1
|
Gisch N, Utpatel C, Gronbach LM, Kohl TA, Schombel U, Malm S, Dobos KM, Hesser DC, Diel R, Götsch U, Gerdes S, Shuaib YA, Ntinginya NE, Khosa C, Viegas S, Kerubo G, Ali S, Al-Hajoj SA, Ndung'u PW, Rachow A, Hoelscher M, Maurer FP, Schwudke D, Niemann S, Reiling N, Homolka S. Sub-Lineage Specific Phenolic Glycolipid Patterns in the Mycobacterium tuberculosis Complex Lineage 1. Front Microbiol 2022; 13:832054. [PMID: 35350619 PMCID: PMC8957993 DOI: 10.3389/fmicb.2022.832054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
“Ancestral” Mycobacterium tuberculosis complex (MTBC) strains of Lineage 1 (L1, East African Indian) are a prominent tuberculosis (TB) cause in countries around the Indian Ocean. However, the pathobiology of L1 strains is insufficiently characterized. Here, we used whole genome sequencing (WGS) of 312 L1 strains from 43 countries to perform a characterization of the global L1 population structure and correlate this to the analysis of the synthesis of phenolic glycolipids (PGL) – known MTBC polyketide-derived virulence factors. Our results reveal the presence of eight major L1 sub-lineages, whose members have specific mutation signatures in PGL biosynthesis genes, e.g., pks15/1 or glycosyltransferases Rv2962c and/or Rv2958c. Sub-lineage specific PGL production was studied by NMR-based lipid profiling and strains with a completely abolished phenolphthiocerol dimycoserosate biosynthesis showed in average a more prominent growth in human macrophages. In conclusion, our results show a diverse population structure of L1 strains that is associated with the presence of specific PGL types. This includes the occurrence of mycoside B in one sub-lineage, representing the first description of a PGL in an M. tuberculosis lineage other than L2. Such differences may be important for the evolution of L1 strains, e.g., allowing adaption to different human populations.
Collapse
Affiliation(s)
- Nicolas Gisch
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lisa M Gronbach
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Malm
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Danny C Hesser
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roland Diel
- Lung Clinic Grosshansdorf, Airway Disease Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Udo Götsch
- Municipal Health Authority Frankfurt am Main, Frankfurt am Main, Germany
| | - Silke Gerdes
- Municipal Health Authority Hannover, Hanover, Germany
| | - Yassir A Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan.,WHO-Supranational Reference Laboratory of Tuberculosis, Institute of Microbiology and Laboratory Medicine (IML Red), Gauting, Germany
| | - Nyanda E Ntinginya
- National Institute for Medical Research Tanzania - Mbeya Medical Research Center, Mbeya, Tanzania
| | - Celso Khosa
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Glennah Kerubo
- Department of Medical Microbiology and Parasitology, School of Medicine, Kenyatta University, Nairobi, Kenya
| | - Solomon Ali
- Department of Microbiology, Immunology, and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sahal A Al-Hajoj
- Mycobacteriology Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Perpetual W Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Florian P Maurer
- National and WHO Supranational Reference Centre for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Norbert Reiling
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Microbial Interface Biology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
2
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
4
|
Lundahl M, Lynch DM, Barnes D, McSweeney L, Gorman A, Lebre F, Gordon SV, Lavelle EC, Scanlan EM. Mycobacterial para-Hydroxybenzoic Acid-Derivatives ( pHBADs) and Related Structures Induce Macrophage Innate Memory. ACS Chem Biol 2020; 15:2415-2421. [PMID: 32786261 DOI: 10.1021/acschembio.0c00378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrophages are key immune cells for combatting Mycobacterium tuberculosis. However, M. tuberculosis possesses means to evade macrophage bactericidal responses by, for instance, secretion of the immunomodulatory para-hydroxybenzoic acid derivatives (pHBADs). While these molecules have been implicated in inhibiting macrophage responses in an acute context, little is known about their ability to reprogram macrophages via induction of long-term innate memory. Since innate memory has been highlighted as a promising strategy to augment bactericidal immune responses against M. tuberculosis, investigating corresponding immune evasion mechanisms is highly relevant. Our results reveal for the first time that pHBAD I and related molecules (unmethylated pHBAD I and the hexose l-rhamnose) reduce macrophage bactericidal mechanisms in both the short- and the long-term. Moreover, we demonstrate how methyl-p-anisate hinders bactericidal responses soon after exposure yet results in enhanced pro-inflammatory responses in the long-term. This work highlights new roles for these compounds in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Mimmi Lundahl
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, D02 R590 Dublin 2, Ireland
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Dylan M. Lynch
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, D02 R590 Dublin 2, Ireland
| | - Danielle Barnes
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, D02 R590 Dublin 2, Ireland
| | - Lauren McSweeney
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, D02 R590 Dublin 2, Ireland
| | - Aoife Gorman
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Filipa Lebre
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, D02 R590 Dublin, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, D02 R590 Dublin 2, Ireland
| |
Collapse
|
5
|
Garcia-Vilanova A, Chan J, Torrelles JB. Underestimated Manipulative Roles of Mycobacterium tuberculosis Cell Envelope Glycolipids During Infection. Front Immunol 2019; 10:2909. [PMID: 31921168 PMCID: PMC6930167 DOI: 10.3389/fimmu.2019.02909] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis cell envelope has been evolving over time to make the bacterium transmissible and adaptable to the human host. In this context, the M. tuberculosis cell envelope contains a peripheral barrier full of lipids, some of them unique, which confer M. tuberculosis with a unique shield against the different host environments that the bacterium will encounter at the different stages of infection. This lipid barrier is mainly composed of glycolipids that can be characterized by three different subsets: trehalose-containing, mannose-containing, and 6-deoxy-pyranose-containing glycolipids. In this review, we explore the roles of these cell envelope glycolipids in M. tuberculosis virulence and pathogenesis, drug resistance, and further, how these glycolipids may dictate the M. tuberculosis cell envelope evolution from ancient to modern strains. Finally, we address how these M. tuberculosis cell envelope glycolipids are impacted by the host lung alveolar environment, their role in vaccination and masking host immunity, and subsequently the impact of these glycolipids in shaping how M. tuberculosis interacts with host cells, manipulating their immune response to favor the establishment of an infection.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John Chan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
| | - Jordi B Torrelles
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
6
|
Daffé M, Marrakchi H. Unraveling the Structure of the Mycobacterial Envelope. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0027-2018. [PMID: 31267927 PMCID: PMC10957186 DOI: 10.1128/microbiolspec.gpp3-0027-2018] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/28/2022] Open
Abstract
The mycobacterial cell envelope consists of a typical plasma membrane of lipid and protein surrounded by a complex cell wall composed of carbohydrate and lipid. In pathogenic species, such as Mycobacterium tuberculosis, an outermost "capsule" layer surrounds the cell wall. This wall embraces a fundamental, covalently linked "cell-wall skeleton" composed of peptidoglycan, solidly attached to arabinogalactan, whose penta-saccharide termini are esterified by very-long-chain fatty acids (mycolic acids). These fatty acids form the inner leaflet of an outer membrane, called the mycomembrane, whose outer leaflet consists of a great variety of non-covalently linked lipids and glycolipids. The thickness of the mycomembrane, which is similar to that of the plasma membrane, is surprising in view of the length of mycoloyl residues, suggesting dedicated conformations of these fatty acids. Finally, a periplasmic space also exists in mycobacteria, between the plasma membrane and the peptidoglycan. This article provides a comprehensive overview of this biologically important and structurally unique mycobacterial cell compartment.
