1
|
Yu L, Zhao Y, Zhao Y. Advances in the pharmacological effects and molecular mechanisms of emodin in the treatment of metabolic diseases. Front Pharmacol 2023; 14:1240820. [PMID: 38027005 PMCID: PMC10644045 DOI: 10.3389/fphar.2023.1240820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. are traditional Chinese medicines that have been used for thousands of years. They are formulated into various preparations and are widely used. Emodin is a traditional Chinese medicine monomer and the main active ingredient in Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. Modern research shows that it has a variety of pharmacological effects, including promoting lipid and glucose metabolism, osteogenesis, and anti-inflammatory and anti-autophagy effects. Research on the toxicity and pharmacokinetics of emodin can promote its clinical application. This review aims to provide a basis for further development and clinical research of emodin in the treatment of metabolic diseases. We performed a comprehensive summary of the pharmacology and molecular mechanisms of emodin in treating metabolic diseases by searching databases such as Web of Science, PubMed, ScienceDirect, and CNKI up to 2023. In addition, this review also analyzes the toxicity and pharmacokinetics of emodin. The results show that emodin mainly regulates AMPK, PPAR, and inflammation-related signaling pathways, and has a good therapeutic effect on obesity, hyperlipidemia, non-alcoholic fatty liver disease, diabetes and its complications, and osteoporosis. In addition, controlling toxic factors and improving bioavailability are of great significance for its clinical application.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Traditional Chinese Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
- Department of Pharmacy, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yongliang Zhao
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongli Zhao
- Department of Traditional Chinese Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| |
Collapse
|
2
|
Lu F, Li E, Yang X. The association between circulatory, local pancreatic PCSK9 and type 2 diabetes mellitus: The effects of antidiabetic drugs on PCSK9. Heliyon 2023; 9:e19371. [PMID: 37809924 PMCID: PMC10558357 DOI: 10.1016/j.heliyon.2023.e19371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent modulator of cholesterol metabolism and plays a crucial role in the normal functioning of pancreatic islets and the progression of diabetes. Islet autocrine PCSK9 deficiency can lead to the enrichment of low-density lipoprotein (LDL) receptor (LDLR) and excessive LDL cholesterol (LDL-C) uptake, subsequently impairing the insulin secretion in β-cells. Circulatory PCSK9 levels are primarily attributed to hepatocyte secretion. Notably, anti-PCSK9 strategies proposed for individuals with hypercholesterolemia chiefly target liver-derived PCSK9; however, these anti-PCSK9 strategies have been associated with the risk of new-onset diabetes mellitus (NODM). In the current review, we highlight a new direction in PCSK9 inhibition therapy strategies: screening candidates for anti-PCSK9 from the drugs used in type 2 diabetes mellitus (T2DM) treatment. We explored the association between circulating, local pancreatic PCSK9 and T2DM, as well as the relationship between PCSK9 monoclonal antibodies and NODM. We discussed the emergence of artificial and natural drugs in recent years, exhibiting dual benefits of antidiabetic activity and PCSK9 reduction, confirming that the diverse effects of these drugs may potentially impact the progression of diabetes and associated disorders, thereby introducing novel avenues and methodologies to enhance disease prognosis.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
- School of Basic Medical Sciences, Zhengzhou University, 450001, China
| |
Collapse
|
3
|
Lu SY, Tsai BCK, Van Thao D, Lai CH, Chen MYC, Kuo WW, Kuo CH, Lin KH, Hsieh DJY, Huang CY. Cardiac-specific overexpression of insulin-like growth factor II receptor-α interferes with the regulation of calcium homeostasis in the heart under hyperglycemic conditions. Mol Biol Rep 2023; 50:4329-4338. [PMID: 36928640 DOI: 10.1007/s11033-023-08327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is a progressive disease caused by inexplicit mechanisms, and a novel factor, insulin-like growth factor II receptor-α (IGF-IIRα), may contribute to aggravating its pathogenesis. We hypothesized that IGF-IIRα could intensify diabetic heart injury. METHODS AND RESULTS To demonstrate the potential role of IGF-IIRα in the diabetic heart, we used (SD-TG [IGF-IIRα]) transgenic rat model with cardiac-specific overexpression of IGF-IIRα, along with H9c2 cells, to study the effects of IGF-IIRα in the heart under hyperglycemic conditions. IGF-IIRα was found to remodel calcium homeostasis and intracellular Ca2+ overload-induced autophagy disturbance in the heart during diabetes. IGF-IIRα overexpression induced intracellular Ca2+ alteration by downregulating phosphorylated phospholamban/sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (PLB/SERCA2a), resulting in the suppression of Ca2+ uptake into the endoplasmic reticulum. Additionally, IGF-IIRα itself contributed to Ca2+ withdrawal from the endoplasmic reticulum by increasing the expression of CaMKIIδ in the active form. Furthermore, alterations in Ca2+ homeostasis significantly dysregulated autophagy in the heart during diabetes. CONCLUSIONS Our study reveals the novel role of IGF-IIRα in regulating cardiac intracellular Ca2+ homeostasis and its related autophagy interference, which contribute to the development of diabetic cardiomyopathy. In future, the present study findings have implications in the development of appropriate therapy to reduce diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shang-Yeh Lu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dao Van Thao
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Kuan-Ho Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
4
|
