1
|
Li Y, Lin Y, Ou C, Xu R, Liu T, Zhong Z, Liu L, Zheng Y, Hou S, Lv Z, Huang S, Duan YG, Wang Q, Zhang X, Liu Y. Association between body mass index and semen quality: a systematic review and meta-analysis. Int J Obes (Lond) 2024; 48:1383-1401. [PMID: 39003321 DOI: 10.1038/s41366-024-01580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The continuous decline of human semen quality during the past decades has drawn much concern globally. Previous studies have suggested a link between abnormal BMI and semen quality decline, but the results remain inconsistent. This systematic review and meta-analysis aimed to evaluate the association between body mass index (BMI) and semen quality. We searched PubMed, Embase, and Web of Science for eligible studies from inception to April 17, 2022. We considered men with BMI < 25.0 kg/m2 as the reference and calculated the pooled weighted mean difference of men with overweight (BMI 25.0-29.9 kg/m2), obesity (BMI ≥ 30.0 kg/m2), class I obesity (BMI 30.0-34.9 kg/m2), and class II/III obesity (BMI ≥ 35.0 kg/m2). A total of 5070 articles were identified, of which 50 studies were included (71,337 subjects). Compared with men with BMI < 25.0 kg/m2, men with obesity had an average reduction of 0.24 ml in semen volume, 19.56 × 106 in total sperm number, 2.21% in total motility, 5.95% in progressive motility, and 1.08% in normal forms, respectively, while men with overweight had an average reduction of 0.08 ml in semen volume and 2.91% in progressive motility, respectively. The reduction of semen quality was more pronounced among men with obesity than that among men with overweight. Moreover, significant reductions in semen quality were identified in men with different classes of obesity, which were more pronounced in men with class II/III obesity than that in men with class I obesity. Across men from the general population, infertile or subfertile men, and suspiciously subfertile men, we identified significant semen quality reductions in men with obesity/overweight. In conclusion, obesity and overweight were significantly associated with semen quality reductions, suggesting that maintaining normal weight may help prevent semen quality decline.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changkui Ou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihan Hou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziquan Lv
- Department of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Centre of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, Guangdong, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Vozdova M, Kubickova S, Kopecka V, Sipek J, Rubes J. Effect of body mass index on semen quality, sperm chromatin integrity and sperm DNA methylation. Obes Res Clin Pract 2024:S1871-403X(24)00391-0. [PMID: 39358131 DOI: 10.1016/j.orcp.2024.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Obesity represents a growing problem due to its impacts on human health and reproduction. In this study, we analysed semen quality, sperm DNA integrity and gene-specific CpG methylation in 116 healthy men from normal population. The men were divided into three groups according to their body mass index (BMI), and their ejaculates were analysed using standard methods, sperm chromatin structure assay (SCSA), methylation next generation sequencing (NGS) and amplicon sequencing. The sperm methylation NGS revealed six significantly differentially methylated regions (DMRs). Using subsequent targeted amplicon sequencing in 116 men, two of the DMRs were proved as differentially methylated in sperm of men with normal BMI vs. BMI ≥ 25. The DMRs were located in the EPHA8 and ANKRD11 gene. Also, we detected a significant decline in the EPHA8, ANKRD11 and CFAP46 gene methylation in association with increasing BMI values. The genes EPHA8 and ANKRD11 are involved in the nervous system and brain development; the CFAP46 gene plays a role in a flagellar assembly and is associated with sperm motility. Significantly lower rates of motile and progressive motile sperm were observed in men with BMI ≥ 30. Our results show that excess body weight can modify CpG methylation of specific genes, affect sperm motility, and compromise sperm chromatin integrity. These factors can stand behind the observed reduced fertility in men with obesity. The methylation changes might be transmitted to their offspring through sperm, and become a basis for possible developmental and reproductive issues in the next generation.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic.
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Vera Kopecka
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Sipek
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
3
|
Carrageta DF, Pereira SC, Ferreira R, Monteiro MP, Oliveira PF, Alves MG. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nat Rev Urol 2024; 21:477-494. [PMID: 38528255 DOI: 10.1038/s41585-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Sara C Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus de Santiago Agra do Crasto, Aveiro, Portugal.
| |
Collapse
|
4
|
Ameratunga D, Gebeh A, Amoako A. Obesity and male infertility. Best Pract Res Clin Obstet Gynaecol 2023; 90:102393. [PMID: 37572397 DOI: 10.1016/j.bpobgyn.2023.102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
The worldwide prevalence of obesity is increasing among both sexes, with associated impacts on chronic health and medical comorbidities. Similarly, the effects of obesity on reproductive health are increasingly being recognized. Adiposity is associated with reduced fertility in men, with a complex and multifactorial etiology. The reported effects of obesity on semen parameters and impaired fertility are contrasting, with some studies showing a clear reduction in reproductive outcomes associated with increased body mass index, while others do not show such impacts. These controversies may be due to the complex pathophysiology and interplay between gonadotropins and end organs, as well as genetic and epigenetic changes and oxidative stress on male fertility and function. These different aspects have led to heterogeneous participants in studies and varying implications for assisted reproductive outcomes as well as offspring health. Treatment modalities to manage obesity include lifestyle, medical, and surgical options, with emerging and effective medical treatments showing promise in reproductive outcomes.
Collapse
Affiliation(s)
- Devini Ameratunga
- Mayne Academy of Obstetrics and Gynecology, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Department of Obstetrics and Gynecology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Queensland Fertility Group (QFG), Brisbane, Australia
| | - Alpha Gebeh
- Department of Maternity and Gynecology, John Hunter Hospital, Newcastle, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia
| | - Akwasi Amoako
- Mayne Academy of Obstetrics and Gynecology, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Department of Obstetrics and Gynecology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| |
Collapse
|
5
|
Donatti LM, Martello CL, Andrade GM, Oliveira NP, Frantz N. Advanced Paternal Age Affects the Sperm DNA Fragmentation Index and May Lead to Lower Good-quality Blastocysts. Reprod Sci 2023:10.1007/s43032-023-01209-9. [PMID: 36897559 DOI: 10.1007/s43032-023-01209-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Several studies show reductions in some seminal parameters in aged men and describe them as a consequence of many age-dependent changes in male organisms. This study aims to evaluate the impact of age on seminal parameters, particularly the DNA fragmentation index (DFI), and outcomes after in vitro fertilization (IVF) cycles. This is a retrospective study that includes 367 patients who underwent sperm chromatin structure assay testing between 2016 and 2021. The participants were split into three groups according to age: < 35 years (younger group, n = 63), 35-45 years (intermediate group, n = 227), and ≥ 45 years (older group, n = 77). The mean DFI (%) was compared. Among all patients, 255 received IVF cycles after DFI evaluation. For these patients, the sperm concentration, motility, and volume, as well as the fertilization rate, mean oocyte age, and good-quality blastocyst formation rate, were analyzed. One-way ANOVA was applied. The older group showed a significantly higher sperm than did the younger group (28.6% vs. 20.8% p = 0.0135). Despite not presenting a significant difference, the DFI level tends to be inversely related to good-quality blastocyst formation since the oocyte age was similar between the groups (32.0 v.s 33.6 vs. 32.3 years, respectively, p = 0.1183). Among aged men, the sperm DFI level is increased but other seminal parameters are not modified. Considering that men with a high sperm DFI can present some degree of infertility due to high sperm chromatin damage, male age should also be considered a limiting factor of IVF.
Collapse
Affiliation(s)
- Luiza M Donatti
- Nilo Frantz Reproductive Medicine, Porto Alegre, Rio Grande Do Sul, Brazil.
| | | | | | - Norma P Oliveira
- Nilo Frantz Reproductive Medicine, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nilo Frantz
- Nilo Frantz Reproductive Medicine, Porto Alegre, Rio Grande Do Sul, Brazil
| |
Collapse
|
6
|
Sperm as a Carrier of Genome Instability in Relation to Paternal Lifestyle and Nutritional Conditions. Nutrients 2022; 14:nu14153155. [PMID: 35956329 PMCID: PMC9370520 DOI: 10.3390/nu14153155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Endogenous and exogenous factors can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. The extent to which men with and without subfertility are exposed to several adverse lifestyle factors and the impact on sperm DNA fragmentation (SDF), sperm chromatin maturity (condensation and decondensation), stability (hypo- and hypercondensation) and sperm aneuploidy are assessed in this study. Standardized assays employing flow cytometry were used to detect genome instability in 556 samples. Semen parameters deteriorated with age, BMI, increased physical activity and smoking. Age and BMI were associated with increased SDF. Increased BMI was associated with increased hypocondensed chromatin and decreased decondensed chromatin. Increase in age also caused an increase in sex chromosome aneuploidy in sperms. Surprisingly, alcohol abuse reduced chromatin hypercondensation and drug abuse reduced SDF. Although genome instability was more pronounced in the subfertile population as compared to the fertile group, the proportion of men with at least one lifestyle risk factor was the same in both the fertile and subfertile groups. While one in three benefited from nutritional supplementation, one in five showed an increase in SDF after supplementation. Whilst the message of ‘no smoking, no alcohol, no drugs, but a healthy diet’ should be offered as good health advice, we are a long way from concluding that nutritional supplementation would be beneficial for male fertility.