Collapse
Affiliation(s)
- Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Department of Tuberculosis and Infection Biology, Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Department of Tuberculosis and Infection Biology, Toulouse, France
| |
Collapse
|
7
|
Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis. J Mol Biol 2018; 430:5120-5136. [DOI: 10.1016/j.jmb.2018.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 01/25/2023]
|
8
|
Sato K, Omahdi Z, Shibata K, Sonoda KH, Yamasaki S, Tanaka H. Synthesis and Biological Evaluation of O-Methylated Glycolipids Related to PGLs via Direct Stereoselective Glycosidation and Sequential Suzuki-Miyaura Coupling using Boracyclane. Chemistry 2017; 23:16374-16379. [PMID: 28881056 DOI: 10.1002/chem.201703684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 12/15/2022]
Abstract
Synthesis of O-methylated glycolipids via direct stereoselective glycosidation whose sugar moieties are related to those in phenolic glycolipids (PGLs) is reported. Treatment of 2-O-methyl-rhamnosyl imidates with I2 and nBu4 NOTf resulted in their activation under low temperature and provided the α-rhamnosides with excellent α-selectivity. nBu4 NOTf enhanced the electorophilicity of iodine. This methodology improved the efficiency of the synthesis of both PGL-1 and PGL-tb1 sugars. The process involved the formation of 2-O-naphthylmethyl-α-rhamnoside and 2-O-methyl-α-fucoside. Sequential Suzuki-Miyaura coupling using synthetic glycosides, boracyclane, and aryl bromides provided glycolipids related to PGL sugars, and was accomplished with a one-pot process. Finally, we elucidated the immunosuppressive activities of all these synthetic compounds and found that a phenyl 3-O-α-rhamnosyl-2-O-methyl-α-rhamnoside possessing a 6-(2-naphthyl)hexyl group exhibited the strongest inhibitory effect.
Collapse
Affiliation(s)
- Ko Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Zakaria Omahdi
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan.,Current address: Department of Molecular Immunology, Research Institute for Microbial Diseases, and Laboratory for Molecular Immunology, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka University, Japan.,Current address: WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Kensuke Shibata
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan.,Current address: WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan.,Current address: Department of Molecular Immunology, Research Institute for Microbial Diseases, and Laboratory for Molecular Immunology, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka University, Japan.,Current address: WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| |
Collapse
|
9
|
Domingo-Gonzalez R, Das S, Griffiths KL, Ahmed M, Bambouskova M, Gopal R, Gondi S, Muñoz-Torrico M, Salazar-Lezama MA, Cruz-Lagunas A, Jiménez-Álvarez L, Ramirez-Martinez G, Espinosa-Soto R, Sultana T, Lyons-Weiler J, Reinhart TA, Arcos J, de la Luz Garcia-Hernandez M, Mastrangelo MA, Al-Hammadi N, Townsend R, Balada-Llasat JM, Torrelles JB, Kaplan G, Horne W, Kolls JK, Artyomov MN, Rangel-Moreno J, Zúñiga J, Khader SA. Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis. JCI Insight 2017; 2:92973. [PMID: 28978810 PMCID: PMC5841875 DOI: 10.1172/jci.insight.92973] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a global health threat, compounded by the emergence of drug-resistant strains. A hallmark of pulmonary tuberculosis (TB) is the formation of hypoxic necrotic granulomas, which upon disintegration, release infectious Mtb. Furthermore, hypoxic necrotic granulomas are associated with increased disease severity and provide a niche for drug-resistant Mtb. However, the host immune responses that promote the development of hypoxic TB granulomas are not well described. Using a necrotic Mtb mouse model, we show that loss of Mtb virulence factors, such as phenolic glycolipids, decreases the production of the proinflammatory cytokine IL-17 (also referred to as IL-17A). IL-17 production negatively regulates the development of hypoxic TB granulomas by limiting the expression of the transcription factor hypoxia-inducible factor 1α (HIF1α). In human TB patients, HIF1α mRNA expression is increased. Through genotyping and association analyses in human samples, we identified a link between the single nucleotide polymorphism rs2275913 in the IL-17 promoter (-197G/G), which is associated with decreased IL-17 production upon stimulation with Mtb cell wall. Together, our data highlight a potentially novel role for IL-17 in limiting the development of hypoxic necrotic granulomas and reducing disease severity in TB.
Collapse
Affiliation(s)
| | | | | | | | - Monika Bambouskova
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Radha Gopal
- Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Marcela Muñoz-Torrico
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Alfredo Cruz-Lagunas
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Luis Jiménez-Álvarez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Ramón Espinosa-Soto
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Tamanna Sultana
- Bioinformatics Analysis Core, Genomics and Proteomics Core Laboratories, and
| | - James Lyons-Weiler
- Bioinformatics Analysis Core, Genomics and Proteomics Core Laboratories, and
| | - Todd A. Reinhart
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | | | - Michael A. Mastrangelo
- Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Reid Townsend
- Proteomics Shared Resource, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Jordi B. Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Gilla Kaplan
- Public Health Research Institute Center, New Jersey Medical School-Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | - William Horne
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jay K. Kolls
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maxim N. Artyomov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
10
|
Singh AK, Bishai WR. Partners in Crime: Phenolic Glycolipids and Macrophages. Trends Mol Med 2017; 23:981-983. [PMID: 28969977 DOI: 10.1016/j.molmed.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022]
Abstract
Two recent articles advance our understanding of mycobacterial pathogenesis, revealing key roles for bacterially derived phenolic glycolipids (PGLs). In leprosy, Mycobacterium leprae PGL-1 uniquely subverts local macrophages to produce neurotoxic nitric oxide (NO), leading to nerve demyelination. In a related model, Mycobacterium marinum PGL stimulates the recruitment of growth-conducive monocytes to sites of initial infection as an early immune evasion strategy.
Collapse
Affiliation(s)
- Alok Kumar Singh
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Barnes DD, Lundahl MLE, Lavelle EC, Scanlan EM. The Emergence of Phenolic Glycans as Virulence Factors in Mycobacterium tuberculosis. ACS Chem Biol 2017; 12:1969-1979. [PMID: 28692249 DOI: 10.1021/acschembio.7b00394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis is the leading infectious cause of mortality worldwide. The global epidemic, caused by Mycobacterium tuberculosis, has prompted renewed interest in the development of novel vaccines for disease prevention and control. The cell envelope of M. tuberculosis is decorated with an assortment of glycan structures, including glycolipids, that are involved in disease pathogenesis. Phenolic glycolipids and the structurally related para-hydroxybenzoic acid derivatives display potent immunomodulatory activities and have particular relevance for both understanding the interaction of the bacterium with the host immune system and also in the design of new vaccine and therapeutic candidates. Interest in glycobiology has grown exponentially over the past decade, with advancements paving the way for effective carbohydrate based vaccines. This review highlights recent advances in our understanding of phenolic glycans, including their biosynthesis and role as virulence factors in M. tuberculosis. Recent chemical synthesis approaches and biochemical analysis of synthetic glycans and their conjugates have led to fundamental insights into their roles in host-pathogen interactions. The applications of these synthetic glycans as potential vaccine candidates are discussed.