Guo Y, Zhang R, Li W. Emodin in cardiovascular disease: The role and therapeutic potential. Front Pharmacol 2022; 13:1070567. [PMID: 36618923 PMCID: PMC9816479 DOI: 10.3389/fphar.2022.1070567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Emodin is a natural anthraquinone derivative extracted from Chinese herbs, such as Rheum palmatum L, Polygonum cuspidatum, and Polygonum multiflorum. It is now also a commonly used clinical drug and is listed in the Chinese Pharmacopoeia. Emodin has a wide range of pharmacological properties, including anticancer, antiinflammatory, antioxidant, and antibacterial effects. Many in vivo and in vitro experiments have demonstrated that emodin has potent anticardiovascular activity. Emodin exerts different mechanisms of action in different types of cardiovascular diseases, including its involvement in pathological processes, such as inflammatory response, apoptosis, cardiac hypertrophy, myocardial fibrosis, oxidative damage, and smooth muscle cell proliferation. Therefore, emodin can be used as a therapeutic drug against cardiovascular disease and has broad application prospects. This paper summarized the main pharmacological effects and related mechanisms of emodin in cardiovascular diseases in recent years and discussed the limitations of emodin in terms of extraction preparation, toxicity, and bioavailability-related pharmacokinetics in clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Pharmacy, Harbin University of Commerce, Harbin, China,Department of Cardiology, Geriatrics, and General Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongzhen Zhang
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China,*Correspondence: Wenlan Li,
| |
Collapse
|
5
|
Wang Y, Zhang J, Xu Z, Zhang G, Lv H, Wang X, Xu G, Li X, Yang Z, Wang H, Wang Y, Li H, Shi Y. Identification and action mechanism of lipid regulating components from Rhei Radix et rhizoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115179. [PMID: 35278606 DOI: 10.1016/j.jep.2022.115179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhei Radix et Rhizoma is widely used in Traditional Chinese Medicine to attack stagnation, clear damp heat, relieve fire, cool blood, remove blood stasis and detoxify recorded in Chinese Pharmacopoeia. Modern pharmacological research has showed the extract of Rhei Radix et Rhizoma has the effect of lowering blood lipids, but the main active components and their mechanisms are still not clear. AIM OF THE STUDY To reveal the lipid regulating components from Rhei Radix et Rhizoma and preliminarily explore their related action mechanisms. MATERIALS AND METHODS A rat model of dyslipidemia was established by administration of a high-fat emulsion via gavage, and the intervention effect of different polar fractions of Rhei Radix et Rhizoma on rat blood lipids as well as their related action mechanisms were preliminarily investigated. The effective components were inferred based on the above tests and identified by high performance liquid chromatography in comparison with reference substances, their UV absorption and high resolution mass spectra characteristics. RESULTS The extract with dichloromethane fraction (DF) containing rhubarb free anthraquinones (aloe-emodin, rhein, emodin, chrysophanol and physcion) significantly regulated the disordered blood lipids, lowered TC and LDLC, reversed TG and increased HDLC level in dyslipidemic rats and also showed lipid-lowering effect on lipid abnormalities in HepG2 cells. DF could alter the signaling pathways such as PPARα and AMPK implicated in lipid metabolism, and it down-regulated the mRNA expression of liver APOA2, SCD-1, HMGCR, SREBP-2 and PCSK9, but up-regulated the expressions of liver APOE, LPL and intestinal ABCG8. Besides, it could change the composition of Firmicutes, Bacteroidetes and Proteobacteria in dyslipidemic rat feces samples. CONCLUSIONS Rhubarb free anthraquinones have a significant regulating effect on the levels of serum TC, LDLC and HDLC, and probably possess a bidirectional regulatory effect on TG level in dyslipidemic rats. These effects may be achieved by regulating the expressions of the liver PPARα and SREBP target genes, PCSK9 and the intestinal ABCG8 genes, which are involved in blood cholesterol transport, liver lipid metabolism and intestinal cholesterol excretion. Rhubarb free anthraquinones may also affect energy metabolism by changing the composition of gut microflora related to lipid metabolism in dyslipidemic rats.
Collapse
Affiliation(s)
- Yudong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Jianing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zheng Xu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Guifang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Huijuan Lv
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xinben Wang
- Gansu Qingdai Chinese Herbal Medicine Beauty Research Co. Ltd., Lanzhou, 730050, China.
| | - Guijing Xu
- Gansu Qingdai Chinese Herbal Medicine Beauty Research Co. Ltd., Lanzhou, 730050, China.
| | - Xuefeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Haoliang Wang
- Gansu Digital Materia Medica Testing Center Co., Ltd., Longxi, 748100, China.
| | - Yongfu Wang
- Gansu Digital Materia Medica Testing Center Co., Ltd., Longxi, 748100, China.
| | - Hongfang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Semwal RB, Semwal DK, Combrinck S, Viljoen A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. PHYTOCHEMISTRY 2021; 190:112854. [PMID: 34311280 DOI: 10.1016/j.phytochem.2021.112854] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative that is present in numerous globally renowned herbal medicines. It is recognised as a protein tyrosine kinase inhibitor and as an anticancer drug, active against various tumour cells, including lung, breast, liver, and ovarian cancer cells. Recently, its role in combination chemotherapy with various allopathic medicines, to minimize their toxicity and to enhance their efficacy, has been studied. The use of emodin in these therapies is gaining popularity, due to fewer associated side effects compared with standard anticancer drugs. Emodin has a broad therapeutic window, and in addition to its antineoplastic activity, it displays anti-ulcer, anti-inflammatory, hepatoprotective, neuroprotective, antimicrobial, muscle relaxant, immunosuppressive and antifibrotic activities, in both in vitro and in vivo models. Although reviews on the anticancer activity of emodin have been published, none coherently unite all the pharmacological properties of emodin, particularly the anti-oxidant, antimicrobial, antidiabetic, immunosuppressive and hepatoprotective activities of the compound. Hence, in this review, all of the available data regarding the pharmacological properties of emodin are explored, with particular emphasis on the modes of action of the molecule. In addition, the manuscript details the occurrence, biosynthesis and chemical synthesis of the compound, as well as its toxic effects on biotic systems.
