substrates are present, such as in biochemical, pharmacological or P2X(7) assays. In addition, ARL 67156 is not an effective inhibitor of NTPDase2, human NTPDase8, NPP3 and ecto-5'-nucleotidase.
Collapse
Affiliation(s)
- S A Lévesque
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - É G Lavoie
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - J Lecka
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - F Bigonnesse
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - J Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| |
Collapse
|
6
|
Jankowski V, Karadogan S, Vanholder R, Nofer JR, Herget-Rosenthal S, van der Giet M, Tölle M, Tran TNA, Zidek W, Jankowski J. Paracrine stimulation of vascular smooth muscle proliferation by diadenosine polyphosphates released from proximal tubule epithelial cells. Kidney Int 2007; 71:994-1000. [PMID: 17361116 DOI: 10.1038/sj.ki.5002186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purinergic receptor system plays an important role in the regulation of both vascular and tubular functions within the kidney; however, the release of purinergic agonists other than ATP by renal tissue is not known. In this investigation, we determine if kidney tissue is a source of diadenosine polyphosphates, which have high affinity for the P(2X) and P(2Y) receptors. Both diadenosine pentaphosphate and hexaphosphate were identified by matrix-assisted laser desorption ionization-mass spectrometry in extracts purified from both whole porcine kidney and from cloned cells of the LLC-PK1 cell line. Both polyphosphates in nanomolar concentrations were found to significantly stimulate the proliferation of vascular smooth muscle cells derived from rat thoracic aortas. The purinergic-receptor antagonist, suramin, did not significantly affect the growth-stimulatory properties of the polyphosphates. The growth stimulation of vascular smooth muscle cells by platelet-derived growth factor was potentiated by both diadenosine polyphosphates. We conclude that diadenosine polyphosphates are endogenous purinergic agonists of the kidney that have physiologic and pathophysiologic relevance. These epithelial cell metabolic products have vasoregulatory properties while linking the energy supply and tubular function.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Cell Proliferation/drug effects
- Cells, Cultured
- Dinucleoside Phosphates/metabolism
- Dinucleoside Phosphates/pharmacology
- Dinucleoside Phosphates/physiology
- Drug Synergism
- Epithelial Cells/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Paracrine Communication/physiology
- Platelet-Derived Growth Factor/pharmacology
- Rats
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Swine
Collapse
Affiliation(s)
- V Jankowski
- Charité, Medizinische Klinik IV (CBF), Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vollmayer P, Clair T, Goding JW, Sano K, Servos J, Zimmermann H. Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatases/phosphodiesterases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2971-8. [PMID: 12846830 DOI: 10.1046/j.1432-1033.2003.03674.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diadenosine polyphosphates (ApnAs) act as extracellular signaling molecules in a broad variety of tissues. They were shown to be hydrolyzed by surface-located enzymes in an asymmetric manner, generating AMP and Apn-1 from ApnA. The molecular identity of the enzymes responsible remains unclear. We analyzed the potential of NPP1, NPP2, and NPP3, the three members of the ecto-nucleotide pyrophosphatase/phosphodiesterase family, to hydrolyze the diadenosine polyphosphates diadenosine 5',5"'-P1,P3-triphosphate (Ap3A), diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), and diadenosine 5',5"'-P1,P5-pentaphosphate, (Ap5A), and the diguanosine polyphosphate, diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). Each of the three enzymes hydrolyzed Ap3A, Ap4A, and Ap5A at comparable rates. Gp4G was hydrolyzed by NPP1 and NPP2 at rates similar to Ap4A, but only at half this rate by NPP3. Hydrolysis was asymmetric, involving the alpha,beta-pyrophosphate bond. ApnA hydrolysis had a very alkaline pH optimum and was inhibited by EDTA. Michaelis constant (Km) values for Ap3A were 5.1 micro m, 8.0 micro m, and 49.5 micro m for NPP1, NPP2, and NPP3, respectively. Our results suggest that NPP1, NPP2, and NPP3 are major enzyme candidates for the hydrolysis of extracellular diadenosine polyphosphates in vertebrate tissues.
Collapse
Affiliation(s)
- Petra Vollmayer
- AK Neurochemie, Biozentrum der J. W. Goethe-Universitaet, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Birk AV, Bubman D, Broekman MJ, Robertson HD, Drosopoulos JHF, Marcus AJ, Szeto HH. Role of a novel soluble nucleotide phospho-hydrolase from sheep plasma in inhibition of platelet reactivity: hemostasis, thrombosis, and vascular biology. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2002; 139:116-24. [PMID: 11919550 DOI: 10.1067/mlc.2002.121334] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ecto- and exoenzymes that metabolize extracellular adenosine diphosphate (ADP), the major promoter of platelet activation and recruitment, are of potential clinical importance because they can metabolically prevent excessive thrombus growth. An ecto-ADPase (CD39, NTPDase1) has been identified on endothelial cells. We demonstrate that ADP and adenosine triphosphate (ATP) are rapidly metabolized to adenosine monophosphate (AMP) in sheep plasma at pH 7.4. This hydrolysis is sensitive to P(1), P(5)-di-(adenosine-5') pentaphosphate (Ap(5)A), and ethylene glycol bis (beta-aminoethyl ether) - N, N, N(-), N(-) tetra-acetate (EGTA) but insensitive to tetramisole (an alkaline phosphatase inhibitor). A specific phosphodiesterase substrate, p -nitrophenol-5'-thymidine monophosphate (TMP) (p -Nph-5'-TMP), was readily hydrolyzed in sheep plasma at a rate of approximately 0.25 nmol/min/mg protein, and this hydrolysis was inhibited by ADP, ATP, and Ap(5)A. Furthermore, 200-fold purified p -Nph-5'-TMP-hydrolyzing activity also hydrolyzed ATP and ADP directly to AMP. When ADP was preincubated in plasma, its ability to induce platelet aggregation was inhibited in a time-dependent manner. This effect was abolished by Ap(5)A. The inhibitory effects on platelet aggregation correlated with hydrolysis of the ADP in plasma. These data suggest that the endogenous soluble plasma phosphohydrolase metabolizes ATP and ADP by means of cleavage of the alpha-beta-phosphodiester bond of nucleoside 5'-phosphate derivatives. This novel biochemical activity inhibits platelet reactivity through hydrolysis of extracellular nucleotides released by activated platelets during (patho)physiological processes, serving a homeostatic and antithrombotic function in vivo.
Collapse
Affiliation(s)
- Alex V Birk
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Jankowski J, Yoon MS, Stephan N, Zidek W, Schlüter H. Vasoactive diadenosine polyphosphates in human placenta: possible candidates in the pathophysiology of pre-eclampsia? J Hypertens 2001; 19:567-73. [PMID: 11327631 DOI: 10.1097/00004872-200103001-00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND One hypothesis of the pathophysiology of pre-eclampsia is that placentally derived, yet unidentified, vasoactive factors are released into the maternal circulation, causing hypertension. OBJECTIVE To determine if diadenosine polyphosphates, new potent vasoconstrictors, are present in human placenta. METHODS AND RESULTS Human placental tissue was homogenated and fractionated by size-exclusion chromatography, affinity chromatography, anion-exchange chromatography and reversed-phase chromatography. In fractions purified to homogeneity, diadenosine diphosphate, diadenosine triphosphate, diadenosine tetraphosphate, diadenosine pentaphosphate, diadenosine hexaphosphate and diadenosine heptaphosphate were identified by matrix-assisted laser desorption/ionization mass spectrometry, retention-time comparison and enzymatic cleavage analysis. CONCLUSIONS The presence of diadenosine polyphosphates in human placenta makes them possible candidates for involvement in the pathophysiology of pre-eclampsia. However, their contribution to the pathophysiology of eclampsia requires substantiation in further studies.