Collapse
Affiliation(s)
- Danielle D. Barnes
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
| | - Mimmi L. E. Lundahl
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity
Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin 2, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity
Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin 2, Ireland
| | - Eoin M. Scanlan
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
| |
Collapse
|
12
|
Touchette MH, Seeliger JC. Transport of outer membrane lipids in mycobacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1340-1354. [PMID: 28110100 DOI: 10.1016/j.bbalip.2017.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
The complex organization of the mycobacterial cell wall poses unique challenges for the study of its assembly. Although mycobacteria are classified evolutionarily as Gram-positive bacteria, their cell wall architecture more closely resembles that of Gram-negative organisms. They possess not only an inner cytoplasmic membrane, but also a bilayer outer membrane that encloses an aqueous periplasm and includes diverse lipids that are required for the survival and virulence of pathogenic species. Questions surrounding how mycobacterial outer membrane lipids are transported from where they are made in the cytoplasm to where they function at the cell exterior are thus similar, and similarly compelling, to those that have driven the study of Gram-negative outer membrane transport pathways. However, little is understood about these processes in mycobacteria. Here we contextualize these questions by comparing our current knowledge of mycobacteria with better-defined systems in other organisms. Based on this analysis, we propose possible models and highlight continuing challenges to improving our understanding of outer membrane assembly in these medically and environmentally important bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Megan H Touchette
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
13
|
F420H2 Is Required for Phthiocerol Dimycocerosate Synthesis in Mycobacteria. J Bacteriol 2016; 198:2020-8. [PMID: 27185825 DOI: 10.1128/jb.01035-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Phthiocerol dimycocerosates (PDIM) are a group of cell surface-associated apolar lipids of Mycobacterium tuberculosis and closely related mycobacteria, such as Mycobacterium bovis and Mycobacterium leprae A characteristic methoxy group of these lipids is generated from the methylation of a hydroxyl group of the direct precursors, the phthiotriols. The precursors arise from the reduction of phthiodiolones, the keto intermediates, by a ketoreductase. The putative phthiodiolone ketoreductase (PKR) is encoded by Rv2951c in M. tuberculosis and BCG_2972c in M. bovis BCG, and these open reading frames (ORFs) encode identical amino acid sequences. We investigated the cofactor requirement of the BCG_2972c protein. A comparative analysis based on the crystallographic structures of similar enzymes identified structural elements for binding of coenzyme F420 and hydrophobic phthiodiolones in PKR. Coenzyme F420 is a deazaflavin coenzyme that serves several key functions in pathogenic and nonpathogenic mycobacteria. We found that an M. bovis BCG mutant lacking F420-dependent glucose-6-phosphate dehydrogenase (Fgd), which generates F420H2 (glucose-6-phosphate + F420 → 6-phosphogluconate + F420H2), was devoid of phthiocerols and accumulated phthiodiolones. When the mutant was provided with F420H2, a broken-cell slurry of the mutant converted accumulated phthiodiolones to phthiocerols; F420H2 was generated in situ from F420 and glucose-6-phosphate by the action of Fgd. Thus, the reaction mixture was competent in reducing phthiodiolones to phthiotriols (phthiodiolones + F420H2 → phthiotriols + F420), which were then methylated to phthiocerols. These results established the mycobacterial phthiodiolone ketoreductase as an F420H2-dependent enzyme (fPKR). A phylogenetic analysis of close homologs of fPKR revealed potential F420-dependent lipid-modifying enzymes in a broad range of mycobacteria. IMPORTANCE Mycobacterium tuberculosis is the causative agent of tuberculosis, and phthiocerol dimycocerosates (PDIM) protect this pathogen from the early innate immune response of an infected host. Thus, the PDIM synthesis system is a potential target for the development of effective treatments for tuberculosis. The current study shows that a PDIM synthesis enzyme is dependent on the coenzyme F420 F420 is universally present in mycobacteria and absent in humans. This finding expands the number of experimentally validated F420-dependent enzymes in M. tuberculosis to six, each of which helps the pathogen to evade killing by the host immune system, and one of which activates an antituberculosis drug, PA-824. This work also has relevance to leprosy, since similar waxy lipids are found in Mycobacterium leprae.
Collapse
|
14
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
15
|
Aboubaker Osman D, Bouzid F, Canaan S, Drancourt M. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens. Front Public Health 2016; 3:283. [PMID: 26793699 PMCID: PMC4707939 DOI: 10.3389/fpubh.2015.00283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/18/2015] [Indexed: 11/23/2022] Open
Abstract
Smooth tubercle bacilli (STB) including “Mycobacterium canettii” are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause.
Collapse
Affiliation(s)
- Djaltou Aboubaker Osman
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Centre d'Études et de Recherche de Djibouti (CERD), Institut de Recherche Médicinale (IRM), Djibouti, Republic of Djibouti
| | - Feriel Bouzid
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Stéphane Canaan
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université , Marseille , France
| | - Michel Drancourt
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 , Marseille , France
| |
Collapse
|
16
|
Flentie KN, Stallings CL, Turk J, Minnaard AJ, Hsu FF. Characterization of phthiocerol and phthiodiolone dimycocerosate esters of M. tuberculosis by multiple-stage linear ion-trap MS. J Lipid Res 2016; 57:142-55. [PMID: 26574042 PMCID: PMC4689332 DOI: 10.1194/jlr.d063735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/13/2015] [Indexed: 12/29/2022] Open
Abstract
Both phthiocerol/phthiodiolone dimycocerosate (PDIM) and phenolic glycolipids are abundant virulent lipids in the cell wall of various pathogenic mycobacteria, which can synthesize a wide range of complex high-molecular-mass lipids. In this article, we describe linear ion-trap MS(n) mass spectrometric approach for structural study of PDIMs, which were desorbed as the [M + Li](+) and [M + NH(4)](+) ions by ESI. We also applied charge-switch strategy to convert the mycocerosic acid substituents to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives and analyzed them as M (+) ions, following alkaline hydrolysis of the PDIM to release mycocerosic acids. The structural information from MS(n) on the [M + Li](+) and [M + NH(4)](+) molecular species and on the M (+) ions of the mycocerosic acid-AMPP derivative affords realization of the complex structures of PDIMs in Mycobacterium tuberculosis biofilm, differentiation of phthiocerol and phthiodiolone lipid families and complete structure identification, including the phthiocerol and phthiodiolone backbones, and the mycocerosic acid substituents, including the locations of their multiple methyl side chains, can be achieved.
Collapse
Affiliation(s)
- Kelly N Flentie
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - John Turk
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine,
| |
Collapse
|
17
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Mycobacterium tuberculosis (Mtb) lipids are indelibly imprinted in just about every key aspect of tuberculosis (TB) basic and translational research. Although the interest in these compounds originally stemmed from their abundance, structural diversity, and antigenicity, continued research in this field has been driven by their important contribution to TB pathogenesis and their interest from the perspective of drug, vaccine, diagnostic, and biomarker development. This article summarizes what is known of the roles of lipids in the physiology and pathogenicity of Mtb and the exciting developments that have occurred in recent years in identifying new lead compounds targeting their biogenesis.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado 80523-1682
| |
Collapse
|
19
|
Abstract
ABSTRACT
Lipidomics is a distinct subspecialty of metabolomics concerned with hydrophobic molecules that organize into membranes. Most of the lipid classes present in
Mycobacterium tuberculosis
are found only in
Actinobacteria
and show extreme structural diversity. This article highlights the conceptual basis and the practical challenges associated with the mass spectrometry–based lipidomic study of
M. tuberculosis
to solve basic questions about the virulence of this lipid-laden organism.
Collapse
|
20
|
Elsaidi HRH, Lowary TL. Inhibition of cytokine release by mycobacterium tuberculosis phenolic glycolipid analogues. Chembiochem 2014; 15:1176-82. [PMID: 24797221 DOI: 10.1002/cbic.201402001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Indexed: 11/09/2022]
Abstract
Infection by Mycobacterium tuberculosis causes tuberculosis, a disease characterized by alteration of host innate and adaptive immunity. These processes are mediated by a series of bacterial biomolecules, among which phenolic glycolipids (PGLs) and the related p-hydroxybenzoic acid derivatives have been suggested to play important roles. To probe the importance of structural features of these glycans on cytokine modulation, we synthesized three M. tuberculosis PGL analogues (1-3), which differ from the native glycoconjugates by possessing a simplified lipid algycone. The ability of 1-3 to modulate the release of proinflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1) and nitric oxide (NO) was evaluated. None of the compounds stimulated the secretion of these signalling molecules. However, all showed a Toll-like Receptor 2-mediated, concentration-dependent inhibition profile that was related to the methylation pattern on the glycan.