Collapse
|
7
|
Chaudhuri GR, Das A, Kesh SB, Bhattacharya K, Dutta S, Sengupta P, Syamal AK. Obesity and male infertility: multifaceted reproductive disruption. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00099-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The global prevalence of obesity has soared to a concerning height in the past few decades. Interestingly, the global decline in semen quality is a parallel occurrence that urges researchers to evaluate if obesity is among the most essential causatives of male infertility or subfertility.
Main body
Obesity may alter the synchronized working of the reproductive-endocrine milieu, mainly the hypothalamic-pituitary-gonadal (HPG) axis along with its crosstalks with other reproductive hormones. Obesity-mediated impairment in semen parameters may include several intermediate factors, which include physical factors, essentially increased scrotal temperature due to heavy adipose tissue deposits, and systemic inflammation and oxidative stress (OS) initiated by various adipose tissue-derived pro-inflammatory mediators. Obesity, via its multifaceted mechanisms, may modulate sperm genetic and epigenetic conformation, which severely disrupt sperm functions. Paternal obesity reportedly has significant adverse effects upon the outcome of assisted reproductive techniques (ARTs) and the overall health of offspring. Given the complexity of the underlying mechanisms and rapid emergence of new evidence-based hypotheses, the concept of obesity-mediated male infertility needs timely updates and pristine understanding.
Conclusions
The present review comprehensively explains the possible obesity-mediated mechanisms, especially via physical factors, OS induction, endocrine modulation, immune alterations, and genetic and epigenetic changes, which may culminate in perturbed spermatogenesis, disrupted sperm DNA integrity, compromised sperm functions, and diminished semen quality, leading to impaired male reproductive functions.
Collapse
|
8
|
Komninos D, Ramos L, van der Heijden GW, Morrison MC, Kleemann R, van Herwaarden AE, Kiliaan AJ, Arnoldussen IAC. High fat diet-induced obesity prolongs critical stages of the spermatogenic cycle in a Ldlr -/-.Leiden mouse model. Sci Rep 2022; 12:430. [PMID: 35017550 PMCID: PMC8752771 DOI: 10.1038/s41598-021-04069-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity can disturb spermatogenesis and subsequently affect male fertility and reproduction. In our study, we aim to elucidate at which cellular level of adult spermatogenesis the detrimental effects of obesity manifest. We induced high fat diet (HFD) obesity in low-density lipoprotein receptor knock-out Leiden (Ldlr−/−.Leiden) mice, and studied the morphological structure of the testes and histologically examined the proportion of Sertoli cells, spermatocytes and spermatids in the seminiferous tubules. We examined sperm DNA damage and chromatin condensation and measured plasma levels of leptin, testosterone, cholesterol and triglycerides. HFD-induced obesity caused high plasma leptin and abnormal testosterone levels and induced an aberrant intra-tubular organisation (ITO) which is associated with an altered spermatids/spermatocytes ratio (2:1 instead of 3:1). Mice fed a HFD had a higher level of tubules in stages VII + VIII in the spermatogenic cycle. The stages VII + VII indicate crucial processes in spermatogenic development like initiation of meiosis, initiation of spermatid elongation, and release of fully matured spermatids. In conclusion, HFD-induced obese Ldlr−/−.Leiden mice develop an aberrant ITO and alterations in the spermatogenic cycle in crucial stages (stages VII and VII). Thereby, our findings stress the importance of lifestyle guidelines in infertility treatments.
Collapse
Affiliation(s)
- D Komninos
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - L Ramos
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - G W van der Heijden
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - M C Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands.,Department of Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - R Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - A E van Herwaarden
- Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - A J Kiliaan
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Radboud University Medical Center, Geert Grooteplein Noord 21, 6525 EZ, Nijmegen, The Netherlands.
| | - I A C Arnoldussen
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Radboud University Medical Center, Geert Grooteplein Noord 21, 6525 EZ, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Altered circadian clock gene expression in the sperm of infertile men with asthenozoospermia. J Assist Reprod Genet 2022; 39:165-172. [PMID: 35000095 PMCID: PMC8866580 DOI: 10.1007/s10815-021-02375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Male infertility is a complex multifactorial pathological condition, and asthenozoospermia (AZS) is one of the most common causes. Current evidence suggests the underlying role of the circadian clock on male fertility. This study aims to evaluate the expression levels of five principal clock genes in the sperm and their correlations with the sperm parameters in male infertility. METHODS We determined the expression profiles of BMAL1, CLOCK, CRY1, PER1, and PER2 in the sperm of infertile men with AZS (n=38) and healthy fertile men (n=40) using quantitative real-time PCR. Then we performed comprehensive association analyses on the clock gene levels and the sperm parameters, including progressive and total motility, concentration, and normal morphology of the sperm. RESULTS Our results showed that the expression levels of five clock genes (BMAL1, CLOCK, CRY1, PER1, and PER2) are significantly decreased in the sperm of the infertile men with AZS as compared with that of healthy fertile men (P< 0.01). All five clock gene levels are associated with the percentage of progressive/total sperm motility (r= 0.546/0.589~0.677/0.695, P< 0.01). We also discovered that a combination of BMAL1, CLOCK, CRY1, PER1, and PER2 could reach a high diagnostic performance (areas under the curves, 92%) for infertility with AZS. CONCLUSIONS This study first reports that sperm BMAL1, CLOCK, CRY1, PER1, and PER2 levels are altered in AZS and may be molecular markers for male infertility with AZS. These findings indicate the possibility of stabilizing circadian rhythmicity through therapeutic intervention on clock genes to prevent and treat infertility.
Collapse
|
10
|
Zhong O, Ji L, Wang J, Lei X, Huang H. Association of diabetes and obesity with sperm parameters and testosterone levels: a meta-analysis. Diabetol Metab Syndr 2021; 13:109. [PMID: 34656168 PMCID: PMC8520257 DOI: 10.1186/s13098-021-00728-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The present study performed two distinct meta-analyses with common outcomes (sperm parameters); one was performed in obese individuals (and non-obese controls) and the other in diabetic individuals (and non-diabetic controls). METHODS PubMed, Embase, The Cochrane library, Web of Science, Scopus databases were searched to collect clinical studies related to the effects of obesity and diabetes on male sperm from inception to on 1st February 2021. Statistical meta-analyses were performed using the RevMan 5.4 software. Stata16 software was used to detect publication bias. The methodological quality of the included studies was assessed with the Ottawa-Newcastle scale using a star-based system. RESULTS A total of 44 studies were finally included in the present study, which enrolled 20,367 obese patients and 1386 patients with diabetes. The meta-analysis results showed that both obesity and diabetes were associated with reduced semen volume (obese versus non-obese controls: mean difference (MD) = - 0.25, 95% CI = (- 0.33, - 0.16), p < 0.001; diabetes versus non-diabetic controls: MD = - 0.45, 95% CI = (- 0.63, - 0.27), p < 0.001), reduced sperm count (obese versus non-obese controls: MD = - 23.84, 95% CI = (- 30.36, - 17.33), p < 0.001; diabetes versus non-diabetic controls: MD = - 13.12, 95% CI = (- 18.43, - 7.82), p < 0.001), reduced sperm concentration (obese versus non-obese controls: MD = - 7.26, 95% CI = (- 10.07, - 4.46), p < 0.001; diabetes versus non-diabetic controls: MD = - 11.73, 95% CI = (- 21.44, - 2.01), p = 0.02), reduced progressive motility (obese versus non-obese controls: MD = - 5.68, 95% CI = (- 8.79, - 2.56), p < 0.001; diabetes versus non-diabetic controls: MD = - 14.37, 95% CI = (- 21.79, - 6.96), p = 0.001), and decreased testosterone levels (obese versus non-obese controls: MD = - 1.11, 95% CI = (- 1.92, - 0.30), p = 0.007; diabetes versus non-diabetic controls: MD = - 0.37, 95% CI = (- 0.63, - 0.12), p = 0.004). CONCLUSIONS Current evidence suggests that obesity and diabetes negatively affect sperm parameters in men and are associated with low testosterone levels. Due to the limitation of the number and quality of included studies, the above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Ou Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Lin Ji
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| | - Jinyuan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| |
Collapse
|
11
|
Abstract
The purpose of this American Society for Reproductive Medicine Practice Committee report is to provide clinicians with principles and strategies for the evaluation and treatment of couples with infertility associated with obesity. This revised document replaces the Practice Committee document titled "Obesity and reproduction: an educational bulletin" last published in 2015 (Fertil Steril 2015;104:1116-26).
