1
|
Tasma Z, Rees TA, Guo S, Tan S, O'Carroll SJ, Faull RLM, Curtis MA, Christensen SL, Hay DL, Walker CS. Pharmacology of PACAP and VIP receptors in the spinal cord highlights the importance of the PAC 1 receptor. Br J Pharmacol 2024; 181:2655-2675. [PMID: 38616050 DOI: 10.1111/bph.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.
Collapse
MESH Headings
- Animals
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/agonists
- Humans
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
- Mice
- Rats
- Signal Transduction/drug effects
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
- Cells, Cultured
- Rats, Sprague-Dawley
- Male
- Mice, Inbred C57BL
- Cyclic AMP/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Sarah L Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Mata-Pacheco V, Hernandez J, Varma N, Xu J, Sayers S, Le N, Wagner EJ. Dynamic, sex- and diet-specific pleiotropism in the PAC1 receptor-mediated regulation of arcuate proopiomelanocortin and Neuropeptide Y/Agouti related peptide neuronal excitability by anorexigenic ventromedial nucleus PACAP neurons. J Neuroendocrinol 2024; 36:e13357. [PMID: 38056947 DOI: 10.1111/jne.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO2 production and O2 consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.
Collapse
Affiliation(s)
- Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Jennifer Hernandez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Nandini Varma
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Jenny Xu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Sarah Sayers
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Nikki Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Bakalar D, Gavrilova O, Jiang SZ, Zhang HY, Roy S, Williams SK, Liu N, Wisser S, Usdin TB, Eiden LE. Constitutive and conditional deletion reveals distinct phenotypes driven by developmental versus neurotransmitter actions of the neuropeptide PACAP. J Neuroendocrinol 2023; 35:e13286. [PMID: 37309259 PMCID: PMC10620107 DOI: 10.1111/jne.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 06/14/2023]
Abstract
Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive pituitary adenylate cyclase-activating peptide (PACAP) knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type (WT) in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in WT mice that do not occur in knockout mice (aPRGs). Comparing constitutive PACAP knockout mice to a variety of temporally and regionally specific PACAP knockouts, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knockout mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.
Collapse
Affiliation(s)
- Dana Bakalar
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Kidney Disease- Intramural Research Program, Bethesda, Maryland, USA
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Hai-Ying Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Snehashis Roy
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Sarah K Williams
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Naili Liu
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Kidney Disease- Intramural Research Program, Bethesda, Maryland, USA
| | - Stephen Wisser
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Ted B Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Gutierrez Cruz A, Aresta Branco MSL, Borhani Peikani M, Mutafova-Yambolieva VN. Differential Influences of Endogenous and Exogenous Sensory Neuropeptides on the ATP Metabolism by Soluble Ectonucleotidases in the Murine Bladder Lamina Propria. Int J Mol Sci 2023; 24:15650. [PMID: 37958631 PMCID: PMC10647406 DOI: 10.3390/ijms242115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Bladder urothelium and suburothelium/lamina propria (LP) have prominent sensory and transducer functions with the active participation of afferent neurons and urothelium-derived purine mediators such as adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine (ADO). Effective concentrations of purines at receptor targets depend significantly on the extracellular degradation of ATP by ectonucleotidases (ENTDs). We recently reported the regulated release of soluble ENTDs (s-ENTDs) in the LP and the consequent degradation of ATP to ADP, AMP, and ADO. Afferent neurons in the LP can be activated by urothelial ATP and release peptides and other transmitters that can alter the activity of cells in their vicinity. Using a murine decentralized ex vivo detrusor-free bladder model, 1,N6-etheno-ATP (eATP) as substrate, and sensitive HPLC-FLD methodologies, we found that exogenous neuropeptides calcitonin gene-related peptide (CGRP), substance P (Sub P), neurokinin A (NKA), and pituitary adenylate cyclase-activating polypeptide [PACAP (1-38)] all increased the degradation of eATP by s-ENTDs that were released in the LP spontaneously and/or during bladder filling. Using antagonists of neuropeptide receptors, we observed that endogenous NKA did not modify the ATP hydrolysis by s-ENTDs, whereas endogenous Sub P increased both the constitutive and distention-induced release of s-ENTDs. In contrast, endogenous CGRP and PACAP (1-38) increased the distention-induced, but not the spontaneous, release of s-ENTDs. The present study puts forward the novel idea that interactions between peptidergic and purinergic signaling mechanisms in the LP have an impact on bladder excitability and functions by regulating the effective concentrations of adenine purines at effector cells in the LP.
Collapse
Affiliation(s)
| | | | | | - Violeta N. Mutafova-Yambolieva
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA; (A.G.C.); (M.B.P.)
| |
Collapse
|
5
|
Langer G, Scott J, Lind C, Otto C, Bothe U, Laux-Biehlmann A, Müller J, le Roy B, Irlbacher H, Nowak-Reppel K, Schlüter A, Davenport AJ, Slack M, Bäurle S. Discovery and In Vitro Characterization of BAY 2686013, an Allosteric Small Molecule Antagonist of the Human Pituitary Adenylate Cyclase-Activating Polypeptide Receptor. Mol Pharmacol 2023; 104:105-114. [PMID: 37348913 DOI: 10.1124/molpharm.122.000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
The human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R), a class B G-protein-coupled receptor (GPCR) identified almost 30 years ago, represents an important pharmacological target in the areas of neuroscience, oncology, and immunology. Despite interest in this target, only a very limited number of small molecule modulators have been reported for this receptor. We herein describe the results of a drug discovery program aiming for the identification of a potent and selective hPAC1-R antagonist. An initial high-throughput screening (HTS) screen of 3.05 million compounds originating from the Bayer screening library failed to identify any tractable hits. A second, completely revised screen using native human embryonic kidney (HEK)293 cells yielded a small number of hits exhibiting antagonistic properties (4.2 million compounds screened). BAY 2686013 (1) emerged as a promising compound showing selective antagonistic activity in the submicromolar potency range. In-depth characterization supported the hypothesis that BAY 2686013 blocks receptor activity in a noncompetitive manner. Preclinical, pharmacokinetic profiling indicates that BAY 2686013 is a valuable tool compound for better understanding the signaling and function of hPAC1-R. SIGNIFICANCE STATEMENT: Although the human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R) is of major significance as a therapeutic target with a well documented role in pain signaling, only a very limited number of small-molecule (SMOL) compounds are known to modulate its activity. We identified and thoroughly characterized a novel, potent, and selective SMOL antagonist of hPAC1-R (acting in an allosteric manner). These characteristics make BAY 2686013 an ideal tool for further studies.
Collapse
Affiliation(s)
- Gernot Langer
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - John Scott
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Christoffer Lind
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Christiane Otto
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Ulrich Bothe
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Alexis Laux-Biehlmann
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Jörg Müller
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Beau le Roy
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Horst Irlbacher
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Katrin Nowak-Reppel
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Anne Schlüter
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Adam J Davenport
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Mark Slack
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Stefan Bäurle
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| |
Collapse
|
6
|
Shintani Y, Hayata-Takano A, Yamano Y, Ikuta M, Takeshita R, Takuma K, Okada T, Toyooka N, Takasaki I, Miyata A, Kurihara T, Hashimoto H. Small-molecule non-peptide antagonists of the PACAP receptor attenuate acute restraint stress-induced anxiety-like behaviors in mice. Biochem Biophys Res Commun 2022; 631:146-151. [DOI: 10.1016/j.bbrc.2022.09.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
|
7
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
8
|
Positive allosteric regulation of PAC1-R up-regulates PAC1-R and its specific ligand PACAP. Acta Biochim Biophys Sin (Shanghai) 2022; 54:657-672. [PMID: 35593471 PMCID: PMC9828401 DOI: 10.3724/abbs.2022041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PAC1-R is a recognized preferential receptor for the neuropeptide of pituitary adenylate cyclase-activating polypeptide (PACAP), which mediates neuroprotective and nerve regenerative activities of PACAP. In this study, we found that in both PAC1R-CHO cells with high expression of PAC1R-eGFP and retinal ganglion cells (RGC-5) with the natural expression of PAC1-R, oligo-peptide PACAP(28-38) and the positively charged arginine-rich penetrating peptide TAT, as positive allosteric modulators of PAC1-R, significantly trigger the nuclear translocation of PAC1-R. The chromatin immunoprecipitation (ChIP)-PCR results show that the nuclear translocated PAC1-R binds with the promoter regions of PAC1-R and its specific ligand PACAP. The up-regulated promoter activities of PAC1-R and PACAP induced by PACAP(28-38) or TAT are positively correlative with the increase of the expression levels of PAC1-R and PACAP. Moreover, the nuclear translocation of PAC1-R induced by PACAP(28-38) or TAT is significantly inhibited by the mutation of PAC1-R on Cys25 and the palmitoylation inhibitor 2-bromopalmitate. Meanwhile, the increase in both PAC1-R and PACAP levels and the neuroprotective activities of PACAP(28-38) and TAT in MPP-induced cell model of Parkinson ' s disease are synchronously inhibited by 2-bromopalmitate, which are positively correlated with the nuclear translocation of PAC1-R induced by PACAP(28-38) or TAT. Bioinformatics analysis and motif enrichment analysis following ChIP-sequencing show that the transcription factors including SP1, Zic2, GATA1, REST and YY1 may be recruited by nuclear PAC1-R and involved in regulating the promoter activities of PAC1-R and PACAP. ChIP-sequencing and related bioinformatics analysis show that the downstream target genes regulated by the nuclear PAC1-R are mostly involved in the process of cellular stress and related to neuroprotection, neuronal genesis and development.
