1
|
Feng S, Zhou L, Sharif R, Diao W, Liu J, Liu X, Chen K, Chen G, Cao B, Zhu Z, Liao Y, Lei J, Chen C. Mapping and cloning of pepper fruit color-related genes based on BSA-seq technology. FRONTIERS IN PLANT SCIENCE 2024; 15:1447805. [PMID: 39524565 PMCID: PMC11543483 DOI: 10.3389/fpls.2024.1447805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024]
Abstract
Fruit color is an important qualitative trait that greatly influences the marketability of peppers. Fruit color can be divided into two categories. Green fruit color denotes commercial maturity, whereas ripe fruit indicates physiological maturity. Herein, segregation populations were created using the 'D24' with pale green in the green fruit stage, orange in the mature fruit stage, and 'D47' with green in the green fruit stage and red in the mature fruit stage. BSA-seq and genetic linkage map analysis revealed green fruit color was linked to (gyqtl1.1) on Chr1 and (gyqtl10.1) on Chr10, while mature fruit color was linked to Chr6. Using functional annotation, sequence, and expression analysis, we speculate that an SNP mutation in the CapGLK2 gene at the gyqtl10.1 interval could initiate premature termination of translation, thus yielding green to pale green fruits in D47. Conversely, the orange color in mature D24 fruits is due to the Indel-mediated premature termination of translation of the CapCCS gene. Our research offers a theoretical foundation for choosing different varieties of pepper fruit based on their color.
Collapse
Affiliation(s)
- Shuo Feng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ling Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rahat Sharif
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Weiping Diao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jiali Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xinxin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kunhao Chen
- Guangdong Helinong Biological Seed Industry Co., Ltd, Shantou, Guangdong, China
| | - Guoju Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Liao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianjun Lei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Changming Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Jiménez A, Correa S, Sevilla F. Identification of Superoxide Dismutase (SOD) Isozymes in Plant Tissues. Methods Mol Biol 2024; 2798:205-212. [PMID: 38587745 DOI: 10.1007/978-1-0716-3826-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Superoxide and hydrogen peroxide are reactive oxygen species (ROS) involved in the oxidation of multiple biological molecules and the signaling processes during plant growth and stress response. Thus, control of ROS is fundamental for cell survival and development, with superoxide dismutase (EC 1.15.1.1, SOD) being one of the main enzymes involved. Different isoforms of SOD catalyze the dismutation of superoxide (O2.-) to hydrogen peroxide (H2O2) and oxygen (O2), such as Mn-SODs, Cu,Zn-SODs, and Fe-SODs. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) combined with a specific staining method for SOD activity, the protocol describes the identification of different SOD isozymes, based on their differential inhibition by KCN and H2O2, in different organs and plant species such as pea (Pisum sativum L.) leaves and pepper (Capsicum annuum L.) fruits.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Sandra Correa
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
3
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
4
|
Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening. Antioxidants (Basel) 2023; 12:antiox12020346. [PMID: 36829905 PMCID: PMC9952312 DOI: 10.3390/antiox12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.
Collapse
|
5
|
Morelli L, García Romañach L, Glauser G, Shanmugabalaji V, Kessler F, Rodriguez-Concepcion M. Nutritional Enrichment of Plant Leaves by Combining Genes Promoting Tocopherol Biosynthesis and Storage. Metabolites 2023; 13:metabo13020193. [PMID: 36837812 PMCID: PMC9965820 DOI: 10.3390/metabo13020193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The enrichment of plant tissues in tocochromanols (tocopherols and tocotrienols) is an important biotechnological goal due to their vitamin E and antioxidant properties. Improvements based on stimulating tocochromanol biosynthesis have repeatedly been achieved, however, enhancing sequestering and storage in plant plastids remains virtually unexplored. We previously showed that leaf chloroplasts can be converted into artificial chromoplasts with a proliferation of plastoglobules by overexpression of the bacterial crtB gene. Here we combined coexpression of crtB with genes involved in tocopherol biosynthesis to investigate the potential of artificial leaf chromoplasts for vitamin E accumulation in Nicotiana benthamiana leaves. We show that this combination improves tocopherol levels compared to controls without crtB and confirm that VTE1, VTE5, VTE6 and tyrA genes are useful to increase the total tocopherol levels, while VTE4 further leads to enrichment in α-tocopherol (the tocochromanol showing highest vitamin E activity). Additionally, we show that treatments that further promote plastoglobule formation (e.g., exposure to intense light or dark-induced senescence) result in even higher improvements in the tocopherol content of the leaves. An added advantage of our strategy is that it also results in increased levels of other related plastidial isoprenoids such as carotenoids (provitamin A) and phylloquinones (vitamin K1).
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
- Correspondence: (L.M.); (M.R.-C.)
| | - Laura García Romañach
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | | | - Felix Kessler
- Laboratory of Plant Physiology, Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence: (L.M.); (M.R.-C.)
| |
Collapse
|
6
|
González-Gordo S, Rodríguez-Ruiz M, Paradela A, Ramos-Fernández A, Corpas FJ, Palma JM. Mitochondrial protein expression during sweet pepper (Capsicum annuum L.) fruit ripening: iTRAQ-based proteomic analysis and role of cytochrome c oxidase. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153734. [PMID: 35667195 DOI: 10.1016/j.jplph.2022.153734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The physiological process of fruit ripening is associated with the late developmental stages of plants in which mitochondrial organelles play an important role in the final success of this whole process. Thus, an isobaric tag for relative and absolute quantification (iTRAQ)-based analysis was used to quantify the mitochondrial proteome in pepper fruits in this study. Analysis of both green and red pepper fruits identified a total of 2284 proteins, of which 692 were found to be significantly more abundant in unripe green fruits as compared to red fruits, while 497 showed lower levels as the ripening process proceeded. Of the total number of proteins identified, 2253 (98,6%) were found to share orthologs with Arabidopsis thaliana. Proteomic analysis identified 163 proteins which were categorized as cell components, the major part assigned to cellular, intracellular space and other subcellular locations such as cytosol, plastids and, to a lesser extent, to mitochondria. Of the 224 mitochondrial proteins detected in pepper fruits, 78 and 48 were more abundant in green and red fruits, respectively. The majority of these proteins which displayed differential abundance in both fruit types were involved in the mitochondrial electron transport chain (mETC) and the tricarboxylic acid (TCA) cycle. The abundance levels of the proteins from both pathways were higher in green fruits, except for cytochrome c (CYC2), whose abundance was significantly higher in red fruits. We also investigated cytochrome c oxidase (COX) activity during pepper fruit ripening, as well as in the presence of molecules such as nitric oxide (NO) and hydrogen peroxide (H2O2), which promote thiol-based oxidative post-translational modifications (oxiPTMs). Thus, with the aid of in vitro assays, cytochrome c oxidase (COX) activity was found to be potentially inhibited by the PTMs nitration, S-nitrosation and carbonylation. According to protein abundance data, the final segment of the mETC appears to be a crucial locus with regard to fruit ripening, but also because in this location the biosynthesis of ascorbate, an antioxidant which plays a major role in the metabolism of pepper fruits, occurs.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain
| | - Alberto Paradela
- Proteomics Core Facility, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain.
