1
|
Chan JC, Zhang B, Martinez M, Kuruba B, Brozik J, Kang C, Zhang X. Structural studies of Myceliophthora Thermophila Laccase in the presence of deep eutectic solvents. Enzyme Microb Technol 2021; 150:109890. [PMID: 34489043 DOI: 10.1016/j.enzmictec.2021.109890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
In this work, we elucidated the interactions between Myceliophthora thermophila laccase and deep eutectic solvent (DES) by crystallographic and kinetics analyses. Four types of DESs with different hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), including lactic acid: betaine, glycerol: choline chloride, lactic acid: choline chloride and glycerol: betaine was used. The results revealed that different DES have different effects on laccase activity. Lactic acid-betaine (2:1) DES has shown to enhance laccase activity up to 300 % at a concentration ranged from 2% to 8% v/v, while glycerol: choline chloride and lactic acid: choline chloride DES choline chloride-based DES have found to possess inhibitory effects on laccase under the same concentration range. Detailed kinetic study showed that glycerol: choline chloride DES is a S-parabolic-I-parabolic mixed non-competitive inhibitor, where conformational changes can occur. The crystal structures of laccase with lactic acid: choline chloride DES (LCDES) were obtained at 1.6 Å. Crystallographic analysis suggested that the addition of LCDES causes changes in the laccase active site, but the increase in water molecules observed in the resulting crystal prevented laccase from experiencing drastic structural change. Fluorescence and circular dichroism spectroscopies were also applied to determine the effects of DES on the structural conformation of laccase. The results have confirmed that the presence of DES can trigger changes in the local environments of the amino acids in the active site of laccase which contributes to the changes in its activity and stability.
Collapse
Affiliation(s)
- Jou Chin Chan
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Michael Martinez
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Balaganesh Kuruba
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - James Brozik
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA; Pacific Northwest National Laboratory - 902 Battelle Boulevard, P.O. Box 999, MSIN P8-60, Richland, WA, 99352, USA.
| |
Collapse
|
2
|
Ogasawara M, Yoshii K, Wada J, Yamamoto Y, Inouye K. Identification of guanine, guanosine, and inosine for α-amylase inhibitors in the extracts of the earthworm Eisenia fetida and characterization of their inhibitory activities against porcine pancreatic α-amylase. Enzyme Microb Technol 2020; 142:109693. [DOI: 10.1016/j.enzmictec.2020.109693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023]
|
3
|
Yoshii K, Ogasawara M, Yamamoto Y, Inouye K. Activating effects on trypsin, α-chymotrypsin, and lipase and inhibitory effects on α-amylase and α-glucosidase as provided by low-molecular-weight compounds in the water extract of the earthworm Eisenia fetida. Enzyme Microb Technol 2018; 118:20-29. [DOI: 10.1016/j.enzmictec.2018.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
4
|
Ma Y, Rang Y, Yang R, Zhao W. Effect of white kidney bean extracts on estimated glycemic index of different kinds of porridge. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Takagi H, Kubo A, Inoue M, Nakaya M, Suzuki S, Kitamura S. Binding Interaction of Porcine Pancreatic α-Amylase with waxy/amylose extender Double-mutant Rice Starch Granules Does Not Determine Their Susceptibility to Hydrolysis. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroki Takagi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
- Nihon Shokuhin Kako Co., Ltd
| | - Akiko Kubo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Mei Inoue
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Makoto Nakaya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shiho Suzuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shinichi Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
6
|
Inhibition of α-Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions. Enzyme Res 2017; 2017:5724902. [PMID: 28589038 PMCID: PMC5446891 DOI: 10.1155/2017/5724902] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to compare the in vitro inhibitory effects on the salivary and pancreatic α-amylases and the in vivo hypoglycemic actions of the hydrolysable tannin from Chinese natural gall and the condensed tannin from Acacia mearnsii. The human salivary α-amylase was more strongly inhibited by the hydrolysable than by the condensed tannin, with the concentrations for 50% inhibition (IC50) being 47.0 and 285.4 μM, respectively. The inhibitory capacities of both tannins on the pancreatic α-amylase were also different, with IC50 values being 141.1 μM for the hydrolysable tannin and 248.1 μM for the condensed tannin. The kinetics of the inhibition presented complex patterns in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition). Both tannins were able to inhibit the intestinal starch absorption. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 58.8 μmol/kg and 88% inhibition at the dose of 294 μmol/kg. For the condensed tannin, inhibition was not substantially different for doses between 124.4 μmol/kg (49%) and 620 μmol/kg (57%). It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the postprandial glycemic levels in diabetes.
Collapse
|
7
|
Ryan CM, Khoo W, Ye L, Lambert JD, O'Keefe SF, Neilson AP. Loss of Native Flavanols during Fermentation and Roasting Does Not Necessarily Reduce Digestive Enzyme-Inhibiting Bioactivities of Cocoa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3616-3625. [PMID: 27094258 DOI: 10.1021/acs.jafc.6b01725] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polyphenol profiles and in vitro digestive enzyme inhibitory activities were compared between cocoa extracts from unfermented beans (UB), fermented beans (FB), unfermented liquor (UL), and fermented liquor (FL). Total polyphenols, total flavanols, and individual flavanols were significantly different between UB/FB and UL/FL. All extracts effectively inhibited α-glucosidase (lowest IC50 = 90.0 μg/mL, UL) and moderately inhibited α-amylase (lowest IC50 = 183 μg/mL, FL) and lipase (lowest IC25 = 65.5 μg/mL, FB). Our data suggest that fermentation does not reduce α-glucosidase inhibition, while roasting may enhance inhibition. For α-amylase, both fermentation and roasting improved inhibition. Finally, for lipase, both fermentation and roasting attenuated inhibition. Conclusive correlations between inhibition and mDP, total polyphenol, and flavanol contents were not found. Our data suggest that enzyme inhibition activities of cocoa are not uniformly reduced by polyphenol/flavanol losses during fermentation and roasting. This paradigm-challenging finding suggests other cocoa constituents, potentially formed during processing, contribute to digestive enzyme inhibition.
Collapse
Affiliation(s)
- Caroline M Ryan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| | - Weslie Khoo
- Department of Food Science, Pennsylvania State University , University Park, Pennsylvania 16801, United States
| | - Liyun Ye
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| | - Joshua D Lambert
- Department of Food Science, Pennsylvania State University , University Park, Pennsylvania 16801, United States
| | - Sean F O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| |
Collapse
|
8
|
Warren FJ, Zhang B, Waltzer G, Gidley MJ, Dhital S. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydr Polym 2014; 117:192-200. [PMID: 25498625 DOI: 10.1016/j.carbpol.2014.09.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models or in vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starch granules was measured using both glucose and reducing sugar assays. Data were analysed through initial rates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potato required more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates.