Collapse
Affiliation(s)
- Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Chemistry, Pt. Lalit Mohan Sharma Govt. Post Graduate College, Rishikesh, 249201, India
| | - Deepak Kumar Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
7
|
Martorell M, Castro N, Victoriano M, Capó X, Tejada S, Vitalini S, Pezzani R, Sureda A. An Update of Anthraquinone Derivatives Emodin, Diacerein, and Catenarin in Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3313419. [PMID: 34589130 PMCID: PMC8476274 DOI: 10.1155/2021/3313419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is part of metabolic diseases and is characterized by high blood sugar levels over a prolonged period as result of an insulin-deficient production or an inappropriate response to insulin by our cells. This chronic disease was the direct cause of 1.6 million deaths in 2016 as reported by the World Health Organization. Emodin is a natural product and active ingredient of various Chinese herbs with the chemical formula 1,3,8-trihydroxy-6-methylanthraquinone. Diacerein is another naturally occurring anthraquinone (1,8-diacetoxy-3-carboxyanthraquinone) commonly used as commercial drug to treat osteoarthritis. These two anthraquinone derivatives have been shown to exert antidiabetic activities. Emodin seems to enhance the glucose tolerance and insulin sensibility via activation of PPARγ and modulation of metabolic-related genes. Diacerein seems to decrease inflammatory cytokines and increase insulin secretion enhancing insulin sensibility and therefore improving glucose control. Other naturally occurring anthraquinone derivatives, such as catenarin (1,4,6,8-tetrahydroxy-3-methylanthraquinone), have been shown to have antidiabetic activities although few studies have been performed. The synthesis of new emodin derivatives is increasing, but these new molecules have not been tested for diabetes treatment. In the current work, available literature on anthraquinone derivatives' effects in diabetes disease is reviewed. Moreover, we discuss the chemistry, food sources, bioavailability, and toxicity of the naturally occurring anthraquinone with antidiabetic effects.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Natalia Castro
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma E-07122, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2 20133, Milan, Italy
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| |
Collapse
|
8
|
Wang JP, Wang SH, Wang YQ, Hu H, Yu JW, Zhao X, Liu JL, Chen X, Li Y. A data process of human knee joint kinematics obtained by motion-capture measurement. BMC Med Inform Decis Mak 2021; 21:121. [PMID: 33832470 PMCID: PMC8028155 DOI: 10.1186/s12911-021-01483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The motion capture has been used as the usual method for measuring movement parameters of human, and most of the measuring data are obtained by partial manual process based on commercial software. An automatic kinematics data process was developed by programming on MATLAB software in this paper. METHODS The motion capture measurement of healthy volunteers was carried out and the MATLAB program was used for data process. Firstly, the coordinate data of markers and anatomical points on human lower limb measured by motion capture system were read and repaired through the usual and the patch program. Meantime, the local coordinate systems of human femur and tibia were established with anatomical points. Then flexion/extension, abduction/adduction and internal/external rotation of human knee tibiofemoral joint were obtained by special coordinate transformation program. RESULTS Using the above methods, motion capture measurements and batch data processing were carried out on squatting and climbing stairs of 29 healthy volunteers. And the motion characteristics (flexion/extension, internal/external rotation and adduction/abduction) of the knee joint were obtained. For example, the maximum internal/external rotation in squatting and climbing stairs were respectively was 30.5 degrees and 14 degrees, etc. Meantime, the results of this paper also were respectively compared with the results processed by other research methods, and the results were basically consistent, thus the reliability of our research method was verified. After calibration processing, the compiled MATLAB program of this paper can directly be used for efficient batch processing and avoiding manual modeling one by one. CONCLUSION A novel Patch Program of this paper has been developed, which can make reasonable compensation for missing and noise signals to obtain more complete motion data. At the same time, a universal data processing program has also been developed for obtaining the relative movement of various components of the human body, and the program can be modified for detail special analysis. These motion capture technologies can be used to judge whether the human body functions are abnormal, provide a reference for rehabilitation treatment and design of rehabilitation equipment, and evaluate the effectiveness before and after surgery.
Collapse
Affiliation(s)
- Jian-Ping Wang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Shi-Hua Wang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yan-Qing Wang
- School of Medical Technology, Medical University, Qiqihar, 161006, Heilongjiang Province, China
| | - Hai Hu
- Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Jin-Wei Yu
- The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, Henan Province, China
| | - Xuan Zhao
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jin-Lai Liu
- The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, Henan Province, China
| | - Xu Chen
- The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, Henan Province, China.