| |
Collapse
|
7
|
Koncsek A, Szokol L, Krizsa V, Daood HG, Helyes L, Véha A, Szabó P. B. Fractional Factorial Design and Desirability Function-Based Approach in Spice Paprika Processing Technology to Improve Extractable Colour Stability. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/146640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Dobón-Suárez A, Giménez MJ, Castillo S, García-Pastor ME, Zapata PJ. Influence of the Phenological Stage and Harvest Date on the Bioactive Compounds Content of Green Pepper Fruit. Molecules 2021; 26:3099. [PMID: 34067307 PMCID: PMC8196862 DOI: 10.3390/molecules26113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Green pepper fruit is often consumed before it is completely ripe. However, the influence of the phenological stage in which the green pepper is consumed as a potential influencing factor in its bioactive compounds content and antioxidant capacity remains unknown. In addition, no literature is available concerning the bioactive compounds changes in 'Lamuyo' green peppers along its developmental and growth cycle. For this, two different approaches have been carried out, one using twelve different phenological stages (S1 to S12), and in the other, seven different harvest dates (from 27 February to 20 April). Moreover, bioactive compounds changes during 21 days of postharvest storage at 8 °C were investigated. In this study, bioactive compounds (ascorbic acid, dehydroascorbic acid, and total phenolic content) and the total hydrophilic and lipophilic (TAA-H and TAA-L) antioxidant activity were analysed. In addition, total soluble solids, total acidity, individual sugars, and organic acids were determined. Vitamin C levels increased along the phenological stages and harvest dates due to significant increases in ascorbic and dehydroascorbic acid levels. Our results show that the total phenol content decreases as vegetables develop and subsequently increases both as ripening begins and by the last harvest date. Furthermore, TAA-H was also greater by the phenological stage S12 and the 20 April harvest date. In conclusion, the phenological stage and harvest date are key factors that significantly influence the bioactive compounds of green peppers, and those that appear by S12 and 20 April could be more beneficial to health.
Collapse
Affiliation(s)
| | | | | | | | - Pedro J. Zapata
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Alicante, Spain; (A.D.-S.); (M.J.G.); (S.C.); (M.E.G.-P.)
| |
Collapse
|
9
|
Guevara L, Domínguez-Anaya MÁ, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Pérez del Palacio J, Palma JM. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper ( Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int J Mol Sci 2021; 22:ijms22094476. [PMID: 33922964 PMCID: PMC8123290 DOI: 10.3390/ijms22094476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and analgesic activities have been reported in the literature. Due to the potential interest in pepper metabolites for human use, in this project, we carried out an investigation to identify new bioactive compounds of this crop. To achieve this, we applied a metabolomic approach, using an HPLC (high-performance liquid chromatography) separative technique coupled to metabolite identification by high resolution mass spectrometry (HRMS). After chromatographic analysis and data processing against metabolic databases, 12 differential bioactive compounds were identified in sweet pepper fruits, including quercetin and its derivatives, L-tryptophan, phytosphingosin, FAD, gingerglycolipid A, tetrahydropentoxylin, blumenol C glucoside, colnelenic acid and capsoside A. The abundance of these metabolites varied depending on the ripening stage of the fruits, either immature green or ripe red. We also studied the variation of these 12 metabolites upon treatment with exogenous nitric oxide (NO), a free radical gas involved in a good number of physiological processes in higher plants such as germination, growth, flowering, senescence, and fruit ripening, among others. Overall, it was found that the content of the analyzed metabolites depended on the ripening stage and on the presence of NO. The metabolic pattern followed by quercetin and its derivatives, as a consequence of the ripening stage and NO treatment, was also corroborated by transcriptomic analysis of genes involved in the synthesis of these compounds. This opens new research perspectives on the pepper fruit’s bioactive compounds with nutraceutical potentiality, where biotechnological strategies can be applied for optimizing the level of these beneficial compounds.
Collapse
Affiliation(s)
- Lucía Guevara
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - María Ángeles Domínguez-Anaya
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Alba Ortigosa
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Caridad Díaz
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisca Vicente
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisco J. Corpas
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - José Pérez del Palacio
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - José M. Palma
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
- Correspondence: ; Tel.: +34-958-181-1600; Fax: +34-958-181-609
| |
Collapse
|
10
|
Antioxidant Profile of Pepper ( Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants (Basel) 2020; 9:antiox9090878. [PMID: 32957493 PMCID: PMC7554748 DOI: 10.3390/antiox9090878] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Capsicum is the genus where a number of species and varieties have pungent features due to the exclusive content of capsaicinoids such as capsaicin and dihydrocapsaicin. In this work, the main enzymatic and non-enzymatic systems in pepper fruits from four varieties with different pungent capacity have been investigated at two ripening stages. Thus, a sweet pepper variety (Melchor) from California-type fruits and three autochthonous Spanish varieties which have different pungency levels were used, including Piquillo, Padrón and Alegría riojana. The capsaicinoids contents were determined in the pericarp and placenta from fruits, showing that these phenyl-propanoids were mainly localized in placenta. The activity profiles of catalase, total and isoenzymatic superoxide dismutase (SOD), the enzymes of the ascorbate–glutathione cycle (AGC) and four NADP-dehydrogenases indicate that some interaction with capsaicinoid metabolism seems to occur. Among the results obtained on enzymatic antioxidants, the role of Fe-SOD and the glutathione reductase from the AGC is highlighted. Additionally, it was found that ascorbate and glutathione contents were higher in those pepper fruits which displayed the greater contents of capsaicinoids. Taken together, all these data indicate that antioxidants may contribute to preserve capsaicinoids metabolism to maintain their functionality in a framework where NADPH is perhaps playing an essential role.