Collapse
Affiliation(s)
- Frederick J Warren
- Centre for Nutrition and Food Sciences, ARC Centre of Excellence in Plant Cell Walls, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane 4072, QLD, Australia
| | - Bin Zhang
- Centre for Nutrition and Food Sciences, ARC Centre of Excellence in Plant Cell Walls, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane 4072, QLD, Australia
| | - Gina Waltzer
- Centre for Nutrition and Food Sciences, ARC Centre of Excellence in Plant Cell Walls, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane 4072, QLD, Australia
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, ARC Centre of Excellence in Plant Cell Walls, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane 4072, QLD, Australia
| | - Sushil Dhital
- Centre for Nutrition and Food Sciences, ARC Centre of Excellence in Plant Cell Walls, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane 4072, QLD, Australia.
| |
Collapse
|
9
|
Lin YS, Yang CC, Hsu CC, Hsu JT, Wu SC, Lin CJ, Cheng WTK. Establishment of a novel, eco-friendly transgenic pig model using porcine pancreatic amylase promoter-driven fungal cellulase transgenes. Transgenic Res 2014; 24:61-71. [PMID: 25063310 DOI: 10.1007/s11248-014-9817-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/11/2014] [Indexed: 11/25/2022]
Abstract
Competition between humans and livestock for cereal and legume grains makes it challenging to provide economical feeds to livestock animals. Recent increases in corn and soybean prices have had a significant impact on the cost of feed for pig producers. The utilization of byproducts and alternative ingredients in pig diets has the potential to reduce feed costs. Moreover, unlike ruminants, pigs have limited ability to utilize diets with high fiber content because they lack endogenous enzymes capable of breaking down nonstarch polysaccharides into simple sugars. Here, we investigated the feasibility of a transgenic strategy in which expression of the fungal cellulase transgene was driven by the porcine pancreatic amylase promoter in pigs. A 2,488 bp 5'-flanking region of the porcine pancreatic amylase gene was cloned by the genomic walking technique, and its structural features were characterized. Using GFP as a reporter, we found that this region contained promoter activity and had the potential to control heterologous gene expression. Transgenic pigs were generated by pronuclear microinjection. Founders and offspring were identified by PCR and Southern blot analyses. Cellulase mRNA and protein showed tissue-specific expression in the pancreas of F1 generation pigs. Cellulolytic enzyme activity was also identified in the pancreas of transgenic pigs. These results demonstrated the establishment of a tissue-specific promoter of the porcine pancreatic amylase gene. Transgenic pigs expressing exogenous cellulase may represent a way to increase the intake of low-cost, fiber-rich feeds.
Collapse
Affiliation(s)
- Y S Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
10
|
Functional characterization of a vacuolar invertase from Solanum lycopersicum: post-translational regulation by N-glycosylation and a proteinaceous inhibitor. Biochimie 2013; 101:39-49. [PMID: 24374160 DOI: 10.1016/j.biochi.2013.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022]
Abstract
Plant vacuolar invertases, which belong to family 32 of glycoside hydrolases (GH32), are key enzymes in sugar metabolism. They hydrolyse sucrose into glucose and fructose. The cDNA encoding a vacuolar invertase from Solanum lycopersicum (TIV-1) was cloned and heterologously expressed in Pichia pastoris. The functional role of four N-glycosylation sites in TIV-1 has been investigated by site-directed mutagenesis. Single mutations to Asp of residues Asn52, Asn119 and Asn184, as well as the triple mutant (Asn52, Asn119 and Asn184), lead to enzymes with reduced specific invertase activity and thermostability. Expression of the N516D mutant, as well as of the quadruple mutant (N52D, N119D, N184D and N516D) could not be detected, indicating that these mutations dramatically affected the folding of the protein. Our data indicate that N-glycosylation is important for TIV-1 activity and that glycosylation of N516 is crucial for recombinant enzyme stability. Using a functional genomics approach a new vacuolar invertase inhibitor of S. lycopersicum (SolyVIF) has been identified. SolyVIF cDNA was cloned and heterologously expressed in Escherichia coli. Specific interactions between SolyVIF and TIV-1 were investigated by an enzymatic approach and surface plasmon resonance (SPR). Finally, qRT-PCR analysis of TIV-1 and SolyVIF transcript levels showed a specific tissue and developmental expression. TIV-1 was mainly expressed in flowers and both genes were expressed in senescent leaves.
Collapse
|
11
|
Tu J, Chen J, Zhu S, Zhang C, Chen H, Liu Y. Inhibition of wheat bran and it's active compoments on α-glucosidase in vitro. Pharmacogn Mag 2013; 9:309-14. [PMID: 24124282 PMCID: PMC3793335 DOI: 10.4103/0973-1296.117826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/11/2012] [Accepted: 09/07/2013] [Indexed: 11/29/2022] Open
Abstract
Background: Wheat bran is a traditional Chinese medicine; however, it is mostly used as feedstuff in China. Wheat bran is widely accepted as an important ingredient in many low-glycemic index foods in modern western societies; however, its glycemic control mechanism is unknown. Objective: To determine potent α-glucosidase inhibitory compounds from wheat bran and to identify the inhibition on α-glucosidase. Materials and Methods: Ethanolic extract of wheat bran was prepared to evaluate the inhibitory activity on α-glucosidase, then fractionation of the extract was guided by in vitro enzyme-inhibition assay, and the potent α-glucosidase inhibitory compounds were identified by high performance liquid chromatography and atmospheric pressure chemical ionization-mass spectrometry; finally the enzyme inhibition process was studied using the Michaelis-Menton and the Lineweaver-Burk equations. Results: Both baker's yeast and rat intestinal enzymes were mostly inhibited (87.9% and 66.8% inhibition, respectively) at concentration 0.6 mg/mL of the ethanolic extract of wheat bran. The petroleum ether fraction in the ethanolic extract of wheat bran showed significant activity against rat intestinal α-glucosidase, and revealed a dose-dependent effect. The inhibition was 76.57% at 0.3 mg/mL and 100% at 0.6 mg/mL. The active fraction 13 of petroleum ether fraction was identified as alkylresorcinols (ARs). ARs showed strong inhibition towards α-glucosidase and its IC50 value was found to be 37.58 μg/mL. The enzyme kinetic studies showed that, in the presence of ARs, the Michaelis-Menton constant (Km) remains constant whereas the maximal velocity (Vmax) decreases, revealing a non-competitive type of inhibition. Conclusion: The therapeutic potentiality of ARs in the management of the postprandial hyperglycemia will proliferate the utilization of wheat bran in controlling type 2 diabetes.