Collapse
|
9
|
Horvath G, Reglodi D, Fabian E, Opper B. Effects of Pituitary Adenylate Cyclase Activating Polypeptide on Cell Death. Int J Mol Sci 2022; 23:ijms23094953. [PMID: 35563353 PMCID: PMC9100246 DOI: 10.3390/ijms23094953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) was first isolated as a hypothalamic peptide based on its efficacy to increase adenylate cyclase (AC) activity. It has a widespread distribution throughout the body including the nervous system and peripheral organs, where PACAP exerts protective effects both in vivo and in vitro through its anti-apoptotic, anti-inflammatory, and antioxidant functions. The aim of the present paper was to review the currently available literature regarding the effects of PACAP on cell death in vitro in neural and non-neural cells. Among others, its effect on apoptosis can be detected in cerebellar granule cells against different toxic stimuli. Different neural cell types from the cerebral cortex are also prevented from cell death. PACAP also shows effects on cell death in cells belonging to the peripheral nervous system and protects both neural and non-neural cells of sensory organs. In addition, cell survival-promoting effect can be observed in different peripheral organ systems including cardiovascular, immune, respiratory, gastrointestinal, urinary, and reproductive systems. The studies summarized here indicate its noteworthy effect on cell death in different in vitro models, suggesting PACAP’s potential therapeutic usage in several pathological conditions.
Collapse
|
10
|
Takasaki I, Watanabe A, Okada T, Kanayama D, Nagashima R, Shudo M, Shimodaira A, Nunomura K, Lin B, Watanabe Y, Gouda H, Miyata A, Kurihara T, Toyooka N. Design and synthesis of pyrido[2,3-d]pyrimidine derivatives for a novel PAC1 receptor antagonist. Eur J Med Chem 2022; 231:114160. [DOI: 10.1016/j.ejmech.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/04/2022]
|
11
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
12
|
Le N, Hernandez J, Gastelum C, Perez L, Vahrson I, Sayers S, Wagner EJ. Pituitary Adenylate Cyclase Activating Polypeptide Inhibits A 10 Dopamine Neurons and Suppresses the Binge-like Consumption of Palatable Food. Neuroscience 2021; 478:49-64. [PMID: 34597709 DOI: 10.1016/j.neuroscience.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) binds to PACAP-specific (PAC1) receptors in multiple hypothalamic areas, especially those regulating energy balance. PACAP neurons in the ventromedial nucleus (VMN) exert anorexigenic effects within the homeostatic energy balance circuitry. Since PACAP can also reduce the consumption of palatable food, we tested the hypothesis that VMN PACAP neurons project to the ventral tegmental area (VTA) to inhibit A10 dopamine neurons via PAC1 receptors and KATP channels, and thereby suppress binge-like consumption. We performed electrophysiological recordings in mesencephalic slices from male PACAP-Cre and tyrosine hydroxylase (TH)-Cre mice. Initially, we injected PACAP (30 pmol) into the VTA, where it suppressed binge intake in wildtype male but not female mice. Subsequent tract tracing studies uncovered projections of VMN PACAP neurons to the VTA. Optogenetic stimulation of VMN PACAP neurons in voltage clamp induced an outward current and increase in conductance in VTA neurons, and a hyperpolarization and decrease in firing in current clamp. These effects were markedly attenuated by the KATP channel blocker tolbutamide (100 μM) and PAC1 receptor antagonist PACAP6-38 (200 nM). In recordings from A10 dopamine neurons in TH-Cre mice, we replicated the outward current by perfusing PACAP1-38 (100 nM). This response was again completely blocked by tolbutamide and PACAP6-38, and associated with a hyperpolarization and decrease in firing. These findings demonstrate that PACAP activates PAC1 receptors and KATP channels to inhibit A10 dopamine neurons and sex-dependently suppress binge-like consumption. Accordingly, they advance our understanding of how PACAP regulates energy homeostasis via the hedonic energy balance circuitry.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
13
|
Yamashita M, Takenoya F, Hirabayashi T, Shibato J, Rakwal R, Takasaki I, Harvey BJ, Chiba Y, Shioda S. Effect of PACAP on sweat secretion by immortalized human sweat gland cells. Peptides 2021; 146:170647. [PMID: 34562532 DOI: 10.1016/j.peptides.2021.170647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
The process of sweating plays an important role in the human body, including thermoregulation and maintenance of the environment and health of the skin. It is known that the conditions of hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion and can result in severe skin conditions such as pruritus and erythema, which significantly reduce the patient's quality of life. However, there are many aspects of the signaling mechanisms in the process of sweating that have not been clarified, and no effective therapies or therapeutic agents have yet been discovered. Previously, it was reported that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes sweating, but details of the underlying mechanism has not been clarified. We used immortalized human eccrine gland cells (NCL-SG3 cell) to investigate how sweat secretion is induced by PACAP. Intracellular Ca2+ levels were increased in these cells following their exposure to physiological concentrations of PACAP. Intracellular Ca2+ was not elevated when cells were concomitantly treated with PA-8, a specific PAC1-R antagonist, suggesting that PAC1-R is involved in the elevation of intracellular Ca2+ levels in response to PACAP treatment. Furthermore, immunocytochemistry experiments showed that aquaporin-5 was translocated from the cytoplasm to the cell membrane by PACAP. These results suggest that PACAP acts on eccrine sweat glands to promote sweat secretion by translocation of aquaporin-5 to the cell membrane in response to increased levels of intracellular Ca2+. These findings also provide a solid basis for future research initiatives to develop new therapies to treat sweating disorders.
Collapse
Affiliation(s)
- Michio Yamashita
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takahiro Hirabayashi
- Global Research Center for Innovative Life Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Junko Shibato
- Global Research Center for Innovative Life Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering University of Toyama, Toyama, Japan
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin D9, Ireland
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Seiji Shioda
- Global Research Center for Innovative Life Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
14
|
Tasma Z, Siow A, Harris PWR, Brimble MA, Hay DL, Walker CS. Characterisation of agonist signalling profiles and agonist-dependent antagonism at PACAP-responsive receptors: Implications for drug discovery. Br J Pharmacol 2021; 179:435-453. [PMID: 34612509 DOI: 10.1111/bph.15700] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE The pituitary adenylate cyclase-activating peptide (PACAP) family is of clinical interest for the treatment of migraine. These peptides activate three different PACAP-responsive class B G protein-coupled receptors: the PAC1 , VPAC1 and VPAC2 receptors. The PAC1 receptor may be alternatively spliced, generating variants that can differ in their pharmacological or signalling profiles. To inform drug discovery efforts targeting migraine, we need to better understand how the different PACAP-responsive receptors signal and how effectively these responses can be blocked by antagonists. EXPERIMENTAL APPROACH The signalling profiles of the human PAC1n , PAC1s , VPAC1 and VPAC2 receptors were examined in transfected Cos7 cells for cAMP, IP1 , pAkt, pERK and pCREB. Biased signalling was then quantified. The ability of antagonists to block PACAP-38, PACAP-27 or VIP stimulated cAMP accumulation at PACAP-responsive receptors was also determined. KEY RESULTS PACAP-responsive receptors exhibited varied pharmacological profiles but activated signalling in a similar manner. The PAC1n and PAC1s receptors displayed distinct pharmacology. At the PAC1s receptor, VIP and PHM were more potent than at the PAC1n receptor. PACAP-responsive receptors displayed agonist-dependent antagonism where PACAP-38 was less effectively antagonised compared to PACAP-27 and VIP. CONCLUSIONS AND IMPLICATIONS The distinct pharmacological profile displayed by the PAC1s receptor suggests that it can act as a dual receptor for VIP and PACAP. Furthermore, the effectiveness of blocking a signalling pathway can be influenced by which endogenous PACAP family agonist is present. These effects have potential implications for the development and effectiveness of drugs targeting the PACAP system.
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Apostol CR, Tanguturi P, Szabò LZ, Varela D, Gilmartin T, Streicher JM, Polt R. Synthesis and In Vitro Characterization of Glycopeptide Drug Candidates Related to PACAP 1-23. Molecules 2021; 26:4932. [PMID: 34443519 PMCID: PMC8401035 DOI: 10.3390/molecules26164932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/05/2023] Open
Abstract
The search for efficacious treatment of neurodegenerative and progressive neuroinflammatory diseases continues, as current therapies are unable to halt or reverse disease progression. PACAP represents one potential therapeutic that provides neuroprotection effects on neurons, and also modulates inflammatory responses and circulation within the brain. However, PACAP is a relatively long peptide hormone that is not trivial to synthesize. Based on previous observations that the shortened isoform PACAP1-23 is capable of inducing neuroprotection in vitro, we were inspired to synthesize shortened glycopeptide analogues of PACAP1-23. Herein, we report the synthesis and in vitro characterization of glycosylated PACAP1-23 analogues that interact strongly with the PAC1 and VPAC1 receptors, while showing reduced activity at the VPAC2 receptor.
