1
|
Fitzpatrick PF, Daubner SC. Biochemical and biophysical approaches to characterization of the aromatic amino acid hydroxylases. Methods Enzymol 2024; 704:345-361. [PMID: 39300655 DOI: 10.1016/bs.mie.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase utilize a non-heme iron to catalyze the hydroxylation of the aromatic rings of their amino acid substrates, with a tetrahydropterin serving as the source of the electrons necessary for the monooxygenation reaction. These enzymes have been subjected to a variety of biochemical and biophysical approaches, resulting in a detailed understanding of their structures and mechanism. We summarize here the experimental approaches that have led to this understanding.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States.
| | - S Colette Daubner
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
2
|
Vedel IM, Prestel A, Zhang Z, Skawinska NT, Stark H, Harris P, Kragelund BB, Peters GHJ. Structural characterization of human tryptophan hydroxylase 2 reveals that L-Phe is superior to L-Trp as the regulatory domain ligand. Structure 2023:S0969-2126(23)00127-2. [PMID: 37119821 DOI: 10.1016/j.str.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Tryptophan hydroxylase 2 (TPH2) catalyzes the rate-limiting step in serotonin biosynthesis in the brain. Consequently, regulation of TPH2 is relevant for serotonin-related diseases, yet the regulatory mechanism of TPH2 is poorly understood and structural and dynamical insights are missing. We use NMR spectroscopy to determine the structure of a 47 N-terminally truncated variant of the regulatory domain (RD) dimer of human TPH2 in complex with L-Phe, and show that L-Phe is the superior RD ligand compared with the natural substrate, L-Trp. Using cryo-EM, we obtain a low-resolution structure of a similarly truncated variant of the complete tetrameric enzyme with dimerized RDs. The cryo-EM two-dimensional (2D) class averages additionally indicate that the RDs are dynamic in the tetramer and likely exist in a monomer-dimer equilibrium. Our results provide structural information on the RD as an isolated domain and in the TPH2 tetramer, which will facilitate future elucidation of TPH2's regulatory mechanism.
Collapse
Affiliation(s)
- Ida M Vedel
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Andreas Prestel
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Zhenwei Zhang
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Natalia T Skawinska
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Pernille Harris
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Conde-Giménez M, Sancho J. Unravelling the Complex Denaturant and Thermal-Induced Unfolding Equilibria of Human Phenylalanine Hydroxylase. Int J Mol Sci 2021; 22:ijms22126539. [PMID: 34207146 PMCID: PMC8234983 DOI: 10.3390/ijms22126539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Human phenylalanine hydroxylase (PAH) is a metabolic enzyme involved in the catabolism of L-Phe in liver. Loss of conformational stability and decreased enzymatic activity in PAH variants result in the autosomal recessive disorder phenylketonuria (PKU), characterized by developmental and psychological problems if not treated early. One current therapeutic approach to treat PKU is based on pharmacological chaperones (PCs), small molecules that can displace the folding equilibrium of unstable PAH variants toward the native state, thereby rescuing the physiological function of the enzyme. Understanding the PAH folding equilibrium is essential to develop new PCs for different forms of the disease. We investigate here the urea and the thermal-induced denaturation of full-length PAH and of a truncated form lacking the regulatory and the tetramerization domains. For either protein construction, two distinct transitions are seen in chemical denaturation followed by fluorescence emission, indicating the accumulation of equilibrium unfolding intermediates where the catalytic domains are partly unfolded and dissociated from each other. According to analytical centrifugation, the chemical denaturation intermediates of either construction are not well-defined species but highly polydisperse ensembles of protein aggregates. On the other hand, each protein construction similarly shows two transitions in thermal denaturation measured by fluorescence or differential scanning calorimetry, also indicating the accumulation of equilibrium unfolding intermediates. The similar temperatures of mid denaturation of the two constructions, together with their apparent lack of response to protein concentration, indicate the catalytic domains are unfolded in the full-length PAH thermal intermediate, where they remain associated. That the catalytic domain unfolds in the first thermal transition is relevant for the choice of PCs identified in high throughput screening of chemical libraries using differential scanning fluorimetry.
Collapse
Affiliation(s)
- María Conde-Giménez
- Departamento de Bioquímica y Biología Molecular y Celular, Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50009 Zaragoza, Spain;
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
4
|
Aslan T, Yenenler-Kutlu A, Gerlevik U, Aktuğlu Zeybek AÇ, Kıykım E, Sezerman OU, Birgul Iyison N. Identifying and elucidating the roles of Y198N and Y204F mutations in the PAH enzyme through molecular dynamic simulations. J Biomol Struct Dyn 2021; 40:9018-9029. [PMID: 33970801 DOI: 10.1080/07391102.2021.1921619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenylketonuria is an autosomal recessive disorder caused by mutations in the phenylalanine hydroxylase gene. In phenylketonuria causes various symptoms including severe mental retardation. PAH gene of a classical Phenylketonuria patient was sequenced, and two novel heterozygous mutations, p.Y198N and p.Y204F, were found. This study aimed to reveal the impacts of these variants on the structural stability of the PAH enzyme. In-silico analyses using prediction tools and molecular dynamics simulations were performed. Mutations were introduced to the wild type catalytic monomer and full length tetramer crystal structures. Variant pathogenicity analyses predicted p.Y198N to be damaging, and p.Y204F to be benign by some prediction tools and damaging by others. Simulations suggested p.Y198N mutation cause significant fluctuations in the spatial organization of two catalytic residues in the temperature accelerated MD simulations with the monomer and increased root-mean-square deviations in the tetramer structure. p.Y204F causes noticeable changes in the spatial positioning of T278 suggesting a possible segregation from the catalytic site in temperature accelerated MD simulations with the monomer. This mutation also leads to increased root-mean-square fluctuations in the regulatory domain which may lead to conformational change resulting in inhibition of dimerization and enzyme activation. Our study reports two novel mutations in the PAH gene and gives insight to their effects on the PAH activity. MD simulations did not yield conclusive results that explains the phenotype but gave plausible insight to possible effects which should be investigated further with in-silico and in-vitro studies to assess the roles of these mutations in etiology of PKU. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tolga Aslan
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Aslı Yenenler-Kutlu
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Faculty of Science and Literature, Department of Molecular Biology & Genetics, Istinye University, Istanbul, Turkey
| | - Umut Gerlevik
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayşe Çiğdem Aktuğlu Zeybek
- Cerrahpasa Faculty of Medicine, Divisions of Nutrition and Metabolism, Department of Pediatrics, Istanbul University, İstanbul, Turkey
| | - Ertuğrul Kıykım
- Cerrahpasa Faculty of Medicine, Divisions of Nutrition and Metabolism, Department of Pediatrics, Istanbul University, İstanbul, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Necla Birgul Iyison
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| |
Collapse
|
5
|
Arturo EC, Merkel GW, Hansen MR, Lisowski S, Almeida D, Gupta K, Jaffe EK. Manipulation of a cation-π sandwich reveals conformational flexibility in phenylalanine hydroxylase. Biochimie 2021; 183:63-77. [PMID: 33221376 PMCID: PMC9856217 DOI: 10.1016/j.biochi.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 01/24/2023]
Abstract
Phenylalanine hydroxylase (PAH) is an allosteric enzyme that maintains phenylalanine (Phe) below neurotoxic levels; its failure results in phenylketonuria, an inborn error of amino acid metabolism. Wild type (WT) PAH equilibrates among resting-state (RS-PAH) and activated (A-PAH) conformations, whose equilibrium position depends upon allosteric Phe binding. The RS-PAH conformation of WT rat PAH (rPAH) contains a cation-π sandwich involving Phe80 that cannot exist in the A-PAH conformation. Phe80 variants F80A, F80D, F80L, and F80R were prepared and evaluated using native PAGE, size exclusion chromatography, ion exchange behavior, intrinsic protein fluorescence, enzyme kinetics, and limited proteolysis, each as a function of [Phe]. Like WT rPAH, F80A and F80D show allosteric activation by Phe while F80L and F80R are constitutively active. Maximal activity of all variants suggests relief of a rate-determining conformational change. Limited proteolysis of WT rPAH (minus Phe) reveals facile cleavage within a 4-helix bundle that is buried in the RS-PAH tetramer interface, reflecting dynamic dissociation of that tetramer. This cleavage is not seen for the Phe80 variants, which all show proteolytic hypersensitivity in a linker that repositions during the RS-PAH to A-PAH interchange. Hypersensitivity is corrected by addition of Phe such that all variants become like WT rPAH and achieve the A-PAH conformation. Thus, manipulation of Phe80 perturbs the conformational space sampled by PAH, increasing sampling of on-pathway intermediates in the RS-PAH and A-PAH interchange. The behavior of the Phe80 variants mimics that of disease-associated R68S and suggests a molecular basis for proteolytic susceptibility in PKU-associated human PAH variants.
Collapse
Affiliation(s)
- Emilia C. Arturo
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111,Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - George W. Merkel
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111
| | - Michael R. Hansen
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111
| | - Sophia Lisowski
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111
| | - Deeanne Almeida
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111
| | - Kushol Gupta
- Department pf Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Eileen K. Jaffe
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 10111,To whom correspondence should be addressed: Eileen K. Jaffe: Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111; ; Tel.(215) 728-3695; Fax. (215) 728-2412
| |
Collapse
|
6
|
Leandro J, Stokka AJ, Teigen K, Andersen OA, Flatmark T. Substituting Tyr 138 in the active site loop of human phenylalanine hydroxylase affects catalysis and substrate activation. FEBS Open Bio 2017; 7:1026-1036. [PMID: 28680815 PMCID: PMC5494296 DOI: 10.1002/2211-5463.12243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l‐phenylalanine (l‐Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l‐Phe is the key player in this transition. X‐ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr138‐loop to the active site in the presence of l‐Phe. The mechanism by which the loop dynamics are coupled to substrate binding at the active site in tetrameric PAH is not fully understood. We have here conducted functional studies of four Tyr138 point mutants. A high linear correlation (r2 = 0.99) was observed between their effects on the catalytic efficiency of the catalytic domain dimers and the corresponding effect on the catalytic efficiency of substrate‐activated full‐length tetramers. In the tetramers, a correlation (r2 = 0.96) was also observed between the increase in catalytic efficiency (activation) and the global conformational change (surface plasmon resonance signal response) at the same l‐Phe concentration. The new data support a similar functional importance of the Tyr138‐loop in the catalytic domain and the full‐length enzyme homotetramer.