Collapse
Affiliation(s)
- Jie Tu
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China ; Department of Biotechnology and Engineering, College of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, P. R. China
| | | | | | | | | | | |
Collapse
|
12
|
Neohesperidin dihydrochalcone: Presentation of a small molecule activator of mammalian alpha-amylase as an allosteric effector. FEBS Lett 2013; 587:652-8. [DOI: 10.1016/j.febslet.2013.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 12/28/2012] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
|
13
|
Senger MR, Gomes LDCA, Ferreira SB, Kaiser CR, Ferreira VF, Silva FP. Kinetics studies on the inhibition mechanism of pancreatic α-amylase by glycoconjugated 1H-1,2,3-triazoles: a new class of inhibitors with hypoglycemiant activity. Chembiochem 2012; 13:1584-1593. [PMID: 22753086 DOI: 10.1002/cbic.201200272] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 01/04/2025]
Abstract
Glycoconjugated 1H-1,2,3-triazoles (GCTs) comprise a new class of glycosidase inhibitors that are under investigation as promising therapeutic agents for a variety of diseases, including type 2 diabetes mellitus. However, few kinetics studies have been performed to clarify the mode of inhibition of GCTs with their target glycosidases. Our group has previously shown that some methyl-β-D-ribofuranosyl-1H-1,2,3-triazoles that inhibit baker's yeast maltase were also able to reduce post-prandial glucose levels in normal rats. We hypothesized that this hypoglycemiant activity was attributable to inhibition of mammalian α-glucosidases involved in sugar metabolism, such as pancreatic α-amylase. Hence, the aim of this work was to test a series of 26 GCTs on porcine pancreatic α-amylase (PPA) and to characterize their inhibition mechanisms. Six GCTs, all ribofuranosyl-derived GCTs, significantly inhibited PPA, with IC(50) values in the middle to high micromolar range. Our results also demonstrated that ribofuranosyl-derived GCTs are reversible, noncompetitive inhibitors when using 2-chloro-4-nitrophenyl-α-D-maltotrioside as a substrate. E/ES affinity ratios (α) ranged from 0.3 to 1.1, with the majority of ribofuranosyl-derived GCTs preferentially forming stable ternary ESI complexes. Competition assays with acarbose showed that ribofuranosyl-derived GCTs bind to PPA in a mutually exclusive fashion. The data presented here show that pancreatic α-amylase is one of the possible molecular targets in the pharmacological activity of ribofuranosyl-derived GCTs. Our results also provide important mechanistic insight that can be of major help to develop this new class of synthetic small molecules into more potent compounds with anti-diabetic activity through rational drug design.
Collapse
Affiliation(s)
- Mario Roberto Senger
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Sreerama YN, Neelam DA, Sashikala VB, Pratape VM. Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: seed coat phenolics and their distinct modes of enzyme inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4322-4330. [PMID: 20307081 DOI: 10.1021/jf903101k] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Milled fractions of chickpea ( Cicer arietinum L.) and horse gram ( Macrotyloma uniflorum L. Verdc.) were evaluated for their nutritional and antinutritional characteristics. Crude protein content of these fractions ranged from 22.6-23.8 g 100(-1) g in cotyledon to 7.3-9.1 g 100(-1) g in seed coat fractions. The fat content of chickpea fractions (1.6-7.8 g 100(-1) g) was higher than that of horse gram fractions (0.6-2.6 g 100(-1) g). Crude fiber content was higher in seed coat fractions of both legumes than embryonic axe and cotyledon fractions. Seed coat fractions had high dietary fiber content (28.2-36.4 g 100(-1) g), made up of mainly insoluble dietary fiber. Most of the phytic acid and oligosaccharides were located in the cotyledon fractions, whereas phenolic compounds in higher concentrations were found in seed coats. Significantly higher concentrations of proteinaceous and phenolic inhibitors of digestive enzymes were found in cotyledon and seed coat fractions, respectively. The kinetic studies, using Michaelis-Menten and Lineweaver-Burk derivations, revealed that seed coat phenolics inhibit alpha-amylase activity by mixed noncompetitive (chickpea) and noncompetitive (horse gram) inhibition mechanisms. In the case of trypsin, chickpea and horse gram seed coat phenolics showed noncompetitive and uncompetitive modes of inhibition, respectively. These results suggest the wide variability in the nutrient and antinutrient composition in different milled fractions of legumes and potential utility of these fractions as ingredients in functional food product development.
Collapse
Affiliation(s)
- Yadahally N Sreerama
- Department of Grain Science and Technology, Central Food Technological Research Institute, Council of Scientific and Industrial Research (CSIR), Mysore, India.
| | | | | | | |
Collapse
|
15
|
Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.01.042] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Anitha Gopal B, Muralikrishna G. Porcine Pancreatic α-Amylase and its Isoforms: Purification and Kinetic Studies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2009. [DOI: 10.1080/10942910801947755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Saura-Valls M, Fauré R, Brumer H, Teeri TT, Cottaz S, Driguez H, Planas A. Active-site Mapping of a Populus Xyloglucan endo-Transglycosylase with a Library of Xylogluco-oligosaccharides. J Biol Chem 2008; 283:21853-63. [DOI: 10.1074/jbc.m803058200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Talamond P, Noirot M, de Kochko A. The mechanism of action of alpha-amylase from Lactobacillus fermentum on maltooligosaccharides. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 834:42-7. [PMID: 16531129 DOI: 10.1016/j.jchromb.2006.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 01/12/2006] [Accepted: 02/05/2006] [Indexed: 11/23/2022]
Abstract
The action pattern of Lactobacillus fermentum alpha-amylase (FERMENTA) was examined using a series of maltooligosaccharides (G2-G7) as substrates. Structurally, this enzyme has a molecular mass (106 kDa) almost twofold higher than alpha-amylases from mammalians and cereals. The product pattern was investigated through an analysis of products and substrates using HPAEC with pulsed amperometric detection. FERMENTA was consistent with an endo-type of amylase. The bond cleavage frequencies were studied using maltooligosaccharides of various chain lengths as substrate, i.e. maltose up to maltoheptaose and DP 4900-amylose catalyzed by FERMENTA. The catalytic efficiency (k(cat)/K(m)) increased with chain length from maltose (8.7 x 10(4) M(-1) s(-1)) up to amylose (1 x10(9) M(-1) s(-1)). These action pattern results revealed that FERMENTA can readily cleave the third linkage from the reducing end of the maltooligosaccharides (G5-G7).