Collapse
Affiliation(s)
-
- American Society for Reproductive Medicine, Birmingham, Alabama
| | | |
Collapse
|
12
|
Torres-Arce E, Vizmanos B, Babio N, Márquez-Sandoval F, Salas-Huetos A. Dietary Antioxidants in the Treatment of Male Infertility: Counteracting Oxidative Stress. BIOLOGY 2021; 10:241. [PMID: 33804600 PMCID: PMC8003818 DOI: 10.3390/biology10030241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Infertility affects about 15% of the population and male factors only are responsible for ~25-30% of cases of infertility. Currently, the etiology of suboptimal semen quality is poorly understood, and many environmental and genetic factors, including oxidative stress, have been implicated. Oxidative stress is an imbalance between the production of free radicals, or reactive oxygen species (ROS), and the capacity of the body to counteract their harmful effects through neutralization by antioxidants. The purpose of this review, by employing the joint expertise of international researchers specialized in nutrition and male fertility areas, is to update the knowledge about the reproductive consequences of excessive ROS concentrations and oxidative stress on the semen quality and Assisted Reproduction Techniques (ART) clinical outcomes, to discuss the role of antioxidants in fertility outcomes, and finally to discuss why foods and dietary patterns are more innocuous long term solution for ameliorating oxidative stress and therefore semen quality results and ART fertility outcomes. Since this is a narrative review and not a systematic/meta-analysis, the summarized information in the present study should be considered cautiously.
Collapse
Affiliation(s)
- Elizabeth Torres-Arce
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Barbara Vizmanos
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
| | - Nancy Babio
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Institut d’Investigació Sanitària Pere i Virgili, 43204 Reus, Spain
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fabiola Márquez-Sandoval
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
13
|
Salas-Huetos A, Maghsoumi-Norouzabad L, James ER, Carrell DT, Aston KI, Jenkins TG, Becerra-Tomás N, Javid AZ, Abed R, Torres PJ, Luque EM, Ramírez ND, Martini AC, Salas-Salvadó J. Male adiposity, sperm parameters and reproductive hormones: An updated systematic review and collaborative meta-analysis. Obes Rev 2021; 22:e13082. [PMID: 32705766 DOI: 10.1111/obr.13082] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
The present updated systematic review and meta-analysis aims to summarize the evidence from published studies with low risk for any important bias (based on methodological quality assessment) investigating the potential associations of adiposity with sperm quality and reproductive hormones. We conducted a systematic search of the literature published in MEDLINE-PubMed and EMBASE through June 2019. Based on the criteria in our review, 169 eligible publications were used for data abstraction. Finally, 60 articles were included in the qualitative analysis and 28 in the quantitative analysis. Our systematic review results indicated that overweight and/or obesity were associated with low semen quality parameters (i.e., semen volume, sperm count and concentration, sperm vitality and normal morphology) and some specific reproductive hormones (e.g., inhibin B, total testosterone and sex hormone-binding globulin). Overweight and/or obesity were also positively associated with high estradiol concentrations. Meta-analysis indicated that overweight and/or obesity categories were associated with lower sperm quality (i.e., semen volume, sperm count and concentration, sperm vitality, total motility and normal morphology), and underweight category was likewise associated with low sperm normal morphology. In conclusion, our results suggest that maintaining a healthy body weight is important for increasing sperm quality parameters and potentially male fertility.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leila Maghsoumi-Norouzabad
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emma R James
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Douglas T Carrell
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Timothy G Jenkins
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Nerea Becerra-Tomás
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Ahmad Zare Javid
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Abed
- Aras Hospital, Iran Social Security Organization, Parsabad, Ardabil, Iran
| | - Pedro Javier Torres
- Instituto de Fisiología, Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-FCM, Córdoba, Argentina
| | - Eugenia Mercedes Luque
- Instituto de Fisiología, Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-FCM, Córdoba, Argentina
| | - Nicolás David Ramírez
- Instituto de Fisiología, Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-FCM, Córdoba, Argentina
| | - Ana Carolina Martini
- Instituto de Fisiología, Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-FCM, Córdoba, Argentina
| | - Jordi Salas-Salvadó
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| |
Collapse
|
14
|
Pereira SC, Crisóstomo L, Sousa M, Oliveira PF, Alves MG. Metabolic diseases affect male reproduction and induce signatures in gametes that may compromise the offspring health. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa019. [PMID: 33324496 PMCID: PMC7722800 DOI: 10.1093/eep/dvaa019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 05/30/2023]
Abstract
The most prevalent diseases worldwide are non-communicable such as obesity and type 2 diabetes. Noteworthy, the prevalence of obesity and type 2 diabetes is expected to steadily increase in the next decades, mostly fueled by bad feeding habits, stress, and sedentarism. The reproductive function of individuals is severely affected by abnormal metabolic environments, both at mechanical and biochemical levels. Along with mechanical dysfunctions, and decreased sperm quality (promoted both directly and indirectly by metabolic abnormalities), several studies have already reported the potentially harmful effects of metabolic disorders in the genetic and epigenetic cargo of spermatozoa, and the epigenetic inheritance of molecular signatures induced by metabolic profile (paternal diet, obesity, and diabetes). The inheritance of epigenetic factors towards the development of metabolic abnormalities means that more people in reproductive age can potentially suffer from these disorders and for longer periods. In its turn, these individuals can also transmit this (epi)genetic information to future generations, creating a vicious cycle. In this review, we collect the reported harmful effects related to acquired metabolic disorders and diet in sperm parameters and male reproductive potential. Besides, we will discuss the novel findings regarding paternal epigenetic inheritance, particularly the ones induced by paternal diet rich in fats, obesity, and type 2 diabetes. We analyze the data attained with in vitro and animal models as well as in long-term transgenerational population studies. Although the findings on this topic are very recent, epigenetic inheritance of metabolic disease has a huge societal impact, which may be crucial to tackle the 'fat epidemic' efficiently.
Collapse
Affiliation(s)
- Sara C Pereira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Luís Crisóstomo
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Mário Sousa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Agarwal A, Majzoub A, Baskaran S, Panner Selvam MK, Cho CL, Henkel R, Finelli R, Leisegang K, Sengupta P, Barbarosie C, Parekh N, Alves MG, Ko E, Arafa M, Tadros N, Ramasamy R, Kavoussi P, Ambar R, Kuchakulla M, Robert KA, Iovine C, Durairajanayagam D, Jindal S, Shah R. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J Mens Health 2020; 38:412-471. [PMID: 32777871 PMCID: PMC7502318 DOI: 10.5534/wjmh.200128] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sperm DNA integrity is crucial for fertilization and development of healthy offspring. The spermatozoon undergoes extensive molecular remodeling of its nucleus during later phases of spermatogenesis, which imparts compaction and protects the genetic content. Testicular (defective maturation and abortive apoptosis) and post-testicular (oxidative stress) mechanisms are implicated in the etiology of sperm DNA fragmentation (SDF), which affects both natural and assisted reproduction. Several clinical and environmental factors are known to negatively impact sperm DNA integrity. An increasing number of reports emphasizes the direct relationship between sperm DNA damage and male infertility. Currently, several assays are available to assess sperm DNA damage, however, routine assessment of SDF in clinical practice is not recommended by professional organizations. This article provides an overview of SDF types, origin and comparative analysis of various SDF assays while primarily focusing on the clinical indications of SDF testing. Importantly, we report four clinical cases where SDF testing had played a significant role in improving fertility outcome. In light of these clinical case reports and recent scientific evidence, this review provides expert recommendations on SDF testing and examines the advantages and drawbacks of the clinical utility of SDF testing using Strength-Weaknesses-Opportunities-Threats (SWOT) analysis.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Chak Lam Cho
- Department of Surgery, Union Hospital, Hong Kong
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, University of the Western Cape, Bellville, South Africa
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Catalina Barbarosie
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Neel Parekh
- Department of Urology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology & Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Edmund Ko
- Department of Urology, Loma Linda University, Loma Linda, CA, USA
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Andrology Department, Cairo University, Giza, Egypt
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Rafael Ambar
- Urology Department of Centro Universitario em Saude do ABC, Santo André, Brazil
| | | | - Kathy Amy Robert
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| |
Collapse
|
16
|
The effect of body mass index on sperm DNA fragmentation: a systematic review and meta-analysis. Int J Obes (Lond) 2020; 44:549-558. [PMID: 31949297 DOI: 10.1038/s41366-020-0524-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
|
17
|
Almabhouh FA, Md Mokhtar AH, Malik IA, Aziz NAAA, Durairajanayagam D, Singh HJ. Leptin and reproductive dysfunction in obese men. Andrologia 2019; 52:e13433. [DOI: 10.1111/and.13433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Ifrah Alam Malik
- Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
| | | | | | - Harbindar Jeet Singh
- Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
- I‐PerFForm Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
| |
Collapse
|
18
|
Mahutte N, Kamga-Ngande C, Sharma A, Sylvestre C. Obesity and Reproduction. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2019; 40:950-966. [PMID: 29921431 DOI: 10.1016/j.jogc.2018.04.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To provide a comprehensive review and evidence-based recommendations for the delivery of fertility care to women with obesity. OUTCOMES The impact of obesity on fertility, fertility treatments, and both short and long-term maternal fetal outcomes was carefully considered. EVIDENCE Published literature was reviewed through searches of MEDLINE and CINAHL using appropriate vocabulary and key words. Results included systematic reviews, clinical trials, observational studies, clinical practice guidelines, and expert opinions. VALUES The Canadian Fertility & Andrology Society (CFAS) is a multidisciplinary, national non-profit society that serves as the voice of reproductive specialists, scientists, and allied health professionals working in the field of assisted reproduction in Canada. The evidence obtained for this guideline was reviewed and evaluated by the Clinical Practice Guideline (CPG) Committee of the CFAS under the leadership of the principal authors. BENEFITS, HARMS, AND COSTS The implementation of these recommendations should assist clinicians and other health care providers in counselling and providing reproductive care to women with obesity. VALIDATION This guideline and its recommendations have been reviewed and approved by the membership, the CPG Committee and the Board of Directors of the CFAS. SPONSORS Canadian Fertility & Andrology Society. RECOMMENDATIONS Twenty-one evidence based recommendations are provided. These recommendations specifically evaluate the impact of obesity on natural fertility, fertility treatments, and maternal-fetal outcomes. Strategies to lose weight and BMI cut-offs are also addressed.