Collapse
Affiliation(s)
- João Leandro
- Department of Biomedicine University of Bergen Norway.,Metabolism and Genetics Group Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy University of Lisbon Portugal.,Present address: Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue, Box 1498 New York NY 10029 USA
| | - Anne J Stokka
- Department of Biomedicine University of Bergen Norway.,The Biotechnology Centre of Oslo University of Oslo Norway
| | - Knut Teigen
- Department of Biomedicine University of Bergen Norway
| | - Ole A Andersen
- Department of Biomedicine University of Bergen Norway.,Evotec (UK) Ltd .Abingdon UK
| | | |
Collapse
|
7
|
Meisburger SP, Taylor AB, Khan CA, Zhang S, Fitzpatrick PF, Ando N. Domain Movements upon Activation of Phenylalanine Hydroxylase Characterized by Crystallography and Chromatography-Coupled Small-Angle X-ray Scattering. J Am Chem Soc 2016; 138:6506-16. [PMID: 27145334 PMCID: PMC4896396 DOI: 10.1021/jacs.6b01563] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian phenylalanine hydroxylase (PheH) is an allosteric enzyme that catalyzes the first step in the catabolism of the amino acid phenylalanine. Following allosteric activation by high phenylalanine levels, the enzyme catalyzes the pterin-dependent conversion of phenylalanine to tyrosine. Inability to control elevated phenylalanine levels in the blood leads to increased risk of mental disabilities commonly associated with the inherited metabolic disorder, phenylketonuria. Although extensively studied, structural changes associated with allosteric activation in mammalian PheH have been elusive. Here, we examine the complex allosteric mechanisms of rat PheH using X-ray crystallography, isothermal titration calorimetry (ITC), and small-angle X-ray scattering (SAXS). We describe crystal structures of the preactivated state of the PheH tetramer depicting the regulatory domains docked against the catalytic domains and preventing substrate binding. Using SAXS, we further describe the domain movements involved in allosteric activation of PheH in solution and present the first demonstration of chromatography-coupled SAXS with Evolving Factor Analysis (EFA), a powerful method for separating scattering components in a model-independent way. Together, these results support a model for allostery in PheH in which phenylalanine stabilizes the dimerization of the regulatory domains and exposes the active site for substrate binding and other structural changes needed for activity.
Collapse
Affiliation(s)
- Steve P. Meisburger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexander B. Taylor
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Crystal A. Khan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Patel D, Kopec J, Fitzpatrick F, McCorvie TJ, Yue WW. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain. Sci Rep 2016; 6:23748. [PMID: 27049649 PMCID: PMC4822156 DOI: 10.1038/srep23748] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/08/2016] [Indexed: 02/01/2023] Open
Abstract
The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to bind, in addition to the catalytic domain, a site at the PAH N-terminal regulatory domain (PAH-RD), to activate the enzyme via an unclear mechanism. Here we report the crystal structure of human PAH-RD bound with Phe at 1.8 Å resolution, revealing a homodimer of ACT folds with Phe bound at the dimer interface. This work delivers the structural evidence to support previous solution studies that a binding site exists in the RD for Phe, and that Phe binding results in dimerization of PAH-RD. Consistent with our structural observation, a disease-associated PAH mutant impaired in Phe binding disrupts the monomer:dimer equilibrium of PAH-RD. Our data therefore support an emerging model of PAH allosteric regulation, whereby Phe binds to PAH-RD and mediates the dimerization of regulatory modules that would bring about conformational changes to activate the enzyme.
Collapse
Affiliation(s)
- Dipali Patel
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Jolanta Kopec
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Fiona Fitzpatrick
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Thomas J McCorvie
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| |
Collapse
|
9
|
Zhang S, Hinck AP, Fitzpatrick PF. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers. Biochemistry 2015; 54:5167-74. [PMID: 26252467 PMCID: PMC4551101 DOI: 10.1021/acs.biochem.5b00616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Liver
phenylalanine hydroxylase is allosterically activated by
phenylalanine. The structural changes that accompany activation have
not been identified, but recent studies of the effects of phenylalanine
on the isolated regulatory domain of the enzyme support a model in
which phenylalanine binding promotes regulatory domain dimerization.
Such a model predicts that compounds that stabilize the regulatory
domain dimer will also activate the enzyme. Nuclear magnetic resonance
spectroscopy and analytical ultracentrifugation were used to determine
the ability of different amino acids and phenylalanine analogues to
stabilize the regulatory domain dimer. The abilities of these compounds
to activate the enzyme were analyzed by measuring their effects on
the fluorescence change that accompanies activation and on the activity
directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to
the same extent as 1 mM l-phenylalanine. Lower levels of
activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability
of these compounds to stabilize the regulatory domain dimer agreed
with their ability to activate the enzyme. These results support a
model in which allosteric activation of phenylalanine hydroxylase
is linked to dimerization of regulatory domains.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | - Andrew P Hinck
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| |
Collapse
|
10
|
Roberts KM, Khan CA, Hinck CS, Fitzpatrick PF. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site. Biochemistry 2014; 53:7846-53. [PMID: 25453233 PMCID: PMC4270383 DOI: 10.1021/bi501183x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Phenylalanine
hydroxylase (PheH), a liver enzyme that catalyzes
the hydroxylation of excess phenylalanine in the diet to tyrosine,
is activated by phenylalanine. The lack of activity at low levels
of phenylalanine has been attributed to the N-terminus of the protein’s
regulatory domain acting as an inhibitory peptide by blocking substrate
access to the active site. The location of the site at which phenylalanine
binds to activate the enzyme is unknown, and both the active site
in the catalytic domain and a separate site in the N-terminal regulatory
domain have been proposed. Binding of catecholamines to the active-site
iron was used to probe the accessibility of the active site. Removal
of the regulatory domain increases the rate constants for association
of several catecholamines with the wild-type enzyme by ∼2-fold.
Binding of phenylalanine in the active site is effectively abolished
by mutating the active-site residue Arg270 to lysine. The kcat/Kphe value is
down 104 for the mutant enzyme, and the Km value for phenylalanine for the mutant enzyme is >0.5
M. Incubation of the R270K enzyme with phenylalanine also results
in a 2-fold increase in the rate constants for catecholamine binding.
The change in the tryptophan fluorescence emission spectrum seen in
the wild-type enzyme upon activation by phenylalanine is also seen
with the R270K mutant enzyme in the presence of phenylalanine. Both
results establish that activation of PheH by phenylalanine does not
require binding of the amino acid in the active site. This is consistent
with a separate allosteric site, likely in the regulatory domain.
Collapse
Affiliation(s)
- Kenneth M Roberts
- Department of Biochemistry, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | | | | | | |
Collapse
|
11
|
Zhang S, Huang T, Ilangovan U, Hinck AP, Fitzpatrick PF. The solution structure of the regulatory domain of tyrosine hydroxylase. J Mol Biol 2013; 426:1483-97. [PMID: 24361276 DOI: 10.1016/j.jmb.2013.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/13/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022]
Abstract
Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to form 3,4-dihydroxyphenylalanine in the biosynthesis of the catecholamine neurotransmitters. The activity of the enzyme is regulated by phosphorylation of serine residues in a regulatory domain and by binding of catecholamines to the active site. Available structures of TyrH lack the regulatory domain, limiting the understanding of the effect of regulation on structure. We report the use of NMR spectroscopy to analyze the solution structure of the isolated regulatory domain of rat TyrH. The protein is composed of a largely unstructured N-terminal region (residues 1-71) and a well-folded C-terminal portion (residues 72-159). The structure of a truncated version of the regulatory domain containing residues 65-159 has been determined and establishes that it is an ACT domain. The isolated domain is a homodimer in solution, with the structure of each monomer very similar to that of the core of the regulatory domain of phenylalanine hydroxylase. Two TyrH regulatory domain monomers form an ACT domain dimer composed of a sheet of eight strands with four α-helices on one side of the sheet. Backbone dynamic analyses were carried out to characterize the conformational flexibility of TyrH65-159. The results provide molecular details critical for understanding the regulatory mechanism of TyrH.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Tao Huang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Udayar Ilangovan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Andrew P Hinck
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Structural features of the regulatory ACT domain of phenylalanine hydroxylase. PLoS One 2013; 8:e79482. [PMID: 24244510 PMCID: PMC3828330 DOI: 10.1371/journal.pone.0079482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/22/2013] [Indexed: 11/30/2022] Open
Abstract
Phenylalanine hydroxylase (PAH) catalyzes the conversion of L-Phe to L-Tyr. Defects in PAH activity, caused by mutations in the human gene, result in the autosomal recessively inherited disease hyperphenylalaninemia. PAH activity is regulated by multiple factors, including phosphorylation and ligand binding. In particular, PAH displays positive cooperativity for L-Phe, which is proposed to bind the enzyme on an allosteric site in the N-terminal regulatory domain (RD), also classified as an ACT domain. This domain is found in several proteins and is able to bind amino acids. We used molecular dynamics simulations to obtain dynamical and structural insights into the isolated RD of PAH. Here we show that the principal motions involve conformational changes leading from an initial open to a final closed domain structure. The global intrinsic motions of the RD are correlated with exposure to solvent of a hydrophobic surface, which corresponds to the ligand binding-site of the ACT domain. Our results strongly suggest a relationship between the Phe-binding function and the overall dynamic behaviour of the enzyme. This relationship may be affected by structure-disturbing mutations. To elucidate the functional implications of the mutations, we investigated the structural effects on the dynamics of the human RD PAH induced by six missense hyperphenylalaninemia-causing mutations, namely p.G46S, p.F39C, p.F39L, p.I65S, p.I65T and p.I65V. These studies showed that the alterations in RD hydrophobic interactions induced by missense mutations could affect the functionality of the whole enzyme.