Collapse
|
11
|
Steelheart C, Alegre ML, Baldet P, Rothan C, Bres C, Just D, Okabe Y, Ezura H, Ganganelli I, Gergoff Grozeff GE, Bartoli CG. The effect of low ascorbic acid content on tomato fruit ripening. PLANTA 2020; 252:36. [PMID: 32767124 DOI: 10.1007/s00425-020-03440-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
The oxidant/antioxidant balance affects the ripening time of tomato fruit. Ripening of tomato fruit is associated with several modifications such as loss of cell wall firmness and transformation of chloroplasts to chromoplasts. Besides a peak in H2O2, reactive oxygen species (ROS) are observed at the transition stage. However, the role of different components of oxidative stress metabolism in fruit ripening has been scarcely addressed. Two GDP-L-galactose phosphorylase (GGP) Solanum lycopersicum L. cv Micro-Tom mutants which have fruit with low ascorbic acid content (30% of wild type) were used in this work to unravel the participation of ascorbic acid and H2O2 in fruit maturation. Both GGP mutants show delayed fruit maturation with no peak of H2O2; treatment with ascorbic acid increases its own concentration and accelerates ripening only in mutants to become like wild type plants. Unexpectedly, the treatment with ascorbic acid increases H2O2 synthesis in both mutants resembling what is observed in wild type fruit. Exogenous supplementation with H2O2 decreases its own synthesis delaying fruit maturation in plants with low ascorbic acid content. The site of ROS production is localized in the chloroplasts of fruit of all genotypes as determined by confocal microscopy analysis. The results presented here demonstrate that both ascorbic acid and H2O2 actively participate in tomato fruit ripening.
Collapse
Affiliation(s)
- Charlotte Steelheart
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT CONICET, La Plata, Argentina
| | - Matías Leonel Alegre
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT CONICET, La Plata, Argentina
| | - Pierre Baldet
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Christophe Rothan
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Cecile Bres
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Daniel Just
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Inti Ganganelli
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT CONICET, La Plata, Argentina
| | - Gustavo Esteban Gergoff Grozeff
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT CONICET, La Plata, Argentina
| | - Carlos Guillermo Bartoli
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT CONICET, La Plata, Argentina.
| |
Collapse
|
12
|
González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Superoxide Radical Metabolism in Sweet Pepper ( Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. FRONTIERS IN PLANT SCIENCE 2020; 11:485. [PMID: 32477380 PMCID: PMC7240112 DOI: 10.3389/fpls.2020.00485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 05/21/2023]
Abstract
Superoxide radical (O2 •-) is involved in numerous physiological and stress processes in higher plants. Fruit ripening encompasses degradative and biosynthetic pathways including reactive oxygen and nitrogen species. With the use of sweet pepper (Capsicum annuum L.) fruits at different ripening stages and under a nitric oxide (NO)-enriched environment, the metabolism of O2 •- was evaluated at biochemical and molecular levels considering the O2 •- generation by a NADPH oxidase system and its dismutation by superoxide dismutase (SOD). At the biochemical level, seven O2 •--generating NADPH-dependent oxidase isozymes [also called respiratory burst oxidase homologs (RBOHs) I-VII], with different electrophoretic mobility and abundance, were detected considering all ripening stages from green to red fruits and NO environment. Globally, this system was gradually increased from green to red stage with a maximum of approximately 2.4-fold increase in red fruit compared with green fruit. Significantly, breaking-point (BP) fruits with and without NO treatment both showed intermediate values between those observed in green and red peppers, although the value in NO-treated fruits was lower than in BP untreated fruits. The O2 •--generating NADPH oxidase isozymes I and VI were the most affected. On the other hand, four SOD isozymes were identified by non-denaturing electrophoresis: one Mn-SOD, one Fe-SOD, and two CuZn-SODs. However, none of these SOD isozymes showed any significant change during the ripening from green to red fruits or under NO treatment. In contrast, at the molecular level, both RNA-sequencing and real-time quantitative PCR analyses revealed different patterns with downregulation of four genes RBOH A, C, D, and E during pepper fruit ripening. On the contrary, it was found out the upregulation of a Mn-SOD gene in the ripening transition from immature green to red ripe stages, whereas a Fe-SOD gene was downregulated. In summary, the data reveal a contradictory behavior between activity and gene expression of the enzymes involved in the metabolism of O2 •- during the ripening of pepper fruit. However, it could be concluded that the prevalence and regulation of the O2 •- generation system (NADPH oxidase-like) seem to be essential for an appropriate control of the pepper fruit ripening, which, additionally, is modulated in the presence of a NO-enriched environment.
Collapse
Affiliation(s)
| | | | | | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
13
|
López-Vidal O, Olmedilla A, Sandalio LM, Sevilla F, Jiménez A. Is Autophagy Involved in Pepper Fruit Ripening? Cells 2020; 9:cells9010106. [PMID: 31906273 PMCID: PMC7016703 DOI: 10.3390/cells9010106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a universal self-degradation process involved in the removal and recycling of cellular constituents and organelles; however, little is known about its possible role in fruit ripening, in which the oxidation of lipids and proteins and changes in the metabolism of different cellular organelles occur. In this work, we analyzed several markers of autophagy in two critical maturation stages of pepper (Capsicum annuum L.) fruits where variations due to ripening become clearly visible. Using two commercial varieties that ripen to yellow and red fruits respectively, we studied changes in the gene expression and protein content of several autophagy (ATG) components, ATG4 activity, as well as the autophagy receptor NBR1 and the proteases LON1 and LON2. Additionally, the presence of intravacuolar vesicles was analyzed by electron microscopy. Altogether, our data reveal that autophagy plays a role in the metabolic changes which occur during ripening in the two studied varieties, suggesting that this process may be critical to acquiring final optimal quality of pepper fruits.
Collapse
Affiliation(s)
- Omar López-Vidal
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia 30100, Spain; (O.L.-V.); (F.S.)
| | - Adela Olmedilla
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ-CSIC, Granada 18160, Spain; (A.O.); (L.M.S.)
| | - Luisa María Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ-CSIC, Granada 18160, Spain; (A.O.); (L.M.S.)