Collapse
Affiliation(s)
| | - Carole Kamga-Ngande
- Department of Obstetrics and Gynecology, University of Montréal, Montréal, QC
| | | | - Camille Sylvestre
- Department of Obstetrics and Gynecology, University of Montréal, Montréal, QC
| |
Collapse
|
19
|
Xie Y, Lv L, Yao J, Zhang C, Chen H, Chen W, Liang X, Sun X, Deng C, Liu G. Phosphorylated mixed lineage kinase domain‐like protein in human seminal plasma: A potential novel biomarker of spermatogenic function. Andrologia 2019; 51:e13310. [PMID: 31095773 DOI: 10.1111/and.13310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yun Xie
- Department of Andrology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Reproductive Centre, The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Guangzhou China
| | - Linyan Lv
- Reproductive Centre, The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Gastrointestinal Diseases Research Institute of Guangdong Province, The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Jiahui Yao
- Department of Andrology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Chi Zhang
- Department of Andrology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Haicheng Chen
- Department of Andrology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Wenqiu Chen
- Reproductive Centre, The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Xiaoyan Liang
- Reproductive Centre, The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Xiangzhou Sun
- Department of Andrology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Guihua Liu
- Reproductive Centre, The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou China
| |
Collapse
|
20
|
How much does obesity affect the male reproductive function? INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2019; 9:50-64. [PMID: 31391924 DOI: 10.1038/s41367-019-0008-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is considered a worldwide epidemic disease. Many pathological conditions have been associated to obesity but the evidence relating to impaired fertility in males with obesity are contrasting. The aim of this review was to evaluate the interplay between obesity and male fertility, analyzing evidence from in vitro and in vivo studies to clinical trials. Obesity seems to be responsible of secondary hypogonadism. Here, we propose a new classification including central, peripheral and testicular factors that may affect the hypothalamic-pituitary-gonadal axis. Moreover, some studies demonstrated a direct action of obesity on sperm count and sperm characteristics, mediated by impaired Sertoli cells function, increased scrotal temperature, oxidative stress and accumulation of toxic substances and liposoluble endocrine disruptors in fat tissue. Recent studies have explored obesity-related epigenetic effects in sperm cells which may cause diseases in offspring. Moreover, not only in females but also males, obesity has been linked to reduced outcomes of in vitro fertilization, with a reduction of pregnancy rate and an increase of pregnancy loss. Finally, we reviewed the effects of weight modifications through diet or bariatric surgery on obesity-related reproductive dysfunction. In this regard, several studies have demonstrated that weight loss has been associated with a restoration of gonadal hormones levels.
Collapse
|
21
|
Antonouli S, Papatheodorou A, Panagiotidis Y, Petousis S, Prapas N, Nottola SA, Palmerini MG, Macchiarelli G, Prapas Y. The impact of sperm DNA fragmentation on ICSI outcome in cases of donated oocytes. Arch Gynecol Obstet 2019; 300:207-215. [DOI: 10.1007/s00404-019-05133-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
|
22
|
El-Wakf AM, Elhabibi ESM, El-Ghany EA. Preventing male infertility by marjoram and sage essential oils through modulating testicular lipid accumulation and androgens biosynthesis disruption in a rat model of dietary obesity. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2015.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Azza M. El-Wakf
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Egypt
| | | | | |
Collapse
|
23
|
Sperm DNA Fragmentation: Mechanisms of Origin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:75-85. [DOI: 10.1007/978-3-030-21664-1_5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Petersen CG, Mauri AL, Vagnini LD, Renzi A, Petersen B, Mattila M, Comar V, Ricci J, Dieamant F, Oliveira JBA, Baruffi RLR, Franco Jr. JG. The effects of male age on sperm DNA damage: an evaluation of 2,178 semen samples. JBRA Assist Reprod 2018; 22:323-330. [PMID: 30106542 PMCID: PMC6210622 DOI: 10.5935/1518-0557.20180047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/30/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the effects of male age on sperm DNA damage. METHODS This cross-sectional study included semen samples collected from 2,178 men seen at an infertility clinic. For DNA integrity analysis, the proportions of spermatozoa showing DNA fragmentation (TUNEL assay), abnormal chromatin packaging/underprotamination (chromomycin A3), abnormal mitochondrial membrane potential (MMP/MitoTracker Green), and apoptosis (annexin V) were recorded. For group comparisons, enrolled subjects were divided into three groups based on their ages: ≤35 years; 36-44 years; and ≥45 years. The associations between age and sperm parameters were assessed using Spearman's rank correlation coefficient. RESULTS Although aging did not affect sperm apoptosis (p>.05), sperm DNA fragmentation and MMP deteriorated significantly with age (p<.05). Chromatin packaging/protamination improved significantly with age (p<.05). CONCLUSION Sperm DNA fragmentation worsened with age and was apparently associated with mitochondrial damage. The age-related increase in sperm DNA damage suggests that delaying childbearing, not only in women but also in men, might jeopardize a couple's reproductive capacity. The increase seen in chromatin packaging might represent a protective feature for DNA. However, additional studies must be performed to confirm the results concerning chromatin packaging/protamination.
Collapse
Affiliation(s)
- Claudia G. Petersen
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
- Paulista Center for Diagnosis, Research, and Training,
Ribeirão Preto, SP, Brazil
| | - Ana L. Mauri
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
- Paulista Center for Diagnosis, Research, and Training,
Ribeirão Preto, SP, Brazil
| | - Laura D. Vagnini
- Paulista Center for Diagnosis, Research, and Training,
Ribeirão Preto, SP, Brazil
| | - Adriana Renzi
- Paulista Center for Diagnosis, Research, and Training,
Ribeirão Preto, SP, Brazil
| | - Bruna Petersen
- Paulista Center for Diagnosis, Research, and Training,
Ribeirão Preto, SP, Brazil
| | - Mariana Mattila
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
| | - Vanessa Comar
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
| | - Juliana Ricci
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
| | - Felipe Dieamant
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
| | - Joao Batista A. Oliveira
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
- Paulista Center for Diagnosis, Research, and Training,
Ribeirão Preto, SP, Brazil
| | - Ricardo L. R. Baruffi
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
- Paulista Center for Diagnosis, Research, and Training,
Ribeirão Preto, SP, Brazil
| | - Jose G. Franco Jr.