Collapse
Affiliation(s)
- Pascale Talamond
- Institut de Recherche pour le Développement, UMR 141, 911 av. d'Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France.
| | | | | |
Collapse
|
19
|
Kang HK, Lee JH, Kim D, Day DF, Robyt JF, Park KH, Moon TW. Cloning and expression of Lipomyces starkeyi alpha-amylase in Escherichia coli and determination of some of its properties. FEMS Microbiol Lett 2004; 233:53-64. [PMID: 15043869 DOI: 10.1016/j.femsle.2004.01.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/16/2004] [Accepted: 01/21/2004] [Indexed: 10/26/2022] Open
Abstract
The Lipomyces starkeyi alpha-amylase (LSA) gene encoding soluble starch-degrading alpha-amylase was cloned and characterized from a derepressed and partially constitutive mutant for both dextranase and amylase activities. The nucleotide (nt) sequence of the cDNA fragment reveals an open reading frame of 1944 bp encoding a 619 amino acid (aa) mature protein (LSA) with a calculated molecular weight of 68.709 kDa that was estimated to be about 73 kDa, including His tag (4 kDa) based on SDS-PAGE (10% acrylamide gel), activity staining, and the Western blotting, using anti-amylase-Ab. LSA had a sequence similar to other alpha-amylases in four conserved regions of the alpha-amylase family: (I) (287)DIVVNH(292), (II) (372)GLRIDTVKH(380), (III) (399)GEVFD(403), (IV) (462)FLENQD(467). Polymerase chain reaction and sequence analysis showed one intron of 60 nucleotides in the genomic lsa at positions between 966 and 967 of cDNA. The cloned LSA amylase showed a maximum activity at pH 6 and optimum temperature of 40 (o)C, with greater than 90% stability between pH 5 and pH 8 for 16 h. It was inhibited by Cu(2+) and stimulated by Ca(2+) and Mg(2+). Enzyme activity was not affected by 1 mM EGTA but was inhibited by 1 mM EDTA. LSA did not hydrolyze maltodextrins of G2 to G4, yet formed G2+G3 from G5, G2+G4 or G3+G3 from G6, and G3+G4 from G7. LSA did not hydrolyze soluble starch in the present of 2% (w/v) of acarbose. Kinetics of LSA was carried out by using starch as a substrate and the inhibition type of acarbose was the mixed non-competitive type (ki = 3.4 microM).
Collapse
Affiliation(s)
- Hee Kyoung Kang
- Laboratory of Functional Carbohydrate Enzymes and Microbial Genomics, Chonnam National University, Gwang-Ju, South Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Santimone M, Koukiekolo R, Moreau Y, Le Berre V, Rougé P, Marchis-Mouren G, Desseaux V. Porcine pancreatic α-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (α-AI1) and structural changes in the α-amylase inhibitor complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:181-90. [PMID: 14871659 DOI: 10.1016/j.bbapap.2003.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
Porcine pancreatic alpha-amylase (PPA) is inhibited by the red kidney bean (Phaseolus vulgaris) inhibitor alpha-AI1 [Eur. J. Biochem. 265 (1999) 20]. Inhibition kinetics were carried out using DP 4900-amylose and maltopentaose as substrate. As shown by graphical and statistical analysis of the kinetic data, the inhibitory mode is of the mixed noncompetitive type whatever the substrate thus involving the EI, EI2, ESI and ESI2 complexes. This contrast with the E2I complex obtained in the crystal and with biophysical studies. Such difference very likely depends on the [I]/[E] ratio. At low ratio, the E2I complex is favoured; at high ratio the EI, ESI and EI2 complexes are formed. The inhibition model also differs from those previously proposed for acarbose [Eur. J. Biochem. 241 (1996) 787 and Eur. J. Biochem. 252 (1998) 100]. In particular, with alpha-AI1, the inhibition takes place only when PPA and alpha-AI are preincubated together before adding the substrate. This indicates that the abortive PPA-alphaAI1 complex is formed during the preincubation period. One additional carbohydrate binding site is also demonstrated yielding the ESI complex. Also, a second protein binding site is found in EI2 and ESI2 abortive complexes. Conformational changes undergone by PPA upon alpha-AI1 binding are shown by higher sensitivity to subtilisin attack. From X-ray analysis of the alpha-AI1-PPA complex (E2I), the major interaction occurs with two hairpin loops L1 (residues 29-46) and L2 (residues 171-189) of alpha-AI1 protruding into the V-shaped active site of PPA. The hydrolysis of alpha-AI1 that accounts for the inhibitory activity is reported.
Collapse
Affiliation(s)
- Marius Santimone
- Institut Méditerranéen de Recherche en Nutrition (IMRN case 342), UMR INRA 1111, Faculté des Sciences et Techniques de St Jérôme, Université d'Aix-Marseille, Av Esc Normandie-Niemen, 13397 Marseilles cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Svensson B, Fukuda K, Nielsen PK, Bønsager BC. Proteinaceous α-amylase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:145-56. [PMID: 14871655 DOI: 10.1016/j.bbapap.2003.07.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 07/15/2003] [Indexed: 11/30/2022]
Abstract
Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function.
Collapse
Affiliation(s)
- Birte Svensson
- Carlsberg Laboratory, Department of Chemistry, Gamle Carlsberg Vej 10, DK-2500 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
22
|
Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V. On the mechanism of α-amylase. ACTA ACUST UNITED AC 2003; 270:3871-9. [PMID: 14511369 DOI: 10.1046/j.1432-1033.2003.03733.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two inhibitors, acarbose and cyclodextrins (CD), were used to investigate the active site structure and function of barley alpha-amylase isozymes, AMY1 and AMY2. The hydrolysis of DP 4900-amylose, reduced (r) DP18-maltodextrin and maltoheptaose (catalysed by AMY1 and AMY2) was followed in the absence and in the presence of inhibitor. Without inhibitor, the highest activity was obtained with amylose, kcat/Km decreased 103-fold using rDP18-maltodextrin and 10(5) to 10(6)-fold using maltoheptaose as substrate. Acarbose is an uncompetitive inhibitor with inhibition constant (L1i) for amylose and maltodextrin in the micromolar range. Acarbose did not bind to the active site of the enzyme, but to a secondary site to give an abortive ESI complex. Only AMY2 has a second secondary binding site corresponding to an ESI2 complex. In contrast, acarbose is a mixed noncompetitive inhibitor of maltoheptaose hydrolysis. Consequently, in the presence of this oligosaccharide substrate, acarbose bound both to the active site and to a secondary binding site. alpha-CD inhibited the AMY1 and AMY2 catalysed hydrolysis of amylose, but was a very weak inhibitor compared to acarbose.beta- and gamma-CD are not inhibitors. These results are different from those obtained previously with PPA. However in AMY1, as already shown for amylases of animal and bacterial origin, in addition to the active site, one secondary carbohydrate binding site (s1) was necessary for activity whereas two secondary sites (s1 and s2) were required for the AMY2 activity. The first secondary site in both AMY1 and AMY2 was only functional when substrate was bound in the active site. This appears to be a general feature of the alpha-amylase family.