Collapse
Affiliation(s)
- Christopher R. Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| | - Parthasaradhireddy Tanguturi
- Department of Pharmacology, College of Medicine, The University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA; (P.T.); (J.M.S.)
| | - Lajos Z. Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| | - Daniel Varela
- Facultat de Quìmica Tarragona, Universitat Rovera I Virgili, 43007 Barcelona, Spain; (D.V.); (T.G.)
| | - Thiago Gilmartin
- Facultat de Quìmica Tarragona, Universitat Rovera I Virgili, 43007 Barcelona, Spain; (D.V.); (T.G.)
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA; (P.T.); (J.M.S.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| |
Collapse
|
16
|
Schmidt SD, Zinn CG, Behling JAK, Furian AF, Furini CRG, de Carvalho Myskiw J, Izquierdo I. Inhibition of PACAP/PAC1/VPAC2 signaling impairs the consolidation of social recognition memory and nitric oxide prevents this deficit. Neurobiol Learn Mem 2021; 180:107423. [PMID: 33705861 DOI: 10.1016/j.nlm.2021.107423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
Social recognition memory (SRM) forms the basis of social relationships of animals. It is essential for social interaction and adaptive behavior, reproduction and species survival. Evidence demonstrates that social deficits of psychiatric disorders such as autism and schizophrenia are caused by alterations in SRM processing by the hippocampus and amygdala. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptors PAC1, VPAC1 and VPAC2 are highly expressed in these regions. PACAP is a pleiotropic neuropeptide that modulates synaptic function and plasticity and is thought to be involved in social behavior. PACAP signaling also stimulates the nitric oxide (NO) production and targets outcomes to synapses. In the present work, we investigate the effect of the infusion of PACAP-38 (endogenous neuropeptide and potent stimulator of adenylyl cyclase), PACAP 6-38 (PAC1/VPAC2 receptors antagonist) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP, NO donor) in the CA1 region of the hippocampus and in the basolateral amygdala (BLA) on the consolidation of SRM. For this, male Wistar rats with cannulae implanted in CA1 or in BLA were subjected to a social discrimination paradigm, which is based on the natural ability of rodents to investigate unfamiliar conspecifics more than familiar one. In the sample phase (acquisition), animals were exposed to a juvenile conspecific for 1 h. Immediately, 60 or 150 min after, animals received one of different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. Animals that received infusions of PACAP 6-38 (40 pg/side) into CA1 immediately after the sample phase or into BLA immediately or 60 min after the sample phase were unable to recognize the familiar juvenile during the retention test. This impairment was abolished by the coinfusion of PACAP 6-38 plus SNAP (5 μg/side). These results show that the blockade of PACAP/PAC1/VPAC2 signaling in the CA1 and BLA during a restricted post-acquisition time window impairs the consolidation of SRM and that the SNAP is able to abolish this deficit. Findings like this could potentially be used in the future to influence studies of psychiatric disorders involving social behavior.
Collapse
Affiliation(s)
- Scheila Daiane Schmidt
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Carolina Garrido Zinn
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jonny Anderson Kielbovicz Behling
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Ana Flávia Furian
- Laboratory of Neurotoxicity, Federal University of Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Chang R, Hernandez J, Gastelum C, Guadagno K, Perez L, Wagner EJ. Pituitary Adenylate Cyclase-Activating Polypeptide Excites Proopiomelanocortin Neurons: Implications for the Regulation of Energy Homeostasis. Neuroendocrinology 2021; 111:45-69. [PMID: 32028278 DOI: 10.1159/000506367] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.
Collapse
Affiliation(s)
- Rachel Chang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Jennifer Hernandez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Kaitlyn Guadagno
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA,
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA,
| |
Collapse
|
18
|
Ohlendorf R, Wiśniowska A, Desai M, Barandov A, Slusarczyk AL, Li N, Jasanoff A. Target-responsive vasoactive probes for ultrasensitive molecular imaging. Nat Commun 2020; 11:2399. [PMID: 32404879 PMCID: PMC7220906 DOI: 10.1038/s41467-020-16118-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Agata Wiśniowska
- Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Adrian L Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
| |
Collapse
|
19
|
Köves K, Szabó E, Kántor O, Heinzlmann A, Szabó F, Csáki Á. Current State of Understanding of the Role of PACAP in the Hypothalamo-Hypophyseal Gonadotropin Functions of Mammals. Front Endocrinol (Lausanne) 2020; 11:88. [PMID: 32210912 PMCID: PMC7067695 DOI: 10.3389/fendo.2020.00088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 01/25/2023] Open
Abstract
PACAP was discovered 30 years ago in Dr. Akira Arimura's laboratory. In the past three decades since then, it has become evident that this peptide plays numerous crucial roles in mammalian organisms. The most important functions of PACAP are the following: 1. neurotransmitter, 2. neuromodulator, 3. hypophysiotropic hormone, 4. neuroprotector. This paper reviews the accumulated data regarding the distribution of PACAP and its receptors in the mammalian hypothalamus and pituitary gland, the role of PACAP in the gonadotropin hormone secretion of females and males. The review also summarizes the interaction between PACAP, GnRH, and sex steroids as well as hypothalamic peptides including kisspeptin. The possible role of PACAP in reproductive functions through the biological clock is also discussed. Finally, the significance of PACAP in the hypothalamo-hypophysial system is considered and the facts missing, that would help better understand the function of PACAP in this system, are also highlighted.
Collapse
Affiliation(s)
- Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Enikő Szabó
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Orsolya Kántor
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Andrea Heinzlmann
- Department of Anatomy and Histology, University of Veterinary Sciences, Budapest, Hungary
| | - Flóra Szabó
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Ágnes Csáki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Seiglie MP, Huang L, Cottone P, Sabino V. Role of the PACAP system of the extended amygdala in the acoustic startle response in rats. Neuropharmacology 2019; 160:107761. [PMID: 31493466 PMCID: PMC6842120 DOI: 10.1016/j.neuropharm.2019.107761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
Anxiety-related disorders are the most prevalent mental disorders in the world and they are characterized by abnormal responses to stressors. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide highly expressed in the extended amygdala, a brain macrostructure involved in the response to threat that includes the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). The aim of this series of experiments was to systematically elucidate the role of the PACAP system of the CeA and BNST under both control, unstressed conditions and after the presentation of a stressor in rats. For this purpose, we used the acoustic startle response (ASR), an unconscious response to sudden acoustic stimuli sensitive to changes in stress which can be used as an operationalization of the hypervigilance present in anxiety- and trauma-related disorders. We found that infusion of PACAP, but not the related peptide vasoactive intestinal peptide (VIP), into either the CeA or the BNST causes a dose-dependent increase in ASR. In addition, while infusion of the antagonist PACAP(6-38) into either the CeA or the BNST does not affect ASR in non-stressed conditions, it prevents the sensitization of ASR induced by an acute footshock stress. Finally, we found that footshock stress induces a significant increase in PACAP, but not VIP, levels in both of these brain areas. Altogether, these data show that the PACAP system of the extended amygdala contributes to stress-induced hyperarousal and suggest it as a potential novel target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mariel P Seiglie
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Lillian Huang
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
Liao C, de Molliens MP, Schneebeli ST, Brewer M, Song G, Chatenet D, Braas KM, May V, Li J. Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Curr Top Med Chem 2019; 19:1399-1417. [PMID: 31284862 PMCID: PMC6761004 DOI: 10.2174/1568026619666190709092647] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK, and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis. Accordingly, at times of tissue injury or insult, PACAP/PAC1R activation of these pathways can be trophic to blunt or delay apoptotic events and enhance cell survival. Enhancing PAC1R signaling under these conditions has the potential to mitigate cellular damages associated with cerebrovascular trauma (including stroke), neurodegeneration (such as Parkinson's and Alzheimer's disease), or peripheral organ insults. Conversely, maladaptive PACAP/PAC1R signaling has been implicated in a number of disorders, including stressrelated psychopathologies (i.e., depression, posttraumatic stress disorder, and related abnormalities), chronic pain and migraine, and metabolic diseases; abrogating PAC1R signaling under these pathological conditions represent opportunities for therapeutic intervention. Given the diverse PAC1R-mediated biological activities, the receptor has emerged as a relevant pharmaceutical target. In this review, we first describe the current knowledge regarding the molecular structure, dynamics, and function of PAC1R. Then, we discuss the roles of PACAP and PAC1R in the activation of a variety of signaling cascades related to the physiology and diseases of the nervous system. Lastly, we examine current drug design and development of peptides and small molecules targeting PAC1R based on a number of structure- activity relationship studies and key pharmacophore elements. At present, the rational design of PAC1R-selective peptide or small-molecule therapeutics is largely hindered by the lack of structural information regarding PAC1R activation mechanisms, the PACAP-PAC1R interface, and the core segments involved in receptor activation. Understanding the molecular basis governing the PACAP interactions with its different cognate receptors will undoubtedly provide a basis for the development and/or refinement of receptor-selective therapeutics.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | | | - Severin T Schneebeli
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - David Chatenet
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
22
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
23
|
Lamine A, Poujol de Molliens M, Létourneau M, Hébert TE, Vaudry D, Fournier A, Chatenet D. The amidated PACAP 1-23 fragment is a potent reduced-size neuroprotective agent. Biochim Biophys Acta Gen Subj 2019; 1863:129410. [PMID: 31401178 DOI: 10.1016/j.bbagen.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by neuronal death involving, among other events, mitochondrial dysfunction and excitotoxicity. Along these lines, several attempts have been made to slow this pathology but none have been yet discovered. Based on its capacity to cross the blood-brain barrier and provide neuronal protection in vitro and in vivo, the pituitary adenylate cyclase-activating polypeptide (PACAP) represents a promising lead molecule. Pharmacological studies showed that PACAP interacts with three different G protein-coupled receptors, i.e. PAC1, VPAC1 and VPAC2. However, only PAC1 is associated with neuronal anti-apoptotic actions, whilst VPAC activation might cause adverse effects. In the context of the development of PAC1-selective agonists, PACAP(1-23) (PACAP23) appears as the shortest known PACAP bioactive fragment. METHODS Hence, the capacity of this peptide to bind PACAP receptors and protect neuroblastoma cells was evaluated under conditions of mitochondrial dysfunction and glutamate excitotoxicity. In addition, its ability to activate downstream signaling events involving G proteins (Gαs and Gαq), EPAC, and calcium was also assessed. RESULTS Compared to the endogenous peptide, PACAP23 showed a reduced affinity towards PAC1, although this fragment exerted potent neuroprotection. However, surprisingly, some disparities were observed for PACAP23 signaling compared to full length PACAP, suggesting that downstream signaling related to neuroprotection is distinctly regulated following subtle differences in their PAC1 interactions. CONCLUSIONS Altogether, this study demonstrates the potent neuroprotective action of amidated PACAP23. GENERAL SIGNIFICANCE PACAP23 represents an attractive template for development of shorter PACAP-derived neuroprotective molecules.