Collapse
Affiliation(s)
- Hassan R H Elsaidi
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, 11225 Saskatchewan Drive, Edmonton, AB T6G 2G2 (Canada)
| | | |
Collapse
|
21
|
|
22
|
|
23
|
Rodriguez-Campos S, Smith NH, Boniotti MB, Aranaz A. Overview and phylogeny of Mycobacterium tuberculosis complex organisms: implications for diagnostics and legislation of bovine tuberculosis. Res Vet Sci 2014; 97 Suppl:S5-S19. [PMID: 24630673 DOI: 10.1016/j.rvsc.2014.02.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/04/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) cause a serious disease with similar pathology, tuberculosis; in this review, bovine tuberculosis will be considered as disease caused by any member of the MTBC in bovids. Bovine tuberculosis is responsible for significant economic loss due to costly eradication programs and trade limitations and poses a threat to both endangered and protected species as well as to public health. We here give an overview on all members of the MTBC, focusing on their isolation from different animal hosts. We also review the recent advances made in elucidating the evolutionary and phylogenetic relationships of members of the MTBC. Because the nomenclature of the MTBC is controversial, its members have been considered species, subspecies or ecotypes, this review discusses the possible implications for diagnostics and the legal consequences of naming of new species.
Collapse
Affiliation(s)
- Sabrina Rodriguez-Campos
- Institute of Veterinary Bacteriology, Veterinary Faculty, University of Bern, Laenggassstrasse 122, 3012 Bern, Switzerland.
| | - Noel H Smith
- Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Maria B Boniotti
- Centro Nazionale di Referenza per la Tubercolosi Bovina, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124 Brescia, Italy
| | - Alicia Aranaz
- Departamento de Sanidad Animal, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hiero s/n, 28040 Madrid, Spain
| |
Collapse
|
24
|
Lagrange PH, Thangaraj SK, Dayal R, Deshpande A, Ganguly NK, Girardi E, Joshi B, Katoch K, Katoch VM, Kumar M, Lakshmi V, Leportier M, Longuet C, Malladi SVS, Mukerjee D, Nair D, Raja A, Raman B, Rodrigues C, Sharma P, Singh A, Singh S, Sodha A, Kabeer BSA, Vernet G, Goletti D. A toolbox for tuberculosis (TB) diagnosis: an Indian multi-centric study (2006-2008); evaluation of serological assays based on PGL-Tb1 and ESAT-6/CFP10 antigens for TB diagnosis. PLoS One 2014; 9:e96367. [PMID: 24797271 PMCID: PMC4010510 DOI: 10.1371/journal.pone.0096367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/07/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this multi-centric prospective study in India was to assess the accuracy of a serological test as an additional tool for diagnosing active tuberculosis (ATB). In particular, an assay based on ELISA using a phenolic glycolipid (PGL-Tb1) or a fusion protein (ESAT-6/CFP10) was compared to the tuberculin skin test (TST) and the microbiological results according to HIV status. METHODS Individuals with and without ATB and HIV infection were enrolled. Serology and TST results were analyzed per se and in combination with the microbiological data. RESULTS Among the 778 ATB patients, 102 were HIV-infected, 316 HIV-uninfected and 360 had an HIV-unknown status. Of the 945 non-ATB subjects, 559 were at low risk (community adults) and 386 at high risk of M. tuberculosis exposure. Among those with ATB, the sensitivity of ELISA-PGL-Tb1 for ATB was higher than that of ELISA-ESAT-6/CFP10, both in HIV-infected (72.3% versus 63.7%, p = 0.29) and HIV-uninfected/HIV-unknown groups (40.5% versus 28.6%; p<0.0001), whereas the specificity was around 91% for both tests. Sensitivity for ATB increased when the results of the two ELISA were combined, reaching 75.5% in the HIV-infected and 50.9% in the group of HIV-uninfected/HIV-unknown ATB, with a significant decrease of the global specificity (83.9%). Analyzing the ELISA results with the microbiological results, we observed that the sensitivity of both serology tests was independent of the ATB patients' smear microscopy (SM) status and grade. Combining the results of SM with both ELISA, the detection of ATB patients significantly increased (p<0.0001), particularly in those with extrapulmonary TB (up to 45.1%) or HIV infection (up to 83.3%). No significant association was observed between TST and serology results. CONCLUSIONS In this prospective multi-centric study, the combination of two rapid tests, such as SM and serology, might be useful in detecting ATB, especially in HIV-infected patients.
Collapse
Affiliation(s)
| | | | | | - Alaka Deshpande
- Sir J.J. Group of Govt Hosp. & Grant Medical College, Mumbai, India
| | | | - Enrico Girardi
- Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases, Rome, Italy
| | - Beenu Joshi
- National JALMA Institute of Leprosy & Other Mycrobacterial Diseases, Agra, India
| | - Kiran Katoch
- National JALMA Institute of Leprosy & Other Mycrobacterial Diseases, Agra, India
| | - Vishwa M. Katoch
- National JALMA Institute of Leprosy & Other Mycrobacterial Diseases, Agra, India
| | - Manoj Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Vemu Lakshmi
- Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | | | | | | | | | - Alamelu Raja
- National Institute for Research in Tuberculosis (formerly Tuberculosis Research Center), Chetput, Chennai, India
| | - Balambal Raman
- National Institute for Research in Tuberculosis (formerly Tuberculosis Research Center), Chetput, Chennai, India
| | - Camilla Rodrigues
- Microbiology Section, P D Hinduja Hospital & Medical Research Centre, Veer Savarkar Marg Mahim, Mumbai, India
| | | | | | - Sarman Singh
- All India Institute of Medical Sciences, New Delhi, India
| | - Archana Sodha
- Microbiology Section, P D Hinduja Hospital & Medical Research Centre, Veer Savarkar Marg Mahim, Mumbai, India
| | | | | | - Delia Goletti
- Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases, Rome, Italy
| |
Collapse
|
25
|
Barroso S, Geerdink D, ter Horst B, Casas-Arce E, Minnaard AJ. Total Synthesis of the Phenolic Glycolipid Mycoside B and the Glycosylatedp-Hydroxybenzoic Acid Methyl Ester HBAD-I, Virulence Markers ofMycobacterium tuberculosis. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Barroso S, Castelli R, Baggelaar MP, Geerdink D, ter Horst B, Casas-Arce E, Overkleeft HS, van der Marel GA, Codée JDC, Minnaard AJ. Total synthesis of the triglycosyl phenolic glycolipid PGL-tb1 from Mycobacterium tuberculosis. Angew Chem Int Ed Engl 2012; 51:11774-7. [PMID: 23086739 DOI: 10.1002/anie.201206221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Santiago Barroso
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Barroso S, Castelli R, Baggelaar MP, Geerdink D, ter Horst B, Casas-Arce E, Overkleeft HS, van der Marel GA, Codée JDC, Minnaard AJ. Total Synthesis of the Triglycosyl Phenolic Glycolipid PGL-tb1 fromMycobacterium tuberculosis. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Hutacharoen P, Ruchirawat S, Boonyarattanakalin S. Biological Activities of Synthetic Oligosaccharides and Glycolipids from Mycobacteria. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.621041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Panatpong Hutacharoen
- a School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani , 12121 , Thailand
- b Program in Chemical Biology, Chulabhorn Graduate Institute and the Center of Excellence on Environmental Health, Toxicology and Management of Chemicals , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
| | - Somsak Ruchirawat
- b Program in Chemical Biology, Chulabhorn Graduate Institute and the Center of Excellence on Environmental Health, Toxicology and Management of Chemicals , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
- c Laboratory of Medicinal Chemistry, Chulabhorn Research Institute , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
| | - Siwarutt Boonyarattanakalin
- a School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani , 12121 , Thailand
| |
Collapse
|
29
|
Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb) 2011; 91:187-95. [DOI: 10.1016/j.tube.2011.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/04/2011] [Accepted: 01/16/2011] [Indexed: 12/29/2022]
|
30
|
Alibaud L, Rombouts Y, Trivelli X, Burguière A, Cirillo SLG, Cirillo JD, Dubremetz JF, Guérardel Y, Lutfalla G, Kremer L. A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Mol Microbiol 2011; 80:919-34. [PMID: 21375593 DOI: 10.1111/j.1365-2958.2011.07618.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection of the zebrafish with Mycobacterium marinum is regarded as a well-established experimental model to study the pathogenicity of Mycobacterium tuberculosis. Herein, a M. marinum transposon mutant library was screened for attenuated M. marinum phenotypes using a Dictyostelium discoideum assay. In one attenuated mutant, the transposon was located within tesA, encoding a putative type II thioesterase. Thin-layer chromatography analyses indicated that the tesA::Tn mutant failed to produce two major cell wall-associated lipids. Mass spectrometry and nuclear magnetic resonance clearly established the nature of missing lipids as phthioglycol diphthioceranates and phenolic glycolipids, respectively, indicating that TesA is required for the synthesis of both lipids. When injected into the zebrafish embryo bloodstream, the mutant was found to be highly attenuated, thus validating the performance and relevance of the Dictyostelium screen. Consistent with these in vivo findings, tesA::Tn exhibited increased permeability defects in vitro, which may explain its failure to survive in host macrophages. Unexpectedly, virulence was retained when bacteria were injected into the notochord. Histological and ultrastructural studies of the infected notochord revealed the presence of actively proliferating mycobacteria, leading to larval death. This work presents for the first time the notochord as a compartment highly susceptible to mycobacterial infection.