Collapse
Affiliation(s)
- Naïma Oudjeriouat
- IMRN, Institut Méditerranéen de Recherche en Nutrition, Faculté des Sciences et Techniques de St Jérome, Université d'Aix-Marseille, France
| | | | | | | | | | | |
Collapse
|
23
|
Hokari S, Miura K, Koyama I, Kobayashi M, Matsunaga T, Iino N, Komoda T. Expression of alpha-amylase isozymes in rat tissues. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:63-9. [PMID: 12781974 DOI: 10.1016/s1096-4959(03)00047-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gene expressions of alpha-amylase isozymes in rat tissues were analyzed by a reverse transcription-polymerase chain reaction (RT-PCR), followed by EcoRI digestion. This procedure is based on evidence that an RT-PCR product from mouse pancreas RNA is sensitive to EcoRI, but not the product from the salivary gland or liver RNAs. The method was applied to the analysis of alpha-amylase expression in rat liver after partial hepatectomy, in which a potent expression of pancreas type isozyme was observed. However, no expression of the pancreatic isozyme in the regenerating liver was found. We also analyzed the expression of alpha-amylase gene in several additional rat tissues. In intestine, stomach, testis and skeletal muscle, the corresponding PCR products were amplified, but few were detected in heart or spleen. Intestine and stomach expressed a pancreatic isozyme of alpha-amylase. Analyses of the alpha-amylase activity and protein indicated the presence of the enzyme in those tissues. Immunohistochemical analysis also indicated that the amylase proteins were specifically present in epithelial cells of rat intestinal mucosa. This is a convenient method for identification of alpha-amylase isozyme mRNA in rodent tissues.
Collapse
Affiliation(s)
- Shigeru Hokari
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Leemhuis H, Dijkstra BW, Dijkhuizen L. Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:155-62. [PMID: 12492486 DOI: 10.1046/j.1432-1033.2003.03376.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclodextrin glycosyltransferase (CGTase) uses an alpha-retaining double displacement mechanism to catalyze three distinct transglycosylation reactions. To investigate these reactions as catalyzed by the CGTase from Thermoanaerobacterium thermosulfurigenes the enzyme was overproduced (8 mg.L(-1) culture) using Bacillus subtilis as a host. Detailed analysis revealed that the three reactions proceed via different kinetic mechanisms. The cyclization reaction (cyclodextrin formation from starch) is a one-substrate reaction, whereas the other two transglycosylation reactions are two-substrate reactions, which obey substituted enzyme mechanism kinetics (disproportionation reaction) or ternary complex mechanism kinetics (coupling reaction). Analysis of the effects of acarbose and cyclodextrins on the disproportionation reaction revealed that cyclodextrins are competitive inhibitors, whereas acarbose is a mixed type of inhibitor. Our results show that one molecule of acarbose binds either in the active site of the free enzyme, or at a secondary site of the enzyme-substrate complex. The mixed inhibition thus indicates the existence of a secondary sugar binding site near the active site of T. thermosulfurigenes CGTase.
Collapse
Affiliation(s)
- Hans Leemhuis
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NN Haren, the Netherlands
| | | | | |
Collapse
|
25
|
Hokari S, Miura K, Koyama I, Kobayashi M, Komine SI, Komoda T. A restriction endonuclease assay for expression of human alpha-amylase isozymes. Clin Chim Acta 2002; 322:113-6. [PMID: 12104089 DOI: 10.1016/s0009-8981(02)00161-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The alpha-amylase isozymes can be detected separately by electrophoresis; however, sometimes the identification is difficult because of their microheterogeneity. In the present study, we tried to establish a convenient method for the detection of alpha-amylase isozyme expression. METHODS The procedure is based on three different restriction sites presented in those genes; a PstI site in both AMY 2A and 2B genes, a HaeII site in both AMY 1 and 2A genes, and a BamHI site in AMY 2B gene. After amplification from total tissue RNAs by RT-PCR with primers that were able to cover each exon, the products were cleaved with corresponding restriction endonucleases. RESULTS This method was applied to human samples from the parotid gland, liver (non-hepatoma), hepatoma and white blood cells (WBCs). The results indicated that the parotid gland and hepatoma (also liver) clearly expressed AMY 1 and AMY 2B genes, respectively. However, AMY 2B gene was also expressed apparently in WBCs, which produced salivary-type isozyme of the alpha-amylase, although the amylase protein was not able to identify for the hepatic isozyme. CONCLUSIONS The method presented here might be convenient and useful for the determination of alpha-amylase isozyme expression in humans.
Collapse
Affiliation(s)
- Shigeru Hokari
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama-machi, Iruma, Saitama 350-0495, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Kim MJ, Lee HS, Cho JS, Kim TJ, Moon TW, Oh ST, Kim JW, Oh BH, Park KH. Preparation and characterization of alpha-D-glucopyranosyl-alpha-acarviosinyl-D-glucopyranose, a novel inhibitor specific for maltose-producing amylase. Biochemistry 2002; 41:9099-108. [PMID: 12119024 DOI: 10.1021/bi025586b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel inhibitor against maltose-producing alpha-amylase was prepared via stepwise degradation of a high-molecular-weight acarbose (HMWA) using Thermus maltogenic amylase (ThMA). The structure of the purified inhibitor was determined to be alpha-D-glucopyranosyl-alpha-acarviosinyl-D-glucopyranose (GlcAcvGlc) by (13)C NMR and MALDI-TOF/MS. Progress curves of PNPG2 hydrolysis by various amylolytic enzymes, including MGase, ThMA, and CDase I-5, in the presence of acarbose or GlcAcvGlc indicated a slow-binding mode of inhibition. Analytical ultracentrifugation and X-ray crystallography analyses revealed that the presence of GlcAcvGlc increased the dimerization of ThMA. The formation of dimer complexed with GlcAcvGlc might induce a conformational change in ThMA, leading to a two-step inhibition process. The inhibition potency of GlcAcvGlc for MGase, ThMA, and CDase I-5 was 3 orders of magnitude higher than that of acarbose.
Collapse
Affiliation(s)
- Myo-Jeong Kim
- Research Center for New Bio-Materials in Agriculture and Department of Food Science & Technology, School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Lee SB, Park KH, Robyt JF. Inhibition of beta-glycosidases by acarbose analogues containing cellobiose and lactose structures. Carbohydr Res 2001; 331:13-8. [PMID: 11284501 DOI: 10.1016/s0008-6215(01)00016-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Acarbose analogues, containing cellobiose and lactose structures, were prepared by reaction of the two disaccharides with acarbose and Bacillus stearothermophilus maltogenic amylase. The kinetics for the inhibition by the two analogues was studied for beta-glucosidase, beta-galactosidase, cyclomaltodextrin glucanosyltransferase (CGTase), and alpha-glucosidase. Both analogues were potent competitive inhibitors for beta-glucosidase, with K(I) values in the range of 0.04-2.44 microM, and the lactose analogues were good uncompetitive inhibitors for beta-galactosidase, with K(I) values in the range of 159-415 microM, while acarbose was not an inhibitor for either enzyme at 10 and 5 mM, respectively. Both analogues were also potent mixed inhibitors for CGTase, with K(I) values in the range of 0.1-9.3 microM. The lactose analogue was a 6.4-fold better competitive inhibitor for alpha-glucosidase than was acarbose.