Collapse
Affiliation(s)
- J Jankowski
- Medizinische Klinik IV, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
10
|
Abstract
Despite being known for over 30 years, the functions of the dinucleoside polyphosphates, such as diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A) and diadenosine 5',5"'-P(1), P(3)-triphosphate (Ap(3)A), are still unclear. On the one hand, they may have important signalling functions, both inside and outside the cell (friend), while on the other hand, they may simply be the unavoidable by-products of certain biochemical reactions, which, if allowed to accumulate, would be potentially toxic through their structural similarity to ATP and other essential mononucleotides (foe). Here, the occurrence, synthesis, degradation, and proposed functions of these compounds are briefly reviewed, along with some new data and recent evidence supporting roles for Ap(3)A and Ap(4)A in the cellular decision making processes leading to proliferation, quiescence, differentiation, and apoptosis. Hypotheses are forwarded for the involvement of Ap(4)A in the intra-S phase DNA damage checkpoint and for Ap(3)A and the pFhit (fragile histidine triad gene product) protein in tumour suppression. It is concluded that the roles of friend and foe are not incompatible, but are distinguished by the concentration range of nucleotide achieved under different circumstances.
Collapse
Affiliation(s)
- A G McLennan
- School of Biological Sciences, Life Sciences Building, University of Liverpool, Crown Street, L69 7ZB, Liverpool, UK.
| |
Collapse
|
11
|
Picher M, Boucher RC. Biochemical evidence for an ecto alkaline phosphodiesterase I in human airways. Am J Respir Cell Mol Biol 2000; 23:255-61. [PMID: 10919994 DOI: 10.1165/ajrcmb.23.2.4088] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Because dinucleotides are signaling molecules that can interact with cell surface receptors and regulate the rate of mucociliary clearance in lungs, we studied their metabolism by using human airway epithelial cells. A membrane-bound enzyme was detected on the mucosal surface of polarized epithelia that metabolized dinucleotides with a broad substrate specificity (diadenosine polyphosphates and diuridine polyphosphates [Up(n)U], n = 2 to 6). The enzymatic reaction yielded nucleoside monophosphates (NMP) and Np(n)(-)(1) (N = A or U), and was inhibited by nucleoside 5'-triphosphates (alpha,betamet adenosine triphosphate [ATP] > ATP >/= uridine triphosphate > guanidine triphosphate > cytidine triphosphate). The apparent Michaelis constant (K(m,app)) and apparent maximal velocity (V(max,app)) for [(3)H]Up(4)U were 22 +/- 4 microM and 0.24 +/- 0.05 nmoles. min(-)(1). cm(-)(2), respectively. Thymidine 5'-monophosphate p-nitrophenyl ester and adenosine diphosphate (ADP)- ribose, substrates of ecto alkaline phosphodiesterase I (PDE I) activities, were also hydrolyzed by the apical surface of airway epithelia. ADP-ribose competed with [(3)H]Up(4)U, with a K(i) of 23 +/- 3 microM. The metabolism of ADP-ribose and Ap(4)A was not affected by inhibitors of cyclic nucleotide phosphodiesterases (3-isobutyl-1-methylxanthine, Ro 20-1724, and 1,3-dipropyl-8-p-sulfophenylxanthine), but similarly inhibited by fluoride and N-ethylmaleimide. These results suggest that a PDE I is responsible for the hydrolysis of extracellular dinucleotides in human airways. The wide substrate specificity of PDE I suggests that it may be involved in several signaling events on the luminal surface of airway epithelia, including purinoceptor activation and cell surface protein ribosylation.
Collapse
Affiliation(s)
- M Picher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
12
|
Guranowski A. Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol Ther 2000; 87:117-39. [PMID: 11007995 DOI: 10.1016/s0163-7258(00)00046-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review concerns enzymes that can degrade nucleoside 5'-tetra- and pentaphosphates (p(4)N and p(5)N) and those that can degrade various dinucleoside polyphosphates (Np(3-6)N'). Most of these enzymes are hydrolases, and they occur in all types of organisms. Certain fungi and protozoa also possess specific Np(n)N' phosphorylases. Specific p(4)N hydrolases have been demonstrated in mammals and in plants. In yeast, p(4)N and p(5)N are hydrolyzed by exopolyphosphatases. Among other hydrolases that can degrade these minor mononucleotides are phosphatases, apyrase, and (asymmetrical) Np(4)N' hydrolase, as well as the nonspecific adenylate deaminase. Np(n)N's are good substrates for Type I phosphodiesterases and nucleotide pyrophosphatases, and diadenosine polyphosphates are easily deaminated to diinosine polyphosphates by nonspecific adenylate deaminases. Specific Np(3)N' hydrolases occur in both prokaryotes and eukaryotes. Interestingly, the human fragile histidine triad (Fhit) tumor suppressor protein appears to be a typical Np(3)N' hydrolase. Among the specific Np(4)N' hydrolases are asymmetrically cleaving ones, which are typical of higher eukaryotes, and symmetrically cleaving enzymes found in Physarum polycephalum and in many bacteria. An enzyme that hydrolyzes both diadenosine tetraphosphate and diadenosine triphosphate has been found in the fission yeast Schizosaccharomyces pombe. Its amino acid sequence is similar to that of the human Fhit/Np(3)N' hydrolase. Very recently, a typical (asymmetrical) Np(4)N' hydrolase has been demonstrated for the first time in a bacterium-the pathogenic Bartonella bacilliformis. Another novelty is the discovery of diadenosine 5', 5"'-P(1),P 6-hexaphosphate hydrolases in budding and fission yeasts and in mammalian cells. These enzymes and the (asymmetrical) Np(4)N' hydrolases have the amino acid motif typical of the MutT (or Nudix hydrolase) family. In contrast, the Schizosaccharomyces pombe Ap(4)A/Ap(3)A hydrolase, the human Fhit protein, and the yeast Np(n)N' phosphorylases belong to a superfamily GAFH, which includes the histidine triad proteins.
Collapse
Affiliation(s)
- A Guranowski
- Katedra Biochemii i Biotechnologii, Akademia Rolnicza, ul. Wo>/=yOska 35, 60-637, PoznaO, Poland.
| |
Collapse
|
13
|
Jankowski J, Potthoff W, van der Giet M, Tepel M, Zidek W, Schlüter H. High-performance liquid chromatographic assay of the diadenosine polyphosphates in human platelets. Anal Biochem 1999; 269:72-8. [PMID: 10094777 DOI: 10.1006/abio.1999.3097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diadenosine pentaphosphate (Ap5A) and diadenosine hexaphosphate (Ap6A) were recently identified in human platelets and were shown to be important modulators of cardiovascular function. Here we describe an HPLC assay for quantitating Ap3A, Ap4A, Ap5A, and Ap6A contents in human platelets simultaneously. Di(1,N6-ethenoadenosine) hexaphosphate was used as internal standard. The extraction procedure consists of (a) deproteinization, (b) selective concentration of the diadenosine polyphosphates with a boronate affinity chromatography, and (c) desalting prior to the HPLC analysis. The assay was validated by PSD-MALDI-mass spectrometry and by addition of authentic diadenosine polyphosphate to platelet samples. The assay was carried out by an ion-pair reversed-phase perfusion chromatography. In platelets from human blood the following amounts of diadenosine polyphosphates were determined: Ap3A, 192.5 +/- 151.0 nM; Ap4A, 223.8 +/- 172.3 nM; Ap5A, 100.2 +/- 81.1 nM; Ap6A, 32.0 +/- 19.6 nM (mean +/- SD, n = 105). The described assay can be used with less than 20 ml blood and allows quantitation of the diadenosine polyphosphates in the picomole range.