- Center for Human Reproduction Prof. Franco Jr., Ribeirão
Preto, SP, Brazil
- Paulista Center for Diagnosis, Research, and Training,
Ribeirão Preto, SP, Brazil
| |
Collapse
|
25
|
Setayesh T, Nersesyan A, Mišík M, Ferk F, Langie S, Andrade VM, Haslberger A, Knasmüller S. Impact of obesity and overweight on DNA stability: Few facts and many hypotheses. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:64-91. [PMID: 30115431 DOI: 10.1016/j.mrrev.2018.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
Abstract
Health authorities are alarmed worldwide about the increase of obesity and overweight in the last decades which lead to adverse health effects including inflammation, cancer, accelerated aging and infertility. We evaluated the state of knowledge concerning the impact of elevated body mass on genomic instability. Results of investigations with humans (39 studies) in which DNA damage was monitored in lymphocytes and sperm cells, are conflicting and probably as a consequence of heterogeneous study designs and confounding factors (e.g. uncontrolled intake of vitamins and minerals and consumption of different food types). Results of animal studies with defined diets (23 studies) are more consistent and show that excess body fat causes DNA damage in multiple organs including brain, liver, colon and testes. Different molecular mechanisms may cause genetic instability in overweight/obese individuals. ROS formation and lipid peroxidation were found in several investigations and may be caused by increased insulin, fatty acid and glucose levels or indirectly via inflammation. Also reduced DNA repair and formation of advanced glycation end products may play a role but more data are required to draw firm conclusions. Reduction of telomere lengths and hormonal imbalances are characteristic for overweight/obesity but the former effects are delayed and moderate and hormonal effects were not investigated in regard to genomic instability in obese individuals. Increased BMI values affect also the activities of drug metabolizing enzymes which activate/detoxify genotoxic carcinogens, but no studies concerning the impact of these alterations of DNA damage in obese individuals are available. Overall, the knowledge concerning the impact of increased body weight and DNA damage is poor and further research is warranted to shed light on this important issue.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sabine Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Vanessa M Andrade
- Laboratório de Biologia Celulare Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Brazil
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Al Omrani B, Al Eisa N, Javed M, Al Ghedan M, Al Matrafi H, Al Sufyan H. Associations of sperm DNA fragmentation with lifestyle factors and semen parameters of Saudi men and its impact on ICSI outcome. Reprod Biol Endocrinol 2018; 16:49. [PMID: 29778100 PMCID: PMC5960110 DOI: 10.1186/s12958-018-0369-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Male factor infertility is quite common as 30-50% of infertility cases are due to sperm defects. The high sperm DNA fragmentation is one of the causes of male factor infertility. Many factors cause sperm DNA fragmentation and could be testicular or post-testicular. The purpose of this study was to assess relationships among sperm DNA fragmentation, lifestyle factors and semen values of Saudi men and to determine impact of sperm DNA fragmentation on ICSI cycle outcome. METHODS The duration of this study was from January 2015 to June 2016. The cases with female factor infertility were excluded. In total 94 couples were selected for investigation. The study parameters were male age, body mass index, smoking, semen values, % sperm DNA fragmentation, fertilization rate and pregnancy outcome. The ICSI procedure was performed in all patients per standard protocol. The semen samples were grouped based on % sperm DNA fragmentation into < 15%, 15-30 and > 30% which corresponded to low, moderate and high sperm DNA fragmentation, respectively. RESULTS There was no difference in ICSI outcome in low and moderate sperm DNA fragmentation, however, in high sperm DNA fragmentation no patient achieved pregnancy. In this study, 53.19% Saudi men had low, 32.98% moderate and 13.83% high DFI. Semen volume, sperm morphology and fertilization rate did not show any correlation trend with DNA fragmentation, however, sperm concentration and motility were negatively correlated in all DFI categories. The BMI was positively correlated in moderate DFI category and smoking was positively correlated with low DFI category. The age was positively correlated in moderate and high DFI categories. CONCLUSIONS The results of this study indicated that 14% Saudi men had high DNA fragmentation. The BMI was positively correlated in moderate DFI category and smoking was positively correlated with low DFI category. The age was positively correlated in moderate and high DFI categories.
Collapse
Affiliation(s)
- Basmah Al Omrani
- 0000 0004 1773 5396grid.56302.32Zoology Department, King Saud University, Riyadh, Saudi Arabia
| | - Nadia Al Eisa
- 0000 0004 1773 5396grid.56302.32Zoology Department, King Saud University, Riyadh, Saudi Arabia
| | - Murid Javed
- Assisted Reproductive Technology Laboratories, Thuriah Medical Center, Riyadh, Saudi Arabia
| | - Maher Al Ghedan
- Genetics Laboratory, Thuriah Medical Center, Riyadh, Saudi Arabia
| | - Hamoud Al Matrafi
- Urology and Andrology Unit, Thuriah Medical Center, Riyadh, Saudi Arabia
| | - Hamad Al Sufyan
- Assisted Reproductive Technology Laboratories, Thuriah Medical Center, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Ghosh S, Mukherjee S. Testicular germ cell apoptosis and sperm defects in mice upon long-term high fat diet feeding. J Cell Physiol 2018; 233:6896-6909. [PMID: 29665058 DOI: 10.1002/jcp.26581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022]
Abstract
The growing prevalence of male infertility is a matter of serious concern. One of the putative causes being nutritional excess from continuous consumption of high fat diet (HFD) leading to insulin resistance albeit the specific relationship is not fully understood. Besides, there are many contradictions in the available literature on the subject. Therefore, we sought to characterize in detail the effects of HFD upon testicular function and sperm quality in mice with particular focus on isolated testicular germ cells and spermatozoa, respectively. In this study, we treated 8-week old male Swiss albino mice with HFD for the duration of 5 months; control animals were reared on standard diet. We observed HFD induced progressive deterioration of testicular histoarchitecture leading to disruption of seminiferous tubules, increased vacuolization, and partial to complete tubular atrophy. Time dependent adverse effects on sperm count, motility, and morphology were noticed. Interestingly, numerous anomalies were detectable in sperm head and tail structures reflecting loss of reproductive capacity due to HFD. Maximal tissue and sperm damage was conspicuous at the endpoint, prompting us to examine oxidative stress markers. Enhanced intracellular reactive oxygen species (ROS) generation, augmentation of prooxidant activities, and compromised testicular antioxidant defences clearly implied conditions of oxidative stress in long-term HFD treated mice. This was concomitant with the onset of abnormally enhanced testicular germ cell apoptosis involving the mitochondrial intrinsic pathway. Thus, our findings revealed that ROS mediated deregulation of testicular germ cell apoptosis is critical in male reproductive impairment due to diet induced obesity.
Collapse
Affiliation(s)
- Songita Ghosh
- Endocrinology and Metabolism Laboratory, Department of Zoology (Centre for Advanced Studies), School of Life Sciences, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Sutapa Mukherjee
- Endocrinology and Metabolism Laboratory, Department of Zoology (Centre for Advanced Studies), School of Life Sciences, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| |
Collapse
|
28
|
Khalil WA, El-Harairy MA, Zeidan AE, Hassan MA, Mohey-Elsaeed O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int J Vet Sci Med 2017; 6:S49-S56. [PMID: 30761321 PMCID: PMC6161860 DOI: 10.1016/j.ijvsm.2017.11.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/29/2017] [Accepted: 11/12/2017] [Indexed: 11/03/2022] Open
Abstract
Semen cryopreservation is a well-established procedure used in veterinary assisted reproduction technology applications. We investigated damaging effects of cryopreservation on the structural and ultrastructural characteristics of bull sperm induced at different temperatures and steps during standard cryopreservation procedure using transmission (TEM) and scanning electron microscopy. We also examined the effect of cryopreservation on sperm DNA and chromatin integrity. Five healthy, fertile Friesian bulls were used, and the ejaculates were obtained using an artificial vagina method. The semen samples were pooled and diluted in a tris-yolk fructose (TYF) for a final concentration of 80 × 106 spermatozoa/ml. The semen samples were packed in straws (0.25 ml), and stored in liquid nitrogen (-196°C). Samples were evaluated before dilution, just after dilution (at 37°C), at 2 h and 4 h during equilibration, and after thawing (37°C for 30 s in water bath). In association with step-wise decline in motility and viability, our results showed that the plasma membrane surrounding the sperm head was the most vulnerable structure to cryo-damage with various degrees of swelling, undulation, or loss affecting about 50% of the total sperm population after equilibration and freezing. Typical acrosome reaction was limited to 10% of the spermatozoa after freezing. We also observed increased number of mitochondria with distorted cristae (15%). Chromatin damage was significantly increased by cryopreservation as evident by TEM (9%). This was mainly due to DNA breaks as confirmed by Sperm Chromatin Structure Assay (SCSA) (8.4%) whereas the chromatin structure was less affected as evaluated microscopically by toluidine blue staining. We concluded that, using standard cryopreservation protocol, the most pronounced damage induced by cryopreservation is observed in the plasma membrane. Further improvement of cryopreservation protocols should thus be targeted at reducing plasma membrane damage. Acrosomal, mitochondrial and chromatin damage are also evident but appear to be within acceptable limits as discussed.