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia 30100, Spain; (O.L.-V.); (F.S.)
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia 30100, Spain; (O.L.-V.); (F.S.)
- Correspondence: ; Tel.: +34-968-396200
| |
Collapse
|
14
|
Wang Q, Cao Z, Liu Q, Zhang J, Hu Y, Zhang J, Xu W, Kong Q, Yuan X, Chen Q. Enhancement of COD removal in constructed wetlands treating saline wastewater: Intertidal wetland sediment as a novel inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109398. [PMID: 31437707 DOI: 10.1016/j.jenvman.2019.109398] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
This study investigated intertidal wetland sediment (IWS) as a novel inoculation source for saline wastewater treatment in constructed wetlands (CWs). Samples of IWS (5-20 cm subsurface sediment), which are highly productive and rich in halophilic and anaerobic bacteria, were collected from a high-salinity natural wetland and added to CW matrix. IWS-supplemented CW microcosms that are planted and unplanted Phragmites australis were investigated under salty (150 mM NaCl: PA+(S) and CT+(S)) and non-salty (0 mM NaCl: PA+ and CT+) conditions. The chemical oxygen demand (COD) removal potential of IWS-supplemented CWs was compared with that of conventional CWs without IWS (PA(S) and CT(S), PA, and CT). Results showed that the COD removal rate was higher in PA+(S) (51.80% ± 3.03%) and CT+(S) (29.20% ± 1.26%) than in PA(S) (27.40% ± 3.09%) and CT(S) (27.20% ± 3.06%) at 150 mM NaCl. The plants' chlorophyll content and antioxidant enzyme activity indicated that the addition of IWS enhanced the resistance of plants to salt. Microbial community analysis showed that the dominant microorganisms in PA+(S) and CT+(S), namely, Anaerolineae, Desulfobacterales, and Desulfuromonadales, enhanced the organic removal rates via anaerobic degradation. IWS-induced Dehalococcoides, which is a key participant in ethylene formation, improved the plants' stress tolerance. Several halophilic/tolerant microorganisms were also detected in the CW system with IWS. Thus, IWS is a promising inoculation source for CWs that treat saline wastewater.
Collapse
Affiliation(s)
- Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Zhenfeng Cao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Qian Liu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Jinyong Zhang
- Enviromental Engineering Co., Ltd of Shandong Academy of Environmental Sciences, 50 Lishan Road, Jinan, 250014, Shandong, PR China
| | - Yanbiao Hu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Ji Zhang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Wei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Xunchao Yuan
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China
| | - QingFeng Chen
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250358, PR China.
| |
Collapse
|
15
|
Borovsky Y, Monsonego N, Mohan V, Shabtai S, Kamara I, Faigenboim A, Hill T, Chen S, Stoffel K, Van Deynze A, Paran I. The zinc-finger transcription factor CcLOL1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:41-55. [PMID: 30828904 DOI: 10.1111/tpj.14305] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 05/03/2023]
Abstract
Chloroplast development and chlorophyll content in the immature fruit has a major impact on the morphology and quality in pepper (Capsicum spp.) fruit. Two major quantitative trait loci (QTLs), pc1 and pc10 that affect chlorophyll content in the pepper fruit by modulation of chloroplast compartment size were previously identified in chromosomes 1 and 10, respectively. The pepper homolog of GOLDEN2-LIKE transcription factor (CaGLK2) has been found as underlying pc10, similar to its effect on tomato chloroplast development. In the present study, we identified the pepper homolog of the zinc-finger transcription factor LOL1 (LSD ONE LIKE1; CcLOL1) as the gene underlying pc1. LOL1 has been identified in Arabidopsis as a positive regulator of programmed cell death and we report here on its role in controlling fruit development in the Solanaceae in a fruit-specific manner. The light-green C. chinense parent used for QTL mapping was found to carry a null mutation in CcLOL1. Verification of the function of the gene was done by generating CRISPR/Cas9 knockout mutants of the orthologous tomato gene resulting in light-green tomato fruits, indicating functional conservation of the orthologous genes in controlling chlorophyll content in the Solanaceae. Transcriptome profiling of light and dark-green bulks differing for pc1, showed that the QTL affects multiple photosynthesis and oxidation-reduction associated genes in the immature green fruit. Allelic diversity of three known genes CcLOL1, CaGLK2, and CcAPRR2 that influence pepper immature fruit color, was found to be associated with variation in chlorophyll content primarily in C. chinense.
Collapse
Affiliation(s)
- Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Noam Monsonego
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Vijee Mohan
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Sara Shabtai
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Itzhak Kamara
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Adi Faigenboim
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Theresa Hill
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Shiyu Chen
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Kevin Stoffel
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Ilan Paran
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
16
|
Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1091. [PMID: 31620143 PMCID: PMC6760520 DOI: 10.3389/fpls.2019.01091] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Collapse
Affiliation(s)
- Guillaume Decros
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Amélie Flandin
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| |
Collapse
|
17
|
NADPH Oxidase (Rboh) Activity is Up Regulated during Sweet Pepper ( Capsicum annuum L.) Fruit Ripening. Antioxidants (Basel) 2019; 8:antiox8010009. [PMID: 30609654 PMCID: PMC6356770 DOI: 10.3390/antiox8010009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/25/2018] [Indexed: 11/21/2022] Open
Abstract
In plants, NADPH oxidase (NOX) is also known as a respiratory burst oxidase homolog (Rboh). This highly important enzyme, one of the main enzymatic sources of superoxide radicals (O2•−), is involved in the metabolism of reactive oxygen and nitrogen species (ROS and RNS), which is active in the non-climacteric pepper (Capsicum annuum L.) fruit. We used sweet pepper fruits at two ripening stages (green and red) to biochemically analyze the O2•−-generating Rboh activity and the number of isozymes during this physiological process. Malondialdehyde (MDA) content, an oxidative stress marker, was also assayed as an index of lipid peroxidation. In red fruits, MDA was observed to increase 2-fold accompanied by a 5.3-fold increase in total Rboh activity. Using in-gel assays of Rboh activity, we identified a total of seven CaRboh isozymes (I–VII) which were differentially modulated during ripening. CaRboh-III and CaRboh-I were the most prominent isozymes in green and red fruits, respectively. An in vitro assay showed that CaRboh activity is inhibited in the presence of nitric oxide (NO) donors, peroxynitrite (ONOO−) and glutathione (GSH), suggesting that CaRboh can undergo S-nitrosation, Tyr-nitration, and glutathionylation, respectively. In summary, this study provides a basic biochemical characterization of CaRboh activity in pepper fruits and indicates that this O2•−-generating Rboh is involved in nitro-oxidative stress associated with sweet pepper fruit ripening.