Collapse
Affiliation(s)
- J Jankowski
- Medizinische Klinik I, Universitätsklinik Marienhospital, Ruhr-Universität Bochum, Hölkeskampring 40, Herne, 44 625, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Ross FM, Brodie MJ, Stone TW. The effects of adenine dinucleotides on epileptiform activity in the CA3 region of rat hippocampal slices. Neuroscience 1998; 85:217-28. [PMID: 9607713 DOI: 10.1016/s0306-4522(97)00619-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha, omega-adenine dinucleotides (Ap(n)A) consist of two adenosine molecules linked at the 5' position by phosphate groups, the number of which is denoted by n and can range from 2 to 6. The aim of this study was to investigate the effect of Ap4A and Ap5A on the rate of epileptiform activity. Hippocampal slices (450 microm), when perfused with a medium containing no added magnesium and 4-aminopyridine (50 microM), generate epileptiform activity of an interictal nature. Ap4A and Ap5A at 1 microM depressed the discharge rate to a significant extent. At this concentration adenosine (1 microM) did not produce any effect. However at 10 microM adenosine, Ap4A and Ap5A all decreased the burst frequency. Adenosine deaminase (0.2 U/ml) totally annulled the inhibition of epileptiform activity produced by 10 microM adenosine or 1 microM Ap4A and Ap5A. Adenosine deaminase did not significantly change the maximum depression of activity produced by 10 microM Ap4A and Ap5A. 8-cyclopentyl-1,3-dimethylxanthine, an A1, receptor antagonist, increased the basal rate of epileptiform activity and prevented the depression of burst discharges by Ap4A. 5'-adenylic acid deaminase converts AMP into IMP which is inactive. 5'-adenylic acid deaminase did not prevent the inhibitory effects of Ap4A. The results suggests that in the CA3 region of the hippocampus, Ap4A and Ap5A act partly by stimulating xanthine-sensitive receptors directly and partly through the formation of the metabolite, adenosine.
Collapse
Affiliation(s)
- F M Ross
- Institute of Biomedical and Life Sciences, Division of Neuroscience and Biomedical Systems, University of Glasgow, UK
| | | | | |
Collapse
|
15
|
Ogilvie A, Bläsius R, Schulze-Lohoff E, Sterzel RB. Adenine dinucleotides: a novel class of signalling molecules. JOURNAL OF AUTONOMIC PHARMACOLOGY 1996; 16:325-8. [PMID: 9131408 DOI: 10.1111/j.1474-8673.1996.tb00045.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Adenine dinucleotides (Ap3A, Ap4A, Ap5A, Ap6A) are stored in secretory granules of thrombocytes, chromaffin cells and neuronal cells. After release into the extracellular space, the dinucleotides exhibit divergent biological effects on a variety of target cells and organs. The dinucleotides are metabolized by soluble enzymes in the blood plasma as well as by membrane-bound ectoenzymes of endothelial cells, smooth muscle cells, and other cell types. 2. The enzymatic cleavage of the dinucleotides plays a dual role for their biological function: (a) termination of the signal; and (b) generation of purinergically active products such as ATP, ADP and finally adenosine. In contrast to ATP the dinucleotides are long-lived purine nucleotides in the blood. 3. The potential role of the dinucleotides as signalling molecules has been demonstrated in several systems. The adenosine polyphosphates have autocrine function for thrombocytes. Ap3A at low concentration reversibly activates isolated platelets. The mechanism of activation has been elucidated by showing a continuous cleavage of Ap3A, leading to the formation of ADP which is a known agonist of the P2T receptor on thrombocytes. Ap4A and other dinucleotides act as antagonists and inhibit platelet activation. 4. The vasotone of perfused isolated arteries as well as of resistance vessels in the beating heart is differentially influenced by adenine dinucleotides. While Ap3A and Ap4A exhibit relaxing effects at micromolar concentrations, Ap5A and Ap6A elicit vasoconstriction in these vessels. 5. In rat kidney mesangial cells adenine dinucleotides efficiently promote growth. Stimulation of DNA synthesis by various growth factors is enhanced synergistically. ApnA significantly increase the expression of the early growth response gene Egr-1. 6. The specificity and, in some tissues, the uniqueness of effects evoked by dinucleotides may be mediated by genuine dinucleotide receptors (P4) or by specialized P2 receptors (P2D).
Collapse
Affiliation(s)
- A Ogilvie
- Institut für Biochemie and Medizinische Klinik IV, Universität Erlangen-Nürnberg, Germany
| | | | | | | |
Collapse
|
16
|
Schlüter H, Tepel M, Zidek W. Vascular actions of diadenosine phosphates. JOURNAL OF AUTONOMIC PHARMACOLOGY 1996; 16:357-62. [PMID: 9131416 DOI: 10.1111/j.1474-8673.1996.tb00053.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Diadenosine phosphates were isolated from platelets, adrenal gland and autonomic nerves. The presence of diadenosine phosphates in storage pools releasable into the circulation suggests an important role in the control of blood pressure, and potentially to a modulation of the actions of catecholamines. 2. Besides a role of the diadenosine phosphates in platelet aggregation, these agents have potent vasoactive properties. Vasoactive actions of the diadenosine phosphates were demonstrated in numerous vascular models including most of the physiologically important elements of blood pressure regulation. Mostly, the vasoactive action depends on the number of phosphates in the diadenosine phosphates. Vasodilation can be observed in intact vessels after administration of Ap2A, Ap3A and Ap4A whereas contraction is affected by Ap5A and Ap5A and Ap6A. Vasocontraction induced by the diadenosine phosphates in vascular smooth muscle cells is mediated by an increase in intracellular free Ca2+. 3. In vivo, intravenous injection of Ap4A lowers blood pressure whereas injections of Ap5A and Ap6A caused a prolonged increase in blood pressure. In blood, in contrast to ATP, diadenosine phosphates are relatively long-lived molecules, suggesting that the action of the latter is of intermediate time span. In a similar manner to the vasoconstrictor angiotensin II, diadenosine phosphates also act as mitogens. It can be assumed that diadenosine phosphates may be involved in pathophysiological events of circulation including hypertension and atherosclerosis.
