1
|
Ma J, Li G, Wang H, Mo C. Comprehensive review of potential drugs with anti-pulmonary fibrosis properties. Biomed Pharmacother 2024; 173:116282. [PMID: 38401514 DOI: 10.1016/j.biopha.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the accumulation of scar tissue in the lungs, which leads to impaired lung function and reduced quality of life. The prognosis for idiopathic pulmonary fibrosis (IPF), which is the most common form of pulmonary fibrosis, is generally poor. The median survival for patients with IPF is estimated to be around 3-5 years from the time of diagnosis. Currently, there are two approved drugs (Pirfenidone and Nintedanib) for the treatment of IPF. However, Pirfenidone and Nintedanib are not able to reverse or cure pulmonary fibrosis. There is a need for new pharmacological interventions that can slow or halt disease progression and cure pulmonary fibrosis. This review aims to provide an updated overview of current and future drug interventions for idiopathic pulmonary fibrosis, and to summarize possible targets of potential anti-pulmonary fibrosis drugs, providing theoretical support for further clinical combination therapy or the development of new drugs.
Collapse
Affiliation(s)
- Jie Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; The Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gang Li
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Wang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Center for RNA Science and Therapeutics, School of Medicine, Cleveland, OH, USA
| | - Chunheng Mo
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Isshiki T, Naiel S, Vierhout M, Otsubo K, Ali P, Tsubouchi K, Yazdanshenas P, Kumaran V, Dvorkin-Gheva A, Kolb MRJ, Ask K. Therapeutic strategies to target connective tissue growth factor in fibrotic lung diseases. Pharmacol Ther 2024; 253:108578. [PMID: 38103794 DOI: 10.1016/j.pharmthera.2023.108578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-β. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada; Department of Respiratory Medicine, Toho University School of Medicine, 6-11-1 Omori Nisi, Ota-ku, Tokyo 143-8541, Japan
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kohei Otsubo
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Pareesa Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kazuya Tsubouchi
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Parichehr Yazdanshenas
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Vaishnavi Kumaran
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada.
| |
Collapse
|
3
|
Cheng X, Jiang S, Pan B, Xie W, Meng J. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: an interconnected role. Lipids Health Dis 2023; 22:201. [PMID: 38001499 PMCID: PMC10668383 DOI: 10.1186/s12944-023-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is considered an age-related disease. Age-related changes, along with other factors such as obesity, hormonal imbalances, and various metabolic disorders, lead to ectopic fat deposition (EFD). This accumulation of fat outside of its normal storage sites is associated with detrimental effects such as lipotoxicity, oxidative stress, inflammation, and insulin resistance. This narrative review provides an overview of the connection between ectopic and visceral fat deposition in aging, obesity, and IPF. It also elucidates the mechanism by which ectopic fat deposition in the airways and lungs, pericardium, skeletal muscles, and pancreas contributes to lung injury and fibrosis in patients with IPF, directly or indirectly. Moreover, the review discusses the impact of EFD on the severity of the disease, quality of life, presence of comorbidities, and overall prognosis in IPF patients. The review provides detailed information on recent research regarding representative lipid-lowering drugs, hypoglycemic drugs, and lipid-targeting drugs in animal experiments and clinical studies. This may offer new therapeutic directions for patients with IPF.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Shuhan Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Boyu Pan
- Departments of Orthopedics, The Third Hospital of Changsha, Laodong West Road 176, Tianxin District, Changsha, 410000, China
| | - Wei Xie
- Department of Cardiology, Xiangya Hospital of Central South University, Furong Middle Road 36, Kaifu District, Changsha, 410000, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China.
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China.