Collapse
|
18
|
Ascorbate-Glutathione Cycle and Ultrastructural Analyses of Two Kenaf Cultivars ( Hibiscus cannabinus L.) under Chromium Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071467. [PMID: 29997377 PMCID: PMC6068517 DOI: 10.3390/ijerph15071467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 11/20/2022]
Abstract
Kenaf (Hibiscus cannabinus L.) with high tolerance to chromium (Cr) can be used in the phytoremediation of chromium-contaminated soil. However, the mechanisms of chromium accumulation and tolerance in kenaf are still unclear. A hydroponic experiment was taken to screen two kenaf cultivars with Cr tolerance among nine kenaf cultivars via a tolerance index. This is first time the ascorbate-glutathione (AsA-GSH) cycle and chloroplast structural changes involved in Cr tolerance of two kenaf cultivars are explored. This study indicated that enhancement of chromium concentrations reduced nine kenaf growth rates and plant biomass. In addition, in all the nine cultivars, the roots had higher Cr accumulation than the shoots. Cr-tolerant cultivar Zhe70-3 with the maximum tolerant index had the significantly higher enzymatic activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and mono- dehydroascorbate reductase (MDHAR) in non-enzymatic antioxidant system compared to Cr-sensitive cultivar Zhe77-1. In addition, higher GSH and AsA contents and lower damages of chloroplast ultrastructure were observed in Zhe70-3 under Cr treatment. In conclusion, Cr stress can cause less oxidative stress and destruction of chloroplast ultrastructure in Cr-tolerant cultivar Zhe70-3, and the AsA-GSH cycle may play a crucial role in kenaf Cr tolerance.
Collapse
|
19
|
Corpas FJ, Freschi L, Rodríguez-Ruiz M, Mioto PT, González-Gordo S, Palma JM. Nitro-oxidative metabolism during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3449-3463. [PMID: 29304200 DOI: 10.1093/jxb/erx453] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/03/2017] [Indexed: 05/21/2023]
Abstract
Pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.), which belong to the Solanaceae family, are among the most cultivated and consumed fleshy fruits worldwide and constitute excellent sources of many essential nutrients, such as vitamins A, C, and E, calcium, and carotenoids. While fruit ripening is a highly regulated and complex process, tomato and pepper have been classified as climacteric and non-climacteric fruits, respectively. These fruits differ greatly in shape, color composition, flavor, and several other features which undergo drastic changes during the ripening process. Such ripening-related metabolic and developmental changes require extensive alterations in many cellular and biochemical processes, which ultimately leads to fully ripe fruits with nutritional and organoleptic features that are attractive to both natural dispersers and human consumers. Recent data show that reactive oxygen and nitrogen species (ROS/RNS) are involved in fruit ripening, during which molecules, such as hydrogen peroxide (H2O2), NADPH, nitric oxide (NO), peroxynitrite (ONOO-), and S-nitrosothiols (SNOs), interact to regulate protein functions through post-translational modifications. In light of these recent discoveries, this review provides an update on the nitro-oxidative metabolism during the ripening of two of the most economically important fruits, discusses the signaling roles played by ROS/RNS in controlling this complex physiological process, and highlights the potential biotechnological applications of these substances to promote further improvements in fruit ripening regulation and nutritional quality. In addition, we suggest that the term 'nitro-oxidative eustress' with regard to fruit ripening would be more appropriate than nitro-oxidative stress, which ultimately favors the consolidation of the plant species.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Paulo T Mioto
- Department of Botany, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n, Florianópolis, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
20
|
Abstract
Despite of their economical and nutritional interest, the biology of fruits is still little studied in comparison with reports of other plant organs such as leaves and roots. Accordingly, research at subcellular and molecular levels is necessary not only to understand the physiology of fruits, but also to improve crop qualities. Efforts addressed to gain knowledge of the peroxisome proteome and how it interacts with the overall metabolism of fruits will provide tools to be used in breeding strategies of agricultural species with added value. In this work, special attention will be paid to peroxisomal proteins involved in the metabolism of reactive oxygen species (ROS) due to the relevant role of these compounds at fruit ripening. The proteome of peroxisomes purified from sweet pepper (Capsicum annuum L.) fruit is reported, where an iron-superoxide dismutase (Fe-SOD) was localized in these organelles, besides other antioxidant enzymes such as catalase and a Mn-SOD, as well as enzymes involved in the metabolism of carbohydrates, malate, lipids and fatty acids, amino acids, the glyoxylate cycle and in the potential organelles' movements.
Collapse
|
21
|
Isolation of Chromoplasts and Suborganellar Compartments from Tomato and Bell Pepper Fruit. Methods Mol Biol 2017; 1511:61-71. [PMID: 27730602 DOI: 10.1007/978-1-4939-6533-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tomato is a model for fruit development and ripening. The isolation of intact plastids from this organism is therefore important for metabolic and proteomic analyses. Pepper, a species from the same family, is also of interest since it allows isolation of intact chromoplasts in large amounts. Here, we provide a detailed protocol for the isolation of tomato plastids at three fruit developmental stages, namely, nascent chromoplasts from the mature green stage, chromoplasts from an intermediate stage, and fully differentiated red chromoplasts. The method relies on sucrose density gradient centrifugations. It yields high purity organelles suitable for proteome analyses. Enzymatic and microscopy assays are summarized to assess purity and intactness. A method is also described for subfractionation of pepper chromoplast lipoprotein structures.