| | - Yu Li
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
9
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
10
|
Cloud Detection of SuperView-1 Remote Sensing Images Based on Genetic Reinforcement Learning. REMOTE SENSING 2020. [DOI: 10.3390/rs12193190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cloud pixels have massively reduced the utilization of optical remote sensing images, highlighting the importance of cloud detection. According to the current remote sensing literature, methods such as the threshold method, statistical method and deep learning (DL) have been applied in cloud detection tasks. As some cloud areas are translucent, areas blurred by these clouds still retain some ground feature information, which blurs the spectral or spatial characteristics of these areas, leading to difficulty in accurate detection of cloud areas by existing methods. To solve the problem, this study presents a cloud detection method based on genetic reinforcement learning. Firstly, the factors that directly affect the classification of pixels in remote sensing images are analyzed, and the concept of pixel environmental state (PES) is proposed. Then, PES information and the algorithm’s marking action are integrated into the “PES-action” data set. Subsequently, the rule of “reward–penalty” is introduced and the “PES-action” strategy with the highest cumulative return is learned by a genetic algorithm (GA). Clouds can be detected accurately through the learned “PES-action” strategy. By virtue of the strong adaptability of reinforcement learning (RL) to the environment and the global optimization ability of the GA, cloud regions are detected accurately. In the experiment, multi-spectral remote sensing images of SuperView-1 were collected to build the data set, which was finally accurately detected. The overall accuracy (OA) of the proposed method on the test set reached 97.15%, and satisfactory cloud masks were obtained. Compared with the best DL method disclosed and the random forest (RF) method, the proposed method is superior in precision, recall, false positive rate (FPR) and OA for the detection of clouds. This study aims to improve the detection of cloud regions, providing a reference for researchers interested in cloud detection of remote sensing images.
Collapse
|
11
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
12
|
Mohammed A, Ibrahim MA, Tajuddeen N, Aliyu AB, Isah MB. Antidiabetic potential of anthraquinones: A review. Phytother Res 2019; 34:486-504. [DOI: 10.1002/ptr.6544] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Aminu Mohammed
- Department of BiochemistryAhmadu Bello University Zaria Nigeria
| | | | - Nasir Tajuddeen
- Department of ChemistryAhmadu Bello University Zaria Nigeria
| | | | | |
Collapse
|
13
|
Nizioł J, Sekuła J, Ruman T. Visualizing spatial distribution of small molecules in the rhubarb stalk (Rheum rhabarbarum) by surface-transfer mass spectrometry imaging. PHYTOCHEMISTRY 2017; 139:72-80. [PMID: 28426978 DOI: 10.1016/j.phytochem.2017.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Laser desorption/ionization mass spectrometry imaging (LDI-MSI) with gold nanoparticle-enhanced target (AuNPET) was used for visualization of small molecules in the rhubarb stalk (Rheum rhabarbarum L.). Analysis was focused on spatial distribution of biologically active compounds which are found in rhubarb species. Detected compounds belong to a very wide range of chemical compound classes such as anthraquinone derivatives and their glucosides, stilbenes, anthocyanins, flavonoids, polyphenols, organic acids, chromenes, chromanones, chromone glycosides and vitamins. The analysis of the spatial distribution of these compounds in rhubarb stalk with the nanoparticle-rich surface of AuNPET target plate has been made without additional matrix and with minimal sample preparation steps.
Collapse
Affiliation(s)
- Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| | - Justyna Sekuła
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| |
Collapse
|
14
|
Wang Z, Yang L, Fan H, Wu P, Zhang F, Zhang C, Liu W, Li M. Screening of a natural compound library identifies emodin, a natural compound from Rheum palmatum Linn that inhibits DPP4. PeerJ 2017; 5:e3283. [PMID: 28507818 PMCID: PMC5428354 DOI: 10.7717/peerj.3283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
Historically, Chinese herbal medicines have been widely used in the treatment of hyperglycemia, but the mechanisms underlying their effectiveness remain largely unknown. Here, we screened a compound library primarily comprised of natural compounds extracted from herbs and marine organisms. The results showed that emodin, a natural compound from Rheum palmatum Linn, inhibited DPP4 activity with an in vitro IC50 of 5.76 µM without inhibiting either DPP8 or DPP9. A docking model revealed that emodin binds to DPP4 protein through Glu205 and Glu206, although with low affinity. Moreover, emodin treatment (3, 10 and 30 mg/kg, P.O.) in mice decreased plasma DPP4 activity in a dose-dependent manner. Our study suggests that emodin inhibits DPP4 activity and may represent a novel therapeutic for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhaokai Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Longhe Yang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Hu Fan
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Peng Wu
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Fang Zhang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Chao Zhang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Wenjie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen, P. R. China
| | - Min Li
- College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| |
Collapse
|
15
|
Abu Eid S, Adams M, Scherer T, Torres-Gómez H, Hackl MT, Kaplanian M, Riedl R, Luger A, Fürnsinn C. Emodin, a compound with putative antidiabetic potential, deteriorates glucose tolerance in rodents. Eur J Pharmacol 2017; 798:77-84. [DOI: 10.1016/j.ejphar.2017.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
|
16
|
Tumor Preventive Efficacy of Emodin in 7,12-Dimethylbenz[a]Anthracene-Induced Oral Carcinogenesis: a Histopathological and Biochemical Approach. Pathol Oncol Res 2017; 24:19-29. [DOI: 10.1007/s12253-017-0205-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
|
17
|
Abid R, Mahmood R, Santosh Kumar HS. Hypolipidemic and antioxidant effects of ethanol extract of Cassia fistula fruit in hyperlipidemic mice. PHARMACEUTICAL BIOLOGY 2016; 54:2822-2829. [PMID: 27256804 DOI: 10.1080/13880209.2016.1185445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/23/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
CONTEXT The plant Cassia fistula L. (Caesalpiniaceae) fruit was widely used by traditional practitioners to treat cardiovascular diseases (CVDs) in India. Hyperlipidemia is a lipid metabolism disorder and the major risk factor for the development of CVDs. Although most of the current hypolipidemic drugs are expensive and have potential side effects, the research focusing on natural alternative medicines is relevant. OBJECTIVE To investigate the hypolipidemic and antioxidant effects of ethanol extract of C. fistula fruit (CFE) in high-fat diet (HFD) induced hyperlipidemia in mice. MATERIALS AND METHODS Oral administration of CFE at 100, 300 and 500 mg/kg body weight on HFD induced hyperlipidemia mice for 30 days. The standard drug atorvastatin (20 mg/kg) was used to compare the efficacy of CFE. Hypolipidemic effect was evidenced by the measurement of serum lipid profile and further confirmed by Oil Red O staining of adipose tissue. The hepatic and cardiac melondialdehyde (MDA) level and antioxidant enzyme activities including superoxide dismutase, catalase and glutathione peroxidase were determined. RESULTS Treatment with CFE at different doses has significantly restored the levels of serum lipid, MDA and enzymes activities in the liver and heart of hyperlipidemia mice. Oil Red O staining of visceral adipose tissue has shown marked reduction of lipid accumulation in adipocytes; whereas, administration of CFE at 500 mg/kg showed remarkable (p < 0.001) hypolipidemic and antioxidant effects in HFD fed mice. CONCLUSION C. fistula fruit demonstrated hypolipidemic and antioxidant properties in vivo and the results corroborate the use of this plant in traditional medicine for cardiac ailments.