Collapse
|
13
|
Ronau JA, Paul LN, Fuchs JE, Corn IR, Wagner KT, Liedl KR, Abu-Omar MM, Das C. An additional substrate binding site in a bacterial phenylalanine hydroxylase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2013; 42:691-708. [PMID: 23860686 PMCID: PMC3972754 DOI: 10.1007/s00249-013-0919-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 01/07/2023]
Abstract
Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.
Collapse
Affiliation(s)
- Judith A. Ronau
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Lake N. Paul
- Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, USA
| | - Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Isaac R. Corn
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Kyle T. Wagner
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Mahdi M. Abu-Omar
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Chittaranjan Das
- Brown Laboratory of Chemistry, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA,To whom correspondence should be addressed: Chittaranjan Das, Brown Laboratory of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907, (765)-494-5478, Fax: (765)-494-0239,
| |
Collapse
|
14
|
Structural and thermodynamic insight into phenylalanine hydroxylase from the human pathogen Legionella pneumophila. FEBS Open Bio 2013; 3:370-8. [PMID: 24251098 PMCID: PMC3821034 DOI: 10.1016/j.fob.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022] Open
Abstract
Phenylalanine hydroxylase from Legionella pneumophila (lpPAH) has a major functional role in the synthesis of the pigment pyomelanin, which is a potential virulence factor. We present here the crystal structure of lpPAH, which is a dimeric enzyme that shows high thermostability, with a midpoint denaturation temperature of 79 °C, and low substrate affinity. The structure revealed a dimerization motif that includes ionic interactions and a hydrophobic core, composed of both β-structure and a C-terminal region, with the specific residues (P255, P256, Y257 and F258) interacting with the same residues from the adjacent subunit within the dimer. This unique dimerization interface, together with a number of aromatic clusters, appears to contribute to the high thermal stability of lpPAH. The crystal structure also explains the increased aggregation of the enzyme in the presence of salt. Moreover, the low affinity for substrate l-Phe could be explained from three consecutive glycine residues (G181, 182, 183) located at the substrate-binding site. This is the first structure of a dimeric bacterial PAH and provides a framework for interpreting the molecular and kinetic properties of lpPAH and for further investigating the regulation of the enzyme. The structure Legionella pneumophila PAH (lpPAH) has been resolved The Tm of lpPAH at 79 °C is explained by structure The unique dimer interface of lpPAH comprises aromatic and ionic interactions Tyr257 seems important for dimerization This is the first structure of a dimeric bacterial PAH
Collapse
|
15
|
Autoantibodies against aromatic amino acid hydroxylases in patients with autoimmune polyendocrine syndrome type 1 target multiple antigenic determinants and reveal regulatory regions crucial for enzymatic activity. Immunobiology 2013. [DOI: 10.1016/j.imbio.2012.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Roberts KM, Pavon JA, Fitzpatrick PF. Kinetic mechanism of phenylalanine hydroxylase: intrinsic binding and rate constants from single-turnover experiments. Biochemistry 2013; 52:1062-73. [PMID: 23327364 DOI: 10.1021/bi301675e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH(4)) and O(2). A complete kinetic mechanism for PheH was determined by global analysis of single-turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH(4)-phenylalanine complex begins with the rapid binding of BH(4) (K(d) = 65 μM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (K(d) = 130 μM) is approximately 10-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O(2) rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, which can be detected as a decrease in absorbance at 340 nm, with a rate constant of 140 s(-1). Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is 10-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines k(cat). Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation.
Collapse
Affiliation(s)
- Kenneth M Roberts
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
17
|
Réblová K, Hrubá Z, Procházková D, Pazdírková R, Pouchlá S, Zeman J, Fajkusová L. Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations. Clin Chim Acta 2013; 419:1-10. [PMID: 23357515 DOI: 10.1016/j.cca.2013.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hyperphenylalaninemia (HPA) is one of the most common inherited metabolic disorders caused by deficiency of the enzyme phenylalanine hydroxylase (PAH). HPA is associated with mutations in the PAH gene, which leads to reduced protein stability and/or impaired catalytic function. Currently, almost 700 different disease-causing mutations have been described. The impact of mutations on enzyme activity varies ranging from classical PKU, mild PKU, to non-PKU HPA phenotype. METHODS We provide results of molecular genetic diagnostics of 665 Czech unrelated HPA patients, structural analysis of missense mutations associated with classical PKU and non-PKU HPA phenotype, and prediction of effects of 6 newly discovered HPA missense mutations using bioinformatic approaches and Molecular Dynamics simulations. RESULTS Ninety-eight different types of mutations were indentified. Thirteen of these were novel (6 missense, 2 nonsense, 1 splicing, and 4 small gene rearrangements). Structural analysis revealed that classical PKU mutations are more non-conservative compared to non-PKU HPA mutations and that specific sequence and structural characteristics of a mutation might be critical when distinguishing between non-PKU HPA and classical PKU mutations. The greatest impact was predicted for the p.(Phe263Ser) mutation while other novel mutations p.(Asn167Tyr), p.(Thr200Asn), p.(Asp229Gly), p.(Leu358Phe), and p.(Ile406Met) were found to be less deleterious.
Collapse
Affiliation(s)
- Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
18
|
Dictyostelium
phenylalanine hydroxylase is activated by its substrate phenylalanine. FEBS Lett 2012; 586:3596-600. [DOI: 10.1016/j.febslet.2012.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 11/20/2022]
|
19
|
Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys 2012; 519:194-201. [PMID: 22005392 PMCID: PMC3271142 DOI: 10.1016/j.abb.2011.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA.
| |
Collapse
|
20
|
Selwood T, Jaffe EK. Dynamic dissociating homo-oligomers and the control of protein function. Arch Biochem Biophys 2012; 519:131-43. [PMID: 22182754 PMCID: PMC3298769 DOI: 10.1016/j.abb.2011.11.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/16/2011] [Accepted: 11/28/2011] [Indexed: 11/20/2022]
Abstract
Homo-oligomeric protein assemblies are known to participate in dynamic association/disassociation equilibria under native conditions, thus creating an equilibrium of assembly states. Such quaternary structure equilibria may be influenced in a physiologically significant manner either by covalent modification or by the non-covalent binding of ligands. This review follows the evolution of ideas about homo-oligomeric equilibria through the 20th and into the 21st centuries and the relationship of these equilibria to allosteric regulation by the non-covalent binding of ligands. A dynamic quaternary structure equilibria is described where the dissociated state can have alternate conformations that cannot reassociate to the original multimer; the alternate conformations dictate assembly to functionally distinct alternate multimers of finite stoichiometry. The functional distinction between different assemblies provides a mechanism for allostery. The requirement for dissociation distinguishes this morpheein model of allosteric regulation from the classical MWC concerted and KNF sequential models. These models are described alongside earlier dissociating allosteric models. The identification of proteins that exist as an equilibrium of diverse native quaternary structure assemblies has the potential to define new targets for allosteric modulation with significant consequences for further understanding and/or controlling protein structure and function. Thus, a rationale for identifying proteins that may use the morpheein model of allostery is presented and a selection of proteins for which published data suggests this mechanism may be operative are listed.
Collapse
Affiliation(s)
- Trevor Selwood
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111
| | - Eileen K. Jaffe
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111
| |
Collapse
|
21
|
Cerreto M, Cavaliere P, Carluccio C, Amato F, Zagari A, Daniele A, Salvatore F. Natural phenylalanine hydroxylase variants that confer a mild phenotype affect the enzyme's conformational stability and oligomerization equilibrium. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:1435-45. [PMID: 21820508 DOI: 10.1016/j.bbadis.2011.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/26/2022]
Abstract
Hyperphenylalaninemias are genetic diseases prevalently caused by mutations in the phenylalanine hydroxylase (PAH) gene. The wild-type PAH enzyme is a homotetramer regulated by its substrate, cofactor and phosphorylation. We reproduced a full-length wild-type protein and seven natural full-length PAH variants, p.I65M, p.N223Y, p.R297L, p.F382L, p.K398N, p.A403V, and p.Q419R, and analyzed their biochemical and biophysical behavior. All mutants exhibited reduced enzymatic activity, namely from 38% to 69% of wild-type activity. Biophysical characterization was performed by size-exclusion chromatography, light scattering and circular dichroism. In the purified wild-type PAH, we identified the monomer in equilibrium with the dimer and tetramer. In most mutants, the equilibrium shifted toward the dimer and most tended to form aggregates. All PAH variants displayed different biophysical behaviors due to loss of secondary structure and thermal destabilization. Specifically, p.F382L was highly unstable at physiological temperature. Moreover, using confocal microscopy with the number and brightness technique, we studied the effect of BH4 addition directly in living human cells expressing wild-type PAH or p.A403V, a mild mutant associated with BH4 responsiveness in vivo. Our results demonstrate that BH4 addition promotes re-establishment of the oligomerization equilibrium, thus indicating that the dimer-to-tetramer shift in pA403V plays a key role in BH4 responsiveness. In conclusion, we show that the oligomerization process and conformational stability are altered by mutations that could affect the physiological behavior of the enzyme. This endorses the hypothesis that oligomerization and folding defects of PAH variants are the most common causes of HPAs, particularly as regards mild human phenotypes.