Collapse
Affiliation(s)
- Laeticia Alibaud
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier II et I, CNRS; UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Koeck JL, Fabre M, Simon F, Daffé M, Garnotel E, Matan AB, Gérôme P, Bernatas JJ, Buisson Y, Pourcel C. Clinical characteristics of the smooth tubercle bacilli 'Mycobacterium canettii' infection suggest the existence of an environmental reservoir. Clin Microbiol Infect 2010; 17:1013-9. [PMID: 20831613 DOI: 10.1111/j.1469-0691.2010.03347.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over a 3-year follow-up, 30 out of the 318 unique Mycobacterium tuberculosis complex isolates recovered in the Republic of Djibouti had a smooth-type morphology and were Niacine-negative, the characteristics of 'Mycobacterium canettii' strains. Unlike M. tuberculosis, 'M. canettii' grew on nutrient-poor media at 30°C, and possessed characteristic lipids. They were isolated from respiratory and extra-respiratory sites from patients with typical forms of tuberculosis. Most cases resolved with antibiotic therapy but in two human immunodeficiency virus-positive patients 'M. canettii' infection led to septicaemia and death. No cases of human-to-human transmission were observed. The proportion of tuberculosis cases caused by 'M. canettii' was higher among French patients than among Djiboutian patients. Patients with 'M. canettii' were significantly younger than those with tuberculosis caused by other M. tuberculosis complex strains. Smooth tubercle bacilli could be misidentified as non-tuberculous mycobacteria and appear to be limited to the Horn of Africa. Their characteristics are consistent with the existence of non-human sources of infection.
Collapse
Affiliation(s)
- J-L Koeck
- Laboratoire de biologie clinique, HIA Robert Picqué, Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huet G, Constant P, Malaga W, Lanéelle MA, Kremer K, van Soolingen D, Daffé M, Guilhot C. A lipid profile typifies the Beijing strains of Mycobacterium tuberculosis: identification of a mutation responsible for a modification of the structures of phthiocerol dimycocerosates and phenolic glycolipids. J Biol Chem 2009; 284:27101-13. [PMID: 19648652 DOI: 10.1074/jbc.m109.041939] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis Beijing strains are a family highly prevalent in Asia and have recently spread worldwide, causing a number of epidemics, suggesting that they express virulence factors not found in other M. tuberculosis strains. Accordingly, we looked for putative characteristic compounds by comparing the lipid profiles of several Beijing and non-Beijing strains. All the Beijing strains analyzed were found to synthesize structural variants of two well known characteristic lipids of the tubercle bacillus, namely phthiocerol dimycocerosates (DIM) and eventually phenolglycolipids (PGL). These variants were not found in non-Beijing M. tuberculosis isolates. Structural elucidation of these variants showed that they consist of phthiotriol and glycosylated phenolphthiotriol dimycocerosates, eventually acylated with 1 mol of palmitic acid, in addition to the conventional acylation of the beta-diol by mycocerosic acids. We demonstrated that this unusual lipid profile resulted from a single point mutation in the Rv2952 gene, which encodes the S-adenosylmethionine-dependent methyltransferase participating to the O-methylation of the third hydroxyl of the phthiotriol and phenolphthiotriol in the biosynthetic pathway of DIM and PGL. Consistently, the mutated enzyme exhibited in vitro a much lower O-methyltransferase activity than did the wild-type Rv2952. We finally demonstrated that the structural variants of DIM and PGL fulfill the same function in the cell envelope and virulence than their conventional counterparts.
Collapse
Affiliation(s)
- Gaëlle Huet
- Institut de Pharmacologie et de Biologie Structurale, CNRS, F-31077 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Guenin-Macé L, Siméone R, Demangel C. Lipids of Pathogenic Mycobacteria: Contributions to Virulence and Host Immune Suppression. Transbound Emerg Dis 2009; 56:255-68. [DOI: 10.1111/j.1865-1682.2009.01072.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Malaga W, Constant P, Euphrasie D, Cataldi A, Daffé M, Reyrat JM, Guilhot C. Deciphering the genetic bases of the structural diversity of phenolic glycolipids in strains of the Mycobacterium tuberculosis complex. J Biol Chem 2008; 283:15177-84. [PMID: 18390543 PMCID: PMC3258887 DOI: 10.1074/jbc.m710275200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/03/2008] [Indexed: 11/06/2022] Open
Abstract
Phenolic glycolipids (PGL) play a major role in the virulence of mycobacteria, notably in strains of the Mycobacterium tuberculosis complex and in Mycobacterium leprae. The structure of the carbohydrate domain of these compounds is highly variable, and the genetic bases for these variations remain unknown. We demonstrated that the monoglycosylated PGL formed by Mycobacterium bovis differs from the triglycosylated PGL synthesized by M. tuberculosis (PGL-tb) because of the following two genetic defects: a frameshift mutation within the gene Rv2958c, encoding a glycosyltransferase involved in the transfer of the second rhamnosyl residue of the PGL-tb, and a deletion of a region that encompasses two genes, which encode a GDP-D-mannose 4,6-dehydratase and a GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase/reductase, required for the formation of activated L-fucose. Expression of these three genes in M. bovis BCG allowed synthesis of PGL-tb in this recombinant strain. Additionally, we showed that all M. bovis, Mycobacterium microti, Mycobacterium pinnipedii, and some Mycobacterium africanum strains harbor the same frameshift mutation in their Rv2958c orthologs. Consistently, the structure of PGLs purified from M. africanum (harboring the Rv2958c mutation) and M. pinnipedii strains revealed that these compounds are monoglycosylated PGL. These findings explain the specificity of PGL-tb production by some strains of the M. tuberculosis complex and have important implications for our understanding of the evolution of this complex.