Collapse
Affiliation(s)
- Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mostafa A. El-Harairy
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | | | | | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
29
|
Oliveira JBA, Petersen CG, Mauri AL, Vagnini LD, Renzi A, Petersen B, Mattila M, Dieamant F, Baruffi RLR, Franco JG. Association between body mass index and sperm quality and sperm DNA integrity. A large population study. Andrologia 2017; 50. [DOI: 10.1111/and.12889] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- J. B. A. Oliveira
- Center for Human Reproduction Prof. Franco Jr; Ribeirão Preto SP Brazil
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| | - C. G. Petersen
- Center for Human Reproduction Prof. Franco Jr; Ribeirão Preto SP Brazil
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| | - A. L. Mauri
- Center for Human Reproduction Prof. Franco Jr; Ribeirão Preto SP Brazil
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| | - L. D. Vagnini
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| | - A. Renzi
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| | - B. Petersen
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| | - M. Mattila
- Center for Human Reproduction Prof. Franco Jr; Ribeirão Preto SP Brazil
| | - F. Dieamant
- Center for Human Reproduction Prof. Franco Jr; Ribeirão Preto SP Brazil
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| | - R. L. R. Baruffi
- Center for Human Reproduction Prof. Franco Jr; Ribeirão Preto SP Brazil
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| | - J. G. Franco
- Center for Human Reproduction Prof. Franco Jr; Ribeirão Preto SP Brazil
- Paulista Center for Diagnosis Research and Training; Ribeirão Preto SP Brazil
| |
Collapse
|
30
|
Thanaboonyawat I, Chantrapanichkul P, Petyim S, Kaewjunun C, Laokirkkiat P, Choavaratana R. Application of testosterone supplementation in semen to improve sperm motility in asthenozoospermic males. Arch Gynecol Obstet 2017; 296:589-596. [PMID: 28707057 DOI: 10.1007/s00404-017-4451-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/26/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE To evaluate the effect of different concentrations and durations of seminal testosterone supplementation upon the motility of sperm from asthenozoospermic males. METHODS Semen was collected from 41 infertile men with asthenozoospermia. After liquefaction, 200 μL was extracted from each semen sample and divided equally into five groups for a negative control, a vehicle control, and three experimental portions mixed with 4.75, 7.75, and 17.75 nmol/L of testosterone, respectively. The sperm motility was evaluated at 5, 15, 30, and 45 min following the addition of testosterone. The supernatant from remaining samples were sent for testosterone assay. Sperm viability was also evaluated after 45 min. RESULTS There was no difference in the number of samples in each group which showed a 20% improvement in sperm motility. Group 3 showed a significant retardation in the reduction of motility compared with Group 5 (P < 0.05). Semen samples with a final testosterone concentration of 4.51-10 nmol/L showed a significant improvement in sperm motility when measured 5 min after addition. In contrast, samples showing a rise in testosterone level above 10 nmol/L were associated with a reduction in both sperm motility and viability. CONCLUSION Despite sperm motility decreasing over time, supplementation of semen samples with 4.75 nmol/L of testosterone could delay such reduction. A final seminal testosterone concentration of 4.51-10 nmol/L appears to be optimal for the best sperm motility.
Collapse
Affiliation(s)
- Isarin Thanaboonyawat
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Panicha Chantrapanichkul
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Somsin Petyim
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Chidchanok Kaewjunun
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Pitak Laokirkkiat
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Roungsin Choavaratana
- Infertility and Reproductive Biology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| |
Collapse
|
31
|
Ali Mohamed MS. A new strategy and system for the ex vivo ovary perfusion and cryopreservation: An innovation. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.6.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
32
|
Pourmasumi S, Sabeti P, Rahiminia T, Mangoli E, Tabibnejad N, Talebi AR. The etiologies of sperm DNA abnormalities in male infertility: An assessment and review. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.6.331] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
33
|
Kominiarek MA, Jungheim ES, Hoeger KM, Rogers AM, Kahan S, Kim JJ. American Society for Metabolic and Bariatric Surgery position statement on the impact of obesity and obesity treatment on fertility and fertility therapy Endorsed by the American College of Obstetricians and Gynecologists and the Obesity Society. Surg Obes Relat Dis 2017; 13:750-757. [DOI: 10.1016/j.soard.2017.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/30/2022]
|
34
|
Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol 2016; 5:935-950. [PMID: 28078226 PMCID: PMC5182232 DOI: 10.21037/tau.2016.10.03] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sperm DNA fragmentation (SDF) has been generally acknowledged as a valuable tool for male fertility evaluation. While its detrimental implications on sperm function were extensively investigated, little is known about the actual indications for performing SDF analysis. This review delivers practice based recommendations on commonly encountered scenarios in the clinic. An illustrative description of the different SDF measurement techniques is presented. SDF testing is recommended in patients with clinical varicocele and borderline to normal semen parameters as it can better select varicocelectomy candidates. High SDF is also linked with recurrent spontaneous abortion (RSA) and can influence outcomes of different assisted reproductive techniques. Several studies have shown some benefit in using testicular sperm rather than ejaculated sperm in men with high SDF, oligozoospermia or recurrent in vitro fertilization (IVF) failure. Infertile men with evidence of exposure to pollutants can benefit from sperm DNA testing as it can help reinforce the importance of lifestyle modification (e.g., cessation of cigarette smoking, antioxidant therapy), predict fertility and monitor the patient’s response to intervention.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Majzoub
- Department of Urology, Glickman Urological and kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Campinas, SP, Brazil
| | - Edmund Ko
- Department of Urology, Loma Linda University, Loma Linda, California, USA
| | | | - Armand Zini
- Department of Urology, McGill University, Montreal, Canada
| |
Collapse
|
35
|
Patel CJ, Sundaram R, Buck Louis GM. A data-driven search for semen-related phenotypes in conception delay. Andrology 2016; 5:95-102. [PMID: 27792860 PMCID: PMC5164952 DOI: 10.1111/andr.12288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
Sperm count, morphology, and motility have been reported to be predictive of pregnancy, although with equivocal basis prompting some authors to question the prognostic value of semen analysis. To assess the utility of including semen quality data in predicting conception delay or requiring >6 cycles to become pregnant (referred to as conception delay), we utilized novel data-driven analytic techniques in a pre-conception cohort of couples prospectively followed up for time-to-pregnancy. The study cohort comprised 402 (80%) male partners who provided semen samples and had time-to-pregnancy information. Female partners used home pregnancy tests and recorded results in daily journals. Odds ratios (OR), false discovery rates, and 95% confidence intervals (CIs) for conception delay (time-to-pregnancy > 6 cycles) were estimated for 40 semen quality phenotypes comprising 35 semen quality endpoints and 5 closely related fecundity determinants (body mass index, time of contraception, lipids, cotinine and seminal white blood cells). Both traditional and strict sperm phenotype measures were associated with lower odds of conception delay. Specifically, for an increase in percent morphologically normal spermatozoa using traditional methods, we observed a 40% decrease in conception delay (OR = 0.6, 95% CI = 0.50, 0.81; p = 0.0003). Similarly, for an increase in strict criteria, we observed a 30% decrease in odds for conception delay (OR = 0.7, 95% CI = 0.52, 0.83; p = 0.001). On the other hand, an increase in percent coiled tail spermatozoa was associated with a 40% increase in the odds for conception delay (OR = 1.4, 95% CI = 1.12, 1.75; p = 0.003). However, our findings suggest that semen phenotypes have little predictive value of conception delay (area under the curve of 73%). In a multivariate model containing significant semen factors and traditional risk factors (i.e. age, body mass index, cotinine and ever having fathered a pregnancy), there was a modest improvement in prediction of conception delay (16% increase in area under the curve, p < 0.0002).
Collapse
Affiliation(s)
- C J Patel
- Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - R Sundaram
- Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Rockville, MD, USA
| | - G M Buck Louis
- Division of Intramural Population Health Research, Office of the Director, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
36
|
Krejčí J, Stixová L, Pagáčová E, Legartová S, Kozubek S, Lochmanová G, Zdráhal Z, Sehnalová P, Dabravolski S, Hejátko J, Bártová E. Post-Translational Modifications of Histones in Human Sperm. J Cell Biochem 2016; 116:2195-209. [PMID: 25808548 DOI: 10.1002/jcb.25170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/19/2015] [Indexed: 01/22/2023]
Abstract
We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual.