Collapse
Affiliation(s)
- S B Lee
- Laboratory of Carbohydrate Chemistry and Enzymology, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
29
|
Moreau Y, Desseaux V, Koukiekolo R, Marchis-Mouren G, Santimone M. Starch digestion in tropical fishes: isolation, structural studies and inhibition kinetics of alpha-amylases from two tilapias Oreochromis niloticus and Sarotherodon melanotheron. Comp Biochem Physiol B Biochem Mol Biol 2001; 128:543-52. [PMID: 11250550 DOI: 10.1016/s1096-4959(00)00358-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
alpha-Amylases from the intestinal cavity of two tilapia species, Oreochromis niloticus (ONI-AMY) and Sarotherodon melanotheron (SME-AMY), were purified using ammonium sulfate precipitation, affinity chromatography and chromatofocusing procedures. The purification was approximately 100-fold. The amylolytic activity, specific activity, product distribution, pH and temperature profile of ONI-AMY and SME-AMY are quite similar. The molecular mass differs slightly: 56600 (ONI-AMY) vs. 55500 (SME-AMY). As shown by isoelectric focusing analysis, both amylases contain two isoforms A and B with distinct pI: 7.2 (A) and 7.8 (B), vs. 8.3 (A) and 8.8 (B), respectively. It was not possible to isolate B, since B converts into A with time. The kinetics of the inhibition of ONI-AMY and SME-AMY activity by alpha-, beta- and gamma-cyclodextrin (alpha-, beta- and gamma-CD) were investigated using amylose as the substrate. Statistical analysis of the kinetic data expressed using a general velocity equation and assuming rapid equilibrium showed that the inhibition is of the mixed noncompetitive type. Similar results were obtained with ONI-AMY and SME-AMY. beta- and gamma-CD are stronger inhibitors than alpha-CD. ONI-AMY and SME-AMY are then closely related and show the general features common to the members of the alpha-amylase class (family 13). They enable ONI and SME tilapias to digest starch in food.
Collapse
Affiliation(s)
- Y Moreau
- IRD, c/o Institut Méditerranéen de Recherche en Nutrition, Faculté de Sciences et Techniques de St Jérôme, Université d'Aix-Marseille, av. Escadrille Normandie-Niemen, F-13397, Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
30
|
Koukiekolo R, Desseaux V, Moreau Y, Marchis-Mouren G, Santimone M. Mechanism of porcine pancreatic alpha-amylase. Inhibition of amylose and maltopentaose hydrolysis by alpha-, beta- and gamma-cyclodextrins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:841-8. [PMID: 11168426 DOI: 10.1046/j.1432-1327.2001.01950.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of alpha-, beta- and gamma-cyclodextrins on the amylose and maltopentaose hydrolysis catalysed by porcine pancreatic alpha-amylase (PPA) were investigated. The results of the statistical analysis performed on the kinetic data using the general initial velocity equation of a one-substrate reaction in the presence of one inhibitor indicate that the type of inhibition involved depends on the substrate used: the inhibition of amylose hydrolysis by alpha-, beta- and gamma-cyclodextrin is of the competitive type, while the inhibition of maltopentaose hydrolysis is of the mixed noncompetitive type. Consistently, the Lineweaver-Burk plots intersect on the vertical axis when amylose is used as the substrate, while in the case of maltopentaose, the intersection occurs at a point located in the second quadrant. The inhibition of the hydrolysis therefore involves only one abortive complex, PPA-cyclodextrin, when amylose is used as the substrate, while two abortive complexes, PPA-cyclodextrin and PPA-maltopentaose-cyclodextrin, are involved with maltopentaose. The mixed noncompetitive inhibition thus shows the existence of one accessory binding site. In any case, only one molecule of inhibitor binds to PPA. In line with these findings, the difference spectra of PPA produced by alpha-, beta- and gamma-cyclodextrin indicate that binding occurs at a tryptophan and a tyrosine residue. The corresponding dissociation constants and the inhibition constants obtained using the kinetic approach are in the same range (1.2-7 mM). The results obtained here on the inhibition of maltopentaose hydrolysis by cyclodextrin are similar to those previously obtained with acarbose as the inhibitor [Alkazaz, M., Desseaux, V., Marchis-Mouren, G., Prodanov, E. & Santimone, M. (1998) Eur. J. Biochem. 252, 100-107], but differ from those obtained with amylose as the substrate and acarbose as inhibitor [Alkazaz, M., Desseaux, V., Marchis-Mouren, G., Payan, F., Forest, E. & Santimone, M. (1996) Eur. J. Biochem. 241, 787-796]. It is concluded that the hydrolysis of both long and short chain substrates requires at least one secondary binding site, including a tryptophan residue.
Collapse
Affiliation(s)
- R Koukiekolo
- Institut Méditerranéen de Recherche en Nutrition, Université d'Aix-Marseille, France.
| | | | | | | | | |
Collapse
|
31
|
Douglas DJ, Collings BA, Numao S, Nesatyy VJ. Detection of noncovalent complex between alpha-amylase and its microbial inhibitor tendamistat by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:89-96. [PMID: 11180535 DOI: 10.1002/1097-0231(20010130)15:2<89::aid-rcm195>3.0.co;2-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is now routinely used for detection of noncovalent complexes. However, detection of noncovalent protein-protein complexes is not a widespread practice and still produces some challenges for mass spectrometrists. Here we demonstrate the detection of a noncovalent protein-protein complex between alpha-amylase and its microbial inhibitor tendamistat using ESI-MS. Crude porcine pancreatic alpha-amylase was purified using a glycogen precipitation method. Noncovalent complexes between porcine pancreatic alpha-amylase and its microbial inhibitor tendamistat are probed and detected using ESI-MS. The atmosphere-vacuum ESI conditions along with solution conditions and the ratio of inhibitor over enzyme strongly affect the detection of noncovalent complexes in the gas phase. ESI mass spectra of alpha-amylase at pH 7 exhibited charge states significantly lower than that reported previously, which is indicative of a native protein conformation necessary to produce a noncovalent complex. Detection of noncovalent complexes in the gas phase suggests that further use of conventional biochemical approaches to provide a qualitative, and in some cases even quantitative, characterization of equilibria of noncovalent complexes in solution is possible.
Collapse
Affiliation(s)
- D J Douglas
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada
| | | | | | | |
Collapse
|
32
|
Kim MJ, Lee SB, Lee HS, Lee SY, Baek JS, Kim D, Moon TW, Robyt JF, Park KH. Comparative study of the inhibition of alpha-glucosidase, alpha-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine-glucose. Arch Biochem Biophys 1999; 371:277-83. [PMID: 10545215 DOI: 10.1006/abbi.1999.1423] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus stearothermophilus maltogenic amylase hydrolyzes the first glycosidic linkage of acarbose to give acarviosine-glucose. In the presence of carbohydrate acceptors, acarviosine-glucose is primarily transferred to the C-6 position of the acceptor. When d-glucose is the acceptor, isoacarbose is formed. Acarbose, acarviosine-glucose, and isoacarbose were compared as inhibitors of alpha-glucosidase, alpha-amylase, and cyclomaltodextrin glucanosyltransferase. The three inhibitors were found to be competitive inhibitors for alpha-glucosidase and mixed noncompetitive inhibitors for alpha-amylase and cyclomaltodextrin glucanosyltransferase. The K(i) values were dependent on the type of enzyme and their source. Acarviosine-glucose was a potent inhibitor for baker's yeast alpha-glucosidase, inhibiting 430 times more than acarbose, and was an excellent inhibitor for cyclomaltodextrin glucanosyltransferase, inhibiting 6 times more than acarbose. Isoacarbose was the most effective inhibitor of alpha-amylase and cyclomaltodextrin glucanosyltransferase, inhibiting 15.2 and 2.0 times more than acarbose, respectively.