Collapse
Affiliation(s)
- Wladimir Malaga
- Université Paul Sabatier and CNRS, Institut de Pharmacologie et Biologie Structurale (Unité Mixte de Recherche 5089), Département “Mécanismes Moléculaires des Infections Mycobactériennes,” 205 Route de Narbonne, 31077 Toulouse Cedex 4, France, Université Paris Descartes, Faculté de Médecine René Descartes, Inserm U570, Unité de Pathogénie des Infections Systémiques, 75730 Paris Cedex 15, France, and Institute of Biotechnology, CNIA-INTA, 1712 Castelar, Argentina
| | - Patricia Constant
- Université Paul Sabatier and CNRS, Institut de Pharmacologie et Biologie Structurale (Unité Mixte de Recherche 5089), Département “Mécanismes Moléculaires des Infections Mycobactériennes,” 205 Route de Narbonne, 31077 Toulouse Cedex 4, France, Université Paris Descartes, Faculté de Médecine René Descartes, Inserm U570, Unité de Pathogénie des Infections Systémiques, 75730 Paris Cedex 15, France, and Institute of Biotechnology, CNIA-INTA, 1712 Castelar, Argentina
| | - Daniel Euphrasie
- Université Paul Sabatier and CNRS, Institut de Pharmacologie et Biologie Structurale (Unité Mixte de Recherche 5089), Département “Mécanismes Moléculaires des Infections Mycobactériennes,” 205 Route de Narbonne, 31077 Toulouse Cedex 4, France, Université Paris Descartes, Faculté de Médecine René Descartes, Inserm U570, Unité de Pathogénie des Infections Systémiques, 75730 Paris Cedex 15, France, and Institute of Biotechnology, CNIA-INTA, 1712 Castelar, Argentina
| | - Angel Cataldi
- Université Paul Sabatier and CNRS, Institut de Pharmacologie et Biologie Structurale (Unité Mixte de Recherche 5089), Département “Mécanismes Moléculaires des Infections Mycobactériennes,” 205 Route de Narbonne, 31077 Toulouse Cedex 4, France, Université Paris Descartes, Faculté de Médecine René Descartes, Inserm U570, Unité de Pathogénie des Infections Systémiques, 75730 Paris Cedex 15, France, and Institute of Biotechnology, CNIA-INTA, 1712 Castelar, Argentina
| | - Mamadou Daffé
- Université Paul Sabatier and CNRS, Institut de Pharmacologie et Biologie Structurale (Unité Mixte de Recherche 5089), Département “Mécanismes Moléculaires des Infections Mycobactériennes,” 205 Route de Narbonne, 31077 Toulouse Cedex 4, France, Université Paris Descartes, Faculté de Médecine René Descartes, Inserm U570, Unité de Pathogénie des Infections Systémiques, 75730 Paris Cedex 15, France, and Institute of Biotechnology, CNIA-INTA, 1712 Castelar, Argentina
| | - Jean-Marc Reyrat
- Université Paul Sabatier and CNRS, Institut de Pharmacologie et Biologie Structurale (Unité Mixte de Recherche 5089), Département “Mécanismes Moléculaires des Infections Mycobactériennes,” 205 Route de Narbonne, 31077 Toulouse Cedex 4, France, Université Paris Descartes, Faculté de Médecine René Descartes, Inserm U570, Unité de Pathogénie des Infections Systémiques, 75730 Paris Cedex 15, France, and Institute of Biotechnology, CNIA-INTA, 1712 Castelar, Argentina
| | - Christophe Guilhot
- Université Paul Sabatier and CNRS, Institut de Pharmacologie et Biologie Structurale (Unité Mixte de Recherche 5089), Département “Mécanismes Moléculaires des Infections Mycobactériennes,” 205 Route de Narbonne, 31077 Toulouse Cedex 4, France, Université Paris Descartes, Faculté de Médecine René Descartes, Inserm U570, Unité de Pathogénie des Infections Systémiques, 75730 Paris Cedex 15, France, and Institute of Biotechnology, CNIA-INTA, 1712 Castelar, Argentina
| |
Collapse
|
35
|
The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun 2008; 76:3027-36. [PMID: 18443098 DOI: 10.1128/iai.01663-07] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis possesses a diversity of potential virulence factors including complex branched lipids such as the phenolic glycolipid PGL-tb. PGL-tb expression by the clinical M. tuberculosis isolate HN878 has been associated with a less efficient Th1 response and increased virulence in mice and rabbits. It has been suggested that the W-Beijing family is the only group of M. tuberculosis strains with an intact pks1-15 gene, required for the synthesis of PGL-tb and capable of producing PGL-tb. We have found that some strains with an intact pks1-15 do not produce PGL-tb while others may produce a variant of PGL-tb. We examined the early host cytokine response to infection with these strains in vitro to better understand the effect of PGL-tb synthesis on immune responses. In addition, we generated a PGL-tb-producing H37Rv in order to determine the effect of PGL-tb production on the host immune response during infection by a strain normally devoid of PGL-tb synthesis. We observed that PGL-tb production by clinical M. tuberculosis isolates affected cytokine production differently depending on the background of the strain. Importantly, while ectopic PGL-tb production by H37Rv suppressed the induction of several pro- and anti-inflammatory cytokines in vitro in human monocytes, it did not lead to increased virulence in infected mice and rabbits. Collectively, our data indicate that, while PGL-tb may play a role in the immunogenicity and/or virulence of M. tuberculosis, it probably acts in concert with other bacterial factors which seem to be dependent on the background of the strain.
Collapse
|
36
|
Siméone R, Constant P, Malaga W, Guilhot C, Daffé M, Chalut C. Molecular dissection of the biosynthetic relationship between phthiocerol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS J 2007; 274:1957-69. [PMID: 17371506 DOI: 10.1111/j.1742-4658.2007.05740.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phthiocerol dimycocerosates and related compounds are important molecules in the biology of Mycobacterium tuberculosis, playing a key role in the permeability barrier and in pathogenicity. Both phthiocerol dimycocerosates, the major compounds, and phthiodiolone dimycocerosates, the minor constituents, are found in the cell envelope of M. tuberculosis, but their specific roles in the biology of the tubercle bacillus have not been established yet. According to the current model of their biosynthesis, phthiocerol is produced from phthiodiolone through a two-step process in which the keto group is first reduced and then methylated. We have previously identified the methyltransferase enzyme that is involved in this process, encoded by the gene Rv2952 in M. tuberculosis. In this study, we report the construction and biochemical analyses of an M. tuberculosis strain mutated in gene Rv2951c. This mutation prevents the formation of phthiocerol and phenolphthiocerol derivatives, but leads to the accumulation of phthiodiolone dimycocerosates and glycosylated phenolphthiodiolone dimycocerosates. These results provide the formal evidence that Rv2951c encodes the ketoreductase catalyzing the reduction of phthiodiolone and phenolphthiodiolone to yield phthiotriol and phenolphthiotriol, which are the substrates of the methyltransferase encoded by gene Rv2952. We also compared the resistance to SDS and replication in mice of the Rv2951c mutant, deficient in synthesis of phthiocerol dimycocerosates but producing phthiodiolone dimycocerosates, with those of a wild-type strain and a mutant without phthiocerol and phthiodiolone dimycocerosates. The results established the functional redundancy between phthiocerol and phthiodiolone dimycocerosates in both the protection of the mycobacterial cell and the pathogenicity of M. tuberculosis in mice.
Collapse
Affiliation(s)
- Roxane Siméone
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | |
Collapse
|
37
|
Minnikin DE, Ridell M, Bolton RC, Magnusson M. Recognition of novel glycolipid antigens from smooth variants of Mycobacterium tuberculosis. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1990.tb13835.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Burguière A, Hitchen PG, Dover LG, Dell A, Besra GS. Altered expression profile of mycobacterial surface glycopeptidolipids following treatment with the antifungal azole inhibitors econazole and clotrimazole. MICROBIOLOGY-SGM 2005; 151:2087-2095. [PMID: 15942015 DOI: 10.1099/mic.0.27938-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The azole antifungal drugs econazole and clotrimazole are known cytochrome P450 enzyme inhibitors. This study shows that these drugs are potent inhibitors of mycobacterial growth and are more effective against Mycobacterium smegmatis than isoniazid and ethionamide, two established anti-mycobacterial drugs. Several non-tuberculous mycobacteria, including the pathogenic members of the Mycobacterium avium-intracellulare complex (MAC) and the fast-growing saprophytic organism M. smegmatis, produce an array of serovar-specific (ss) and non-serovar-specific (ns) glycopeptidolipids (GPLs). GPL biosynthesis has been investigated for several years but has still not been fully elucidated. The authors demonstrate here that econazole and clotrimazole inhibit GPL biosynthesis in M. smegmatis. In particular, clotrimazole inhibits all four types of nsGPLs found in M. smegmatis, suggesting an early and common target within their biosynthetic pathway. Altogether, the data suggest that an azole-specific target, most likely a cytochrome P450, may be involved in the hydroxylation of the N-acyl chain in GPL biosynthesis. Azole antifungal drugs and potential derivatives could represent an interesting new range of anti-mycobacterial drugs, especially against opportunistic human pathogens including MAC, M. scrofulaceum, M. peregrinum, M. chelonae and M. abscessus.