Collapse
Affiliation(s)
- A Lamine
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - M Poujol de Molliens
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada
| | - M Létourneau
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada
| | - T E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - D Vaudry
- INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - A Fournier
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada.
| | - D Chatenet
- INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada.
| |
Collapse
|
24
|
Pedersen SH, la Cour SH, Calloe K, Hauser F, Olesen J, Klaerke DA, Jansen-Olesen I. PACAP-38 and PACAP(6-38) Degranulate Rat Meningeal Mast Cells via the Orphan MrgB 3-Receptor. Front Cell Neurosci 2019; 13:114. [PMID: 30983973 PMCID: PMC6447718 DOI: 10.3389/fncel.2019.00114] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022] Open
Abstract
Infusion of pituitary adenylate cyclase activating peptide-38 (PACAP-38) provokes migraine attacks in migraineurs and headache in non-migraineurs. Adverse events like long-lasting flushing and heat sensation can be terminated with oral antihistamine treatment, indicating the involvement of mast cell activation after PACAP-infusion. Degranulation of rat peritoneal mast cells was provoked by several isoforms of PACAP via previously unknown receptor pharmacology. The effect might thus be mediated either via specific splice variants of the PAC1-receptor or via an unknown receptor for PACAP-38. In the present study, we characterize degranulation of rat meningeal mast cells in response to PACAP-receptor ligands. Furthermore, we investigate if PACAP-38-induced mast cell degranulation is mediated via PAC1-receptor splice variants and/or via the orphan Mas-related G-protein coupled member B3 (MrgB3)-receptor. To address this, the pharmacological effect of different PACAP isoforms on meningeal mast cell degranulation was investigated in the hemisected skull model after toluidine blue staining followed by microscopic quantification. Presence of mRNA encoding PAC1-receptor splice variants and the MrgB3-receptor in rat mast cells was investigated by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) analysis. The effect of PACAP isoforms on PAC1- and MrgB3-receptor-expressing Xenopus laevis oocytes were performed by two-electrode voltage-clamp (TEVC) electrophysiology. PACAP-38 is a more potent mast cell degranulating agent than Pituitary Adenylate Cyclase Activating Peptide-27 (PACAP-27) in the meninges. Presence of mRNA encoding the PAC1-receptor and its different splice variants could not be detected in peritoneal mast cells by RT-PCR, whereas the orphan MrgB3-receptor, recently suggested to be a mediator of basic secretagogues-induced mast cell degranulation, was widely present. In PAC1-receptor-expressing Xenopus laevis oocytes both PACAP-38, PACAP-27 and the specific PAC1-receptor agonist maxadilan were equipotent, however, only PACAP-38 showed a significant degranulatory effect on mast cells. We confirmed Pituitary Adenylate Cyclase Activating Peptide(6–38) [PACAP(6–38)] to be a PAC1-receptor antagonist, and we demonstrated that it is a potent mast cell degranulator and have an agonistic effect on MrgB3-receptors expressed in oocytes. The present study provides evidence that PACAP-induced mast cell degranulation in rat is mediated through a putative new PACAP-receptor with the order of potency being: PACAP-38 = PACAP(6–38) > > PACAP-27 = maxadilan. The results suggest that the observed responses are mediated via the orphan MrgB3-receptor.
Collapse
Affiliation(s)
- Sara Hougaard Pedersen
- Glostrup Research Institute, Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sanne Hage la Cour
- Glostrup Research Institute, Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Frank Hauser
- Cell and Neurobiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jes Olesen
- Glostrup Research Institute, Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan Arne Klaerke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Inger Jansen-Olesen
- Glostrup Research Institute, Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Tumurbaatar T, Kanasaki H, Oride A, Okada H, Hara T, Tumurgan Z, Kyo S. Effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of hypothalamic kisspeptin expression. Gen Comp Endocrinol 2019; 270:60-66. [PMID: 30316762 DOI: 10.1016/j.ygcen.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor are broadly distributed in the brain, and PACAP is known to work as a multifunctional peptide. However, it is still largely unknown how PACAP affects the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we examined the effect of PACAP on hypothalamic kisspeptin expression, a known regulator of gonadotropin-releasing hormone. We used two hypothalamic cell models, mHypoA-50 and mHypoA-55, which were originated from kisspeptin-expressing neuron in anterioventral periventricular nucleus and arcuate nucleus regions in the hypothalamus, respectively. Expression of Kiss-1 gene, which encodes kisspeptin, was significantly increased by PACAP stimulation in both mHypoA-50 and mHypoA-55 cells, by up to 2.69 ± 0.93-fold and 4.89 ± 1.13-fold, respectively. PACAP6-38, a PACAP receptor antagonist did not antagonize the action of PACAP on Kiss-1 gene expression but increased Kiss-1 gene by itself in these cells. PACAP-induced Kiss-1 gene expression in both mHypoA-50 and mHypoA-55 cells was almost completely prevented in the presence of H89, a protein kinase A inhibitor. PACAP was expressed in both these hypothalamic cell models and its expression was up-regulated by estradiol in mHypoA-50 cells but not in mHypoA-55 cells. Stimulation of mHypoA-50 and mHypoA-55 cells with PACAP increased the expression levels of corticotropin-releasing hormone and neurotensin, both of which could modulate HPG axis. Our present observations suggest that hypothalamic PACAP might modulate the HPG axis by directly or indirectly modulating Kiss-1 gene expression.
Collapse
Affiliation(s)
- Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan.
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Tomomi Hara
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
26
|
Takasaki I, Nakamura K, Shimodaira A, Watanabe A, Du Nguyen H, Okada T, Toyooka N, Miyata A, Kurihara T. The novel small-molecule antagonist of PAC1 receptor attenuates formalin-induced inflammatory pain behaviors in mice. J Pharmacol Sci 2018; 139:129-132. [PMID: 30552012 DOI: 10.1016/j.jphs.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
We recently developed PA-8, a novel small-molecule antagonist of PACAP type 1 (PAC1) receptor. In the present study, we examined whether PA-8 was effective against formalin-induced inflammatory pain in mice. Both intrathecal and oral administration of PA-8 resulted in the dose-dependent attenuation of the second phase of formalin-induced nociceptive responses. PA-8 also inhibited c-fos upregulation in the ipsilateral dorsal horn of the spinal cord. The results suggested that PACAP-PAC1 receptor signaling system in the spinal cord were primarily involved in the transmission of inflammatory pain, and PA-8 could be useful for the development of novel analgesics for treating inflammatory pain.
Collapse
Affiliation(s)
- Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan; Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan.
| | - Koji Nakamura
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Ayaka Shimodaira
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Ai Watanabe
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Huy Du Nguyen
- Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan; Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan; Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan; Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
27
|
Starr CG, Maderdrut JL, He J, Coy DH, Wimley WC. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships. Peptides 2018; 104:35-40. [PMID: 29654809 PMCID: PMC5982112 DOI: 10.1016/j.peptides.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence.