Collapse
Affiliation(s)
- M J Kim
- Research Center for New Bio-Materials in Agriculture and Department of Food Science and Technology, Seoul National University, Suwon, 441-744, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Koukiekolo R, Le Berre-Anton V, Desseaux V, Moreau Y, Rougé P, Marchis-Mouren G, Santimone M. Mechanism of porcine pancreatic alpha-amylase inhibition of amylose and maltopentaose hydrolysis by kidney bean (Phaseolus vulgaris) inhibitor and comparison with that by acarbose. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:20-6. [PMID: 10491154 DOI: 10.1046/j.1432-1327.1999.00611.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of Phaseolus vulgaris inhibitor (alpha-AI) on the amylose and maltopentaose hydrolysis catalysed by porcine pancreatic alpha-amylase (PPA) were investigated. Based on a statistical analysis of the kinetic data and using the general velocity equation, which is valid at equilibrium for all types of inhibition in a single-substrate reaction, it was concluded that the inhibitory mode is of the mixed noncompetitive type involving two molecules of inhibitor. In line with this conclusion, the Lineweaver-Burk primary plots intersect in the second quadrant and the secondary plots of the slopes and the intercepts versus the inhibitor concentrations are parabolic curves, whether the substrate used was amylose or maltopentaose. A specific inhibition model of the mixed noncompetitive type applies here. This model differs from those previously proposed for acarbose [Al Kazaz, M., Desseaux, V., Marchis-Mouren, G., Payan, F., Forest, E. & Santimone, M. (1996) Eur. J. Biochem. 241, 787-796 and Al Kazaz, M., Desseaux, V., Marchis-Mouren, G., Prodanov, E. & Santimone, M. (1998) Eur. J. Biochem. 252, 100-107]. In particular, with alpha-AI, the inhibition takes place only when PPA and alpha-AI are preincubated together before the substrate is added. This shows that the inhibitory PPA-alphaAI complex is formed during the preincubation period. Secondly, other inhibitory complexes are formed, in which two molecules of inhibitor are bound to either the free enzyme or the enzyme-substrate complex. The catalytic efficiency was determined both with and without inhibitor. Using the same molar concentration of inhibitor, alpha-AI was found to be a much stronger inhibitor than acarbose. However, when the inhibitor amount is expressed on a weight basis (mg x L-1), the opposite conclusion is drawn. In addition, limited proteolysis was performed on PPA alone and on the alpha-AI-PPA complex. The results show that, in the complex, PPA is more sensitive to subtilisin attack, and shorter fragments are obtained. These data reflect the conformational changes undergone by PPA as the result of the protein inhibitor binding, which differ from those previously observed with acarbose.
Collapse
Affiliation(s)
- R Koukiekolo
- Laboratoire de Biochimie et Biologie de la Nutrition CNRS ESA 6033, Faculté des Sciences et techniques de St Jérôme, Université d'Aix-Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Darnis S, Juge N, Guo XJ, Marchis-Mouren G, Puigserver A, Chaix JC. Molecular cloning and primary structure analysis of porcine pancreatic alpha-amylase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:281-9. [PMID: 10082956 DOI: 10.1016/s0167-4838(99)00011-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A cDNA library was constructed in a Uni-ZAP XR vector using mRNA isolated from porcine pancreas. A full-length alpha-amylase cDNA was obtained using a combination of library screening and nested polymerase chain reaction. Sequencing of the clone revealed a 1536-nucleotide (nt) open reading frame encoding a protein of 496 amino acid (aa) residues with a signal peptide of 15 aa. The calculated molecular mass of the enzyme was 55354 Da, in accordance with those of the purified porcine pancreatic alpha-amylase forms (PPAI and PPAII) as determined by mass spectrometry. A comparison of the deduced aa sequence with published peptidic sequences of PPAI identified a number of mismatches. The sequence of the cDNA reported here provides a sequence reference for PPA in excellent agreement with the refined three-dimensional structures of both PPAI and PPAII. No evidence for a second variant was found in the cDNA library and it is most likely that PPAI and PPAII are two forms of the same protein. The primary structure of PPA shows high homology with human, mouse and rat pancreatic alpha-amylases. The 304-310 region, corresponding to a mobile loop involved in substrate binding and processing near the active site, is fully conserved.
Collapse
Affiliation(s)
- S Darnis
- Laboratoire de Biochimie et Biologie de la Nutrition, CNRS-UPRESA 6033, Faculté des Sciences et Techniques de St Jérôme, LBBN case 342, Université d'Aix-Marseille, Avenue Escadrille Normandie-Niemen, F-13397, Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|
35
|
Ferey-Roux G, Perrier J, Forest E, Marchis-Mouren G, Puigserver A, Santimone M. The human pancreatic alpha-amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:10-20. [PMID: 9774702 DOI: 10.1016/s0167-4838(98)00147-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A rapid method is proposed for isolating the two main components of human pancreatic alpha-amylase (HPA I and HPA II). The isoelectric point of HPA I (7.2), the main component, was determined using an isoelectrofocusing method and found to differ from that of HPA II (6. 6). The molecular mass of HPA I (55862+/-5 Da) and that of HPA II (55786+/-5 Da) were determined by performing mass spectrometry and found to be quite similar to that of the protein moiety calculated from the amino acid sequence (55788 Da), which indicates that the human amylase is not glycosylated. The structure of both HPA I and HPA II was further investigated by performing limited proteolysis. Two fragments with an apparent molecular mass of 41 kDa and 14 kDa were obtained by digesting the isoforms with proteinase K and subtilisin, whereas digestion with papain yielded two cleaved fragments with molecular masses of 38 kDa and 17 kDa. Proteinase K and subtilisin susceptible bonds are located in the L8 loop (A domain), while the papain cut which occurs in the presence of the calcium chelator EDTA is in the L3 loop (B domain). The kinetics of the inhibition of HPA I and HPA II by acarbose, a drug used to treat diabetes and obesity, were studied using an amylose substrate. The Lineweaver-Burk primary plots of HPA I and HPA II, which did not differ significantly, indicated that the inhibition was of the mixed non-competitive type. The secondary plots gave parabolic curves. All in all, these data provide evidence that two acarbose molecules bind to HPA. In conclusion, apart from the pI, no significant differences were observed between HPA I and HPA II as regards either their molecular mass and limited proteolysis or their kinetic behavior. As was to be expected in view of the high degree of structural identity previously found to exist between human and porcine pancreatic amylases, the present data show that the inhibitory effects of acarbose on the kinetic behavior of these two amylases are quite comparable. In particular, the process of amylose hydrolysis catalyzed by HPA as well as by PPA in both cases requires two carbohydrate binding sites in addition to the catalytic site.