Collapse
Affiliation(s)
- Adeline Burguière
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paul G Hitchen
- Department of Biological Sciences, Imperial College, London, SW7 2AZ, UK
| | - Lynn G Dover
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anne Dell
- Department of Biological Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
39
|
Onwueme KC, Vos CJ, Zurita J, Ferreras JA, Quadri LEN. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 2005; 44:259-302. [PMID: 16115688 DOI: 10.1016/j.plipres.2005.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advances in the study of mycobacterial lipids indicate that the class of outer membrane lipids known as dimycocerosate esters (DIMs) are major virulence factors of clinically relevant mycobacteria including Mycobacterium tuberculosis and Mycobacterium leprae. DIMs are a structurally intriguing class of polyketide synthase-derived wax esters discovered over seventy years ago, yet, little was known until recently about their biosynthesis. Availability of several mycobacterial genomes has accelerated progress toward clarifying steps in the DIM biosynthetic pathway and it is our belief that reviewing the bases of our current knowledge will clarify outstanding issues and help direct future endeavors.
Collapse
Affiliation(s)
- Kenolisa C Onwueme
- Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
40
|
Pérez E, Constant P, Lemassu A, Laval F, Daffé M, Guilhot C. Characterization of Three Glycosyltransferases Involved in the Biosynthesis of the Phenolic Glycolipid Antigens from the Mycobacterium tuberculosis Complex. J Biol Chem 2004; 279:42574-83. [PMID: 15292272 DOI: 10.1074/jbc.m406246200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans, produce highly specific long chain beta-diols, the dimycocerosates of phthiocerol, and structurally related phenolic glycolipid (PGL) antigens, which are important virulence factors. In addition, M. tuberculosis also secretes glycosylated p-hydroxybenzoic acid methyl esters (p-HBAD) that contain the same carbohydrate moiety as the species-specific PGL of M. tuberculosis (PGL-tb). The genes involved in the biosynthesis of these compounds in M. tuberculosis are grouped on a 70-kilobase chromosomal fragment containing three genes encoding putative glycosyltransferases: Rv2957, Rv2958c, and Rv2962c. To determine the functions of these genes, three recombinant M. tuberculosis strains, in which these genes were individually inactivated, were constructed and biochemically characterized. Our results demonstrated that (i) the biosynthesis of PGL-tb and p-HBAD involves common enzymatic steps, (ii) the Rv2957, Rv2958c, and Rv2962c genes are involved in the formation of the glycosyl moiety of the two classes of molecules, and (iii) the product of Rv2962c catalyzes the transfer of a rhamnosyl residue onto p-hydroxybenzoic acid ethyl ester or phenolphthiocerol dimycocerosates, whereas the products of Rv2958c and Rv2957 add a second rhamnosyl unit and a fucosyl residue to form the species-specific triglycosyl appendage of PGL-tb and p-HBAD. The recombinant strains produced provide the tools to study the role of the carbohydrate domain of PGL-tb and p-HBAD in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Esther Pérez
- Département "Mécanismes Moléculaires des Infections Mycobactériennes," Institut de Pharmacologie et Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Pérez E, Constant P, Laval F, Lemassu A, Lanéelle MA, Daffé M, Guilhot C. Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J Biol Chem 2004; 279:42584-92. [PMID: 15292265 DOI: 10.1074/jbc.m406134200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A few mycobacterial species, most of which are pathogenic for humans, produce dimycocerosates of phthiocerol (DIM) and of glycosylated phenolphthiocerol, also called phenolglycolipid (PGL), two groups of molecules shown to be important virulence factors. The biosynthesis of these molecules is a very complex pathway that involves more than 15 enzymatic steps and has just begun to be elucidated. Most of the genes known to be involved in these pathways are clustered on the chromosome of M. tuberculosis. Based on their amino acid sequences, we hypothesized that the proteins encoded by Rv2952 and Rv2959c, two open reading frames of this locus, are involved in the transfer of methyl groups onto various hydroxyl functions during the biosynthesis of DIM, PGL, and related p-hydroxybenzoic acid derivatives (p-HBAD). Using allelic exchange and site-specific recombination, we produced three recombinant strains of Mycobacterium tuberculosis carrying insertions in Rv2952 or Rv2959c. Analysis of these mutants revealed that (i) the protein encoded by Rv2952 is a methyltransferase catalyzing the transfer of a methyl group onto the lipid moiety of phthiotriol and glycosylated phenolphthiotriol dimycocerosates to form DIM and PGL, respectively, (ii) Rv2959c is part of an operon including the newly characterized Rv2958c gene that encodes a glycosyltransferase also involved in PGL and p-HBAD biosynthesis, and (iii) the enzyme encoded by Rv2959c catalyzes the O-methylation of the hydroxyl group located on carbon 2 of the rhamnosyl residue linked to the phenolic group of PGL and p-HBAD produced by M. tuberculosis. These data further extend our understanding of the biosynthesis of important mycobacterial virulence factors and provide additional tools to decipher the molecular mechanisms of action of these molecules during the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Esther Pérez
- Département "Mécanismes Moléculaires des Infections Mycobactériennes," Institut de Pharmacologie et Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Constant P, Perez E, Malaga W, Lanéelle MA, Saurel O, Daffé M, Guilhot C. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 2002; 277:38148-58. [PMID: 12138124 DOI: 10.1074/jbc.m206538200] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diesters of phthiocerol and phenolphthiocerol are important virulence factors of Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans. They are both long-chain beta-diols, and their biosynthetic pathway is beginning to be elucidated. Although the two classes of molecules share a common lipid core, phthiocerol diesters have been found in all the strains of the M. tuberculosis complex examined although phenolphthiocerol diesters are produced by only a few groups of strains. To address the question of the origin of this diversity 8 reference strains and 10 clinical isolates of M. tuberculosis were analyzed. We report the presence of glycosylated p-hydroxybenzoic acid methyl esters, structurally related to the type-specific phenolphthiocerol glycolipids, in the culture media of all reference strains of M. tuberculosis, suggesting that the strains devoid of phenolphthiocerol derivatives are unable to elongate the putative p-hydroxybenzoic acid precursor. We also show that all the strains of M. tuberculosis examined and deficient in the production of phenolphthiocerol derivatives are natural mutants with a frameshift mutation in pks15/1 whereas a single open reading frame for pks15/1 is found in Mycobacterium bovis BCG, M. leprae, and strains of M. tuberculosis that produce phenolphthiocerol derivatives. Complementation of the H37Rv strain of M. tuberculosis, which is devoid of phenolphthiocerol derivatives, with the fused pks15/1 gene from M. bovis BCG restored phenolphthiocerol glycolipids production. Conversely, disruption of the pks15/1 gene in M. bovis BCG led to the abolition of the synthesis of type-specific phenolphthiocerol glycolipid. These data indicate that Pks15/1 is involved in the elongation of p-hydroxybenzoic acid to give p-hydroxyphenylalkanoates, which in turn are converted, presumably by the PpsA-E synthase, to phenolphthiocerol derivatives.