Collapse
|
22
|
López-Vidal O, Camejo D, Rivera-Cabrera F, Konigsberg M, Villa-Hernández J, Mendoza-Espinoza J, Pérez-Flores L, Sevilla F, Jiménez A, Díaz de León-Sánchez F. Mitochondrial ascorbate–glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening. Food Chem 2016; 194:1064-72. [DOI: 10.1016/j.foodchem.2015.08.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/15/2022]
|
23
|
Suzuki M, Takahashi S, Kondo T, Dohra H, Ito Y, Kiriiwa Y, Hayashi M, Kamiya S, Kato M, Fujiwara M, Fukao Y, Kobayashi M, Nagata N, Motohashi R. Plastid Proteomic Analysis in Tomato Fruit Development. PLoS One 2015; 10:e0137266. [PMID: 26371478 PMCID: PMC4570674 DOI: 10.1371/journal.pone.0137266] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/15/2015] [Indexed: 02/01/2023] Open
Abstract
To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of 'Micro-Tom' fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared 'Micro-Tom' results with those from two other varieties, 'Black' and 'White Beauty'. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of 'Micro-Tom', and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared 'Micro-Tom' fruits with 'Black' and 'White Beauty' using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein) and HrBP1 (harpin binding protein-1) in the 'Black' and 'White Beauty' varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin) in 2D-PAGE results, however the number of spots and their isoelectric points differed between 'Micro-Tom' and 'Black'/'White Beauty'. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast.
Collapse
Affiliation(s)
- Miho Suzuki
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Sachiko Takahashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Takanori Kondo
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Yumihiko Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Yoshikazu Kiriiwa
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Marina Hayashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Shiori Kamiya
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Masaya Kato
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| | - Masayuki Fujiwara
- The Plant Science Education Unit, Nara Institute of Science and Technology, Ikoma city, Nara, Japan
| | - Yoichiro Fukao
- The Plant Science Education Unit, Nara Institute of Science and Technology, Ikoma city, Nara, Japan
| | - Megumi Kobayashi
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo, Japan
| | - Noriko Nagata
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo, Japan
| | - Reiko Motohashi
- Faculty of Agriculture, Shizuoka University, Shizuoka city, Shizuoka, Japan
| |
Collapse
|
24
|
Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM. Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes. ANNALS OF BOTANY 2015; 116:627-36. [PMID: 26220658 PMCID: PMC4578004 DOI: 10.1093/aob/mcv121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/25/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated. SCOPE AND RESULTS Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate-glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits. CONCLUSIONS Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Francisca Sevilla
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Ana Jiménez
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Luis A del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Paz Álvarez de Morales
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Daymi M Camejo
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| |
Collapse
|
25
|
Bekir J, Bouajila J, Mars M. The Effect of Cultivar and Ripening on Antioxidant System and PAL Activity of Pomegranate (P
unica Granatum
L.) Grown in Tunisia. J Food Biochem 2015. [DOI: 10.1111/jfbc.12159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jalila Bekir
- Université Paul-Sabatier; Faculté de Pharmacie de Toulouse, Laboratoire des IMRCP UMR CNRS 5623; Université de Toulouse; 118 route de Narbonne F-31062 Toulouse France
- Biodiversité et Valorisation des Bioressources en Zones Arides, Faculté des Sciences de Gabès, Université de Gabès; Unité de Recherche; Gabès Tunisia
| | - Jalloul Bouajila
- Université Paul-Sabatier; Faculté de Pharmacie de Toulouse, Laboratoire des IMRCP UMR CNRS 5623; Université de Toulouse; 118 route de Narbonne F-31062 Toulouse France
| | - Mohamed Mars
- Biodiversité et Valorisation des Bioressources en Zones Arides, Faculté des Sciences de Gabès, Université de Gabès; Unité de Recherche; Gabès Tunisia
| |
Collapse
|
26
|
Camejo D, Jiménez A, Palma JM, Sevilla F. Proteomic identification of mitochondrial carbonylated proteins in two maturation stages of pepper fruits. Proteomics 2015; 15:2634-42. [DOI: 10.1002/pmic.201400370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/12/2015] [Accepted: 04/21/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Daymi Camejo
- Department of Stress Biology and Plant Pathology; CEBAS-CSIC; Murcia Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology; CEBAS-CSIC; Murcia Spain
| | - José M. Palma
- Department of Biochemistry; Cellular and Molecular Biology of Plants; EEZ-CSIC; Granada Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology; CEBAS-CSIC; Murcia Spain
| |
Collapse
|
27
|
Kilcrease J, Rodriguez-Uribe L, Richins RD, Arcos JMG, Victorino J, O'Connell MA. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 232:57-66. [PMID: 25617324 DOI: 10.1016/j.plantsci.2014.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
The fruits of Capsicum spp. are especially rich sites for carotenoid synthesis and accumulation, with cultivar-specific carotenoid accumulation profiles. Differences in chromoplast structure as well as carotenoid biosynthesis are correlated with distinct carotenoid accumulations and fruit color. In the present study, the inheritance of chromoplast shape, carotenoid accumulation profiles, and transcript levels of four genes were measured. Comparisons of these traits were conducted using fruit from contrasting variants, Costeño Amarillo versus Costeño Red, and from F1 hybrids; crosses between parental lines with novel versions of these traits. Intermediate chromoplast shapes were observed in the F1, but no association between specific carotenoid accumulation and chromoplast shape was detected. Increased total carotenoid content was associated with increased β-carotene and violaxanthin content. Transcript levels for phytoene synthase (Psy) and β-carotene hydroxylase (CrtZ-2) were positively correlated with increased levels of specific carotenoids. No correlation was detected between transcript levels of capsanthin/capsorubin synthase (Ccs) and carotenoid composition or chromoplast shape. Transcript levels of fibrillin, were differentially correlated with specific carotenoids, negatively correlated with accumulation of capsanthin, and positively correlated with violaxanthin. The regulation of carotenoid accumulation in chromoplasts in Capsicum fruit continues to be a complex process with multiple steps for control.
Collapse
Affiliation(s)
- James Kilcrease
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Laura Rodriguez-Uribe
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Richard D Richins
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Juan Manuel Garcia Arcos
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Jesus Victorino
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Mary A O'Connell
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
28
|
Zhao X, Han F, Shen S. Proteomics study of the effects of high pigment-1 on plastid differentiation during the ripening of tomato fruits. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Men X, Dong K. Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation. JOURNAL OF PLANT RESEARCH 2013; 126:823-832. [PMID: 23887833 DOI: 10.1007/s10265-013-0579-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.