Collapse
Affiliation(s)
- Charles G Starr
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jerome L Maderdrut
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jing He
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
28
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the prefrontal cortex modulates cued fear learning, but not spatial working memory, in female rats. Neuropharmacology 2018; 133:145-154. [DOI: 10.1016/j.neuropharm.2018.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 12/04/2017] [Accepted: 01/07/2018] [Indexed: 11/19/2022]
|
29
|
Takasaki I, Watanabe A, Yokai M, Watanabe Y, Hayakawa D, Nagashima R, Fukuchi M, Okada T, Toyooka N, Miyata A, Gouda H, Kurihara T. In Silico Screening Identified Novel Small-molecule Antagonists of PAC1 Receptor. J Pharmacol Exp Ther 2018; 365:1-8. [PMID: 29363578 DOI: 10.1124/jpet.117.245415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are present in the spinal dorsal horn and dorsal root ganglia, suggesting an important role of PACAP signaling systems in the modulation of spinal nociceptive transmission. Previously, we found that intrathecal injection of PACAP or maxadilan, a selective PACAP type I (PAC1) receptor agonist, induced transient aversive responses followed by a long-lasting mechanical allodynia in mice, suggesting that PACAP-PAC1 receptor systems are involved in chronic pain and that selective PAC1 antagonists may become a new class of analgesics. Although several PAC1 antagonists, such as PACAP 6-38, have been reported, all of them are peptide compounds. In the present study, we identified new small-molecule antagonists of the PAC1 receptor using in silico screening and in vitro/vivo pharmacological assays. The identified small-molecule compounds, named PA-8 and PA-9, dose dependently inhibited the phosphorylation of CREB induced by PACAP in PAC1-, but not VPAC1- or VPAC2-receptor-expressing CHO cells. PA-8 and PA-9 also dose dependently inhibited PACAP-induced cAMP elevation with an IC50 of 2.0 and 5.6 nM, respectively. In vivo pharmacological assays showed that intrathecal injection of these compounds blocked the induction of PACAP-induced aversive responses and mechanical allodynia in mice. In contrast, the compounds when administered alone exerted neither agonistic nor algesic actions in the in vitro/vivo assays. The compounds identified in the present study are new and the first small-molecule antagonists of the PAC1 receptor; they may become seed compounds for developing novel analgesics.
Collapse
Affiliation(s)
- Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Ai Watanabe
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Masafumi Yokai
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Yurie Watanabe
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Daichi Hayakawa
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Ryota Nagashima
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Mamoru Fukuchi
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Takuya Okada
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Naoki Toyooka
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Hiroaki Gouda
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| |
Collapse
|
30
|
Algarni AS, Hargreaves AJ, Dickenson JM. Role of transglutaminase 2 in PAC 1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells. Biochem Pharmacol 2017; 128:55-73. [PMID: 28065858 DOI: 10.1016/j.bcp.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Abstract
The PAC1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca2+. Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC1 receptor.
Collapse
Affiliation(s)
- Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
31
|
Lamine A, Létourneau M, Doan ND, Maucotel J, Couvineau A, Vaudry H, Chatenet D, Vaudry D, Fournier A. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson's disease model. Neuropharmacology 2016; 108:440-50. [PMID: 26006268 DOI: 10.1016/j.neuropharm.2015.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is characterized by a steady loss of dopamine neurons through apoptotic, inflammatory and oxidative stress processes. In that line of view, the pituitary adenylate cyclase-activating polypeptide (PACAP), with its ability to cross the blood-brain barrier and its anti-apoptotic, anti-inflammatory and anti-oxidative properties, has proven to offer potent neuroprotection in various PD models. Nonetheless, its peripheral actions, paired with low metabolic stability, hampered its clinical use. We have developed Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) as an improved PACAP-derived neuroprotective compound. In vitro, this analog stimulated cAMP production, maintained mitochondrial potential and protected SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium (MPP(+)) toxicity, as potently as PACAP. Furthermore, contrasting with PACAP, it is stable in human plasma and against dipeptidyl peptidase IV activity. When injected intravenously to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, PACAP and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) restored tyrosine hydoxylase expression into the substantia nigra and modulated the inflammatory response. Albeit falls of mean arterial pressure (MAP) were observed with both PACAP- and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27)-treated mice, the intensity of the decrease as well as its duration were significantly less marked after iv injections of the analog than after those of the native polypeptide. Moreover, no significant changes in heart rate were measured with the animals for both compounds. Thus, Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) appears as a promising lead molecule for the development of PACAP-derived drugs potentially useful for the treatment of PD or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Asma Lamine
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada; Laboratoire International Associé Samuel de Champlain, Université de Rouen, France; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - Myriam Létourneau
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada; Laboratoire International Associé Samuel de Champlain, Université de Rouen, France
| | - Ngoc Duc Doan
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada; Laboratoire International Associé Samuel de Champlain, Université de Rouen, France
| | - Julie Maucotel
- Laboratoire International Associé Samuel de Champlain, Université de Rouen, France; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - Alain Couvineau
- INSERM U1149/Inflammation Research Center (CRI), Université Paris-Diderot, Faculté de Médecine Site Bichat, 16, rue H. Huchard, 75018 Paris, France
| | - Hubert Vaudry
- Laboratoire International Associé Samuel de Champlain, Université de Rouen, France; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - David Chatenet
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - David Vaudry
- Laboratoire International Associé Samuel de Champlain, Université de Rouen, France; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - Alain Fournier
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada; Laboratoire International Associé Samuel de Champlain, Université de Rouen, France.
| |
Collapse
|
32
|
Vaczy A, Reglodi D, Somoskeoy T, Kovacs K, Lokos E, Szabo E, Tamas A, Atlasz T. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration. J Mol Neurosci 2016; 60:186-94. [PMID: 27566170 DOI: 10.1007/s12031-016-0818-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.
Collapse
Affiliation(s)
- A Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Somoskeoy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - K Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - E Lokos
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - E Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Ifjusag Street 6, Pecs, H-7624, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| |
Collapse
|
33
|
Emery AC, Alvarez RA, Abboud P, Xu W, Westover CD, Eiden MV, Eiden LE. C-terminal amidation of PACAP-38 and PACAP-27 is dispensable for biological activity at the PAC1 receptor. Peptides 2016; 79:39-48. [PMID: 26976270 PMCID: PMC4842133 DOI: 10.1016/j.peptides.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/30/2016] [Accepted: 03/09/2016] [Indexed: 01/29/2023]
Abstract
PACAP-27 and PACAP-38 are the exclusive physiological ligands for the mammalian PAC1 receptor. The role of C-terminal amidation of these ligands at that receptor was examined in neuroendocrine cells expressing the PAC1 receptor endogenously and in non-neuroendocrine cells in which the human and rat PAC1 receptors were expressed from stable single-copy genes driven by the CMV promoter, providing stoichiometrically appropriate levels of this Gs-coupled GPCR in order to examine the potency and intrinsic activity of PACAP ligands and their des-amidated congeners. We found that replacement of the C-terminal glycine residues of PACAP-27 and -38 with a free acid; or extension of either peptide with the two to three amino acids normally found at these positions in PACAP processing intermediates in vivo following endoproteolytic cleavage and after exoproteolytic trimming and glycine-directed amidated, were equivalent in potency to the fully processed peptides in a variety of cell-based assays. These included real-time monitoring of cyclic AMP generation in both NS-1 neuroendocrine cells and non-neuroendocrine HEK293 cells; PKA-dependent gene activation in HEK293 cells; and neuritogenesis and cell growth arrest in NS-1 cells. The specific implications for the role of amidation in arming of secretin-related neuropeptides for biological function, and the general implications for neuropeptide-based delivery in the context of gene therapy, are discussed.
Collapse
Affiliation(s)
- Andrew C Emery
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Ryan A Alvarez
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Philip Abboud
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Wenqin Xu
- Section on Directed Gene Transfer, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Craig D Westover
- Section on Directed Gene Transfer, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Maribeth V Eiden
- Section on Directed Gene Transfer, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Yu R, Zheng L, Cui Y, Zhang H, Ye H. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1. Neuropharmacology 2016; 103:1-15. [DOI: 10.1016/j.neuropharm.2015.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/14/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
|
35
|
Kong L, Albano R, Madayag A, Raddatz N, Mantsch JR, Choi S, Lobner D, Baker DA. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.). J Neurochem 2016; 137:384-93. [PMID: 26851652 DOI: 10.1111/jnc.13566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022]
Abstract
Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.
Collapse
Affiliation(s)
- Linghai Kong
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Rebecca Albano
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Aric Madayag
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Nicholas Raddatz
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
36
|
Sághy É, Payrits M, Helyes Z, Reglődi D, Bánki E, Tóth G, Couvineau A, Szőke É. Stimulatory effect of pituitary adenylate cyclase-activating polypeptide 6-38, M65 and vasoactive intestinal polypeptide 6-28 on trigeminal sensory neurons. Neuroscience 2015; 308:144-56. [PMID: 26321242 DOI: 10.1016/j.neuroscience.2015.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 02/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) acts on G protein-coupled receptors: the specific PAC1 and VPAC1/VPAC2 receptors. PACAP6-38 was described as a potent PAC1/VPAC2 antagonist in several models, but recent studies reported its agonistic behaviors proposing novel receptorial mechanisms. Since PACAP in migraine is an important research tool, we investigated the effect of PACAP and its peptide fragments on trigeminal primary sensory neurons. Effect of the peptides was studied with ratiometric Ca-imaging technique using the fluorescent indicator fura-2 AM on primary cultures of rat and mouse trigeminal ganglia (TRGs) neurons. Specificity testing was performed on PAC1, VPAC1 and VPAC2 receptor-expressing cell lines with both fluorescent and radioactive Ca-uptake methods. Slowly increasing intracellular free calcium concentration [Ca(2+)]i was detected after PACAP1-38, PACAP1-27, vasoactive intestinal polypeptide (VIP) and the selective PAC1 receptor agonist maxadilan administration on TRG neurons, but interestingly, PACAP6-38, VIP6-28 and the PAC1 receptor antagonist M65 also caused similar activation. The VPAC2 receptor agonist BAY 55-9837 induced similar activation, while the VPAC1 receptor agonist Ala(11,22,28)VIP had no significant effect on [Ca(2+)]i. It was proven that the Ca(2+)-influx originated from intracellular stores using radioactive calcium-45 uptake experiment and Ca-free solution. On the specific receptor-expressing cell lines the antagonists inhibited the stimulating actions of the respective agonists, but had no effects by themselves. PACAP6-38, M65 and VIP6-28, which were described as antagonists in numerous studies in several model systems, act as agonists on TRG primary sensory neurons. Currently unknown receptors or splice variants linked to distinct signal transduction pathways might explain these differences.