| |
Collapse
|
4
|
Grimm SL, Stading RE, Robertson MJ, Gandhi T, Fu C, Jiang W, Xia G, Lingappan K, Coarfa C, Moorthy B. Loss of cytochrome P450 (CYP)1B1 mitigates hyperoxia response in adult mouse lung by reprogramming metabolism and translation. Redox Biol 2023; 64:102790. [PMID: 37348155 PMCID: PMC10271936 DOI: 10.1016/j.redox.2023.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Oxygen supplementation is life saving for premature infants and for COVID-19 patients but can induce long-term pulmonary injury by triggering inflammation, with xenobiotic-metabolizing CYP enzymes playing a critical role. Murine studies showed that CYP1B1 enhances, while CYP1A1 and CYP1A2 protect from, hyperoxic lung injury. In this study we tested the hypothesis that Cyp1b1-null mice would revert hyperoxia-induced transcriptomic changes observed in WT mice at the transcript and pathway level. Wild type (WT) C57BL/6J and Cyp1b1-null mice aged 8-10 weeks were maintained in room air (21% O2) or exposed to hyperoxia (>95% O2) for 48h. Transcriptomic profiling was conducted using the Illumina microarray platform. Hyperoxia exposure led to robust changes in gene expression and in the same direction in WT, Cyp1a1-, Cyp1a2-, and Cyp1b1-null mice, but to different extents for each mouse genotype. At the transcriptome level, all Cyp1-null murine models reversed hyperoxia effects. Gene Set Enrichment Analysis identified 118 hyperoxia-affected pathways mitigated only in Cyp1b1-null mice, including lipid, glutamate, and amino acid metabolism. Cell cycle genes Cdkn1a and Ccnd1 were induced by hyperoxia in both WT and Cyp1b1-null mice but mitigated in Cyp1b1-null O2 compared to WT O2 mice. Hyperoxia gene signatures associated positively with bronchopulmonary dysplasia (BPD), which occurs in premature infants (with supplemental oxygen being one of the risk factors), but only in the Cyp1b1-null mice did the gene profile after hyperoxia exposure show a partial rescue of BPD-associated transcriptome. Our study suggests that CYP1B1 plays a pro-oxidant role in hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Dept. of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Rachel E Stading
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Matthew J Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tanmay Gandhi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chenlian Fu
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Mathematical and Computational Biology, Harvey Mudd College, CA, USA
| | - Weiwu Jiang
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Guobin Xia
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Dept. of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - Bhagavatula Moorthy
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Division of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Dolivo DM, Reed CR, Gargiulo KA, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Anti-fibrotic effects of statin drugs: a review of evidence and mechanisms. Biochem Pharmacol 2023:115644. [PMID: 37321414 DOI: 10.1016/j.bcp.2023.115644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Fibrosis is a pathological repair process common among organs, that responds to damage by replacement of tissue with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may enable a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| | - Charlotte R Reed
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Kristine A Gargiulo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Adrian E Rodrigues
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Robert D Galiano
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Thomas A Mustoe
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Seok Jong Hong
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
6
|
Jaiswal A, Rehman R, Dutta J, Singh S, Ray A, Shridhar M, Jaisankar J, Bhatt M, Khandelwal D, Sahoo B, Ram A, Mabalirajan U. Cellular Distribution of Secreted Phospholipase A2 in Lungs of IPF Patients and Its Inhibition in Bleomycin-Induced Pulmonary Fibrosis in Mice. Cells 2023; 12:cells12071044. [PMID: 37048117 PMCID: PMC10092981 DOI: 10.3390/cells12071044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 04/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease with a very poor prognosis as it has a 2.5 to 5 years mean survival after proper diagnosis. Even nintedanib and pirfenidone cannot halt the progression, though they slow the progression of IPF. Hence, there is a need to understand the novel pathophysiology. Phospholipase A2 (PLA2) could be the ideal candidate to study in IPF, as they have a role in both inflammation and fibrosis. In the present study, we have shown the expression profile of various secretory Phospholipase A2 (PLA2) isoforms by analyzing publicly available transcriptome data of single cells from the lungs of healthy individuals and IPF patients. Among 11 members of sPLA2, PLA2G2A is found to be increased in the fibroblasts and mesothelial cells while PLA2G5 is found to be increased in the fibroblasts of IPF patients. We identified a subset of fibroblasts expressing high PLA2G2A with moderate expression of PLA2G5 and which are specific to IPF only; we named it as PLA2G2A+ IPF fibroblast. Pathway analysis revealed that these PLA2G2A+ IPF fibroblast have upregulation of both inflammatory and fibrosis-related pathways like the TGF-β signaling pathway, IL-17 signaling, the arachidonic acid metabolism pathway and ECM-receptor interaction. In addition to this, we found elevated levels of sPLA2-IIA in plasma samples of IPF patients in our cohort. PLA2G3, PLA2G10 and PLA2G12B are found in to be increased in certain epithelial cells of IPF patients. Thus, these findings indicate that these five isoforms have a disease-dominant role along with innate immune roles as these isoforms are found predominantly in structural cells of IPF patients. Further, we have targeted sPLA2 in mice model of bleomycin-induced lung fibrosis by pBPB, a known sPLA2 inhibitor. pBPB treatment attenuated lung fibrosis induced by bleomycin along with a reduction in TGF-β and deposition of extracellular matrix in lung. Thus, these findings indicate that these sPLA2 isoforms especially PLA2G2A may serve as a therapeutic target in lung fibrosis.
Collapse
|
7
|
Cellular and Molecular Control of Lipid Metabolism in Idiopathic Pulmonary Fibrosis: Clinical Application of the Lysophosphatidic Acid Pathway. Cells 2023; 12:cells12040548. [PMID: 36831215 PMCID: PMC9954511 DOI: 10.3390/cells12040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a representative disease that causes fibrosis of the lungs. Its pathogenesis is thought to be characterized by sustained injury to alveolar epithelial cells and the resultant abnormal tissue repair, but it has not been fully elucidated. IPF is currently difficult to cure and is known to follow a chronic progressive course, with the patient's survival period estimated at about three years. The disease occasionally exacerbates acutely, leading to a fatal outcome. In recent years, it has become evident that lipid metabolism is involved in the fibrosis of lungs, and various reports have been made at the cellular level as well as at the organic level. The balance among eicosanoids, sphingolipids, and lipid composition has been reported to be involved in fibrosis, with particularly close attention being paid to a bioactive lipid "lysophosphatidic acid (LPA)" and its pathway. LPA signals are found in a wide variety of cells, including alveolar epithelial cells, vascular endothelial cells, and fibroblasts, and have been reported to intensify pulmonary fibrosis via LPA receptors. For instance, in alveolar epithelial cells, LPA signals reportedly induce mitochondrial dysfunction, leading to epithelial damage, or induce the transcription of profibrotic cytokines. Based on these mechanisms, LPA receptor inhibitors and the metabolic enzymes involved in LPA formation are now considered targets for developing novel means of IPF treatment. Advances in basic research on the relationships between fibrosis and lipid metabolism are opening the path to new therapies targeting lipid metabolism in the treatment of IPF.