Collapse
Affiliation(s)
- H Schlüter
- Med. Klinik I, Univ-Klinik Marienhospital der Ruhr-Universität Bochum, Herne, Germany
| | | | | |
Collapse
|
17
|
Lemmens R, Vanduffel L, Teuchy H, Culic O. Regulation of proliferation of LLC-MK2 cells by nucleosides and nucleotides: the role of ecto-enzymes. Biochem J 1996; 316 ( Pt 2):551-7. [PMID: 8687400 PMCID: PMC1217384 DOI: 10.1042/bj3160551] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Using the incorporation of [methyl-3H]thymidine as a proliferation marker, the effects of various nucleosides and nucleotides on endothelial LLC-MK2 cells were studied. We found that ATP, ADP, AMP and adenosine in concentrations of 10 microM or higher stimulate the proliferation of these cells. 2. Inhibition of ecto-ATPase (EC 3.6.1.15), 5'-nucleotidase (EC 3.1.3.5) or alkaline phosphatase (EC 3.1.3.1) significantly diminished the stimulatory effect of ATP, indicating that the effect is primarily caused by adenosine and not by adenine nucleotides. Also, the effect depends only on extracellular nucleosides, since inhibition of nucleoside uptake by dipyridamole has no influence on proliferation. 3. Other purine nucleotides and nucleosides (ITP, GTP, inosine and guanosine) also stimulate cell proliferation, while pyrimidine nucleotides and nucleosides (CTP, UTP, cytidine and uridine) inhibit proliferation. Furthermore, the simultaneous presence of adenosine and any of the other purine nucleosides is not entirely additive in its effect on cell proliferation. At the same time any pyrimidine nucleoside, when added together with adenosine, has the same inhibitory effect as the pyrimidine nucleoside alone. 4. Apparently these proliferative effects are neither caused by any pharmacologically known P1-purinoceptor, nor are they mediated by cyclic AMP, cyclic GMP, or D-myo-inositol 1,4,5-trisphosphate as second messenger, nor by extracellular Ca2+. 5. Therefore, we conclude that various purine and pyrimidine nucleosides can influence the proliferation of LLC-MK2 cells by acting on putative purinergic and pyrimidinergic receptors not previously described.
Collapse
Affiliation(s)
- R Lemmens
- Department MBW, Biochemistry, Limburgs Universitair Centrum, Diepenbeek, Belgium
| | | | | | | |
Collapse
|
18
|
Iwata K, Haruki S, Kimura T. High-performance liquid chromatographic determination of diadenosine 5',5'"-p1,p4-tetraphosphate with precolumn fluorescence derivatization and its application to metabolism study in whole blood. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1995; 667:339-43. [PMID: 7663709 DOI: 10.1016/0378-4347(95)00042-h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diadenosine 5',5'"-p1,p4-tetraphosphate (Ap4A) was converted with chloroacetaldehyde to the fluorescent di-1,N6-ethenoadenosine derivative within 60 min at 80 degrees C. It was separated by reversed-phase HPLC and detected fluorimetrically (excitation and emission wavelengths of 275 and 410 nm, respectively). The detection limit of Ap4A was ca. 0.2 microgram/ml in plasma when 10 microliters of the sample was applied to the column. The rate of degradation of Ap4A added to whole blood (5 micrograms/ml) was examined using this method. Half-lives (means +/- S.E., n = 3) were 0.88 +/- 0.30 min (in rat blood), 13.7 +/- 3.6 min (in dog blood) and 17.2 +/- 1.4 min (in human blood). A marked species difference in the degradation rate of Ap4A in blood was observed.
Collapse
Affiliation(s)
- K Iwata
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | |
Collapse
|
19
|
Maruyama E, Takashima S. Characterization of over-expressed alkaline phosphodiesterase I in tumour-derived fibroblasts from patients with neurofibromatosis. Cell Biochem Funct 1993; 11:271-7. [PMID: 8275552 DOI: 10.1002/cbf.290110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alkaline phosphodiesterase I from cultured fibroblasts from patients with neurofibromatosis was partially purified and characterized following extraction with Triton X-100, and fractionation with high-performance liquid chromatography. Some properties were compared with the enzyme extracted from normal-appearing fibroblasts. The isoelectric points of both the tumour and normal-appearing cell enzymes were 6.0. The enzyme required Zn2+ for its activity, was heat labile, and nicked superhelical covalently closed circular phi X174 DNA. The activity was inhibited by GTP, DTT and EDTA. The native molecular weight of alkaline phosphodiesterase I was determined to be 430,000. No differences were found in properties of the tumour-derived and normal cell enzymes. On purification it was observed that the peak pattern of enzyme activity corresponded to that of 125 kDa protein, which was more abundant upon SDS-PAGE analysis in tumour cells than in normal cells. The most active fraction of isoelectric focusing, which was performed using disulfide cross-linked polyacrylamide gel, was used to produce an antibody. The bands of 125, 60 and 40 kDa were immuno-stained in tumour cell preparation. These results indicate that alkaline phosphodiesterase I, of which the molecular weight is probably 125 kDa, is over-expressed in tumour-derived fibroblasts from neurofibromatosis patients.
Collapse
Affiliation(s)
- E Maruyama
- Division of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Tokyo, Japan
| | | |
Collapse
|
20
|
Rodriguez-Pascual F, Torres M, Rotllán P, Miras-Portugal MT. Extracellular hydrolysis of diadenosine polyphosphates, ApnA, by bovine chromaffin cells in culture. Arch Biochem Biophys 1992; 297:176-83. [PMID: 1322112 DOI: 10.1016/0003-9861(92)90657-i] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An ectoenzyme hydrolyzing diadenosine polyphosphates (ApnA) to AMP and Ap(n-1) has been studied in cultured chromaffin cells from bovine adrenal medulla. The KM value for extracellular Ap4A hydrolysis was 2.90 +/- 0.72 microM, the V(max) value obtained was 11.59 +/- 0.92 pmol/min x 10(6) cells (116 pmol/min.mg total protein). Ap3A, Ap5A, Ap6A, and Gp4G were competitive inhibitors of Ap4A hydrolysis with K(i) values of 3.65, 1.10, 1.20, and 2.65 microM, respectively. Phosphatidylinositol-specific phospholipase C removes the ApnA hydrolase activity from cultured chromaffin cells, suggesting an anchorage of this protein to the plasma membrane through the phosphatidylinositol. The turnover time for this enzyme calculated in the presence of cycloheximide was 38.94 +/- 1.53 hr for cultured chromaffin cells.
Collapse
Affiliation(s)
- F Rodriguez-Pascual
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Brevet A, Chen J, Fromant M, Blanquet S, Plateau P. Isolation and characterization of a dinucleoside triphosphatase from Saccharomyces cerevisiae. J Bacteriol 1991; 173:5275-9. [PMID: 1653209 PMCID: PMC208236 DOI: 10.1128/jb.173.17.5275-5279.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An enzyme able to cleave dinucleoside triphosphates has been purified 3,750-fold from Saccharomyces cerevisiae. Contrary to the enzymes previously shown to catabolize Ap4A in yeast, this enzyme is a hydrolase rather than a phosphorylase. The dinucleoside triphosphatase molecular ratio estimated by gel filtration is 55,000. Dinucleoside triphosphatase activity is strongly stimulated by the presence of divalent cations. Mn2+ displays the strongest stimulating effect, followed by Mg2+, Co2+, Cd2+, and Ca2+. The Km value for Ap3A is 5.4 microM (50 mM Tris-HCl [pH 7.8], 5 mM MgCl2, and 0.1 mM EDTA; 37 degrees C). Dinucleoside polyphosphates are substrates of this enzyme, provided that they contain more than two phosphates and that at least one of the two bases is a purine (Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, m7Gp3A, m7Gp3G, Ap4A, Ap4G, Ap4C, Ap4U, Gp4G, and Ap5A are substrates; AMP, ADP, ATP, Ap2A, and Cp4U are not). Among the products, a nucleoside monophosphate is always formed. The specificity of cleavage of methylated dinucleoside triphosphates and the molecular weight of dinucleoside triphosphatase indicate that this enzyme is different from the mRNA decapping enzyme previously characterized (A. Stevens, Mol. Cell. Biol. 8:2005-2010, 1988).