Collapse
MESH Headings
- Animals
- CHO Cells
- Calcium/metabolism
- Cells, Cultured
- Cricetulus
- Humans
- Insect Proteins/pharmacology
- Mice
- Peptide Fragments/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Rats, Wistar
- Receptors, Vasoactive Intestinal Peptide, Type II/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/agonists
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/physiology
- Sensory System Agents/pharmacology
- TRPV Cation Channels/metabolism
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/physiology
- Vasoactive Intestinal Peptide/pharmacology
- Voltage-Sensitive Dye Imaging
Collapse
Affiliation(s)
- É Sághy
- Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - M Payrits
- Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - D Reglődi
- Department of Anatomy, MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - E Bánki
- Department of Anatomy, MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - G Tóth
- Department of Medical Chemistry, University of Szeged, Szeged-6720, Dugonics Street 13, Hungary.
| | - A Couvineau
- UMR 1149 INSERM/Centre de Recherche sur l'Inflammation, Université Paris Diderot, Faculte de Medecine Paris 7 - Site Bichat, 16 Rue Henri Huchard, 75890 Paris Cedex 18, France.
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| |
Collapse
|
37
|
Irwin M, Greig A, Tvrdik P, Lucero MT. PACAP modulation of calcium ion activity in developing granule cells of the neonatal mouse olfactory bulb. J Neurophysiol 2014; 113:1234-48. [PMID: 25475351 DOI: 10.1152/jn.00594.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(2+) activity in the CNS is critical for the establishment of developing neuronal circuitry prior to and during early sensory input. In developing olfactory bulb (OB), the neuromodulators that enhance network activity are largely unknown. Here we provide evidence that pituitary adenylate cyclase-activating peptide (PACAP)-specific PAC1 receptors (PAC1Rs) expressed in postnatal day (P)2-P5 mouse OB are functional and enhance network activity as measured by increases in calcium in genetically identified granule cells (GCs). We used confocal Ca(2+) imaging of OB slices from Dlx2-tdTomato mice to visualize GABAergic GCs. To address whether the PACAP-induced Ca(2+) oscillations were direct or indirect effects of PAC1R activation, we used antagonists for the GABA receptors (GABARs) and/or glutamate receptors (GluRs) in the presence and absence of PACAP. Combined block of GABARs and GluRs yielded a 66% decrease in the numbers of PACAP-responsive cells, suggesting that 34% of OB neurons are directly activated by PACAP. Similarly, immunocytochemistry using anti-PAC1 antibody showed that 34% of OB neurons express PAC1R. Blocking either GluRs or GABARs alone indirectly showed that PACAP stimulates release of both glutamate and GABA, which activate GCs. The appearance of PACAP-induced Ca(2+) activity in immature GCs suggests a role for PACAP in GC maturation. To conclude, we find that PACAP has both direct and indirect effects on neonatal OB GABAergic cells and may enhance network activity by promoting glutamate and GABA release. Furthermore, the numbers of PACAP-responsive GCs significantly increased between P2 and P5, suggesting that PACAP-induced Ca(2+) activity contributes to neonatal OB development.
Collapse
Affiliation(s)
- Mavis Irwin
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ann Greig
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Petr Tvrdik
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Mary T Lucero
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and Department of Neuroscience and Physiology, American University of the Caribbean, Cupecoy, Sint Maarten, Netherlands Antilles
| |
Collapse
|
38
|
Walker CS, Sundrum T, Hay DL. PACAP receptor pharmacology and agonist bias: analysis in primary neurons and glia from the trigeminal ganglia and transfected cells. Br J Pharmacol 2014; 171:1521-33. [PMID: 24303997 DOI: 10.1111/bph.12541] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE A major challenge in the development of new medicines targeting GPCRs is the ability to quantify drug action in physiologically relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used. EXPERIMENTAL APPROACH We used a neuropeptide system to demonstrate the applicability of using highly sensitive signalling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary cultures of neurons and glia derived from rat trigeminal ganglia (TG), comparing our observations to transfected cells. KEY RESULTS PACAP-responsive receptors in rat trigeminal neurons, glia and transfected PAC1n receptors were pharmacologically distinct. PACAP-38, but not PACAP-27, activated ERK in glia, while both forms stimulated cellular cAMP production. PACAP(6-38) also displayed cell-type-dependent, agonist-specific, antagonism. CONCLUSIONS AND IMPLICATIONS The complexity of PACAP pharmacology in the TG may help to direct, more effectively, the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types.
Collapse
Affiliation(s)
- C S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
39
|
Cunha-Reis D, Aidil-Carvalho MDF, Ribeiro JA. Endogenous inhibition of hippocampal LTD and depotentiation by vasoactive intestinal peptide VPAC1 receptors. Hippocampus 2014; 24:1353-63. [PMID: 24935659 DOI: 10.1002/hipo.22316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2014] [Indexed: 11/08/2022]
Abstract
Vasoactive intestinal peptide (VIP), an important modulator of hippocampal synaptic transmission, influences exploration and hippocampal-dependent learning in rodents. Homosynaptic long-term depression (LTD) and depotentiation are two plasticity phenomena implicated in learning of behavior flexibility and spatial novelty detection. In this study, we investigated the influence of endogenous VIP on LTD and depotentiation induced by low-frequency stimulation (1 Hz, 900 pulses) of the hippocampal CA1 area in vitro in juvenile and young adult rats, respectively. LTD and depotentiation were enhanced by the VIP receptor antagonist Ac-Tyr(1) , D-Phe(2) GRF (1-29), and the selective VPAC1 receptor antagonist, PG 97-269, but not the selective VPAC2 receptor antagonist, PG 99-465. This action was mimicked by an anti-VIP antibody, suggesting that VIP, and not pituitary adenylate cyclase-activating polypeptide (PACAP), is the endogenous mediator of these effects. Selective inhibition of PAC1 receptors with PACAP (6-38) enhanced depotentiation, but not LTD. VPAC1 receptor blockade also revealed LTD in young adult rats, an effect abolished by the GABAA antagonist bicuculline, evidencing an involvement of GABAergic transmission. We conclude that inhibition of LTD and depotentiation by endogenous VIP occurs through VPAC1 receptor-mediated mechanisms and suggest that disinhibition of pyramidal cell dendrites is the most likely physiological mechanism underlying this effect. As such, VPAC1 receptor ligands may be considered promising pharmacological targets for treatment of cognitive dysfunction in diseases involving altered GABAergic circuits and pathological saturation of LTP/LTD like Down's syndrome and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
40
|
Resch JM, Maunze B, Gerhardt AK, Magnuson SK, Phillips KA, Choi S. Intrahypothalamic pituitary adenylate cyclase-activating polypeptide regulates energy balance via site-specific actions on feeding and metabolism. Am J Physiol Endocrinol Metab 2013; 305:E1452-63. [PMID: 24148346 PMCID: PMC3882380 DOI: 10.1152/ajpendo.00293.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Numerous studies have demonstrated that both the hypothalamic paraventricular nuclei (PVN) and ventromedial nuclei (VMN) regulate energy homeostasis through behavioral and metabolic mechanisms. Receptors for pituitary adenylate cyclase-activating polypeptide (PACAP) are abundantly expressed in these nuclei, suggesting PACAP may be critical for the regulation of feeding behavior and body weight. To characterize the unique behavioral and physiological responses attributed to select hypothalamic cell groups, PACAP was site-specifically injected into the PVN or VMN. Overall food intake was significantly reduced by PACAP at both sites; however, meal pattern analysis revealed that only injections into the PVN produced significant reductions in meal size, duration, and total time spent eating. PACAP-mediated hypophagia in both the PVN and VMN was abolished by PAC1R antagonism, whereas pretreatment with a VPACR antagonist had no effect. PACAP injections into the VMN produced unique changes in metabolic parameters, including significant increases in core body temperature and spontaneous locomotor activity that was PAC1R dependent whereas, PVN injections of PACAP had no effect. Finally, PACAP-containing afferents were identified using the neuronal tracer cholera toxin subunit B (CTB) injected unilaterally into the PVN or VMN. CTB signal from PVN injections was colocalized with PACAP mRNA in the medial anterior bed nucleus of the stria terminalis, VMN, and lateral parabrachial nucleus (LPB), whereas CTB signal from VMN injections was highly colocalized with PACAP mRNA in the medial amygdala and LPB. These brain regions are known to influence energy homeostasis perhaps, in part, through PACAP projections to the PVN and VMN.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | | | | | | | | | | |
Collapse
|
41
|