Collapse
|
22
|
Leandro J, Leandro P, Flatmark T. Heterotetrameric forms of human phenylalanine hydroxylase: Co-expression of wild-type and mutant forms in a bicistronic system. Biochim Biophys Acta Mol Basis Dis 2011; 1812:602-12. [DOI: 10.1016/j.bbadis.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/19/2011] [Accepted: 02/03/2011] [Indexed: 11/28/2022]
|
23
|
Lagler FB, Gersting SW, Zsifkovits C, Steinbacher A, Eichinger A, Danecka MK, Staudigl M, Fingerhut R, Glossmann H, Muntau AC. New insights into tetrahydrobiopterin pharmacodynamics from Pah enu1/2, a mouse model for compound heterozygous tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Biochem Pharmacol 2010; 80:1563-71. [PMID: 20705059 DOI: 10.1016/j.bcp.2010.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/24/2010] [Accepted: 07/28/2010] [Indexed: 11/24/2022]
Abstract
Phenylketonuria (PKU), an autosomal recessive disease with phenylalanine hydroxylase (PAH) deficiency, was recently shown to be a protein misfolding disease with loss-of-function. It can be treated by oral application of the natural PAH cofactor tetrahydrobiopterin (BH(4)) that acts as a pharmacological chaperone and rescues enzyme function in vivo. Here we identified Pah(enu1/2) bearing a mild and a severe mutation (V106A/F363S) as a new mouse model for compound heterozygous mild PKU. Although BH(4) treatment has become established in clinical routine, there is substantial lack of knowledge with regard to BH(4) pharmacodynamics and the effect of the genotype on the response to treatment with the natural cofactor. To address these questions we applied an elaborate methodological setup analyzing: (i) blood phenylalanine elimination, (ii) blood phenylalanine/tyrosine ratios, and (iii) kinetics of in vivo phenylalanine oxidation using (13)C-phenylalanine breath tests. We compared pharmacodynamics in wild-type, Pah(enu1/1), and Pah(enu1/2) mice and observed crucial differences in terms of effect size as well as effect kinetics and dose response. Results from in vivo experiments were substantiated in vitro after overexpression of wild-type, V106A, and F263S in COS-7 cells. Pharmacokinetics did not differ between Pah(enu1/1) and Pah(enu1/2) indicating that the differences in pharmacodynamics were not induced by divergent pharmacokinetic behavior of BH(4). In conclusion, our findings show a significant impact of the genotype on the response to BH(4) in PAH deficient mice. This may lead to important consequences concerning the diagnostic and therapeutic management of patients with PAH deficiency underscoring the need for individualized procedures addressing pharmacodynamic aspects.
Collapse
Affiliation(s)
- Florian B Lagler
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Leandro J, Simonsen N, Saraste J, Leandro P, Flatmark T. Phenylketonuria as a protein misfolding disease: The mutation pG46S in phenylalanine hydroxylase promotes self-association and fibril formation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:106-20. [PMID: 20937381 DOI: 10.1016/j.bbadis.2010.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/02/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
The missense mutation pG46S in the regulatory (R) domain of human phenylalanine hydroxylase (hPAH), associated with a severe form of phenylketonuria, generates a misfolded protein which is rapidly degraded on expression in HEK293 cells. When overexpressed as a MBP-G46S fusion protein, soluble and fully active tetrameric/dimeric forms are assembled and recovered in a metastable conformational state. When MBP is cleaved off, G46S undergoes a conformational change and self-associates with a lag phase and an autocatalytic growth phase (tetramers≫dimers), as determined by light scattering. The self-association is controlled by pH, ionic strength, temperature, protein concentration and the phosphorylation state of Ser16; the net charge of the protein being a main modulator of the process. A superstoichiometric amount of WT dimers revealed a 2-fold enhancement of the rate of G46S dimer self-association. Electron microscopy demonstrates the formation of higher-order oligomers and linear polymers of variable length, partly as a branching network, and partly as individual long and twisted fibrils (diameter ~145-300Å). The heat-shock proteins Hsp70/Hsp40, Hsp90 and a proposed pharmacological PAH chaperone (3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-one) partly inhibit the self-association process. Our data indicate that the G46S mutation results in a N-terminal extension of α-helix 1 which perturbs the wild-type α-β sandwich motif in the R-domain and promotes new intermolecular contacts, self-association and non-amyloid fibril formation. The metastable conformational state of G46S as a MBP fusion protein, and its self-association propensity when released from MBP, may represent a model system for the study of other hPAH missense mutations characterized by misfolded proteins.
Collapse
Affiliation(s)
- João Leandro
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
25
|
Gersting SW, Staudigl M, Truger MS, Messing DD, Danecka MK, Sommerhoff CP, Kemter KF, Muntau AC. Activation of phenylalanine hydroxylase induces positive cooperativity toward the natural cofactor. J Biol Chem 2010; 285:30686-97. [PMID: 20667834 PMCID: PMC2945563 DOI: 10.1074/jbc.m110.124016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/29/2010] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding with loss-of-function of the enzyme phenylalanine hydroxylase (PAH) is the molecular basis of phenylketonuria in many individuals carrying missense mutations in the PAH gene. PAH is complexly regulated by its substrate L-Phenylalanine and its natural cofactor 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)). Sapropterin dihydrochloride, the synthetic form of BH(4), was recently approved as the first pharmacological chaperone to correct the loss-of-function phenotype. However, current knowledge about enzyme function and regulation in the therapeutic setting is scarce. This illustrates the need for comprehensive analyses of steady state kinetics and allostery beyond single residual enzyme activity determinations to retrace the structural impact of missense mutations on the phenylalanine hydroxylating system. Current standard PAH activity assays are either indirect (NADH) or discontinuous due to substrate and product separation before detection. We developed an automated fluorescence-based continuous real-time PAH activity assay that proved to be faster and more efficient but as precise and accurate as standard methods. Wild-type PAH kinetic analyses using the new assay revealed cooperativity of activated PAH toward BH(4), a previously unknown finding. Analyses of structurally preactivated variants substantiated BH(4)-dependent cooperativity of the activated enzyme that does not rely on the presence of l-Phenylalanine but is determined by activating conformational rearrangements. These findings may have implications for an individualized therapy, as they support the hypothesis that the patient's metabolic state has a more significant effect on the interplay of the drug and the conformation and function of the target protein than currently appreciated.
Collapse
Affiliation(s)
- Søren W. Gersting
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Michael Staudigl
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Marietta S. Truger
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Dunja D. Messing
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Marta K. Danecka
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Christian P. Sommerhoff
- the Department of Clinical Chemistry and Clinical Biochemistry, Surgical Clinic, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Kristina F. Kemter
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Ania C. Muntau
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| |
Collapse
|
26
|
Zhuang N, Seo KH, Chen C, Kim HL, Park YS, Lee KH. Purification, crystallization and crystallographic analysis of Dictyostelium discoideum phenylalanine hydroxylase in complex with dihydrobiopterin and FeIII. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:463-6. [PMID: 20383023 PMCID: PMC2852345 DOI: 10.1107/s1744309110007220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/25/2010] [Indexed: 11/11/2022]
Abstract
Dictyostelium discoideum phenylalanine hydroxylase (DicPAH; residues 1-415) was expressed in Escherichia coli and purified for structural analysis. Apo DicPAH and DicPAH complexed with dihydrobiopterin (BH(2)) and Fe(III) were crystallized using 0.06 M PIPES pH 7.0, 26%(w/v) PEG 2000 by the hanging-drop vapour-diffusion method. Crystals of apo DicPAH and the DicPAH-BH(2)-Fe(III) complex diffracted to 2.6 and 2.07 A resolution, respectively, and belonged to space group P2(1), with unit-cell parameters a = 70.02, b = 85.43, c = 74.86 A, beta = 110.12 degrees and a = 70.97, b = 85.33, c = 74.89 A, beta = 110.23 degrees , respectively. There were two molecules in the asymmetric unit. The structure of DicPAH has been solved by molecular replacement.
Collapse
Affiliation(s)
- Ningning Zhuang
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Kyung Hey Seo
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Cong Chen
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hye-Lim Kim
- FIRST Rearch Group, School of Biological Sciences, Inje University, Kimhae 621-749, Republic of Korea
| | - Young Shik Park
- FIRST Rearch Group, School of Biological Sciences, Inje University, Kimhae 621-749, Republic of Korea
| | - Kon Ho Lee
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| |
Collapse
|
27
|
Boonyapiwat B, Panaretou B, Forbes B, Mitchell SC, Steventon GB. Human phenylalanine monooxygenase and thioether metabolism. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.01.0009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The substrate specificity of wild-type human phenylalanine monooxygenase (wt-hPAH) has been investigated with respect to the mucoactive drug, S-carboxymethyl-L-cysteine and its thioether metabolites. The ability of wt-hPAH to metabolise other S-substituted cysteines was also examined.
Methods
Direct assays of PAH activity were by HPLC with fluorescence detection; indirect assays involved following disappearance of the cofactor by UV spectroscopy.
Key findings
wt-hPAH catalysed the S-oxygenation of S-carboxymethyl-L-cysteine, its decarboxylated metabolite, S-methyl-L-cysteine, and both their corresponding N-acetylated forms. However, thiodiglycolic acid was not a substrate. The enzyme profiles for both phenylalanine and S-carboxymethyl-L-cysteine showed allosteric kinetics at low substrate concentrations, with Hill constants of 2.0 and 1.9, respectively, for the substrate-activated wt-hPAH. At higher concentrations, both compounds followed Michaelis–Menten kinetics, with non-competitive substrate inhibition profiles. The thioether compounds, S-ethyl-L-cysteine, S-propyl-L-cysteine and S-butyl-L-cysteine were all found to be substrates for phenylalanine monooxygenase.
Conclusions
Phenylalanine monooxygenase may play a wider role outside intermediary metabolism in the biotransformation of dietary-derived substituted cysteines and other exogenous thioether compounds.