Collapse
Affiliation(s)
- A Brevet
- Laboratoire de Biochemie, Unité de Recherche associée 240 du Centre National de la Recherche Scientifique, Palaiseau, France
| | | | | | | | | |
Collapse
|
22
|
Pinto RM, Costas MJ, Fernández A, Canales J, García-Agundez JA, Cameselle JC. Dinucleoside tetraphosphatase from human blood cells. Purification and characterization as a high specific activity enzyme recognized by an anti-rat tetraphosphatase antibody. FEBS Lett 1991; 287:85-8. [PMID: 1652465 DOI: 10.1016/0014-5793(91)80021-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dinucleoside tetraphosphatase (Np4Nase; EC 3.6.1.17) has been purified 170,000-fold from a 30-60% ammonium sulfate fraction of a human blood cell extract. Purification included a dye-ligand affinity elution step using the inhibitor adenosine 5'-tetraphosphate. Human blood Np4Nase resembled rat liver Np4Nase, including recognition by anti-rat Np4Nase, but differed from homogeneous human leukemia Np4Nase in the 1000-fold lower specific activity of the latter. The results are discussed in relation to the potential role of diadenosine tetraphosphate (Ap4A) in the control of cell division and the turnover of Ap4A in blood.
Collapse
Affiliation(s)
- R M Pinto
- Departamento de Bioquimica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
23
|
García-Agúndez J, Cameselle JC, Costas MJ, Sillero MA, Sillero A. Particulate diadenosine 5',5"'-P1,P3-triphosphate hydrolases in rat brain: two specific dinucleoside triphosphatases and two phosphodiesterase I-like hydrolases. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:402-9. [PMID: 1849011 DOI: 10.1016/0304-4165(91)90149-b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rat liver and brain differ in the distribution pattern of the total hydrolytic activity on diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) between the soluble and particulate fractions. The Ap3A-hydrolase activity in both the soluble and particulate liver fractions and in the brain soluble fraction had been previously studied in detail. We report now on the brain particulate fraction which, unlike liver, showed a low unspecific phosphodiesterase I-like (PDEaseI, EC 3.1.4.1) activity relative to the specific dinucleoside triphosphatase (Ap3Aase, EC 3.6.1.29). Two PDEaseI-like forms (PDEaseI-A and PDEaseI-B), with different apparent Mrs and kinetic properties, and two Ap3Aases (Ap3Aase-alpha and Ap3Aase-beta) were solubilized with 0.5% Triton X-100 from the particulate fraction. Ap3Aase-alpha resembled the cytosolic Ap3Aase (Ap3Aase-c), a known situation in liver. Comparative to Ap3Aase-alpha, Ap3Aase-beta showed a slightly higher Km (35 vs. 15 micron) and lower isoelectric point (5.25 vs. 5.45); Ap3Aase-beta was absent from the soluble fraction, and its recovery was unaffected by proteinase inhibitors, strongly arguing for distinct soluble and particulate turnover pathways for dinucleoside polyphosphates.
Collapse
Affiliation(s)
- J García-Agúndez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
24
|
Abstract
Fluoride acts as a noncompetitive, strong inhibitor of (asymmetrical) Ap4A hydrolases (EC 3.6.1.17). The Ki values estimated for the enzymes isolated from seeds of some higher plants (yellow lupin, sunflower and marrow) are in the range of 2-3 microM and I50 for the hydrolase from a mammalian tissue (beef liver) is 20 microM. The anion, up to 25 mM, does not affect the following other enzymes which are able to degrade the bis(5'-nucleosidyl)-oligophosphates: Escherichia coli (symmetrical) Ap4A hydrolase (EC 3.6.1.41), yeast Ap4A phosphorylase (EC 2.7.7.53), yellow lupin Ap3A hydrolase (EC 3.6.1.29) and phosphodiesterase (EC 3.1.4.1). None of halogenic anions but fluoride affects the activity of (asymmetrical) Ap4A hydrolases. Usefulness of the fluoride effect for the in vivo studies on the Ap4A metabolism is shortly discussed.
Collapse
Affiliation(s)
- A Guranowski
- Katedra Biochemii, Akademia Rolnicza, Poznań, Poland
| |
Collapse
|
25
|
Plateau P, Fromant M, Schmitter JM, Buhler JM, Blanquet S. Isolation, characterization, and inactivation of the APA1 gene encoding yeast diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase. J Bacteriol 1989; 171:6437-45. [PMID: 2556364 PMCID: PMC210532 DOI: 10.1128/jb.171.12.6437-6445.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene encoding diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts.
Collapse
Affiliation(s)
- P Plateau
- Laboratoire de Biochimie, Unité de Recherche Associée 240 Centre National de Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
26
|
Ogilvie A, Lüthje J, Pohl U, Busse R. Identification and partial characterization of an adenosine(5')tetraphospho(5')adenosine hydrolase on intact bovine aortic endothelial cells. Biochem J 1989; 259:97-103. [PMID: 2541689 PMCID: PMC1138477 DOI: 10.1042/bj2590097] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biologically active dinucleotides adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')-triphospho(5')adenosine (Ap3A), which are both releasable into the circulation from storage pools in thrombocytes, are catabolized by intact bovine aortic endothelial cells. 1. Compared with extracellular ATP and ADP, which are very rapidly hydrolysed, the degradation of Ap4A and Ap3A by endothelial ectohydrolases is relatively slow, resulting in a much longer half-life on the endothelial surface of the blood vessel. The products of hydrolysis are further degraded and finally taken up as adenosine. 2. Ap4A hydrolase has high affinity for its substrate (Km 10 microM). 3. ATP as well as AMP transiently accumulates in the extracellular fluid, suggesting an asymmetric split of Ap4A by the ectoenzyme. 4. Mg2+ or Mn2+ at millimolar concentration are needed for maximal activity; Zn2+ and Ca2+ are inhibitory. 5. The hydrolysis of Ap4A is retarded by other nucleotides, such as ATP and Ap3A, which are released from platelets simultaneously with Ap4A.