Erdling A, Sheykhzade M, Maddahi A, Bari F, Edvinsson L. VIP/PACAP receptors in cerebral arteries of rat: characterization, localization and relation to intracellular calcium. Neuropeptides 2013; 47:85-92. [PMID: 23375386 DOI: 10.1016/j.npep.2012.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 12/18/2012] [Accepted: 12/23/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP)-containing nerves surround cerebral blood vessels. The peptides have potent vasodilator properties via smooth muscle cell receptors and activation of adenylate cyclase. The purpose of this study was to describe the effects of two putative VIP/PACAP receptor antagonists and the distribution of the receptor protein in rat brain vessels. METHODS The vascular effects of VIP, PACAP-27 and PACAP-38 were investigated in segments of rat middle cerebral artery (MCA) by pressurized arteriography, and in a wire myograph. The antagonistic responses to PACAP6-38 and PG99-465 were evaluated. In addition, the receptor subtypes for VIP and PACAP (VPAC1, VPAC2 and PAC1) were visualized in the rat middle cerebral artery by immunohistochemistry and Western blotting. RESULTS In the perfusion model, abluminal but not luminal VIP, PACAP-27 and PACAP-38 caused concentration-dependent relaxations of the MCA (27.1±0.2%, 25.2±0.4% and 0.3±0.1%, respectively). In the wire myograph, there was no significant difference in potency of the peptides in the MCA. In both systems, PACAP6-38 and PG99-465 inhibited the VIP induced relaxation. Western blot showed the presence of the receptor proteins in cerebral vasculature and immunohistochemistry showed that all three receptors are present and located in the cytoplasm of smooth muscle cells. CONCLUSION In both systems, the two blockers antagonized the relaxant VIP effect; the potency order of agonists and the immunohistochemistry suggest the presence of the dilatory VPAC1 and VPAC2 receptors on the smooth muscle cells.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Angiography
- Animals
- Blotting, Western
- Calcium/physiology
- Cerebral Arteries/drug effects
- Cerebral Arteries/metabolism
- Electromyography
- Fluorescent Antibody Technique
- Immunohistochemistry
- Isometric Contraction/drug effects
- Male
- Muscle, Smooth, Vascular/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/physiology
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide/drug effects
- Receptors, Vasoactive Intestinal Peptide/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- André Erdling
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Inglott MA, Lerner EA, Pilowsky PM, Farnham MMJ. Activation of PAC(1) and VPAC receptor subtypes elicits differential physiological responses from sympathetic preganglionic neurons in the anaesthetized rat. Br J Pharmacol 2013; 167:1089-98. [PMID: 22612450 DOI: 10.1111/j.1476-5381.2012.02045.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuropeptide with central and peripheral cardiovascular actions. Intrathecal PACAP increases splanchnic sympathetic nerve activity and heart rate, but not mean arterial pressure (MAP). We hypothesize that the three PACAP receptors (PAC(1) , VPAC(1) and VPAC(2) ) have different actions in central cardiovascular control, and that their summed effect results in the lack of MAP response observed following intrathecal PACAP injection. EXPERIMENTAL APPROACH The effects of the PACAP receptors on baseline cardiovascular parameters were investigated using selective agonists and antagonists administered into the intrathecal space of urethane-anaesthetized, vagotomized and artificially ventilated male Sprague-Dawley rats. KEY RESULTS Selective activation of the PACAP receptors had different effects on MAP. When activated by maxadilan, PAC(1) receptors increased MAP. The VPAC receptors decreased MAP when both were activated with vasoactive intestinal polypeptide or when only VPAC(1) receptors were activated. The PAC(1) and VPAC(2) receptor antagonist PACAP(6-38) had no cardiovascular effects, suggesting that PACAP is not tonically released. CONCLUSIONS AND IMPLICATIONS PACAP neurotransmission was not responsible for the moment-to-moment tonic regulation of central cardiovascular control mechanisms. Nevertheless, PACAP release within the spinal cord may have pleiotropic effects on sympathetic outflow depending on the postsynaptic receptor type. PAC(1) and VPAC receptor subtypes produced opposing changes in blood pressure when activated by intrathecal PACAP-38 in the anaesthetized Sprague-Dawley rat, resulting in no net change in MAP.
Collapse
Affiliation(s)
- Melissa A Inglott
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
43
|
Pituitary adenylate cyclase-activating polypeptide induces postsynaptically expressed potentiation in the intra-amygdala circuit. J Neurosci 2013; 32:14165-77. [PMID: 23055486 DOI: 10.1523/jneurosci.1402-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide expressed in the brain, where it may act as a neuromodulator or neurotransmitter contributing to different behavioral processes and stress responses. PACAP is highly expressed in the amygdala, a subcortical brain area involved in both innate and learned fear, suggesting a role for PACAP-mediated signaling in fear-related behaviors. It remains unknown, however, whether and how PACAP affects neuronal and synaptic functions in the amygdala. In this study, we focused on neurons in the lateral division of the central nucleus (CeL), where PACAP-positive presynaptic terminals were predominantly found within the amygdala. In our experiments on rat brain slices, exogenous application of PACAP did not affect either resting membrane potential or membrane excitability of CeL neurons. PACAP enhanced, however, excitatory synaptic transmission in projections from the basolateral nucleus (BLA) to the CeL, while inhibitory transmission in the same pathway was unaffected. PACAP-induced potentiation of glutamatergic synaptic responses persisted after the washout of PACAP and was blocked by the VPAC1 receptor antagonist, suggesting that VPAC1 receptors might mediate synaptic effects of PACAP in the CeL. Moreover, potentiation of synaptic transmission by PACAP was dependent on postsynaptic activation of protein kinase A and calcium/calmodulin-dependent protein kinase II, as well as synaptic targeting of GluR1 subunit-containing AMPA receptors. Thus, PACAP may upregulate excitatory neurotransmission in the BLA-CeL pathway postsynaptically, consistent with the known roles of PACAP in control of fear-related behaviors.
Collapse
|
44
|
Yu R, Guo X, Zhong J, Li M, Zeng Z, Zhang H. The N-terminal HSDCIF motif is required for cell surface trafficking and dimerization of family B G protein coupled receptor PAC1. PLoS One 2012; 7:e51811. [PMID: 23284775 PMCID: PMC3528735 DOI: 10.1371/journal.pone.0051811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022] Open
Abstract
PAC1 is PACAP (pituitary adenylate cyclase-activating polypeptide) preferring receptor belonging to class B G protein coupled receptor (GPCR) mediating the most effects of PACAP. The important role of G protein coupled receptor homo/heteromerization in receptor folding, maturation, trafficking, and cell surface expression has become increasingly evident. The bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) assay were used in this research to confirm the dimerization of PAC1 for the first time. The structure-activity relationship focused on the N-terminal HSDCIF motif, which locates behind the signal sequence and has high homology with PACAP (1–6), was assayed using a receptor mutant with the deletion of the HSDCIF motif. The fluorescence confocal microscope observation showed that the deletion of the HSDCIF motif impaired the cell delivery of PAC1. The results of BiFC, BRET and westernblot indicated that the deletion of HSDCIF motif and the replacement of the Cys residue with Ala in HSDCIF motif resulted in the disruption of receptor dimerization. And the exogenous chemically synthesized oligopeptide HSDCIF (100 nmol/L) not only down-regulated the dimerization of PAC1, induced the internalization of PAC1, but also inhibited the proliferation of CHO cells expressing PAC1 stably and decreased the activity of PACAP on the cell viability. All these data suggested that the N-terminal HSDCIF motif played key role in the trafficking and the dimerization of PAC1, and the exogenous oligopeptide HSDCIF had effects on the cell signaling, trafficking and the dimerization of PAC1.
Collapse
Affiliation(s)
- Rongjie Yu
- Cell Biology Institute, the Department of Cell Biology, Jinan University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
45
|
Sanlioglu AD, Karacay B, Balci MK, Griffith TS, Sanlioglu S. Therapeutic potential of VIP vs PACAP in diabetes. J Mol Endocrinol 2012; 49:R157-67. [PMID: 22991228 DOI: 10.1530/jme-12-0156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is characterized by chronic insulin resistance and a progressive decline in beta-cell function. Although rigorous glucose control can reduce morbidity and mortality associated with diabetes, achieving optimal long-term glycemic control remains to be accomplished in many diabetic patients. As beta-cell mass and function inevitably decline in T2D, exogenous insulin administration is almost unavoidable as a final outcome despite the use of oral antihyperglycemic agents in many diabetic patients. Pancreatic islet cell death, but not the defect in new islet formation or beta-cell replication, has been blamed for the decrease in beta-cell mass observed in T2D patients. Thus, therapeutic approaches designed to protect islet cells from apoptosis could significantly improve the management of T2D, because of its potential to reverse diabetes not just ameliorate glycemia. Therefore, an ideal beta-cell-preserving agent is expected to protect beta cells from apoptosis and stimulate postprandial insulin secretion along with increasing beta-cell replication and/or islet neogenesis. One such potential agent, the islet endocrine neuropeptide vasoactive intestinal peptide (VIP) strongly stimulates postprandial insulin secretion. Because of its broad spectrum of biological functions such as acting as a potent anti-inflammatory factor through suppression of Th1 immune response, and induction of immune tolerance via regulatory T cells, VIP has emerged as a promising therapeutic agent for the treatment of many autoimmune diseases including diabetes.