Collapse
Affiliation(s)
- Boontarika Boonyapiwat
- Bureau of Drug and Narcotic, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Barry Panaretou
- King's College London, Pharmaceutical Science Division, School of Biomedical and Health Sciences, London, UK
| | - Ben Forbes
- King's College London, Pharmaceutical Science Division, School of Biomedical and Health Sciences, London, UK
| | - Stephen C Mitchell
- Imperial College London, Biomolecular Science, SORA Division, Faculty of Medicine, London, UK
| | - Glyn B Steventon
- King's College London, Pharmaceutical Science Division, School of Biomedical and Health Sciences, London, UK
| |
Collapse
|
28
|
Nascimento C, Leandro J, Lino PR, Ramos L, Almeida AJ, de Almeida IT, Leandro P. Polyol additives modulate the in vitro stability and activity of recombinant human phenylalanine hydroxylase. Appl Biochem Biotechnol 2009; 162:192-207. [PMID: 19937396 DOI: 10.1007/s12010-009-8862-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
Abstract
Phenylketonuria (PKU; OMIM 261600), the most common disorder of amino acid metabolism, is caused by a deficient activity of human phenylalanine hydroxylase (hPAH). Although the dietetic treatment has proven to be effective in preventing the psycho-motor impairment, much effort has been made to develop new therapeutic approaches. Enzyme replacement therapy with hPAH could be regarded as a potential form of PKU treatment if the reported in vitro hPAH instability could be overcome. In this study, we investigated the effect of different polyol compounds, e.g. glycerol, mannitol and PEG-6000 on the in vitro stability of purified hPAH produced in a heterologous prokaryotic expression system. The recombinant human enzyme was stored in the presence of the studied stabilizing agents at different temperatures (4 and -20 degrees C) during a 1-month period. Protein content, degradation products, specific activity, oligomeric profile and conformational characteristics were assessed during storage. The obtained results showed that the use of 50% glycerol or 10% mannitol, at -20 degrees C, protected the enzyme from loss of its enzymatic activity. The determined DeltaG(0) and quenching parameters indicate the occurrence of conformational changes, which may be responsible for the observed increase in catalytic efficiency.
Collapse
Affiliation(s)
- Cátia Nascimento
- Metabolism and Genetics Group, iMed.UL, Faculdade Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
29
|
Dobrowolski SF, Pey AL, Koch R, Levy H, Ellingson CC, Naylor EW, Martinez A. Biochemical characterization of mutant phenylalanine hydroxylase enzymes and correlation with clinical presentation in hyperphenylalaninaemic patients. J Inherit Metab Dis 2009; 32:10-21. [PMID: 18937047 DOI: 10.1007/s10545-008-0942-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/29/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
The biochemical properties of mutant phenylalanine hydroxylase (PAH) enzymes and clinical characteristics of hyperphenylalaninaemic patients who bear these mutant enzymes were investigated. Biochemical characterization of mutant PAH enzymes p.D143G, p.R155H, p.L348V, p.R408W and p.P416Q included determination of specific activity, substrate activation, V(max), K(m) for (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)), K (d) for BH(4), and protein stabilization by BH(4). Clinical data from 22 patients either homozygous, functionally hemizygous, or compound heterozygous for the mutant enzymes of interest were correlated with biochemical parameters of the mutant enzymes. The p.L348V and p.P416Q enzymes retain significant catalytic activity yet were observed in classic and moderate PKU patients. Biochemical studies demonstrated that BH(4) rectified the stability defects in p.L348V and p.P416Q; additionally, patients with these variants responded to BH(4) therapy. The p.R155H mutant displayed low PAH activity and decreased apparent affinity for L-Phe yet was observed in mild hyperphenylalaninaemia. The p.R155H mutant does not display kinetic instability, as it is stabilized by BH(4) similarly to wild-type PAH; thus the residual activity is available under physiological conditions. The p.R408W enzyme is dysfunctional in nearly all biochemical parameters, as evidenced by disease severity in homozygous and hemizygous patients. Biochemical assessment of mutant PAH proteins, especially parameters involving interaction with BH(4) that impact protein folding, appear useful in clinical correlation. As additional patients and mutant proteins are assessed, the utility of this approach will become apparent.
Collapse
|
30
|
Iron binding effects on the kinetic stability and unfolding energetics of a thermophilic phenylalanine hydroxylase from Chloroflexus aurantiacus. J Biol Inorg Chem 2009; 14:521-31. [DOI: 10.1007/s00775-009-0467-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 01/02/2009] [Indexed: 11/26/2022]
|
31
|
Nascimento C, Leandro J, Tavares de Almeida I, Leandro P. Modulation of the activity of newly synthesized human phenylalanine hydroxylase mutant proteins by low-molecular-weight compounds. Protein J 2009; 27:392-400. [PMID: 18769885 DOI: 10.1007/s10930-008-9149-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Phenylketonuria, the most frequent disorder of amino acid metabolism, is caused by a deficient activity of human phenylalanine hydroxylase (hPAH). Rescue of the enzyme activity of several recombinant hPAH mutant forms (I65T, R261Q, R270K and V388M) by low molecular weight compounds namely glycerol, trimethylamine N-oxide (TMAO) and sodium 4-phenylbutyrate (4-PB) was investigated using a prokaryotic expression model. The studied compounds were added to the culture medium, in a concentration dependent manner, simultaneously to induction of protein expression. Among the tested molecules glycerol and TMAO were able to increase the enzyme activity of the studied mutant proteins. Furthermore, a decrease in aggregates and a recovery of the active tetrameric and dimeric forms were detected. Since the addition of the studied compounds to the medium did not change the expression level of E. Coli molecular chaperones we postulate that glycerol and TMAO rescue results from a direct stabilizing effect of the newly synthesized mutant hPAH enzymes.
Collapse
Affiliation(s)
- Cátia Nascimento
- Metabolism and Genetics Group, iMed.UL, Faculdade Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | | | |
Collapse
|
32
|
Siltberg-Liberles J, Steen IH, Svebak RM, Martinez A. The phylogeny of the aromatic amino acid hydroxylases revisited by characterizing phenylalanine hydroxylase from Dictyostelium discoideum. Gene 2008; 427:86-92. [DOI: 10.1016/j.gene.2008.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 08/28/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
33
|
Gersting SW, Kemter KF, Staudigl M, Messing DD, Danecka MK, Lagler FB, Sommerhoff CP, Roscher AA, Muntau AC. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet 2008; 83:5-17. [PMID: 18538294 PMCID: PMC2443833 DOI: 10.1016/j.ajhg.2008.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/09/2008] [Accepted: 05/17/2008] [Indexed: 11/21/2022] Open
Abstract
A significant share of patients with phenylalanine hydroxylase (PAH) deficiency benefits from pharmacological doses of tetrahydrobiopterin (BH(4)), the natural PAH cofactor. Phenylketonuria (PKU) is hypothesized to be a conformational disease, with loss of function due to protein destabilization, and the restoration of enzyme function that is observed in BH(4) treatment might be transmitted by correction of protein misfolding. To elucidate the molecular basis of functional impairment in PAH deficiency, we investigated the impact of ten PAH gene mutations identified in patients with BH(4)-responsiveness on enzyme kinetics, stability, and conformation of the protein (F55L, I65S, H170Q, P275L, A300S, S310Y, P314S, R408W, Y414C, Y417H). Residual enzyme activity was generally high, but allostery was disturbed in almost all cases and pointed to altered protein conformation. This was confirmed by reduced proteolytic stability, impaired tetramer assembly or aggregation, increased hydrophobicity, and accelerated thermal unfolding--with particular impact on the regulatory domain--observed in most variants. Three-dimensional modeling revealed the involvement of functionally relevant amino acid networks that may communicate misfolding throughout the protein. Our results substantiate the view that PAH deficiency is a protein-misfolding disease in which global conformational changes hinder molecular motions essential for physiological enzyme function. Thus, PKU has evolved from a model of a genetic disease that leads to severe neurological impairment to a model of a treatable protein-folding disease with loss of function.
Collapse
Affiliation(s)
- Søren W. Gersting
- Department of Molecular Pediatrics, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Kristina F. Kemter
- Department of Molecular Pediatrics, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Michael Staudigl
- Department of Molecular Pediatrics, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Dunja D. Messing
- Department of Molecular Pediatrics, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Marta K. Danecka
- Department of Molecular Pediatrics, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Florian B. Lagler
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Christian P. Sommerhoff
- Department of Clinical Chemistry and Clinical Biochemistry, Surgical Clinic, Ludwig Maximilians University, 80337 Munich, Germany
| | - Adelbert A. Roscher
- Department of Molecular Pediatrics, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Ania C. Muntau
- Department of Molecular Pediatrics, Children's Research Center, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| |
Collapse
|
34
|
Leiros HKS, Pey AL, Innselset M, Moe E, Leiros I, Steen IH, Martinez A. Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. J Biol Chem 2007; 282:21973-86. [PMID: 17537732 DOI: 10.1074/jbc.m610174200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The characteristic of cold-adapted enzymes, high catalytic efficiency at low temperatures, is often associated with low thermostability and high flexibility. In this context, we analyzed the catalytic properties and solved the crystal structure of phenylalanine hydroxylase from the psychrophilic bacterium Colwellia psychrerythraea 34H (CpPAH). CpPAH displays highest activity with tetrahydrobiopterin (BH(4)) as cofactor and at 25 degrees C (15 degrees C above the optimal growth temperature). Although the enzyme is monomeric with a single L-Phe-binding site, the substrate binds cooperatively. In comparison with PAH from mesophilic bacteria and mammalian organisms, CpPAH shows elevated [S(0.5)](L-Phe) (= 1.1 +/- 0.1 mm) and K(m)(BH(4))(= 0.3 +/- 0.1 mm), as well as high catalytic efficiency at 10 degrees C. However, the half-inactivation and denaturation temperature is only slightly lowered (T(m) approximately 52 degrees C; where T(m) is half-denaturation temperature), in contrast to other cold-adapted enzymes. The crystal structure shows regions of local flexibility close to the highly solvent accessible binding sites for BH(4) (Gly(87)/Phe(88)/Gly(89)) and l-Phe (Tyr(114)-Pro(118)). Normal mode and COREX analysis also detect these and other areas with high flexibility. Greater mobility around the active site and disrupted hydrogen bonding abilities for the cofactor appear to represent cold-adaptive properties that do not markedly affect the thermostability of CpPAH.