Collapse
Affiliation(s)
- A Ogilvie
- Institut für Biochemie, Universität Erlangen, Federal Republic of Germany
| | | | | | | |
Collapse
|
27
|
Lüthje J. Origin, metabolism and function of extracellular adenine nucleotides in the blood. KLINISCHE WOCHENSCHRIFT 1989; 67:317-27. [PMID: 2651791 DOI: 10.1007/bf01741386] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In previous views the role of adenine nucleotides was thought to be confined to the intracellular space of the cell. However, research of the last decades has revealed that nucleotides also occur in the extracellular space. This survey deals with the sources, metabolism and the role in blood of the extracellular adenine mononucleotides ATP, ADP, AMP and the dinucleotides diadenosine tetraphosphate (Ap4A) and diadenosine triphosphate (Ap3A). The latter two are novel compounds, which have recently been discovered in human platelets. The mononucleotides originate from damaged tissues, from red blood cells during haemolysis, from activated platelets, the working muscle and from the nervous system, whereas the dinucleotides are exclusively released from stimulated platelets. Both the adenine mono- and the dinucleotides act as signal molecules on blood cells as well as on cells of the vascular wall, thereby modulating physiological processes such as platelet aggregation, histamine release from mast cells, regulation of vascular tone and white cell functions. In order to limit the signal effects of extracellular nucleotides, blood cells, plasma and the interior of the vessel walls are provided with nucleotide splitting enzymes: ATP, ADP and AMP are mainly degraded by ectoenzymes present on blood cells, endothelial and on smooth muscle cells, whereas dinucleotides are primarily metabolized by plasma enzymes. This review closes with the presentation of the clinical utility of Ap3A and Ap4A as tools for the diagnosis of platelet storage pool defects.
Collapse
Affiliation(s)
- J Lüthje
- Institut für Biochemie I (Medizinische Fakultät) Universität Erlangen-Nürnberg
| |
Collapse
|
28
|
Rapaport E, Fontaine J. Anticancer activities of adenine nucleotides in mice are mediated through expansion of erythrocyte ATP pools. Proc Natl Acad Sci U S A 1989; 86:1662-6. [PMID: 2922403 PMCID: PMC286759 DOI: 10.1073/pnas.86.5.1662] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ATP and AMP exhibit significant anticancer activities against established footpad CT26 colon adenocarcinoma in CB6F1 mice. Adenosine, inorganic phosphate, and inorganic pyrophosphate were without such effects under identical conditions. Daily intraperitoneal injections of adenine nucleotides in large volumes of saline, starting after the tumors became palpable, resulted in inhibition of tumor growth and a few "cures." The treatment was not toxic to the host as determined by changes in body weights. Weight loss observed in animals upon progression of the fast-growing CT26 tumors was slowed markedly in adenine nucleotide-treated mice. The inhibition of weight loss in tumor-bearing mice was shown to be neither the cause nor the effect of the inhibition of tumor growth. Intraperitoneal injections of AMP or ATP but not of adenosine yielded expansions of erythrocyte ATP pools in host animals. The expanded erythrocyte ATP pools are stable over a period of hours, while slowly releasing micromolar amounts of ATP into the blood plasma compartment, leading to several-fold increases in plasma (extracellular) ATP levels. Based on previous studies in which 1-5 microM extracellular ATP effectively inhibited the growth of a variety of tumor cells in several in vitro systems, it is suggested that similar levels of ATP in blood plasma account for the anticancer activities observed in a murine host.
Collapse
Affiliation(s)
- E Rapaport
- Department of Microbiology, Boston University School of Medicine, MA 02118
| | | |
Collapse
|
29
|
Busshardt E, Gerok W, Häussinger D. Regulation of hepatic parenchymal and non-parenchymal cell function by the diadenine nucleotides Ap3A and Ap4A. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1010:151-9. [PMID: 2563228 DOI: 10.1016/0167-4889(89)90155-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The diadenine nucleotides diadenosine 5',5"-P1,P3-triphosphate (Ap3A) and diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A) can be released from platelets and were shown to act as long-lived signal molecules. Accordingly, we studied their potential effect on hepatic metabolism. In isolated perfused rat liver, Ap3A and Ap4A increase the portal pressure, lead to a transient net release of Ca2+, complex net K+ movement across the liver plasma membrane and stimulate hepatic glucose output and 14CO2 production from [1-14C]glutamate. These responses resemble that obtained with extracellular ATP. This and studies on the additivity of ATP and Ap4A effects suggest similar mechanisms mediating the ATP and diadenine nucleotide effects in the liver. Ap3A and Ap4A increased the activity of glycogen phosphorylase a in isolated hepatocyte suspensions by about 100%, pointing to a direct effect of these nucleotides on hepatic parenchymal cells. A response of hepatic non-parenchymal cells to diadenine nucleotide infusion is suggested by a marked stimulation of thromboxane and prostaglandin D2 release from perfused liver. Studies with the thromboxane A2 receptor antagonist BM 13.177 (20 microM) show that the pressure and glucose response to the diadenine nucleotides is partially mediated by this thromboxane formation. Studies with retrograde and sequential liver perfusions suggest a less efficient degradation of the diadenine nucleotides during a single liver passage compared to extracellular ATP. The data suggest that Ap3A and Ap4A are potential regulators of hepatic hemodynamics and metabolism, involving complex interactions between hepatic parenchymal cells and hepatic non-parenchymal cells, including eicosanoids as signal molecules.
Collapse
Affiliation(s)
- E Busshardt
- Medizinische Universitätsklinik, Freiburg, F.R.G
| | | | | |
Collapse
|
30
|
Andersson M. Diadenosine tetraphosphate (Ap4A): its presence and functions in biological systems. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1989; 21:707-14. [PMID: 2668065 DOI: 10.1016/0020-711x(89)90200-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Andersson M, Lewan L. Intracellular compartmentation of diadenosine tetraphosphate (Ap4A) and dTTP in rat liver. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1989; 21:593-8. [PMID: 2477288 DOI: 10.1016/0020-711x(89)90377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The intracellular compartmentation of diadenosine tetraphosphate (Ap4A) and of dTTP was studied in rat liver cells using non-aqueous glycerol for the isolation of cell nuclei. 2. This method allows a stepwise removal of cytoplasm from the nuclei. 3. The decrease in Ap4A or dTTP during the process was compared to the simultaneous decrease in RNA, which was taken to represent the cytoplasm. 4. In regenerating liver excised 24 hr after partial hepatectomy, Ap4A was almost equally distributed between the nucleus and cytoplasm. 5. In livers from unoperated control rats, the nuclear concentration of Ap4A was slightly elevated compared to that of whole cells. dTTP was only investigated in regenerating liver. 6. Significantly higher concentrations were found in the nuclear fractions. 7. The purest nuclei contained about 26% of whole cell levels of dTTP, while their RNA values had decreased to 7% of the whole cell RNA. 8. Considering that the liver cell nucleus comprises about 7% of the entire cell mass, a nuclear dTTP concentration of 26% indicates significantly higher dTTP levels in the nuclear compartment than in the cytoplasm of regenerating rat liver cells.
Collapse
|
32
|
Lüthje J, Pickert S, Ogilvie A, Hornemann E, Siegfried W, Waldherr A, Domschke W. Levels of 5'-nucleotide phosphodiesterase isoenzymes in normal and pathological sera. Clin Chim Acta 1988; 177:131-9. [PMID: 2853013 DOI: 10.1016/0009-8981(88)90134-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The levels of 5'-nucleotide phosphodiesterase isoenzymes (5'-NPD; EC 3.1.4.1) in sera of 54 healthy donors and 201 inpatients were measured. Isozymes were separated electrophoretically and designated as 5'-NPD-0, -I, -II, -III, -IV and -V in the reverse order of their electrophoretic mobility. In healthy donors all isozymes except 5'-NPD-V were detectable. In pathological sera isozymes 0 to V were elevated in 26.0%, 20.5%, 14.0%, 30.5%, 7.0% and 15.0% of the cases, respectively. Decreased values were found in 6-7%, with the exception of 5'-NPD-IV showing decreased activities in 23.5% of the patients. This average distribution pattern was found in many disorders. However, in diseases of the liver and the pancreas a remarkable accumulation of cases with elevated levels of all isozymes, except 5'-NPD-IV, was observed. All isozymes, except 5'-NPD-IV, showed many significant correlations with other laboratory parameters indicating liver disease. Isozyme IV was not related to these parameters but exhibited a strong correlation with serum albumin. 5'-NPD-II was unproportionally often increased in patients with liver cirrhosis and was the only isozyme with on the average higher levels in women than in men.