Collapse
Affiliation(s)
- Ahter D Sanlioglu
- Human Gene and Cell Therapy Center, Akdeniz University Hospitals and Clinics, B Block, 1st floor, Campus, Antalya 07058, Turkey
| | | | | | | | | |
Collapse
|
46
|
Yu R, Guo X, Huang L, Zeng Z, Zhang H. The novel peptide PACAP-TAT with enhanced traversing ability attenuates the severe lung injury induced by repeated smoke inhalation. Peptides 2012; 38:142-9. [PMID: 22982609 DOI: 10.1016/j.peptides.2012.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 01/03/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potential therapeutic peptide with anti-inflammatory and anti-oxidative effects. In order to increase the efficiency of traversing biological barriers, a novel fusion peptide PACAP-TAT was produced by tagging PACAP at its C-terminus with 11-amino acid TAT protein transduction domain. The results of characteristic assays showed that PACAP-TAT activated PACAP specific receptor PAC1 with the same potency as PACAP and PACAP-TAT crossed blood-brain barrier (BBB), blood-air barrier (BAB) and blood-testis barrier (BTB) with the efficiency about 2.5-fold higher than that of PACAP. Both PACAP-TAT and PACAP were used treat the mice with lung injury induced by repeated smoke inhalation. It was shown that both PACAP-TAT and PACAP decreased the mortality, increased the body weight and inhibited the edema and vascular permeability in the lungs of the mice received repeated smoke inhalation, while PACAP-TAT displayed more marked effects than PACAP. PACAP-TAT decreased myeloperoxidase (MPO) activity, increased catalase (CAT) activity and down-regulated interleukin 6 (IL-6) and malondialdehyde (MDA) levels in the lungs with a significantly higher efficiency than PACAP. The histopathological analysis also showed that PACAP-TAT attenuated the cell filtration and bronchi epithelial hyperplasia more significantly than PACAP. Moreover the leukocyte count in blood and the serum superoxide dismutase (SOD) activity in the mice treated with PACAP-TAT were significantly different from that in mice treated with PACAP (p<0.05). All these data indicated that PACAP-TAT with increased traversing ability was more effective than PACAP in protecting the mice from the lung injury induced by repeated smoke inhalation.
Collapse
Affiliation(s)
- Rongjie Yu
- Biomedical Institute of Jinan University, Jinan University, Guangzhou, Guangdong, PR China.
| | | | | | | | | |
Collapse
|
47
|
Ng SYL, Chow BKC, Kasamatsu J, Kasahara M, Lee LTO. Agnathan VIP, PACAP and their receptors: ancestral origins of today's highly diversified forms. PLoS One 2012; 7:e44691. [PMID: 22957100 PMCID: PMC3434177 DOI: 10.1371/journal.pone.0044691] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/06/2012] [Indexed: 01/04/2023] Open
Abstract
VIP and PACAP are pleiotropic peptides belonging to the secretin superfamily of brain-gut peptides and interact specifically with three receptors (VPAC1, PAC1 and VPAC2) from the class II B G protein-coupled receptor family. There is immense interest regarding their molecular evolution which is often described closely alongside gene and/or genome duplications. Despite the wide array of information available in various vertebrates and one invertebrate the tunicate, their evolutionary origins remain unresolved. Through searches of genome databases and molecular cloning techniques, the first lamprey VIP/PACAP ligands and VPAC receptors are identified from the Japanese lamprey. In addition, two VPAC receptors (VPACa/b) are identified from inshore hagfish and ligands predicted for sea lamprey. Phylogenetic analyses group these molecules into their respective PHI/VIP, PRP/PACAP and VPAC receptor families and show they resemble ancestral forms. Japanese lamprey VIP/PACAP peptides synthesized were tested with the hagfish VPAC receptors. hfVPACa transduces signal via both adenylyl cylase and phospholipase C pathways, whilst hfVPACb was only able to transduce through the calcium pathway. In contrast to the widespread distribution of VIP/PACAP ligands and receptors in many species, the agnathan PACAP and VPAC receptors were found almost exclusively in the brain. In situ hybridisation further showed their abundance throughout the brain. The range of VIP/PACAP ligands and receptors found are highly useful, providing a glimpse into the evolutionary events both at the structural and functional levels. Though representative of ancestral forms, the VIP/PACAP ligands in particular have retained high sequence conservation indicating the importance of their functions even early in vertebrate evolution. During these nascent stages, only two VPAC receptors are likely responsible for eliciting functions before evolving later into specific subtypes post-Agnatha. We also propose VIP and PACAP's first functions to predominate in the brain, evolving alongside the central nervous system, subsequently establishing peripheral functions.
Collapse
Affiliation(s)
- Stephanie Y. L. Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Jun Kasamatsu
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Kita-ku, Japan
| | - Masanori Kasahara
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Kita-ku, Japan
| | - Leo T. O. Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- * E-mail:
| |
Collapse
|
48
|
Farnham MMJ, Lung MSY, Tallapragada VJ, Pilowsky PM. PACAP causes PAC1/VPAC2 receptor mediated hypertension and sympathoexcitation in normal and hypertensive rats. Am J Physiol Heart Circ Physiol 2012; 303:H910-7. [PMID: 22886412 DOI: 10.1152/ajpheart.00464.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuropeptide that plays an important role in hypertension and stress responses. PACAP acts at three G protein-coupled receptors [PACAP type 1 receptor (PAC(1)) and vasoactive intestinal peptide receptor types 1 and 2 (VPAC(1) and VPAC(2))] and is localized to sites involved in cardiovascular control, most significantly the rostral ventrolateral medulla (RVLM). The RVLM is crucial for the tonic and reflex control of efferent sympathetic activity. Increases in sympathetic activity are observed in most types of hypertension and heart failure. PACAP delivered intrathecally also causes massive sympathoexcitation. We aimed to determine the presence and abundance of the three PACAP receptors in the RVLM, the role, in vivo, of PACAP in the RVLM on tonic and reflex cardiovascular control, and the contribution of PACAP to hypertension in the spontaneously hypertensive rat (SHR). Data were obtained using quantitative PCR and microinjection of PACAP and its antagonist, PACAP(6-38), into the RVLM of anesthetized artificially ventilated normotensive rats or SHRs. All three receptors were present in the RVLM. PACAP microinjection into the RVLM caused sustained sympathoexcitation and tachycardia with a transient hypertension but did not affect homeostatic reflexes. The responses were partially mediated through PAC(1)/VPAC(2) receptors since the effect of PACAP was attenuated (∼50%) by PACAP(6-38). PACAP was not tonically active in the RVLM in this preparation because PACAP(6-38) on its own had no inhibitory effect. PACAP has long-lasting cardiovascular effects, but altered PACAP signaling within the RVLM is not a cause of hypertension in the SHR.
Collapse
Affiliation(s)
- M M J Farnham
- Macquarie University, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
49
|
Ding Y, Cheng H, Yu R, Tang C, Liu X, Chen J. Effects of cyclopeptide C*HSDGIC* from the cyclization of PACAP (1-5) on the proliferation and UVB-induced apoptosis of the retinal ganglion cell line RGC-5. Peptides 2012; 36:280-5. [PMID: 22706041 DOI: 10.1016/j.peptides.2012.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that confers potent neurotrophic and neuroprotective effects. Cyclopeptide C*HSDGIC* (CHC), which results from the cyclization of PACAP (1-5) with disulfide, has been demonstrated to represent a potent agonist for the PACAP-specific receptor PAC1 which mediates the majority of PACAP's effects. In this study, the expression of PAC1 in a rat retinal ganglion cell line (RGC-5) was confirmed using a western blot analysis, and it was determined that CHC promoted the proliferation of RGC-5 cells using the cell counting kit-8 (CCK8) assay and flow cytometry. Furthermore, the treatment of CHC attenuated the decrease of cell viability in cells exposed to UVB irradiation. Flow cytometry and a JC-1 assay revealed that the CHC treatment protected the RGC-5 cells against UVB-induced apoptosis. In addition, similar to PACAP, the anti-apoptotic effect of CHC was related to the down-regulation of caspase-3. In summary, these results demonstrate for the first time that PAC1 is present in RGC-5 cells and that CHC, a cyclopeptide from PACAP, promotes RGC-5 cell proliferation and attenuates UVB-induced apoptosis.
Collapse
Affiliation(s)
- Yong Ding
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Doan ND, Chatenet D, Létourneau M, Vaudry H, Vaudry D, Fournier A. Receptor-independent cellular uptake of pituitary adenylate cyclase-activating polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:940-9. [DOI: 10.1016/j.bbamcr.2012.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/28/2022]
|