Collapse
Affiliation(s)
- Rizwana Abid
- a Department of PG Studies and Research in Biotechnology and Bioinformatics , Jnanasahyadri, Kuvempu University , Shivamogga , Karnataka , India
| | - Riaz Mahmood
- a Department of PG Studies and Research in Biotechnology and Bioinformatics , Jnanasahyadri, Kuvempu University , Shivamogga , Karnataka , India
| | - Hulikal Shivashankara Santosh Kumar
- a Department of PG Studies and Research in Biotechnology and Bioinformatics , Jnanasahyadri, Kuvempu University , Shivamogga , Karnataka , India
| |
Collapse
|
18
|
Manimaran A, Manoharan S, Neelakandan M. EMODIN EFFICACY ON THE AKT, MAPK, ERK AND DNMT EXPRESSION PATTERN DURING DMBA-INDUCED ORAL CARCINOMA IN GOLDEN SYRIAN HAMSTERS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2016; 13:186-193. [PMID: 28480378 PMCID: PMC5412193 DOI: 10.21010/ajtcam.v13i6.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: The present study has evaluated the Emodin efficacy on the Akt, MAPK, ERK and DNMT expression pattern during 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinoma in golden Syrian hamsters, in order to explore its antitumor potential. Materials and methods: Oral tumors were developed in the buccal pouches of golden Syrian hamsters using the carcinogen, DMBA. Results: While the incidence of tumor formation was 100% in hamsters treated with DMBA alone, the tumor formation was not noticed in DMBA+ Emodin treated hamsters. Also, Emodin reduced the severity of precancerous pathological lesions such as dysplasia, in the hamsters treated with DMBA. Emodin administration corrected the abnormalities in the expression pattern of Akt, MAPK, ERK and DNMT in the buccal mucosa of hamsters treated with DMBA. Conclusions: The present study thus suggests that the tumor preventive potential of Emodin is partly related to its modulating effect on the Akt, MAPK, ERK and DNMT expression pattern, as these molecular markers have a pivotal role in the process of cell proliferation, inflammation, invasion, and apoptosis.
Collapse
Affiliation(s)
- Asokan Manimaran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608002, Tamilnadu, India
| | - Shanmugam Manoharan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608002, Tamilnadu, India
| | - Mani Neelakandan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608002, Tamilnadu, India
| |
Collapse
|
19
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Chang KC, Li L, Sanborn TM, Shieh B, Lenhart P, Ammar D, LaBarbera DV, Petrash JM. Characterization of Emodin as a Therapeutic Agent for Diabetic Cataract. JOURNAL OF NATURAL PRODUCTS 2016; 79:1439-44. [PMID: 27140653 PMCID: PMC5578730 DOI: 10.1021/acs.jnatprod.6b00185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aldose reductase (AR) in the lens plays an important role in the pathogenesis of diabetic cataract (DC) by contributing to osmotic and oxidative stress associated with accelerated glucose metabolism through the polyol pathway. Therefore, inhibition of AR in the lens may hold the key to prevent DC formation. Emodin, a bioactive compound isolated from plants, has been implicated as a therapy for diabetes. However, its inhibitory activity against AR remains unclear. Our results showed that emodin has good selectively inhibitory activity against AR (IC50 = 2.69 ± 0.90 μM) but not other aldo-keto reductases and is stable at 37 °C for at least 7 days. Enzyme kinetic studies demonstrated an uncompetitive inhibition against AR with a corresponding inhibition constant of 2.113 ± 0.095 μM. In in vivo studies, oral administration of emodin reduced the incidence and severity of morphological markers of cataract in lenses of AR transgenic mice. Computational modeling of the AR-NADP(+)-emodin ternary complex indicated that the 3-hydroxy group of emodin plays an essential role by interacting with Ser302 through hydrogen bonding in the specificity pocket of AR. All the findings above provide encouraging evidence for emodin as a potential therapeutic agent to prevent cataract in diabetic patients.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Theresa M. Sanborn
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Biehuoy Shieh
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Patricia Lenhart
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David Ammar
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - J. Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
21
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|
22
|
An R, Li Y, Li M, Bai Y, Lu Y, Du Z. Plasma pharmacochemistry combined with pharmacokinetics and pattern recognition analysis to screen potentially bioactive components from Daming capsule using ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flig. J Sep Sci 2015; 38:1507-14. [PMID: 25678430 DOI: 10.1002/jssc.201401269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/14/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ran An
- Institute of Clinical Pharmacy; The Second Affiliated Hospital; Harbin Medical University; Harbin Heilongjiang Province China
| | - Yamei Li
- Institute of Clinical Pharmacy; The Second Affiliated Hospital; Harbin Medical University; Harbin Heilongjiang Province China
| | - Mu Li
- Institute of Clinical Pharmacy; The Second Affiliated Hospital; Harbin Medical University; Harbin Heilongjiang Province China
| | - Yan Bai
- Institute of Clinical Pharmacy; The Second Affiliated Hospital; Harbin Medical University; Harbin Heilongjiang Province China
| | - Yanjie Lu
- Department of Pharmacology (Key Laboratory of Cardiovascular Medicine Research; Ministry of Education; State-Province Key Laboratories of Biomedicine-Pharmaceutics of China); Harbin Medical University; Harbin Heilongjiang China
| | - Zhimin Du