Collapse
Affiliation(s)
- Jana Krejčí
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Lenka Stixová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Eva Pagáčová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Soňa Legartová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Stanislav Kozubek
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Gabriela Lochmanová
- Research Group-Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Research Group-Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Petra Sehnalová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Siarhei Dabravolski
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Eva Bártová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| |
Collapse
|
37
|
Sperm DNA damage-the effect of stress and everyday life factors. Int J Impot Res 2016; 28:148-54. [PMID: 27076112 DOI: 10.1038/ijir.2016.15] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 11/12/2015] [Accepted: 01/31/2016] [Indexed: 12/30/2022]
Abstract
The clinical significance of sperm DNA damage lies in its association with natural conception rates and also might have a serious consequence on developmental outcome of the newborn. The aim of the present study is to determine whether stress and everyday life factors are associated with sperm DNA damage in adult men. The study population consisted of 286 men who attended the infertility clinic for diagnostic purposes and who had normal semen concentration of 20-300 m ml(-1) or with slight oligozoospermia (semen concentration of 15-20 m ml(-1)) (WHO, 1999). Participants were interviewed and provided a semen sample. The sperm chromatin structure assay was assessed using flow cytometry. In the present study, we found evidence for a relationship between sperm DNA damage parameters and everyday life factors. High and medium level of occupational stress and age increase DNA fragmentation index (P=0.03, P=0.004 and P=0.03, respectively). Other lifestyle factors that were positively associated with percentage of immature sperms (high DNA stainability index) included: obesity and cell phone use for more than 10 years (P=0.02 and P=0.04, respectively). Our findings indicate that stress and lifestyle factor may affect sperm DNA damage. Data from the present study showed a significant effect of age, obesity, mobile phone radiation and occupational stress on sperm DNA damage. As DNA fragmentation represents an extremely important parameter indicative of infertility and potential outcome of assisted reproduction treatment, and most of the lifestyle factors are easily modifiable, the information about factors that may affect DNA damage are important.
Collapse
|
38
|
Abstract
The prevalence of overweight and obesity in reproductive-aged men is increasing worldwide, with >70% of men >18 years classified as overweight or obese in some western nations. Male obesity is associated with male subfertility, impairing sex hormones, reducing sperm counts, increasing oxidative sperm DNA damage and changing the epigenetic status of sperm. These changes to sperm function as a result of obesity, are further associated with impaired embryo development, reduced live birth rates and increased miscarriage rates in humans. Animal models have suggested that these adverse reproductive effects can be transmitted to the offspring; suggesting that men's health at conception may affect the health of their children. In addition to higher adiposity, male obesity is associated with comorbidities, including metabolic syndrome, hypercholesterolemia, hyperleptinemia and a pro-inflammatory state, all which have independently been linked with male subfertility. Taken together, these findings suggest that the effects of male obesity on fertility are likely multifactorial, with associated comorbidities also influencing sperm, pregnancy and subsequent child health.
Collapse
Affiliation(s)
- Nicole O McPherson
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, The Robinson Institute, The University of Adelaide, South Australia 5005, Australia; Freemasons Foundation Center for Mens Health, The University of Adelaide, South Australia 5005, Australia,
| | | |
Collapse
|
39
|
Abstract
The purpose of this ASRM Practice Committee report is to provide clinicians with principles and strategies for the evaluation and treatment of couples with infertility associated with obesity. This revised document replaces the Practice Committee document titled, "Obesity and reproduction: an educational bulletin," last published in 2008 (Fertil Steril 2008;90:S21-9).
Collapse
|
40
|
Oyeyipo I, Maartens P, du Plessis S. Diet-induced obesity alters kinematics of rat spermatozoa. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
41
|
Campbell JM, Lane M, Owens JA, Bakos HW. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online 2015; 31:593-604. [PMID: 26380863 DOI: 10.1016/j.rbmo.2015.07.012] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023]
Abstract
This systematic review investigated the effect of paternal obesity on reproductive potential. Databases searched were Pubmed, Ovid, Web of Science, Scopus, Cinahl and Embase. Papers were critically appraised by two reviewers, and data were extracted using a standardized tool. Outcomes were: likelihood of infertility, embryo development, clinical pregnancy, live birth, pregnancy viability, infant development, sperm; concentration, morphology, motility, volume, DNA fragmentation, chromatin condensation, mitochondrial membrane potential (MMP), and seminal plasma factors. Thirty papers were included, with a total participant number of 115,158. Obese men were more likely to experience infertility (OR = 1.66, 95% CI 1.53-1.79), their rate of live birth per cycle of assisted reproduction technology (ART) was reduced (OR = 0.65, 95% CI 0.44-0.97) and they had a 10% absolute risk increase of pregnancy non-viability. Additionally, obese men had an increased percentage of sperm with low MMP, DNA fragmentation, and abnormal morphology. Clinically significant differences were not found for conventional semen parameters. From these findings it can be concluded that male obesity is associated with reduced reproductive potential. Furthermore, it may be informative to incorporate DNA fragmentation analysis and MMP assessment into semen testing, especially for obese men whose results suggest they should have normal fertility.
Collapse
Affiliation(s)
- Jared M Campbell
- The Joanna Briggs Institute, University of Adelaide, Adelaide 5000, Australia.
| | - Michelle Lane
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Repromed, Adelaide 5000, Australia
| | - Julie A Owens
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide 5000, Australia
| | - Hassan W Bakos
- Bump IVF, Mossman, Sydney, New South Wales 2088, Australia
| |
Collapse
|
42
|
Thomsen L, Humaidan P, Bungum L, Bungum M. The impact of male overweight on semen quality and outcome of assisted reproduction. Asian J Androl 2015; 16:749-54. [PMID: 24759576 PMCID: PMC4215681 DOI: 10.4103/1008-682x.125398] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well-documented that male overweight and obesity causes endocrine disorders that might diminish the male reproductive capacity; however, reports have been conflicting regarding the influence of male body mass index (BMI) on semen quality and the outcome of assisted reproductive technology (ART). The aim of this study was to investigate whether increased male BMI affects sperm quality and the outcome of assisted reproduction in couples with an overweight or obese man and a non-obese partner. Data was prospectively collected from 612 infertile couples undergoing ART at a Danish fertility center. Self-reported information on paternal height and weight were recorded and BMI was calculated. The men were divided into four BMI categories: underweight BMI < 20 kg m−2, normal BMI 20–24.9 kg m−2, overweight BMI 25–29.9 kg m−2 and obese BMI > 30 kg m−2. Conventional semen analysis was performed according to the World Health Organization guideline and sperm DNA integrity was analyzed by the Sperm Chromatin Structure Assay (SCSA). No statistically significant effect of male BMI was seen on conventional semen parameters (sperm concentration, total sperm count, seminal volume and motility) or on SCSA-results. Furthermore, the outcome of ART regarding fertilization rate, number of good quality embryos (GQE), implantation and pregnancy outcome was not influenced by the increasing male BMI.
Collapse
Affiliation(s)
- Lise Thomsen
- The Fertility Clinic, Viborg Hospital, Skive, Denmark
| | | | | | | |
Collapse
|
43
|
Body Mass Index Is Associated with Impaired Semen Characteristics and Reduced Levels of Anti-Müllerian Hormone across a Wide Weight Range. PLoS One 2015; 10:e0130210. [PMID: 26067627 PMCID: PMC4466334 DOI: 10.1371/journal.pone.0130210] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
There is still controversy as to how body mass index (BMI) affects male reproduction. We investigated how BMI is associated with semen quality and reproductive hormones in 166 men, including 38 severely obese men. Standard semen analysis and sperm DNA integrity analysis were performed, and blood samples were analysed for reproductive hormones. Adjusted for age and time of abstinence, BMI was negatively associated with sperm concentration (B = -0.088, P = 0.009), total sperm count (B = -0.223, P = 0.001), progressive sperm motility (B = -0.675, P = 0.007), normal sperm morphology (B = -0.078, P = 0.001), and percentage of vital spermatozoa (B = -0.006, P = 0.027). A negative relationship was observed between BMI and total testosterone (B = -0.378, P < 0.001), sex hormone binding globulin (B = -0.572, P < 0.001), inhibin B (B = -3.120, P < 0.001) and anti-Müllerian hormone (AMH) (B = -0.009, P < 0.001). Our findings suggest that high BMI is negatively associated with semen characteristics and serum levels of AMH.
Collapse
|
44
|
Bandel I, Bungum M, Richtoff J, Malm J, Axelsson J, Pedersen HS, Ludwicki JK, Czaja K, Hernik A, Toft G, Bonde JP, Spano M, Malm G, Haugen TB, Giwercman A. No association between body mass index and sperm DNA integrity. Hum Reprod 2015; 30:1704-13. [DOI: 10.1093/humrep/dev111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/24/2015] [Indexed: 01/03/2023] Open
|
45
|
Fan Y, Liu Y, Xue K, Gu G, Fan W, Xu Y, Ding Z. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood-testis barrier. PLoS One 2015; 10:e0120775. [PMID: 25886196 PMCID: PMC4401673 DOI: 10.1371/journal.pone.0120775] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/27/2015] [Indexed: 01/19/2023] Open
Abstract
Obesity is a complex metabolic disease that is a serious detriment to both children and adult health, which induces a variety of diseases, such as cardiovascular disease, type II diabetes, hypertension and cancer. Although adverse effects of obesity on female reproduction or oocyte development have been well recognized, its harmfulness to male fertility is still unclear because of reported conflicting results. The aim of this study was to determine whether diet-induced obesity impairs male fertility and furthermore to uncover its underlying mechanisms. Thus, male C57BL/6 mice fed a high-fat diet (HFD) for 10 weeks served as a model of diet-induced obesity. The results clearly show that the percentage of sperm motility and progressive motility significantly decreased, whereas the proportion of teratozoospermia dramatically increased in HFD mice compared to those in normal diet fed controls. Besides, the sperm acrosome reaction fell accompanied by a decline in testosterone level and an increase in estradiol level in the HFD group. This alteration of sperm function parameters strongly indicated that the fertility of HFD mice was indeed impaired, which was also validated by a low pregnancy rate in their mated normal female. Moreover, testicular morphological analyses revealed that seminiferous epithelia were severely atrophic, and cell adhesions between spermatogenic cells and Sertoli cells were loosely arranged in HFD mice. Meanwhile, the integrity of the blood-testis barrier was severely interrupted consistent with declines in the tight junction related proteins, occludin, ZO-1 and androgen receptor, but instead endocytic vesicle-associated protein, clathrin rose. Taken together, obesity can impair male fertility through declines in the sperm function parameters, sex hormone level, whereas during spermatogenesis damage to the blood-testis barrier (BTB) integrity may be one of the crucial underlying factors accounting for this change.