Collapse
Affiliation(s)
- Hanna-Kirsti S Leiros
- Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, University of Tromsø, Tromsø
| | | | | | | | | | | | | |
Collapse
|
35
|
Carkaci-Salli N, Flanagan JM, Martz MK, Salli U, Walther DJ, Bader M, Vrana KE. Functional Domains of Human Tryptophan Hydroxylase 2 (hTPH2). J Biol Chem 2006; 281:28105-12. [PMID: 16864580 DOI: 10.1074/jbc.m602817200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in serotonin biosynthesis. A novel gene, termed TPH2, has recently been described. This gene is preferentially expressed in the central nervous system, while the original TPH1 is the peripheral gene. We have expressed human tryptophan hydroxylase 2 (hTPH2) and two deletion mutants (NDelta150 and NDelta150/CDelta24) using isopropyl beta-D-thiogalactopyranoside-free autoinduction in Escherichia coli. This expression system produced active wild type TPH2 with relatively low solubility. The solubility was increased for mutants lacking the NH(2)-terminal regulatory domain. The solubility of hTPH2, NDelta150, and NDelta150/CDelta24 are 6.9, 62, and 97.5%, respectively. Removal of the regulatory domain also produced a more than 6-fold increase in enzyme stability (t((1/2)) at 37 degrees C). The wild type hTPH2, like other members of the aromatic amino acid hydroxylase superfamily, exists as a homotetramer (236 kDa on size exclusion chromatography). Similarly, NDelta150 also migrates as a tetramer (168 kDa). In contrast, removal of the NH(2)-terminal domain and the COOH-terminal, putative leucine zipper tetramerization domain produces monomeric enzyme (39 kDa). Interestingly, removal of the NH(2)-terminal regulatory domain did not affect the Michaelis constants for either substrate but did increase V(max) values. These data identify the NH(2)-terminal regulatory domain as the source of hTPH2 instability and reduced solubility.
Collapse
Affiliation(s)
- Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-2360, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Pey AL, Martinez A. The activity of wild-type and mutant phenylalanine hydroxylase and its regulation by phenylalanine and tetrahydrobiopterin at physiological and pathological concentrations: an isothermal titration calorimetry study. Mol Genet Metab 2005; 86 Suppl 1:S43-53. [PMID: 15936235 DOI: 10.1016/j.ymgme.2005.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/24/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
The activity of phenylalanine hydroxylase (PAH) is regulated by the levels of both the substrate (L-Phe) and the natural cofactor (6R)-tetrahydrobiopterin (BH4). It has recently been observed that many PAH mutants associated with BH4-responsive phenylketonuria display abnormal kinetic and regulatory properties as shown by standard kinetic analyses. In this work, we have developed a high-sensitive and high-throughput activity assay based on isothermal titration calorimetry (ITC) in order to study the kinetic properties of wild-type PAH (wt-PAH) and the BH4-responsive c.204A>T (p.R68S) mutant at physiological and superphysiological concentrations of L-Phe and BH4. Compared to wt-PAH, the p.R68S mutant showed reduced apparent and equilibrium binding affinity for the natural cofactor and increased affinity and non-cooperative response for L-Phe, together with a strong substrate inhibition that is alleviated at high BH4 concentrations. For both wt-PAH and mutant, the apparent affinity for BH4 decreases at increasing L-Phe concentrations, and the affinity for the substrate also depends on the cofactor concentration. Our results indicate that the activity landscape for wt and mutant enzymes is more complex than expected from standard kinetic analyses and highlight the applicability of this ITC-based assay to characterize the activity and regulation of PAH at a wide range of substrate and cofactor concentrations. Moreover, the results aid to understand the activity dynamics of wild-type and mutant PAH under physiological and pathological conditions, as well as BH4-responsiveness in certain PKU mutations.
Collapse
Affiliation(s)
- Angel L Pey
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | |
Collapse
|
37
|
Abu-Omar MM, Loaiza A, Hontzeas N. Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem Rev 2005; 105:2227-52. [PMID: 15941213 DOI: 10.1021/cr040653o] [Citation(s) in RCA: 457] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahdi M Abu-Omar
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | |
Collapse
|
38
|
Christensen R, Kolvraa S, Jensen TG. Manipulation of the Phenylalanine Metabolism in Human Keratinocytes by Retroviral Mediated Gene Transfer. Cells Tissues Organs 2005; 179:170-8. [PMID: 16046863 DOI: 10.1159/000085952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2005] [Indexed: 11/19/2022] Open
Abstract
Phenylketonuria (PKU) is an inherited disease causing increased levels of phenylalanine in body fluids due to deficiency of hepatic phenylalanine hydroxylase (PAH) or other enzymes involved in the phenylalanine metabolism. With the long-term goal of using gene transfer to the skin to remove phenylalanine, we have previously shown that overexpression of PAH, catalyzing the hydroxylation of phenylalanine, and GTP cyclohydrolase (GTP-CH), involved in the formation of the necessary cofactor BH4,are required. Here we investigate whether manipulation of additional steps in the phenylalanine clearance pathway can further improve the phenylalanine uptake and metabolism. Transport of phenylalanine into human keratinocytes could be increased by overexpressing the two subunits LAT1 and 4F2hc of the large neutral amino acid transporter. The PAH enzyme activity was titrated by employing mutant PAH enzymes with different specific activity and by increasing the PAH copy number in transduced keratinocytes using a repeated transduction procedure. Finally, the intracellular tyrosine concentration was lowered by overexpression of tyrosinase converting tyrosine to dopaquinone. However, measured over a 24-hour period neither of these manipulations resulted in an increased phenylalanine uptake. These results suggest that other enzymes than GTP-CH, involved in BH4 synthesis and/or regeneration, can be rate-limiting in the genetically modified keratinocytes.
Collapse
Affiliation(s)
- Rikke Christensen
- Department of Human Genetics, University of Aarhus, Aarhus, Denmark.
| | | | | |
Collapse
|
39
|
Erlandsen H, Pey AL, Gámez A, Pérez B, Desviat LR, Aguado C, Koch R, Surendran S, Tyring S, Matalon R, Scriver CR, Ugarte M, Martínez A, Stevens RC. Correction of kinetic and stability defects by tetrahydrobiopterin in phenylketonuria patients with certain phenylalanine hydroxylase mutations. Proc Natl Acad Sci U S A 2004; 101:16903-8. [PMID: 15557004 PMCID: PMC534739 DOI: 10.1073/pnas.0407256101] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Indexed: 11/18/2022] Open
Abstract
Phenylketonuria patients harboring a subset of phenylalanine hydroxylase (PAH) mutations have recently shown normalization of blood phenylalanine levels upon oral administration of the PAH cofactor tetrahydrobiopterin [(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4)]. Several hypotheses have been put forward to explain BH4 responsiveness, but the molecular basis for the corrective effect(s) of BH4 has not been understood. We have investigated the biochemical, kinetic, and structural changes associated with BH4-responsive mutations (F39L, I65T, R68S, H170D, E178G, V190A, R261Q, A300S, L308F, A313T, A373T, V388M, E390G, P407S, and Y414C). The biochemical and kinetic characterization of the 15 mutants studied points toward a multifactorial basis for the BH4 responsiveness; the mutants show residual activity (>30% of WT) and display various kinetic defects, including increased Km (BH4) and reduced cooperativity of substrate binding, but no decoupling of cofactor (BH4) oxidation. For some, BH4 seems to function through stabilization and protection of the enzyme from inactivation and proteolytic degradation. In the crystal structures of a phenylketonuria mutant, A313T, minor changes were seen when compared with the WT PAH structures, consistent with the mild effects the mutant has upon activity of the enzyme both in vitro and in vivo. Truncations made in the A313T mutant PAH form revealed that the N and C termini of the enzyme influence active site binding. Of fundamental importance is the observation that BH4 appears to increase Phe catabolism if at least one of the two heterozygous mutations has any residual activity remaining.
Collapse
Affiliation(s)
- Heidi Erlandsen
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gámez A, Wang L, Straub M, Patch MG, Stevens RC. Toward PKU Enzyme Replacement Therapy: PEGylation with Activity Retention for Three Forms of Recombinant Phenylalanine Hydroxylase. Mol Ther 2004; 9:124-9. [PMID: 14741785 DOI: 10.1016/j.ymthe.2003.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Phenylketonuria (PKU) is a disease in which phenylalanine and phenylalanine-derived metabolites build up to neurotoxic levels due to mutations in the phenylalanine hydroxylase gene (PAH). Enzyme replacement therapy is a viable option to supply active PAH. However, the inherent protease sensitivity and potential immunogenicity of PAH have precluded adoption of this approach. In this report, we have used polyethylene glycol derivatization (PEGylation) to produce protected forms of PAH for potential therapeutic use. Three recombinantly produced PAH enzymes were reacted with activated PEG species, with the aim of developing a stable and active PKU enzyme replacement. Tetrameric full-length human PAH, dimeric double-truncated (DeltaN102-DeltaC428) human PAH, and monomeric Chromobacterium violaceum PAH were PEGylated with succinimidyl succinate polyethylene glycol of molecular weight 5000 or 20,000 Da. Characterization of the PEGylated species was accomplished with MALDI-TOF mass spectrometry, SDS-PAGE, and specific activity measurements using ESI mass spectrometry. All PEG-derivatized PAH species retained catalytic activity, and, at low numbers of PEG molecules attached, these PEGylated PAH proteins were found to be more active and more stable than their non-derivatized PAH counterparts.
Collapse
Affiliation(s)
- Alejandra Gámez
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
41
|
Andersen OA, Stokka AJ, Flatmark T, Hough E. 2.0A resolution crystal structures of the ternary complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine or L-norleucine: substrate specificity and molecular motions related to substrate binding. J Mol Biol 2003; 333:747-57. [PMID: 14568534 DOI: 10.1016/j.jmb.2003.09.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The crystal structures of the catalytic domain of human phenylalanine hydroxylase (hPheOH) in complex with the physiological cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and the substrate analogues 3-(2-thienyl)-L-alanine (THA) or L-norleucine (NLE) have been determined at 2.0A resolution. The ternary THA complex confirms a previous 2.5A structure, and the ternary NLE complex shows that similar large conformational changes occur on binding of NLE as those observed for THA. Both structures demonstrate that substrate binding triggers structural changes throughout the entire protomer, including the displacement of Tyr138 from a surface position to a buried position at the active site, with a maximum displacement of 20.7A for its hydroxyl group. Two hinge-bending regions, centred at Leu197 and Asn223, act in consort upon substrate binding to create further large structural changes for parts of the C terminus. Thus, THA/L-Phe binding to the active site is likely to represent the epicentre of the global conformational changes observed in the full-length tetrameric enzyme. The carboxyl and amino groups of THA and NLE are positioned identically in the two structures, supporting the conclusion that these groups are of key importance in substrate binding, thus explaining the broad non-physiological substrate specificity observed for artificially activated forms of the enzyme. However, the specific activity with NLE as the substrate was only about 5% of that with THA, which is explained by the different affinities of binding and different catalytic turnover.