Collapse
Affiliation(s)
- Xiao Men
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China,
| | | |
Collapse
|
30
|
Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 2013; 539:102-9. [PMID: 23851381 DOI: 10.1016/j.abb.2013.07.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 07/01/2013] [Indexed: 01/29/2023]
Abstract
Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplasts or other non-photosynthetic plastids such as proplastids, leucoplasts or amyloplasts. While little is known about the molecular mechanisms underlying chromoplast biogenesis, research progress along with proteomics study of chromoplast proteomes signifies various processes and factors important for chromoplast differentiation and development. Chromoplasts act as a metabolic sink that enables great biosynthesis and high storage capacity of carotenoids. The formation of chromoplasts enhances carotenoid metabolic sink strength and controls carotenoid accumulation in plants. The objective of this review is to provide an integrated view on our understanding of chromoplast biogenesis and carotenoid accumulation in plants.
Collapse
|
31
|
Mateos RM, Jiménez A, Román P, Romojaro F, Bacarizo S, Leterrier M, Gómez M, Sevilla F, del Río LA, Corpas FJ, Palma JM. Antioxidant systems from Pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 2013; 14:9556-80. [PMID: 23644886 PMCID: PMC3676799 DOI: 10.3390/ijms14059556] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 01/21/2023] Open
Abstract
Sweet pepper is susceptible to changes in the environmental conditions, especially temperatures below 15 °C. In this work, two sets of pepper fruits (Capsicum annuum L.) which underwent distinct temperature profiles in planta were investigated. Accordingly, two harvesting times corresponding to each set were established: Harvest 1, whose fruits developed and ripened at 14.9 °C as average temperature; and Harvest 2, with average temperature of 12.4 °C. The oxidative metabolism was analyzed in all fruits. Although total ascorbate content did not vary between Harvests, a shift from the reduced to the oxidized form (dehydroascorbate), accompanied by a higher ascorbate peroxidase activity, was observed in Harvest 2 with respect to Harvest 1. Moreover, a decrease of the ascorbate-generating enzymatic system, the γ-galactono-lactone dehydrogenase, was found at Harvest 2. The activity values of the NADP-dependent dehydrogenases analyzed seem to indicate that a lower NADPH synthesis may occur in fruits which underwent lower temperature conditions. In spite of the important changes observed in the oxidative metabolism in fruits subjected to lower temperature, no oxidative stress appears to occur, as indicated by the lipid peroxidation and protein oxidation profiles. Thus, the antioxidative systems of pepper fruits seem to be involved in the response against temperature changes.
Collapse
Affiliation(s)
- Rosa M. Mateos
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain; E-Mails: (P.R.); (M.L.); (L.A.R.); (F.J.C.)
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Apartado 164, Murcia E-30100, Spain; E-Mails: (A.J.); (F.R.); (F.S.)
| | - Paloma Román
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain; E-Mails: (P.R.); (M.L.); (L.A.R.); (F.J.C.)
| | - Félix Romojaro
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Apartado 164, Murcia E-30100, Spain; E-Mails: (A.J.); (F.R.); (F.S.)
| | - Sierra Bacarizo
- Syngenta Seeds, S.A., El Ejido E-04710, Almería, Spain; E-Mail:
| | - Marina Leterrier
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain; E-Mails: (P.R.); (M.L.); (L.A.R.); (F.J.C.)
| | - Manuel Gómez
- Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain; E-Mail:
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Apartado 164, Murcia E-30100, Spain; E-Mails: (A.J.); (F.R.); (F.S.)
| | - Luis A. del Río
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain; E-Mails: (P.R.); (M.L.); (L.A.R.); (F.J.C.)
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain; E-Mails: (P.R.); (M.L.); (L.A.R.); (F.J.C.)
| | - José M. Palma
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain; E-Mails: (P.R.); (M.L.); (L.A.R.); (F.J.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-958-181-600 (ext. 253); Fax: +34-958-129-600
| |
Collapse
|
32
|
Wang YQ, Yang Y, Fei Z, Yuan H, Fish T, Thannhauser TW, Mazourek M, Kochian LV, Wang X, Li L. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:949-61. [PMID: 23314817 PMCID: PMC3580812 DOI: 10.1093/jxb/ers375] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953-2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
- * These two authors contributed equally to this work
| | - Yong Yang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. E-mail:
| | - Zhangjun Fei
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Theodore W. Thannhauser
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Michael Mazourek
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Leon V. Kochian
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Li
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
D'Ambrosio C, Arena S, Rocco M, Verrillo F, Novi G, Viscosi V, Marra M, Scaloni A. Proteomic analysis of apricot fruit during ripening. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ. Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. PLANT PHYSIOLOGY 2012; 159:1713-29. [PMID: 22685169 PMCID: PMC3425208 DOI: 10.1104/pp.112.199711] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/06/2012] [Indexed: 05/18/2023]
Abstract
Integrative comparative analyses of transcript and metabolite levels from climacteric and nonclimacteric fruits can be employed to unravel the similarities and differences of the underlying regulatory processes. To this end, we conducted combined gas chromatography-mass spectrometry and heterologous microarray hybridization assays in tomato (Solanum lycopersicum; climacteric) and pepper (Capsicum chilense; nonclimacteric) fruits across development and ripening. Computational methods from multivariate and network-based analyses successfully revealed the difference between the covariance structures of the integrated data sets. Moreover, our results suggest that both fruits have similar ethylene-mediated signaling components; however, their regulation is different and may reflect altered ethylene sensitivity or regulators other than ethylene in pepper. Genes involved in ethylene biosynthesis were not induced in pepper fruits. Nevertheless, genes downstream of ethylene perception such as cell wall metabolism genes, carotenoid biosynthesis genes, and the never-ripe receptor were clearly induced in pepper as in tomato fruit. While signaling sensitivity or actual signals may differ between climacteric and nonclimacteric fruit, the evidence described here suggests that activation of a common set of ripening genes influences metabolic traits. Also, a coordinate regulation of transcripts and the accumulation of key organic acids, including malate, citrate, dehydroascorbate, and threonate, in pepper fruit were observed. Therefore, the integrated analysis allows us to uncover additional information for the comprehensive understanding of biological events relevant to metabolic regulation during climacteric and nonclimacteric fruit development.