Collapse
Affiliation(s)
- J Lüthje
- Institut für Biochemie (Medizinische Fakultät) der Universität Erlangen-Nürnberg, FRG
| | | | | | | | | | | | | |
Collapse
|
33
|
Lüthje J, Schomburg A, Ogilvie A. Demonstration of a novel ecto-enzyme on human erythrocytes, capable of degrading ADP and of inhibiting ADP-induced platelet aggregation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:285-9. [PMID: 2841133 DOI: 10.1111/j.1432-1033.1988.tb14195.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of ADP as an important inducer of platelet aggregation is generally accepted. Therefore it has been postulated by many authors that the enzymatic removal of extracellular ADP from the circulation is essential to avoid platelet aggregation and thrombus formation. Here we show that erythrocytes essentially contribute to the clearance of ADP. The removal of ADP from suspensions of washed human erythrocytes was due to at least two different activities. One activity, which had already been observed by earlier workers, was identified as adenylate kinase, on the basis of the reaction products and the inhibition by adenosine(5')pentaphospho(5')adenosine (Ap5A). This enzyme was not associated with the cells and was always detectable in cell-free supernatants, indicating that the enzyme had leaked from the cells into the extracellular medium. In contrast, the second activity, which is described here for the first time, was tightly bound to the cells. The activity was not inhibited by Ap5A. The main product of the reaction was AMP, and enzyme activity depended on the presence of divalent cations. The Michaelis constant was about 28 mumol/l. This activity seemed to be an ecto-ADPase. Studies with various inhibitors revealed that degradation of ADP was not due to a non-specific phosphatase. Besides the well known ADPase on the endothelium, the ecto-activity on erythrocytes may play an important part in destroying pro-aggregatory ADP.
Collapse
Affiliation(s)
- J Lüthje
- Institut für Biochemie (Medizinische Fakultät), Universität Erlangen-Nürnberg, Federal Republic of Germany
| | | | | |
Collapse
|
34
|
Lüthje J, Ogilvie A. Catabolism of Ap4A and Ap3A in whole blood. The dinucleotides are long-lived signal molecules in the blood ending up as intracellular ATP in the erythrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 173:241-5. [PMID: 3356191 DOI: 10.1111/j.1432-1033.1988.tb13990.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A) are stored in large amounts in human platelets. After activation of the platelets both dinucleotides are released into the extracellular milieu where they play a role in the modulation of platelet aggregation and also in the regulation of the vasotone. It has recently been shown that the dinucleotides are degraded by enzymes present in the plasma [Lüthje, J. & Ogilvie, A. (1987) Eur. J. Biochem. 169, 385-388]. The further metabolism as well as the role of blood cells has not been established. The dinucleotides were first degraded by plasma phosphodiesterases yielding ATP (ADP) plus AMP as products which were then metabolized to adenosine and inosine. The nucleosides did not accumulate but were very rapidly salvaged by erythrocytes yielding intracellular ATP as the main product. Although lysates of platelets, leucocytes and red blood cells contained large amounts of Ap3A-degrading and Ap4A-degrading activities, these activities were not detectable in suspensions of intact cells suggesting the lack of dinucleotide-hydrolyzing ectoenzymes. Compared to ATP, which is rapidly degraded by ectoenzymes present on blood cells, the half-life of Ap4A was two to three times longer. Since the dinucleotides are secreted together with ADP and ATP from the platelets, we tested the influence of ATP on the rate of degradation of Ap4A. ATP at concentrations present during platelet aggregation strongly inhibited the degradation of Ap4A in whole blood. It is suggested that in vivo the dinucleotides are protected from degradation immediately after their release. They may thus survive for rather long times and may act as signals even at sites far away from the platelet aggregate.
Collapse
Affiliation(s)
- J Lüthje
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Federal Republic of Germany
| | | |
Collapse
|
35
|
Abstract
Diadenosine tetraphosphate (AP4A), a competitive inhibitor of ADP-induced platelet aggregation, was tested as an antithrombotic agent in a rabbit intracarotid thrombosis model previously shown to be sensitive to antiplatelet agents. Eighty-four percent of control rabbits formed clots. The infusion of AP4A at a dose of 50 mg/kg over 2 hours reduced the incidence of thrombosis to 56% (p less than 0.05). Blood AP4A increased 125-fold at the end of infusion, but was completely cleared within 10 minutes. Plasma ATP showed bimodal early and late increases. Platelets recovered from AP4A-treated rabbits exhibited a pattern of reduced reactivity to ADP, but not to collagen, similar to platelets exposed to AP4A in vitro. This study shows that AP4A may be a potentially useful antithrombotic agent.
Collapse
Affiliation(s)
- S Louie
- Department of Biomedical Research, St. Elizabeth's Hospital, Tufts University School of Medicine, Boston, MA
| | | | | |
Collapse
|
36
|
Specific phosphorylase from euglena gracilis splits diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A and diadenosine 5',5'''-P1,P3-triphosphate (Ap3A. ACTA ACUST UNITED AC 1988; 20:449-55. [DOI: 10.1016/0020-711x(88)90214-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Lüthje J, Ogilvie A. Catabolism of Ap4A and Ap3A in human serum. Identification of isoenzymes and their partial characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 169:385-8. [PMID: 2826143 DOI: 10.1111/j.1432-1033.1987.tb13624.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A hydrolase splitting adenosine (5')triphospho(5')adenosine (Ap3A) and adenosine(5')tetraphospho(5')adenosine (Ap4A) has recently been highly purified from human plasma [Lüthje, J. and Ogilvie, A. (1985) Eur. J. Biochem. 149, 119-127]. This enzyme has been shown to have 5'-nucleotide phosphodiesterase activity (5'-NPD). Three isoenzymes splitting Ap4A and Ap3A were found in human serum by means of native polyacrylamide gel electrophoresis. They exactly comigrated with the 5'-NPD isoenzymes I, III and IV according to published nomenclature, and were designated Ap4Aase isozymes I, III and IV. Their Km values with Ap4A as a substrate were 3 microM, 2 microM and 10 microM, respectively. No Ap4A splitting activity corresponding to 5'-NDP-II was found. Further experiments were designed to prove the identity of Ap4Aases with 5'-NPD isoenzymes. Corresponding isozymes of both activities showed identical behaviour upon delipidation of serum with n-butanol: activities I and III were inactivated, whereas IV remained unaffected. Addition of phosphate stimulated Ap4Aase and 5'-NPD isoenzymes I and III, whereas both activities of isozyme IV were inhibited. Further evidence for the identity was obtained when investigating a series of normal and pathological sera showing decreased as well as increased activities of the single isoenzymes. In all cases Ap4Aase and 5'-NPD isoenzymes showed a linear correlation.