Collapse
Affiliation(s)
- Ole Andreas Andersen
- Department of Chemistry, Faculty of Science, University of Tromsø, N-9037, Tromsø, Norway
| | | | | | | |
Collapse
|
42
|
Carvalho RN, Solstad T, Bjørgo E, Barroso JF, Flatmark T. Deamidations in recombinant human phenylalanine hydroxylase. Identification of labile asparagine residues and functional characterization of Asn --> Asp mutant forms. J Biol Chem 2003; 278:15142-52. [PMID: 12554741 DOI: 10.1074/jbc.m212180200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant human phenylalanine hydroxylase (hPAH) expressed in Escherichia coli for 24 h at 28 degrees C has been found by two-dimensional electrophoresis to exist as a mixture of four to five molecular forms as a result of nonenzymatic deamidation of labile Asn residues. The multiple deamidations alter the functional properties of the enzyme including its affinity for l-phenylalanine and tetrahydrobiopterin, catalytic efficiency, and substrate inhibition and also result in enzyme forms more susceptible to limited tryptic proteolysis. Asn(32) in the regulatory domain deamidates very rapidly because of its nearest neighbor amino acid Gly(33) (Solstad, T., Carvalho, R. N., Andersen, O. A., Waidelich, D., and Flatmark, T. (2003) Eur. J. Biochem., in press). Matrix-assisted laser desorption/ionization time of flight-mass spectrometry of the tryptic peptides in the catalytic domain of a 24-h (28 degrees C) expressed enzyme has shown Asn(376) and Asn(133) to be labile residues. Site-directed mutagenesis of nine Asn residues revealed that the deamidations of Asn(32) and Asn(376) are the main determinants for the functional and regulatory differences observed between the 2- and 24-h-induced wild-type (wt) enzyme. The Asn(32) --> Asp, Asn(376) --> Asp, and the double mutant forms expressed for 2 h at 28 degrees C revealed qualitatively similar regulatory properties as the highly deamidated 24-h expressed wt-hPAH. Moreover, deamidation of Asn(32) in the wt-hPAH (24 h expression at 28 degrees C) and the Asn(32) --> Asp mutation both increase the initial rate of phosphorylation of Ser(16) by cAMP-dependent protein kinase (p < 0.005). By contrast, the substitution of Gly(33) with Ala or Val, both preventing the deamidation of Asn(32), resulted in enzyme forms that were phosphorylated at a similar rate as nondeamidated wt-hPAH, even on 24-h expression. The other Asn --> Asp substitutions (in the catalytic domain) revealed that Asn(207) and Asn(223) have an important stabilizing structural function. Finally, two recently reported phenylketonuria mutations at Asn residues in the catalytic domain were studied, i.e. Asn(167) --> Ile and Asn(207) --> Asp, and their phenotypes were characterized.
Collapse
Affiliation(s)
- Raquel Negrão Carvalho
- Department of Biochemistry and Molecular Biology and the Proteomic Unit, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
43
|
Thórólfsson M, Teigen K, Martínez A. Activation of phenylalanine hydroxylase: effect of substitutions at Arg68 and Cys237. Biochemistry 2003; 42:3419-28. [PMID: 12653545 DOI: 10.1021/bi034021s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenylalanine hydroxylase (PAH) is a multidomain tetrameric enzyme that displays positive cooperative substrate binding. This cooperative response is believed to be of physiological significance as a mechanism that controls L-Phe homeostasis in blood. The substrate induces an activating conformational change in the enzyme affecting the secondary, tertiary, and quaternary structures. Chemical modification and substitution with a negatively charged residue of Cys237 in human PAH (hPAH) also result in activation of the enzyme. As seen in the modeled structure of full-length hPAH, Cys237 is located in the catalytic domain close to residues in the oligomerization and regulatory domains of an adjacent subunit in the dimer, notably to Arg68. This residue is located in a prominent loop (68-75), which also has contacts with the dimerization motif from the same subunit. To investigate further the involvement of Cys237 and Arg68 in the activation of the enzyme, we have prepared mutants of hPAH at these positions, with substitutions of different charge and size. The mutations C237D, R68A, and C237A cause an increase of the basal activity and affinity for L-Phe, while the mutation C237R results in reduced affinity for the substrate and elimination of the positive cooperativity. The conformational changes induced by the mutations were studied by far-UV circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. All together, our results indicate that the activating mutations induce a series of conformational changes including both the displacement of the inhibitory N-terminal sequence (residues 19-33) that covers the active site and the domain movements around the hinge region Arg111-Thr117, in addition to the rearrangement of the loop 68-75. The same conformational changes appear to be involved in the activation of PAH induced by L-Phe.
Collapse
Affiliation(s)
- Matthías Thórólfsson
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, 5009-Bergen, Norway
| | | | | |
Collapse
|
44
|
Stokka AJ, Flatmark T. Substrate-induced conformational transition in human phenylalanine hydroxylase as studied by surface plasmon resonance analyses: the effect of terminal deletions, substrate analogues and phosphorylation. Biochem J 2003; 369:509-18. [PMID: 12379147 PMCID: PMC1223104 DOI: 10.1042/bj20021009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Revised: 10/09/2002] [Accepted: 10/15/2002] [Indexed: 11/17/2022]
Abstract
The optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the slow conformational transition (isomerization) which occurs in human phenylalanine hydroxylase (hPAH) on the binding/dissociation of L-phenylalanine (L-Phe). The binding to immobilized tetrameric wt-hPAH resulted in a time-dependent increase in the refractive index (up to approx. 3 min at 25 degrees C) with an end point of approx. 75 RU (resonance units)/(pmol subunit/mm(2)). By contrast, the contribution of binding the substrate (165 Da) to its catalytic core enzyme [DeltaN(1-102)/DeltaC(428-452)-hPAH] was only approx. 2 RU/(pmol subunit/mm(2)). The binding isotherm for tetrameric and dimeric wt-hPAH revealed a [S](0.5)-value of 98+/-7 microM (h =1.0) and 158+/-11 microM, respectively, i.e. for the tetramer it is slightly lower than the value (145+/-5 microM) obtained for the co-operative binding (h =1.6+/-0.4) of L-Phe as measured by the change in intrinsic tryptophan fluorescence. The responses obtained by SPR and intrinsic tryptophan fluorescence are both considered to be related to the slow reversible conformational transition which occurs in the enzyme upon L-Phe binding, i.e. by the transition from a low-activity state ('T-state') to a relaxed high-activity state ('R-state') characteristic of this hysteretic enzyme, however, the two methods reflect different elements of the transition. Studies on the N- and C-terminal truncated forms revealed that the N-terminal regulatory domain (residues 1-117) plus catalytic domain (residues 118-411) were required for the full signal amplitude of the SPR response. Both the on- and off-rates for the conformational transition were biphasic, which is interpreted in terms of a difference in the energy barrier and the rate by which the two domains (catalytic and regulatory) undergo a conformational change. The substrate analogue 3-(2-thienyl)-L-alanine revealed an SPR response comparable with that of L-Phe on binding to wild-type hPAH.
Collapse
Affiliation(s)
- Anne J Stokka
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | |
Collapse
|
45
|
Andersen OA, Flatmark T, Hough E. Crystal structure of the ternary complex of the catalytic domain of human phenylalanine hydroxylase with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine, and its implications for the mechanism of catalysis and substrate activation. J Mol Biol 2002; 320:1095-108. [PMID: 12126628 DOI: 10.1016/s0022-2836(02)00560-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phenylalanine hydroxylase catalyzes the stereospecific hydroxylation of L-phenylalanine, the committed step in the degradation of this amino acid. We have solved the crystal structure of the ternary complex (hPheOH-Fe(II).BH(4).THA) of the catalytically active Fe(II) form of a truncated form (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH), using the catalytically active reduced cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and 3-(2-thienyl)-L-alanine (THA) as a substrate analogue. The analogue is bound in the second coordination sphere of the catalytic iron atom with the thiophene ring stacking against the imidazole group of His285 (average interplanar distance 3.8A) and with a network of hydrogen bonds and hydrophobic contacts. Binding of the analogue to the binary complex hPheOH-Fe(II).BH(4) triggers structural changes throughout the entire molecule, which adopts a slightly more compact structure. The largest change occurs in the loop region comprising residues 131-155, where the maximum r.m.s. displacement (9.6A) is at Tyr138. This loop is refolded, bringing the hydroxyl oxygen atom of Tyr138 18.5A closer to the iron atom and into the active site. The iron geometry is highly distorted square pyramidal, and Glu330 adopts a conformation different from that observed in the hPheOH-Fe(II).BH(4) structure, with bidentate iron coordination. BH(4) binds in the second coordination sphere of the catalytic iron atom, and is displaced 2.6A in the direction of Glu286 and the iron atom, relative to the hPheOH-Fe(II).BH(4) structure, thus changing its hydrogen bonding network. The active-site structure of the ternary complex gives new insight into the substrate specificity of the enzyme, notably the low affinity for L-tyrosine. Furthermore, the structure has implications both for the catalytic mechanism and the molecular basis for the activation of the full-length tetrameric enzyme by its substrate. The large conformational change, moving Tyr138 from a surface position into the active site, may reflect a possible functional role for this residue.