Collapse
Affiliation(s)
- Yong Fan
- Department of Human Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - Yue Liu
- Department of Human Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - Ke Xue
- Department of Human Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - Guobao Gu
- Department of Medical Laboratory Science, The Central Hospital of Zhabei District, Shanghai, China
| | - Weimin Fan
- Department of Human Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
- Department of Human Reproductive Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Xu
- Department of Human Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - Zhide Ding
- Department of Human Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
46
|
Marchiani S, Vignozzi L, Filippi S, Gurrieri B, Comeglio P, Morelli A, Danza G, Bartolucci G, Maggi M, Baldi E. Metabolic syndrome-associated sperm alterations in an experimental rabbit model: relation with metabolic profile, testis and epididymis gene expression and effect of tamoxifen treatment. Mol Cell Endocrinol 2015; 401:12-24. [PMID: 25451982 DOI: 10.1016/j.mce.2014.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 12/12/2022]
Abstract
The influence of metabolic syndrome (MetS) on sperm quality and function is debated. Using a well-established high fat diet (HFD) rabbit model resembling human MetS, including development of hypogonadism, we demonstrate that HFD decreased sperm motility, morphology and acrosome reaction in response to progesterone and increased sperm cholesterol content. All the above parameters were associated with most MetS features, its severity and plasma testosterone (T) at univariate analysis. After T adjustment, sperm morphology and motility retained a significant association, respectively, with mean arterial pressure and circulating cholesterol levels. MetS modified the expression of inflammatory and tissue remodelling genes in the testis and of aquaporins in the epididymis. In a multivariate analysis, sperm morphology resulted associated with testis expression of fibronectin and collagen type 1 genes, whereas motility with epididymis aquaporin 1 gene. Administration of tamoxifen, used in the treatment of idiopathic male infertility, to HFD rabbits partially restored motility, but further decreased morphology and increased spontaneous acrosome reaction, without restoring responsiveness to progesterone. Overall our results indicate that development of MetS produces detrimental effects on sperm quality and functionality by inducing metabolic disorders leading to alterations in testis and epididymis functions and evidence a role of hypertension as a new determinant of abnormal sperm morphology, in line with a previous human study from our group.
Collapse
Affiliation(s)
- Sara Marchiani
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Linda Vignozzi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Departments of Experimental and Clinical Biomedical Sciences, NEUROFARBA, University of Florence, Florence, Italy
| | - Bruna Gurrieri
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanna Danza
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisabetta Baldi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
47
|
Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev 2015; 19:22-33. [PMID: 25462195 DOI: 10.1016/j.arr.2014.10.007] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
Reduced fertility typically occurs among women in their late 30s, but increasing evidence indicates that advanced paternal age is associated with changes in reproduction as well. Numerous studies have investigated age-based declines in semen traits, but the impact of paternal age on semen parameter values remains inconclusive. Using data from 90 studies (93,839 subjects), we conducted a systematic review and meta-analysis to quantify the effect of male age on seven ejaculate traits (semen volume, sperm concentration, total sperm count, morphology, total motility, progressive motility and DNA fragmentation). Age-associated declines in semen volume, percentage motility, progressive motility, normal morphology and unfragmented cells were statistically significant and results generally seemed to be robust against confounding factors. Unexpectedly, sperm concentration did not decline with increasing male age, even though we found that sperm concentration declined over time. Our findings indicate that male age needs more recognition as a potential contributor to the negative pregnancy outcomes and reduced offspring health associated with delayed first reproduction. We suggest that greater focus on collection of DNA fragmentation and progressive motility in a clinical setting may lead to better patient outcomes during fertility treatments of aging couples.
Collapse
Affiliation(s)
- Sheri L Johnson
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand; Department of Zoology, University of Otago, Dunedin 9054, New Zealand; Allan Wilson Centre, University of Otago, Dunedin 9054, New Zealand.
| | - Jessica Dunleavy
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand; Allan Wilson Centre, University of Otago, Dunedin 9054, New Zealand; Gravida: National Centre for Growth and Development, University of Otago, Dunedin 9054, New Zealand
| | - Shinichi Nakagawa
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand; Gravida: National Centre for Growth and Development, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
48
|
Lu JC, Jing J, Dai JY, Zhao AZ, Yao Q, Fan K, Wang GH, Liang YJ, Chen L, Ge YF, Yao B. Body mass index, waist-to-hip ratio, waist circumference and waist-to-height ratio cannot predict male semen quality: a report of 1231 subfertile Chinese men. Andrologia 2014; 47:1047-54. [PMID: 25418484 DOI: 10.1111/and.12376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/29/2022] Open
Affiliation(s)
- J.-C. Lu
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
- Department of Laboratory Science, Nanjing Hospital, Jiangsu Corps; The Armed Police Force; PLA; Nanjing China
| | - J. Jing
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - J.-Y. Dai
- Key Laboratory of Animal Ecology and Conservation Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - A. Z. Zhao
- Department of Gerontology; the First Affiliated Hospital; and the Center of Metabolic Disease Research; Nanjing Medical University; Nanjing China
| | - Q. Yao
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - K. Fan
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - G.-H. Wang
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Y.-J. Liang
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - L. Chen
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Y.-F. Ge
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - B. Yao
- Reproductive Medical Center; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| |
Collapse
|
49
|
Alshahrani S, Agarwal A, Assidi M, Abuzenadah AM, Durairajanayagam D, Ayaz A, Sharma R, Sabanegh E. Infertile men older than 40 years are at higher risk of sperm DNA damage. Reprod Biol Endocrinol 2014; 12:103. [PMID: 25410314 PMCID: PMC4258051 DOI: 10.1186/1477-7827-12-103] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/05/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The effect of paternal age on semen quality is controversial. In this retrospective study, the aim was to investigate the effects of advancing age on sperm parameters including reactive oxygen species (ROS), total antioxidant capacity (TAC) and sperm DNA damage in infertile men. We also examined whether paternal age >40 y is associated with higher risk of sperm DNA damage. METHODS A total of 472 infertile men presenting for infertility were divided into 4 age groups: group A: patients ≤ 30 y; group B: patients 31- 40 y, group C: ≤ 40 y and group D: patients >40 y. The following tests were performed - semen analysis according to WHO 2010 criteria, seminal ROS by chemiluminescence, TAC by colorimetric assay and sperm DNA damage by TUNEL assay - and the results were compared amongst the 4 age groups. RESULTS There was no statistical difference in conventional semen parameters, TAC and ROS with advancing paternal age as well as between different age groups. However, a significant negative association was noted between sperm DNA damage and advancing paternal age. Men >40 y showed higher levels of sperm DNA damage (24.4 ± 18.5%) compared to younger men (<30 y; 16.7 ± 11.2%; p <0.05). CONCLUSIONS Infertile men over the age of 40 y have a greater percentage of sperm DNA fragmentation compared to infertile men aged 40 y and below. Advanced paternal age (>40 y) may increase the risk of sperm DNA damage in infertile men.
Collapse
Affiliation(s)
- Saad Alshahrani
- Glickman Urological and Kidney Institute, Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
- College of Medicine, Salman Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ashok Agarwal
- Glickman Urological and Kidney Institute, Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| | - Mourad Assidi
- College of Medicine, Salman Bin Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- College of Medicine, Salman Bin Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia
| | - Damayanthi Durairajanayagam
- Glickman Urological and Kidney Institute, Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
- MARA University of Technology, Selangor Darul Ehsan, Malaysia
| | - Ahmet Ayaz
- Glickman Urological and Kidney Institute, Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| | - Rakesh Sharma
- Glickman Urological and Kidney Institute, Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| | - Edmund Sabanegh
- Glickman Urological and Kidney Institute, Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
50
|
Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online 2014; 28:684-703. [DOI: 10.1016/j.rbmo.2014.02.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
|