Collapse
Affiliation(s)
- J Lüthje
- Institut für Physiologische Chemie der Universität Erlangen-Nürnberg, Federal Republic of Germany
| | | |
Collapse
|
38
|
Lüthje J, Ogilvie A. 5'-Nucleotide phosphodiesterase isoenzymes in human serum: quantitative measurement and some biochemical properties. Clin Chim Acta 1987; 164:275-84. [PMID: 3036404 DOI: 10.1016/0009-8981(87)90302-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A method based on native PAGE is used for the quantitative measurement of 5'-nucleotide phosphodiesterase isoenzymes (5'-NPD; EC 3.1.4.1) in human serum. In contrast to other techniques this method works with a commercially available substrate. In sera of healthy donors four isozymes could be separated, designated as 5'-NPD-I, 5'-NPD-II, 5'-NPD-III and 5'-NPD-IV in the reverse order of their electrophoretic mobility. When low amounts of serum were applied to the gel, the separation between all four activities was sufficient enough to allow their quantitation. Higher amounts of serum impaired the separation between the isoenzymes I and II. However, even when using high amounts of serum, the quantitation of these activities was possible when taking advantage of some of their biochemical properties which are described herein.
Collapse
|
39
|
Lüthje J, Miller D, Ogilvie A. Unproportionally high concentrations of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) in heavy platelets. Consequences for in vitro studies with human platelets. BLUT 1987; 54:193-200. [PMID: 3030468 DOI: 10.1007/bf00594193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platelets from whole blood were separated into five density subpopulations using a discontinuous Percoll gradient. The content of diadenosine triphosphate (Ap3A), diadenosine tetraphosphate (Ap4A), ADP and ATP were determined in the subfractions. The dinucleotides were directly measured in neutralized, acid-soluble extracts of human platelets with a bioluminescence method not requiring any chromatographic step. When comparing the nucleotide contents of the density subpopulations it became evident that all nucleotides steadily increased with increasing density. Ap3A, Ap4A, ADP and ATP were present in 10-, 7-, 4- and 2-fold higher amounts in the heaviest platelets, respectively, as compared to the subfraction with the lowest density. This finding is practically relevant since the most dense platelet subpopulations may be lost during conventional centrifugation to obtain platelet-rich plasma. Therefore we compared a platelet population obtained from PRP with the platelet population, which had been prepared from whole blood by means of a continuous Percoll gradient. All the four nucleotides investigated were represented in 1.5- to 2-fold higher amounts in the whole blood platelet population. This indicates that PRP does not contain a representative population but lacks part of the large heavy platelets containing the highest amounts of nucleotides.
Collapse
|
40
|
Bachmaier A, Just G, Holler E. In vitro competition between adenosine(5')tetraphospho(5')adenosine and deoxyribonucleic acid in the reaction with diamminedichloroplatinum(II). EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:621-7. [PMID: 3792311 DOI: 10.1111/j.1432-1033.1986.tb10486.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Competition between adenosine(5')tetraphospho(5')adenosine (Ap4A) and DNA for the synthesis of adducts with the cis or trans isomer of diamminedichloroplatinum(II) was measured in the presence and absence of magnesium and spermidinium ions. Reaction products were analysed by circular dichroism, poly(ethyleneimine) thin-layer chromatography and reversed-phase chromatography. Competition was affected by the oligovalent cations that bound specifically to the dinucleotide. Platination of DNA was favoured under all conditions. Chromatin was less competitive. The mechanism was kinetic competition, DNA reacting considerably faster than Ap4A. Platinum(II) did not exchange between adducts and free DNA and Ap4A, respectively. On that basis only low amounts of Ap4A adducts were estimated to be formed under conditions of clinical chemotherapy. The cis and trans isomers of diamminedichloroplatinum(II) were equally effective. Platinum(II) adducts of Ap4A were neither degraded by Ap4A-specific pyrophosphohydrolases nor by phosphodiesterase nor in the presence of unfractionated extract of calf thymus. Unphysiologically high concentrations of Crotalus durissus phosphodiesterase I were required for hydrolytic splitting, the amount of which was similar for both platinum(II) isomer adducts. The results suggest that Ap4A platinum(II) adducts might accumulate during chemotherapy of cancer treatment.
Collapse
|
41
|
Robinson AK, Barnes LD. Three diadenosine 5',5''-P1,P4-tetraphosphate hydrolytic enzymes from Physarum polycephalum with differential effects by calcium: a specific dinucleoside polyphosphate pyrophosphohydrolase, a nucleotide pyrophosphatase, and a phosphodiesterase. Arch Biochem Biophys 1986; 248:502-15. [PMID: 3017212 DOI: 10.1016/0003-9861(86)90503-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two new enzymes that hydrolyze diadenosine tetraphosphate (Ap4A) have been isolated from the acellular slime mold Physarum polycephalum. Both enzymes are different from the Physarum Ap4A symmetrical pyrophosphohydrolase previously described on the basis of their substrate specificities, reaction products, molecular weights, and divalent cation requirements. One enzyme is a nucleotide pyrophosphatase that asymmetrically hydrolyzes Ap4A to AMP and ATP. This enzyme hydrolyzes several mono- and dinucleotides with the corresponding nucleotide monophosphate as one of the products. The percentage hydrolysis of NAD+, Ap4A, and Ap4G, each at 10 microM, was 100, 56, and 51, respectively. A divalent cation is required for activity, with Ca2+ yielding 20-30 times greater activity than Mg2+ or Mn2+. Values of Km for Ap4A and Vmax are similar to the corresponding values for Ap4A symmetrical pyrophosphohydrolase. The second enzyme is a phosphodiesterase I with broad substrate reactivity. This enzyme also asymmetrically hydrolyzes Ap4A, but it does not hydrolyze NAD+. Activity of the phosphodiesterase I is stimulated by divalent cations, with Ca2+ being 50-60 times more stimulatory than Mg2+ or Mn2+. The apparent molecular weights of the nucleotide pyrophosphatase and phosphodiesterase are 184,000 and 45,000, respectively. In contrast, the Ap4A pyrophosphohydrolase hydrolyzes Ap4A to ADP, is inhibited by Ca2+ and other divalent cations, and has an apparent molecular weight of 26,000 as previously reported.
Collapse
|
42
|
Lüthje J, Baringer J, Ogilvie A. Effects of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) on platelet aggregation in unfractionated human blood. BLUT 1985; 51:405-13. [PMID: 3852686 DOI: 10.1007/bf00320727] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects on platelet aggregation of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A), both of which are stored in and released from platelet granules, have been studied in unfractionated human blood using a microscopic platelet-count ratio method. Ap3A at submicromolar concentrations induces platelet aggregation whereas the homologue dinucleotide Ap4A has disaggregating potency. In the concentration range between 10(-7) to 10(-5) M, Ap3A has been found to be as effective as ADP in triggering aggregate formation. These results confirm and essentially extend our recent findings with platelet-rich plasma that Ap3A is able to trigger platelet aggregation by a slow release of ADP from Ap3A which is catalyzed by a plasma hydrolase. Formation of platelet aggregates was also followed kinetically using a turbidometric method which has been developed for this purpose. In contrast to ADP which very rapidly induces a transient state of aggregation, the effect of Ap3A occurs much more slowly but induces the same maximum of aggregation. The duration of the Ap3A stimulus, however, is longer than that of ADP pointing to a potential physiological function of Ap3A as a "masked" source for ADP.
Collapse
|