- Institute of Clinical Pharmacy; The Second Affiliated Hospital; Harbin Medical University; Harbin Heilongjiang Province China
- Key Laboratory of Drug Research; Harbin Medical University; Heilongjiang Higher Education Institutions; Harbin Heilongjiang Province China
| |
Collapse
|
23
|
Wang W, He Y, Lin P, Li Y, Sun R, Gu W, Yu J, Zhao R. In vitro effects of active components of Polygonum Multiflorum Radix on enzymes involved in the lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:763-70. [PMID: 24680992 DOI: 10.1016/j.jep.2014.03.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Raw and processed Polygoni Multiflori Radix (PMR and PMRP) are used in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD), hyperlipidemia or related diseases. In our previous research, 2, 3, 5, 4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) displayed the most important role in the total cholesterol (TC) lowering effect among all the chemical constituents of Polygonum multiflorum. Emodin and physcion displayed more favorable triglyceride (TG) reducing effects than TSG. However, there are few researches focus on the approach and mechanism of how do Polygonum multiflorum exhibit good lipid regulation activity. The targeted sites of active substances of Polygonum multiflorum are still not clearly elucidated. This research pays close attention to how major chemical components of Polygonum multiflorum affect the TC and TG contents in liver cells. MATERIALS AND METHODS In this research, a sensitive, accurate and rapid in vitro model, steatosis hepatic L02 cell, was used to explore target sites of active chemical substances of Polygonum multiflorum for 48h. Steatosis hepatic L02 cell was exposed to emodin, physcion and TSG, respectively. The contents of four key enzymes in the pathway of synthesis and decomposition of TC and TG were investigated after exposure. Meanwhile, the contents of lipid transfer protein were also tested. The diacylgycerol acyltransferase 1 (DGAT1) controlled the biosynthesis of TG from free fatty acids while 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) limited the biosynthesis of TC. Hepatic triglyceride lipase (HTGL) and cholesterol 7α-hydroxylase (CYP7A) played the key role in the lipolysis procedure of TG and TC. RESULTS The synthesis of TC and TG in steatosis L02 cells were apparently increased in the model group compared to the control group. Intracellular contents of HMG-CoA reductase and DGAT1 increased 32.33% and 56.52%, while contents of CYP7A and HTGL decreased 21.61% and 47.37%. Emodin, physcion and TSG all showed down-regulation effects on HMG-CoA reductase, while up-regulation effects on CYP7A. The most remarkable effect on HMG-CoA reductase was found on emodin. Emodin could reduce the DGAT1 content from 438.44 ± 4.51 pg/mL in model group to 192.55 ± 9.85 pg/mL (100 μm). The content of HTGL in 300 μm physcion group was 3.15 ± 0.15 U/mL, which was more significantly effective than the control, lovastatin and fenofibrate group. CONCLUSIONS TSG could raise the content of CYP7A and then promote the lipolysis of cholesterol. Moreover, TSG also showed the best LDL-reducing effect. Emodin could inhibit HMG-CoA reductase and DGAT1, which were key enzymes in the synthesis of TC and TG. Physcion increased the content of HTGL, and then could boost the lipolysis of triglyceride. At the same time, physcion showed the best VLDL-reducing effect. In view of the above conclusions, we contributed the lipid regulation activity to an overall synergy of TSG, emodin and physcion.
Collapse
Affiliation(s)
- Wangen Wang
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yanran He
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Pei Lin
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yunfei Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Ruifen Sun
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Wen Gu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Jie Yu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China.
| | - Ronghua Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
24
|
Emodin, a Naturally Occurring Anthraquinone Derivative, Ameliorates Dyslipidemia by Activating AMP-Activated Protein Kinase in High-Fat-Diet-Fed Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:781812. [PMID: 22649478 PMCID: PMC3357974 DOI: 10.1155/2012/781812] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 02/29/2012] [Indexed: 01/22/2023]
Abstract
The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of emodin on high-fat diet (HFD)-induced obese rats, and on the regulation of the expression of the genes involved in lipid metabolism to elucidate the mechanisms. After being fed HFD for two weeks, Wistar rats were dosed orally with emodin (40 and 80 mg kg(-1)) or pioglitazone (20 mg kg(-1)), once daily for eight weeks. Emodin (80 mg kg(-1) per day) displayed similar characteristics to pioglitazone (20 mg kg(-1) per day) in reducing body weight gain, plasma lipid levels as well as coronary artery risk index and atherogenic index of HFD-fed rats. Emodin also caused dose related reductions in the hepatic triglyceride and cholesterol contents and lowered hepatic lipid droplets accumulation in HFD-fed rats. Emodin and pioglitazone enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and its primary downstream targeting enzyme, acetyl-CoA carboxylase, up-regulated gene expression of carnitine palmitoyl transferase 1, and down-regulated sterol regulatory element binding protein 1 and fatty acid synthase protein levels in hepatocytes of HFD-fed rats. Our findings suggest emodin could attenuate lipid accumulation by decreasing lipogenesis and increasing mitochondrial fatty acid β-oxidation mediated by activation of the AMPK signaling pathway.