Collapse
Affiliation(s)
- G Ferey-Roux
- Laboratoire de Biochimie et Biologie de la Nutrition, CNRS-ESA 6033, Faculté des Sciences et Techniques de St. Jérôme, Université d'Aix-Marseille, 13397 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|
36
|
Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Hölzer W, De Genst E, Wyns L, Muyldermans S. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 1998; 17:3512-20. [PMID: 9649422 PMCID: PMC1170688 DOI: 10.1093/emboj/17.13.3512] [Citation(s) in RCA: 368] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evidence is provided that dromedary heavy-chain antibodies, in vivo-matured in the absence of light chains, are a unique source of inhibitory antibodies. After immunization of a dromedary with bovine erythrocyte carbonic anhydrase and porcine pancreatic alpha-amylase, it was demonstrated that a considerable amount of heavy-chain antibodies, acting as true competitive inhibitors, circulate in the bloodstream. In contrast, the conventional antibodies apparently do not interact with the enzyme's active site. Next we illustrated that peripheral blood lymphocytes are suitable for one-step cloning of the variable domain fragments in a phage-display vector. By bio-panning, several antigen-specific single-domain fragments are readily isolated for both enzymes. In addition we show that among those isolated fragments active site binders are well represented. When produced as recombinant protein in Escherichia coli, these active site binders appear to be potent enzyme inhibitors when tested in chromogenic assays. The low complexity of the antigen-binding site of these single-domain antibodies composed of only three loops could be valuable for designing smaller synthetic inhibitors.
Collapse
Affiliation(s)
- M Lauwereys
- Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, 1640-Sint-Genesius Rode, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Strobl S, Maskos K, Betz M, Wiegand G, Huber R, Gomis-Rüth FX, Glockshuber R. Crystal structure of yellow meal worm alpha-amylase at 1.64 A resolution. J Mol Biol 1998; 278:617-28. [PMID: 9600843 DOI: 10.1006/jmbi.1998.1667] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of the alpha-amylase from Tenebrio molitor larvae (TMA) has been determined by molecular replacement techniques using diffraction data of a crystal of space group P212121 (a=51.24 A; b=93.46 A; c=96.95 A). The structure has been refined to a crystallographic R-factor of 17.7% for 58,219 independent reflections in the 7.0 to 1.64 A resolution range, with root-mean-square deviations of 0.008 A for bond lengths and 1.482 degrees for bond angles. The final model comprises all 471 residues of TMA, 261 water molecules, one calcium cation and one chloride anion. The electron density confirms that the N-terminal glutamine residue has undergone a post-transitional modification resulting in a stable 5-oxo-proline residue. The X-ray structure of TMA provides the first three-dimensional model of an insect alpha-amylase. The monomeric enzyme exhibits an elongated shape approximately 75 Ax46 Ax40 A and consists of three distinct domains, in line with models for alpha-amylases from microbial, plant and mammalian origin. However, the structure of TMA reflects in the substrate and inhibitor binding region a remarkable difference from mammalian alpha-amylases: the lack of a highly flexible, glycine-rich loop, which has been proposed to be involved in a "trap-release" mechanism of substrate hydrolysis by mammalian alpha-amylases. The structural differences between alpha-amylases of various origins might explain the specificity of inhibitors directed exclusively against insect alpha-amylases.
Collapse
Affiliation(s)
- S Strobl
- Institut für Molekularbiologie und Biophysik, Eidenössische Technische Hochschule Hönggerberg, Zürich, CH-8093, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Janecek S. alpha-Amylase family: molecular biology and evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1997; 67:67-97. [PMID: 9401418 DOI: 10.1016/s0079-6107(97)00015-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Le Berre-Anton V, Bompard-Gilles C, Payan F, Rougé P. Characterization and functional properties of the alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris) seeds. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:31-40. [PMID: 9428656 DOI: 10.1016/s0167-4838(97)00100-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris L. cv Tendergreen) seeds has been purified to homogeneity by heat treatment in acidic medium, ammonium sulphate fractionation, chromatofocusing and gel filtration. Two isoforms, alpha-AI1 and alpha-AI1', of 43 kDa have been isolated which differ from each other by their isoelectric points and neutral sugar contents. The major isoform alpha-AI1 inhibited human and porcine pancreatic alpha-amylases (PPA) but was devoid of activity on alpha-amylases of bacterial or fungal origins. As shown on the Lineweaver-Burk plots, the nature of the inhibition is explained by a mixed non-competitive inhibition mechanism. Alpha-AI1 formed a 1:2 stoichiometric complex with PPA which showed an optimum pH of 4.5 at 30 degrees C. Owing to the low optimum pH found for alpha-AI activity, inhibitor-containing diets such as beans or transgenic plants expressing alpha-AI should be devoid of any harmful effect on human health.
Collapse
Affiliation(s)
- V Le Berre-Anton
- Institut de Pharmacologie et Biologie Structurale, UPS-CNRS No. 9062, Toulouse, France
| | | | | | | |
Collapse
|
40
|
Qian M, Spinelli S, Driguez H, Payan F. Structure of a pancreatic alpha-amylase bound to a substrate analogue at 2.03 A resolution. Protein Sci 1997; 6:2285-96. [PMID: 9385631 PMCID: PMC2143580 DOI: 10.1002/pro.5560061102] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structure of pig pancreatic alpha-amylase in complex with carbohydrate inhibitor and proteinaceous inhibitors is known but the successive events occurring at the catalytic center still remain to be elucidated. The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) soaked with an enzyme-resistant substrate analogue, methyl 4,4'-dithio-alpha-maltotrioside, showed electron density corresponding to the binding of substrate analogue molecules at the active site and at the "second binding site." The electron density observed at the active site was interpreted in terms of overlapping networks of oligosaccharides, which show binding of substrate analogue molecules at subsites prior to and subsequent to the cleavage site. A weaker patch of density observed at subsite -1 (using a nomenclature where the site of hydrolysis is taken to be between subsites -1 and +1) was modeled with water molecules. Conformational changes take place upon substrate analogue binding and the "flexible loop" that constitutes the surface edge of the active site is observed in a specific conformation. This confirms that this loop plays an important role in the recognition and binding of the ligand. The crystal structure was refined at 2.03 A resolution, to an R-factor of 16.0 (Rfree, 18.5).
Collapse
Affiliation(s)
- M Qian
- AFMB-IBSM-CNRS, Marseille, France
| | | | | | | |
Collapse
|