Collapse
Affiliation(s)
| | | | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., Z.N., A.K., A.R.F.); and
- Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (R.A., J.J.G.)
| | - Andrej Kochevenko
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., Z.N., A.K., A.R.F.); and
- Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (R.A., J.J.G.)
| | | | - James J. Giovannoni
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., Z.N., A.K., A.R.F.); and
- Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (R.A., J.J.G.)
| |
Collapse
|
35
|
Nilo P. R, Campos-Vargas R, Orellana A. Assessment of Prunus persica fruit softening using a proteomics approach. J Proteomics 2012; 75:1618-38. [DOI: 10.1016/j.jprot.2011.11.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 12/23/2022]
|
36
|
Zeng Y, Pan Z, Ding Y, Zhu A, Cao H, Xu Q, Deng X. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5297-309. [PMID: 21841170 PMCID: PMC3223033 DOI: 10.1093/jxb/err140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 05/18/2023]
Abstract
Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuxin Deng
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Martí MC, Camejo D, Vallejo F, Romojaro F, Bacarizo S, Palma JM, Sevilla F, Jiménez A. Influence of fruit ripening stage and harvest period on the antioxidant content of sweet pepper cultivars. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:416-423. [PMID: 21792678 DOI: 10.1007/s11130-011-0249-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pepper (Capsicum annuum L.) fruits are highly appreciated by producers and consumers for their economical and nutritional value. Four different cultivars of coloured peppers in immature and mature stages were harvested throughout the spring and examined for their content of phenolic compounds, ascorbic acid and total antioxidant capacity (TAA) as well as for lipid peroxidation and carbonyl proteins as index of oxidative stress. Ripening and harvest period influenced the antioxidants and the development of oxidative processes in the cultivars differently: lipid peroxidation increased in mature peppers except in one cultivar (Y1075), while no changes in protein oxidation or in TAA were produced, except in Y1075 in which both parameters increased. Each cultivar presented differences in antioxidant compounds depending on the harvest period, but we could recommend May as the optimal if all cultivars have to be harvested at the same time, when levels of ascorbate, phenols and TAA were not decreased, fresh weight and proteins were elevated, and levels of oxidation were not as high as in June (except for Y1075). A previous study of the response of each cultivar to different environmental conditions results essential to establish a good program of selection of cultivars with high quality and productivity.
Collapse
Affiliation(s)
- María C Martí
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Chromoplasts are nonphotosynthetic plastids that accumulate carotenoids. They derive from other plastid forms, mostly chloroplasts. The biochemical events responsible for the interconversion of one plastid form into another are poorly documented. However, thanks to transcriptomics and proteomics approaches, novel information is now available. Data of proteomic and biochemical analysis revealed the importance of lipid metabolism and carotenoids biosynthetic activities. The loss of photosynthetic activity was associated with the absence of the chlorophyll biosynthesis branch and the presence of proteins involved in chlorophyll degradation. Surprisingly, the entire set of Calvin cycle and of the oxidative pentose phosphate pathway persisted after the transition from chloroplast to chromoplast. The role of plastoglobules in the formation and organisation of carotenoid-containing structures and that of the Or gene in the control of chromoplastogenesis are reviewed. Finally, using transcriptomic data, an overview is given the expression pattern of a number of genes encoding plastid-located proteins during tomato fruit ripening.
Collapse
|
39
|
Egea I, Bian W, Barsan C, Jauneau A, Pech JC, Latché A, Li Z, Chervin C. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. ANNALS OF BOTANY 2011; 108:291-7. [PMID: 21788376 PMCID: PMC3143050 DOI: 10.1093/aob/mcr140] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. METHODS Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices. KEY RESULTS At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts. CONCLUSIONS These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.
Collapse
Affiliation(s)
- Isabel Egea
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Wanping Bian
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
- Genetic Engineering Research Centre, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Cristina Barsan
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Alain Jauneau
- Université de Toulouse, CNRS, IFR40, Pôle de Biotechnologie Végétale, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Jean-Claude Pech
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Alain Latché
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Zhengguo Li
- Genetic Engineering Research Centre, Bioengineering College, Chongqing University, Chongqing 400044, PR China
- For correspondence. E-mail or
| | - Christian Chervin
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
- For correspondence. E-mail or
| |
Collapse
|
40
|
Camejo D, Martí MC, Román P, Ortiz A, Jiménez A. Antioxidant system and protein pattern in peach fruits at two maturation stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11140-7. [PMID: 20879712 DOI: 10.1021/jf102807t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Peach fruits were selected to study the protein pattern and antioxidant system as well as oxidative parameters such as superoxide radical and hydrogen peroxide accumulation, at two maturity stages, which were chosen for being suitable for the processing industry and fresh consumption. The proteins phosphoenolpyruvate carboxylase, sucrose synthase, and 1-aminocyclopropane-1-carboxylate oxidase, as well as the antioxidants glutathione synthetase and ascorbate peroxidase, appeared as new in the mature peach fruits. Activities of superoxide dismutase (SOD) and components of the ascorbate-glutathione cycle were also measured to explore their role in the two maturity stages studied. Changes in the SOD isoenzyme pattern and an increase in the activities of ascorbate peroxidase, monodehydroascorbate reductase, and glutathione reductase were observed in mature fruits, revealing an efficient system to cope with the oxidative process accompanying ripening.
Collapse
Affiliation(s)
- Daymi Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, E-30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
41
|
Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latché A, Bouzayen M, Pech JC. Characteristics of the tomato chromoplast revealed by proteomic analysis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2413-31. [PMID: 20363867 DOI: 10.1093/jxb/erq070] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chromoplasts are non-photosynthetic specialized plastids that are important in ripening tomato fruit (Solanum lycopersicum) since, among other functions, they are the site of accumulation of coloured compounds. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial databanks. These data revealed several features of the chromoplast. Proteins of lipid metabolism and trafficking were well represented, including all the proteins of the lipoxygenase pathway required for the synthesis of lipid-derived aroma volatiles. Proteins involved in starch synthesis co-existed with several starch-degrading proteins and starch excess proteins. Chromoplasts lacked proteins of the chlorophyll biosynthesis branch and contained proteins involved in chlorophyll degradation. None of the proteins involved in the thylakoid transport machinery were discovered. Surprisingly, chromoplasts contain the entire set of Calvin cycle proteins including Rubisco, as well as the oxidative pentose phosphate pathway (OxPPP). The present proteomic analysis, combined with available physiological data, provides new insights into the metabolic characteristics of the tomato chromoplast and enriches our knowledge of non-photosynthetic plastids.
Collapse
Affiliation(s)
- Cristina Barsan
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|