Collapse
|
25
|
Wang M, Zhao R, Wang W, Mao X, Yu J. Lipid regulation effects of Polygoni Multiflori Radix, its processed products and its major substances on steatosis human liver cell line L02. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:287-293. [PMID: 22120683 DOI: 10.1016/j.jep.2011.11.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/19/2011] [Accepted: 11/12/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Raw and processed Polygoni Multiflori Radix (PMR) are used in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD), hyperlipidemia or related diseases. However, few researches compared the activities of raw and processed PMR on lipid metabolism regulation. Moreover, the active substances of Polygonum multiflorum are still not clearly elucidated. MATERIALS AND METHODS In this research, a sensitive, accurate and rapid in vitro model, steatosis hepatic L02 cell, was applied to compare the relative activities of raw and processed PMR on lipid metabolism regulation. Furthermore, the lipid regulation activities of emodin, physcion and 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-d-glucoside (TSG) were evaluated. The steatosis L02 cells were obtained after cultured with 1% fat emulsion-10% fetal bovine serum (FBS)-RPMI 1640 medium for 48h. Contents of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) in L02 cells are evaluated after exposure. RESULTS The intracellular TG contents were increased from 16.50±1.29mmol/L to 34.40±1.36mmol/L in steatosis L02 cells, while the intracellular contents of TC were increased from 5.07±1.80mmol/L to 11.79±0.54mmol/L. Water extract of raw PMR showed much remarkable TG-regulation and TC-regulation effects than its processed products. Emodin displayed the best TG regulation activity while TSG showed the best TC regulation activity. At the same time, the exposure of emodin and physcion could reduce the LDL-C contents in steatosis L02 cells. CONCLUSIONS On account of these in vitro results, raw PMR might have more satisfactory effects in clinic treatment of NAFLD or hyperlipidemia characterized by the elevation of cholesterol than processed PMR.
Collapse
Affiliation(s)
- Minjiang Wang
- Level-3 Laboratory of State Administration of TCM of the People's Republic of China, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | | | | | | | | |
Collapse
|
26
|
Abstract
Type 2 diabetes is a growing health concern. The use of nutritional supplements by patients with type 2 diabetes is estimated at somewhere between 8% to 49%. The objective of this review was to search the scientific literature for advances in the treatment and prevention of type 2 diabetes with nutritional supplements. Twelve databases were searched with a focus on extracting studies published in the past 3 years. The following nutritional supplements were identified as potentially beneficial for type 2 diabetes treatment or prevention: vitamins C and E, α-lipoic acid, melatonin, red mold, emodin from Aloe vera and Rheum officinale, astragalus, and cassia cinnamon. Beta-carotene was shown to be ineffective in the prevention of type 2 diabetes. Ranging from preclinical to clinical, there is evidence that nutritional supplements may be beneficial in the treatment or prevention of type 2 diabetes. Health providers should investigate drug-nutritional supplement interactions prior to treatment.
Collapse
Affiliation(s)
- Tanya Lee
- The Canadian College of Naturopathic Medicine, 400 Main Street East #210, Milton, ON, L9T 1P7, Canada.
| | | |
Collapse
|
27
|
Tong H, Chen K, Chen H, Wu H, Lin H, Ni Z, Lin S. Emodin prolongs recipient survival time after orthotopic liver transplantation in rats by polarizing the Th1/Th2 paradigm to Th2. Anat Rec (Hoboken) 2011; 294:445-52. [PMID: 21308995 DOI: 10.1002/ar.21352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/28/2010] [Indexed: 11/05/2022]
Abstract
Advances in immunosuppressive drugs have improved the short-term survival of liver transplantation. However, drug toxicities have been a serious problem in patients after long-term administration. Therefore, it is necessary to develop a novel immunosuppressant with low-toxicity. We investigated the immunosuppressive effects of Emodin on acute graft rejection following liver transplantation in rats. The recipient rats of orthotopic liver transplantation were divided into groups as follows: isograft+NS group, allograft+NS group, and allograft+emodin group. The survival time of the recipients in each group was recorded. Histopathological changes in the liver, as well as serum concentrations of IL-2, TNF-α, and IL-10 and their expressions in liver tissue were determined. Our results showed that Emodin treatment prolonged liver allograft survival time and inhibited histopathologic changes of acute graft rejection. The rejection activity index in groups isograft+NS, allograft+NS, and allograft+emodin were 1.52 ± 0.37, 6.95 ± 0.75, and 4.23 ± 0.51, respectively (P < 0.01, isograft+NS group vs. allograft+emodin group and allograft+NS group vs. allograft+emodin group). The serum levels of IL-2 and TNF-α were down-regulated but that of IL-10 was up-regulated by Emodin. Serum levels of IL-2 and TNF-α were higher in allograft+NS group than the allograft+emodin group, but that of IL-10 showed opposite effects (P < 0.05 or 0.01). Changes in the expression of these cytokines in transplanted liver tissue were consistent with changes in serum concentrations. These results demonstrate that Emodin has therapeutic potentials for alleviating acute rejection following liver transplantation in rats and prolonging liver allograft survival. The mechanisms underlying this effect may be associated with polarizing the Th1/Th2 paradigm to Th2.