Collapse
Affiliation(s)
- Patricia Constant
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Minnikin DE, Kremer L, Dover LG, Besra GS. The methyl-branched fortifications of Mycobacterium tuberculosis. CHEMISTRY & BIOLOGY 2002; 9:545-53. [PMID: 12031661 DOI: 10.1016/s1074-5521(02)00142-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis continues to be the predominant global infectious agent, annually killing over three million people. Recommended drug regimens have the potential to control tuberculosis, but lack of adherence to such regimens has resulted in the emergence of resistant strains. Mycobacterium tuberculosis has an unusual cell envelope, rich in unique long-chain lipids, that provides a very hydrophobic barrier to antibiotic access. Such lipids, however, can be drug targets, as exemplified by the action of the front-line drug isoniazid on mycolic acid biosynthesis. A number of these lipids are potential key virulence factors and their structures are based on very characteristic methyl-branched long-chain acids and alcohols. This review details the history, structure, and genetic aspects of the biosynthesis of these methyl-branched components, good examples of which are the phthiocerols and the mycocerosic and mycolipenic acids.
Collapse
Affiliation(s)
- David E Minnikin
- School of Biosciences, The University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Synthesis of the pentasaccharide hapten from the glycopeptidolipid antigen of Mycobacterium avium serovar 12. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00491-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Varga Z, Bajza I, Batta G, Lipták A. Synthesis of the pentasaccharide hapten from the glycopeptidolipid antigen of Mycobacterium avium serovar 17. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)00934-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M, Guilhot C. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 2001; 276:19845-54. [PMID: 11279114 DOI: 10.1074/jbc.m100662200] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the few characterized genes that have products involved in the pathogenicity of Mycobacterium tuberculosis, the etiological agent of tuberculosis, are those of the phthiocerol dimycocerosate (DIM) locus. Genes involved in biosynthesis of these compounds are grouped on a 50-kilobase fragment of the chromosome containing 13 genes. Analysis of mRNA produced from this 50-kilobase fragment in the wild type strain showed that this region is subdivided into three transcriptional units. Biochemical characterization of five mutants with transposon insertions in this region demonstrated that (i) the complete DIM molecules are synthesized in the cytoplasm of M. tuberculosis before being translocated into the cell wall; (ii) the genes fadD26 and fadD28 are directly involved in their biosynthesis; and (iii) both the drrC and mmpL7 genes are necessary for the proper localization of DIMs. Insertional mutants unable to synthesize or translocate DIMs exhibit higher cell wall permeability and are more sensitive to detergent than the wild type strain, indicating for the first time that, in addition to being important virulence factors, extractable lipids of M. tuberculosis play a role in the cell envelope architecture and permeability. This function may represent one of the molecular mechanisms by which DIMs are involved in the virulence of M. tuberculosis.
Collapse
Affiliation(s)
- L R Camacho
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr. Roux, 75725 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Daffé M, Etienne G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 2000; 79:153-69. [PMID: 10656114 DOI: 10.1054/tuld.1998.0200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis, one of the most prevalent causes of death worldwide, is a facultative intracellular parasite that invades and persists within the macrophages. Within host cells, the bacterium is surrounded by a capsule which is electron-transparent in EM sections, outside the bacterial wall and plasma membrane. Although conventional processing of samples for microscopy studies failed to demonstrate this structure around in vitro-grown bacilli, the application of new microscopy techniques to mycobacteria allows the visualization of a thick capsule in specimen from axenic cultures of mycobacteria. Gentle mechanical treatment and detergent extraction remove the outermost components of this capsule which consist primarily of polysaccharide and protein, with small amounts of lipid. Being at the interface between the bacterium and host cells, the capsule and its constituents would be expected to be involved in bacterial pathogenicity and past work supports this concept. Recent studies have identified several capsular substances potentially involved in the key steps of pathogenicity. In this respect, some of the capsular glycans have been shown to mediate the adhesion to and the penetration of bacilli into the host's cells; of related interest, secreted and/or surface-exposed enzymes and transporters probably involved in intracellular multiplication have been characterized in short-term culture filtrates of M. tuberculosis. In addition, the presence of inducible proteases and lipases has been shown. The capsule would also represent a passive barrier by impeding the diffusion of macromolecules towards the inner parts of the envelope; furthermore, secreted enzymes potentially involved in the detoxification of reactive oxygen intermediates have been identified, notably catalase/peroxidase and superoxide dismutase, which may participate to the active resistance of the bacterium to the host's microbicidal mechanisms. Finally, toxic lipids and contact-dependent lytic substances, as well as constituents that inhibit both macrophage-priming and lymphoproliferation, have been found in the capsule, thereby explaining part of the immunopathology of tuberculosis.
Collapse
Affiliation(s)
- M Daffé
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, France.
| | | |
Collapse
|
48
|
Fäldt J, Dahlgren C, Karlsson A, Ahmed AM, Minnikin DE, Ridell M. Activation of human neutrophils by mycobacterial phenolic glycolipids. Clin Exp Immunol 1999; 118:253-60. [PMID: 10540187 PMCID: PMC1905428 DOI: 10.1046/j.1365-2249.1999.01040.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between mycobacterial phenolic glycolipids (PGLs) and phagocytes was studied. Human neutrophils were allowed to interact with each of four purified mycobacterial PGLs and the neutrophil production of reactive oxygen metabolites was followed kinetically by luminol-/isoluminol-amplified chemiluminescence. The PGLs from Mycobacterium tuberculosis and Mycobacterium kansasii, respectively, were shown to stimulate the production of oxygen metabolites, while PGLs from Mycobacterium marinum and Mycobacterium bovis BCG, respectively, were unable to induce an oxidative response. Periodate treatment of the M. tuberculosis PGL decreased the production of oxygen radicals, showing the importance of the PGL carbohydrate moiety for the interaction. The activation, however, could not be inhibited by rhamnose or fucose, indicating a complex interaction which probably involves more than one saccharide unit. This is in line with the fact that the activating PGLs from M. tuberculosis and M. kansasii contain tri- and tetrasaccharides, respectively, while the nonactivating PGLs from M. marinum and M. bovis BCG each contain a monosaccharide. The complement receptor 3 (CR3) has earlier been shown to be of importance for the phagocyte binding of mycobacteria, but did not appear to be involved in the activation of neutrophils by PGLs. The subcellular localization of the reactive oxygen metabolites formed was related to the way in which the glycolipids were presented to the cells.
Collapse
Affiliation(s)
- J Fäldt
- Department of Medical Microbiology and Immunology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
49
|
Watanabe M, Ohta A, Sasaki SI, Minnikin DE. Structure of a new glycolipid from the Mycobacterium avium-Mycobacterium intracellulare complex. J Bacteriol 1999; 181:2293-7. [PMID: 10094713 PMCID: PMC93648 DOI: 10.1128/jb.181.7.2293-2297.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From the lipid fraction of a freeze-dried cell mass of a strain of the Mycobacterium avium-Mycobacterium intracellulare complex, a new glycolipid was isolated and was characterized as 5-mycoloyl-alpha-arabinofuranosyl (1-->1')-glycerol, mainly on the basis of nuclear magnetic resonance spectroscopy studies.
Collapse
Affiliation(s)
- M Watanabe
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | |
Collapse
|
50
|
Dandapat P, Verma R, Venkatesan K, Sharma VD, Singh HB, Das R, Katoch VM. Rapid detection of Mycobacterium bovis on its lipid profile by thin layer chromatography. Vet Microbiol 1999; 65:145-51. [PMID: 10078598 DOI: 10.1016/s0378-1135(98)00279-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sixteen Mycobacterium bovis (M. bovis) strains isolated from bovine tissues and one standard reference strain of M. bovis AN5 alongwith other species of mycobacteria for comparison were investigated for the presence of phenolic glycolipid (PGL) and phthiocerol dimycocerosate (PDIM) for rapid identification of M. bovis by thin-layer chromatography (TLC). The study indicated presence of PGL with an Rf value of 0.75 in chloroform-methanol solvent in all 17 M. bovis strains. The dimycocerostate A corresponding to spot A was the major constituent among all the three spots in M. bovis strains. TLC appeared to be a promising alternative to conventional biochemical methods for identification of M. bovis taking into consideration both PGL and PDIM lipids.
Collapse
Affiliation(s)
- P Dandapat
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, UP
| | | | | | | | | | | | | |
Collapse
|