Collapse
|
46
|
Erlandsen H, Kim JY, Patch MG, Han A, Volner A, Abu-Omar MM, Stevens RC. Structural comparison of bacterial and human iron-dependent phenylalanine hydroxylases: similar fold, different stability and reaction rates. J Mol Biol 2002; 320:645-61. [PMID: 12096915 DOI: 10.1016/s0022-2836(02)00496-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Structure determination of bacterial homologues of human disease-related proteins provides an efficient path to understanding the three-dimensional fold of proteins that are associated with human diseases. However, the precise locations of active-site residues are often quite different between bacterial and human versions of an enzyme, creating significant differences in the biological understanding of enzyme homologs. To study this hypothesis, phenylalanine hydroxylase from a bacterial source has been structurally characterized at high resolution and comparison is made to the human analog. The enzyme phenylalanine hydroxylase (PheOH) catalyzes the hydroxylation of l-phenylalanine into l-tyrosine utilizing the cofactors (6R)-l-erythro-5,6,7,8 tetrahydrobiopterin (BH(4)) and molecular oxygen. Previously determined X-ray structures of human and rat PheOH, with a sequence identity of more than 93%, show that these two structures are practically identical. It is thus of interest to compare the structure of the divergent Chromobacterium violaceum phenylalanine hydroxylase (CvPheOH) ( approximately 24% sequence identity overall) to the related human and rat PheOH structures. We have determined crystal structures of CvPheOH to high resolution in the apo-form (no Fe-added), Fe(III)-bound form, and 7,8-dihydro-l-biopterin (7,8-BH(2)) plus Fe(III)-bound form. The bacterial enzyme displays higher activity and thermal melting temperature, and structurally, differences are observed in the N and C termini, and in a loop close to the active-site iron atom.
Collapse
Affiliation(s)
- Heidi Erlandsen
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Thórólfsson M, Ibarra-Molero B, Fojan P, Petersen SB, Sanchez-Ruiz JM, Martínez A. L-phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study. Biochemistry 2002; 41:7573-85. [PMID: 12056888 DOI: 10.1021/bi0160720] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human phenylalanine hydroxylase (hPAH) is a tetrameric enzyme that catalyzes the hydroxylation of L-phenylalanine (L-Phe) to L-tyrosine; a dysfunction of this enzyme causes phenylketonuria. Each subunit in hPAH contains an N-terminal regulatory domain (Ser2-Ser110), a catalytic domain (Asp112-Arg410), and an oligomerization domain (Ser411-Lys452) including dimerization and tetramerization motifs. Two partially overlapping transitions are seen in differential scanning calorimetry (DSC) thermograms for wild-type hPAH in 0.1 M Na-Hepes buffer, 0.1 M NaCl, pH 7.0. Although these transitions are irreversible, studies on their scan-rate dependence support that the equilibrium thermodynamics analysis is permissible in this case. Comparison with the DSC thermograms for truncated forms of the enzyme, studies on the protein and L-Phe concentration effects on the transitions, and structure-energetic calculations based on a modeled structure support that the thermal denaturation of hPAH occurs in three stages: (i) unfolding of the four regulatory domains, which is responsible for the low-temperature calorimetric transition; (ii) unfolding of two (out of the four) catalytic domains, which is responsible for the high-temperature transition; and (iii) irreversible protein denaturation, which is likely responsible for the observed exothermic distortion in the high-temperature side of the high-temperature transition. Stages 1 and 2 do not appear to be two-state processes. We present an approach to the analysis of ligand effects on DSC transition temperatures, which is based on the general binding polynomial formalism and is not restricted to two-state transitions. Application of this approach to the L-Phe effect on the DSC thermograms for hPAH suggests that (i) there are no binding sites for L-Phe in the regulatory domains; therefore, contrary to the common belief, the activation of PAH by L-Phe seems to be the result of its homotropic cooperative binding to the active sites. (ii) The regulatory domain appears to be involved in cooperativity through its interactions with the catalytic and oligomerization domains; thus, upon regulatory domain unfolding, the cooperativity in the binding of L-Phe to the catalytic domains seems to be lost and the value of the L-Phe concentration corresponding to half-saturation is increased. Overall, our results contribute to the understanding of the conformational stability and the substrate-induced cooperative activation of this important enzyme.
Collapse
Affiliation(s)
- Matthías Thórólfsson
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
48
|
Thórólfsson M, Døskeland AP, Muga A, Martínez A. The binding of tyrosine hydroxylase to negatively charged lipid bilayers involves the N-terminal region of the enzyme. FEBS Lett 2002; 519:221-6. [PMID: 12023049 DOI: 10.1016/s0014-5793(02)02745-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of catecholamines. We have studied the association of recombinant human TH with model membranes by using either liposomes or silica gel beads coated with single phospholipid bilayers (TRANSIL). The use of TRANSIL beads has allowed the determination of apparent dissociation constants (Kd) for the binding of the enzyme to negatively charged bilayers (Kd=230-380 microM, at pH 6.0-7.0). Binding to the bilayers is accompanied by a decrease in enzyme activity. Proteolysed forms of the enzyme show decreased binding affinity and two putative amphipathic N-terminal alpha-helices are proposed to be involved in membrane binding. As seen by circular dichroism, binding to the bilayer does not seem to induce significant changes on the secondary structure content of the enzyme, but alpha-helical structures appear to be stabilized against thermal denaturation in the membrane-bound state. Thus, amphitropism, a mechanism that regulates the function of peripheral proteins by weak binding to membrane lipids, may add to the factors that regulate both the activity and the stability of TH.
Collapse
Affiliation(s)
- Matthías Thórólfsson
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, Bergen, Norway
| | | | | | | |
Collapse
|
49
|
McKinney J, Teigen K, Frøystein NA, Salaün C, Knappskog PM, Haavik J, Martínez A. Conformation of the substrate and pterin cofactor bound to human tryptophan hydroxylase. Important role of Phe313 in substrate specificity. Biochemistry 2001; 40:15591-601. [PMID: 11747434 DOI: 10.1021/bi015722x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptophan hydroxylase (TPH) carries out the 5-hydroxylation of L-Trp, which is the rate-limiting step in the synthesis of serotonin. We have prepared and characterized a stable N-terminally truncated form of human TPH that includes the catalytic domain (Delta90TPH). We have also determined the conformation and distances to the catalytic non-heme iron of both L-Trp and the tetrahydrobiopterin cofactor analogue L-erythro-7,8-dihydrobiopterin (BH2) bound to Delta90TPH by using 1H NMR spectroscopy. The bound conformers of the substrate and the pterin were then docked into the modeled three-dimensional structure of TPH. The resulting ternary TPH-BH2-L-Trp structure is very similar to that previously determined by the same methods for the complex of phenylalanine hydroxylase (PAH) with BH2 and L-Phe [Teigen, K., et al. (1999) J. Mol. Biol. 294, 807-823]. In the model, L-Trp binds to the enzyme through interactions with Arg257, Ser336, His272, Phe318, and Phe313, and the ring of BH2 interacts mainly with Phe241 and Glu273. The distances between the hydroxylation sites at C5 in L-Trp and C4a in the pterin, i.e., 6.1 +/- 0.4 A, and from each of these sites to the iron, i.e., 4.1 +/- 0.3 and 4.4 +/- 0.3 A, respectively, are also in agreement with the formation of a transient iron-4a-peroxytetrahydropterin in the reaction, as proposed for the other hydroxylases. The different conformation of the dihydroxypropyl chain of BH2 in PAH and TPH seems to be related to the presence of nonconserved residues, i.e., Tyr235 and Pro238 in TPH, at the cofactor binding site. Moreover, Phe313, which seems to interact with the substrate through ring stacking, corresponds to a Trp residue in both tyrosine hydroxylase and PAH (Trp326) and appears to be an important residue for influencing the substrate specificity in this family of enzymes. We show that the W326F mutation in PAH increases the relative preference for L-Trp as the substrate, while the F313W mutation in TPH increases the preference for L-Phe, possibly by a conserved active site volume effect.
Collapse
Affiliation(s)
- J McKinney
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
50
|
Andersen OA, Flatmark T, Hough E. High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin. J Mol Biol 2001; 314:279-91. [PMID: 11718561 DOI: 10.1006/jmbi.2001.5061] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structures of the catalytic domain (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH) in its catalytically competent Fe(II) form and binary complex with the reduced pterin cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) have been determined to 1.7 and 1.5 A, respectively. When compared with the structures reported for various catalytically inactive Fe(III) forms, several important differences have been observed, notably at the active site. Thus, the non-liganded hPheOH-Fe(II) structure revealed well defined electron density for only one of the three water molecules reported to be coordinated to the iron in the high-spin Fe(III) form, as well as poor electron density for parts of the coordinating side-chain of Glu330. The reduced cofactor (BH4), which adopts the expected half-semi chair conformation, is bound in the second coordination sphere of the catalytic iron with a C4a-iron distance of 5.9 A. BH4 binds at the same site as L-erythro-7,8-dihydrobiopterin (BH2) in the binary hPheOH-Fe(III)-BH2 complex forming an aromatic pi-stacking interaction with Phe254 and a network of hydrogen bonds. However, compared to that structure the pterin ring is displaced about 0.5 A and rotated about 10 degrees, and the torsion angle between the hydroxyl groups of the cofactor in the dihydroxypropyl side-chain has changed by approximately 120 degrees enabling O2' to make a strong hydrogen bond (2.4 A) with the side-chain oxygen of Ser251. Carbon atoms in the dihydroxypropyl side-chain make several hydrophobic contacts with the protein. The iron is six-coordinated in the binary complex, but the overall coordination geometry is slightly different from that of the Fe(III) form. Most important was the finding that the binding of BH4 causes the Glu330 ligand to change its coordination to the iron when comparing with non-liganded hPheOH-Fe(III) and the binary hPheOH-Fe(III)-BH2 complex.
Collapse
Affiliation(s)
- O A Andersen
- Department of Chemistry, University of Tromsø, Tromsø, N-9037, Norway
| | | | | |
Collapse
|