Collapse
Affiliation(s)
- Hongfei Tong
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Feng Y, Huang SL, Dou W, Zhang S, Chen JH, Shen Y, Shen JH, Leng Y. Emodin, a natural product, selectively inhibits 11beta-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br J Pharmacol 2010; 161:113-26. [PMID: 20718744 DOI: 10.1111/j.1476-5381.2010.00826.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is an attractive therapeutic target of type 2 diabetes and metabolic syndrome. Emodin, a natural product and active ingredient of various Chinese herbs, has been demonstrated to possess multiple biological activities. Here, we investigated the effects of emodin on 11beta-HSD1 and its ability to ameliorate metabolic disorders in diet-induced obese (DIO) mice. EXPERIMENTAL APPROACH Scintillation proximity assay was performed to evaluate inhibition of emodin against recombinant human and mouse 11beta-HSDs. The ability of emodin to inhibit prednisone- or dexamethasone-induced insulin resistance was investigated in C57BL/6J mice and its effect on metabolic abnormalities was observed in DIO mice. KEY RESULTS Emodin is a potent and selective 11beta-HSD1 inhibitor with the IC(50) of 186 and 86 nM for human and mouse 11beta-HSD1, respectively. Single oral administration of emodin inhibited 11beta-HSD1 activity of liver and fat significantly in mice. Emodin reversed prednisone-induced insulin resistance in mice, whereas it did not affect dexamethasone-induced insulin resistance, which confirmed its inhibitory effect on 11beta-HSD1 in vivo. In DIO mice, oral administration of emodin improved insulin sensitivity and lipid metabolism, and lowered blood glucose and hepatic PEPCK, and glucose-6-phosphatase mRNA. CONCLUSIONS AND IMPLICATIONS This study demonstrated a new role for emodin as a potent and selective inhibitor of 11beta-HSD1 and its beneficial effects on metabolic disorders in DIO mice. This highlights the potential value of analogues of emodin as a new class of compounds for the treatment of metabolic syndrome or type 2 diabetes.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Feng Y, Huang SL, Dou W, Zhang S, Chen JH, Shen Y, Shen JH, Leng Y. Emodin, a natural product, selectively inhibits 11beta-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br J Pharmacol 2010. [PMID: 20718744 DOI: 10.1111/j.1476-5381.2012.00826.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is an attractive therapeutic target of type 2 diabetes and metabolic syndrome. Emodin, a natural product and active ingredient of various Chinese herbs, has been demonstrated to possess multiple biological activities. Here, we investigated the effects of emodin on 11beta-HSD1 and its ability to ameliorate metabolic disorders in diet-induced obese (DIO) mice. EXPERIMENTAL APPROACH Scintillation proximity assay was performed to evaluate inhibition of emodin against recombinant human and mouse 11beta-HSDs. The ability of emodin to inhibit prednisone- or dexamethasone-induced insulin resistance was investigated in C57BL/6J mice and its effect on metabolic abnormalities was observed in DIO mice. KEY RESULTS Emodin is a potent and selective 11beta-HSD1 inhibitor with the IC(50) of 186 and 86 nM for human and mouse 11beta-HSD1, respectively. Single oral administration of emodin inhibited 11beta-HSD1 activity of liver and fat significantly in mice. Emodin reversed prednisone-induced insulin resistance in mice, whereas it did not affect dexamethasone-induced insulin resistance, which confirmed its inhibitory effect on 11beta-HSD1 in vivo. In DIO mice, oral administration of emodin improved insulin sensitivity and lipid metabolism, and lowered blood glucose and hepatic PEPCK, and glucose-6-phosphatase mRNA. CONCLUSIONS AND IMPLICATIONS This study demonstrated a new role for emodin as a potent and selective inhibitor of 11beta-HSD1 and its beneficial effects on metabolic disorders in DIO mice. This highlights the potential value of analogues of emodin as a new class of compounds for the treatment of metabolic syndrome or type 2 diabetes.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang LH, Yu CH, Fu Y, Li Q, Sun YQ. Berberine elicits anti-arrhythmic effects via IK1/Kir2.1 in the rat type 2 diabetic myocardial infarction model. Phytother Res 2010; 25:33-7. [DOI: 10.1002/ptr.3097] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Xue J, Ding W, Liu Y. Anti-diabetic effects of emodin involved in the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2009; 81:173-7. [PMID: 19699280 DOI: 10.1016/j.fitote.2009.08.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 01/30/2023]
Abstract
Rheum palmatum Linn has been widely applied in the clinical treatment of diabetes mellitus. It has been found that emodin as the major bioactive component of R. palmatum L exhibits the competency to activate peroxisomal proliferator-activated receptor-gamma (PPARgamma) in vitro. So the aim of this study was to evaluate the anti-diabetic effects of emodin through the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin (STZ)-induced diabetic mice. The diabetic mice were intraperitoneally injected with emodin for three weeks. No changes of food consumption and the body weight in emodin-treated mice were monitored daily during the entire experiment. At the end of experiment, the levels of blood glucose, triglyceride and total cholesterol in serum were significantly decreased after emodin treatment. However, serum high-density lipoprotein cholesterol (HDLc) concentration was significantly elevated. The glucose tolerance and insulin sensitivity in emodin-treated group were significantly improved. Furthermore, the results of quantitative RT-PCR analysis showed that emodin significantly elevated the mRNA expression level of PPARgamma and regulated the mRNA expressions of LPL, FAT/CD36, resistin and FABPs (ap2) in liver and adipocyte tissues. No effects on the mRNA expressions of PPARalpha and PPARalpha-target genes were observed. Taken together, the results suggested that the activation of PPARgamma and the modulation of metabolism-related genes were likely involved in the anti-diabetic effects of emodin.
Collapse
Affiliation(s)
- Jianfeng Xue
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, No. 19 A Yu Quan Road, Beijing, China
| | | | | |
Collapse
|