Collapse
|
8
|
Andreikos D, Karampitsakos T, Tzouvelekis A, Stratakos G. Statins’ still controversial role in pulmonary fibrosis: What does the evidence show? Pulm Pharmacol Ther 2022; 77:102168. [DOI: 10.1016/j.pupt.2022.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
|
9
|
Shi X, Chen Y, Liu Q, Mei X, Liu J, Tang Y, Luo R, Sun D, Ma Y, Wu W, Tu W, Zhao Y, Xu W, Ke Y, Jiang S, Huang Y, Zhang R, Wang L, Chen Y, Xia J, Pu W, Zhu H, Zuo X, Li Y, Xu J, Gao F, Wei D, Chen J, Yin W, Wang Q, Dai H, Yang L, Guo G, Cui J, Song N, Zou H, Zhao S, Distler JH, Jin L, Wang J. LDLR dysfunction induces LDL accumulation and promotes pulmonary fibrosis. Clin Transl Med 2022; 12:e711. [PMID: 35083881 PMCID: PMC8792399 DOI: 10.1002/ctm2.711] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Treatments for pulmonary fibrosis (PF) are ineffective because its molecular pathogenesis and therapeutic targets are unclear. Here, we show that the expression of low-density lipoprotein receptor (LDLR) was significantly decreased in alveolar type II (ATII) and fibroblast cells, whereas it was increased in endothelial cells from systemic sclerosis-related PF (SSc-PF) patients and idiopathic PF (IPF) patients compared with healthy controls. However, the plasma levels of low-density lipoprotein (LDL) increased in SSc-PF and IPF patients. The disrupted LDL-LDLR metabolism was also observed in four mouse PF models. Upon bleomycin (BLM) treatment, Ldlr-deficient (Ldlr-/-) mice exhibited remarkably higher LDL levels, abundant apoptosis, increased fibroblast-like endothelial and ATII cells and significantly earlier and more severe fibrotic response compared to wild-type mice. In vitro experiments revealed that apoptosis and TGF-β1 production were induced by LDL, while fibroblast-like cell accumulation and ET-1 expression were induced by LDLR knockdown. Treatment of fibroblasts with LDL or culture medium derived from LDL-pretreated endothelial or epithelial cells led to obvious fibrotic responses in vitro. Similar results were observed after LDLR knockdown operation. These results suggest that disturbed LDL-LDLR metabolism contributes in various ways to the malfunction of endothelial and epithelial cells, and fibroblasts during pulmonary fibrogenesis. In addition, pharmacological restoration of LDLR levels by using a combination of atorvastatin and alirocumab inhibited BLM-induced LDL elevation, apoptosis, fibroblast-like cell accumulation and mitigated PF in mice. Therefore, LDL-LDLR may serve as an important mediator in PF, and LDLR enhancing strategies may have beneficial effects on PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Yahui Chen
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Xueqian Mei
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Jing Liu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
| | - Yulong Tang
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Ruoyu Luo
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Dayan Sun
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yanyun Ma
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Wenzhen Tu
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yinhuan Zhao
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Weihong Xu
- The Clinical Laboratory of Tongren HosipitalShanghai Jiaotong UniversityShanghaiP. R. China
| | - Yuehai Ke
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang ProvinceP. R. China
| | - Shuai Jiang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yan Huang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Rui Zhang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Lei Wang
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yuanyuan Chen
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Jingjing Xia
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Weilin Pu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Honglin Zhu
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yisha Li
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Fei Gao
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Dong Wei
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Jingyu Chen
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Qingwen Wang
- Rheumatology and Immunology DepartmentPeking University Shenzhen HospitalShenzhenP. R. China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
| | - Libing Yang
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
- School of MedicineTsinghua UniversityBeijingP. R. China
| | - Gang Guo
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Jimin Cui
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan UniversityFudan Zhangjiang InstituteShanghaiP. R. China
| | - Hejian Zou
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
| | - Shimin Zhao
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiP. R. China
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
| | - Li Jin
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| |
Collapse
|
10
|
Hassan AI, Samir A, Youssef HF, Mohamed SS, Asker MS, Mahmoud MG. Effects of silver nanoparticles-polysaccharide on bleomycin-induced pulmonary fibrosis in rats. J Pharm Pharmacol 2021; 73:1503-1512. [PMID: 34515769 DOI: 10.1093/jpp/rgab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The first goal of this study was to synthesize the silver nanoparticles Alcaligenes xylosoxidans exopolysaccharide (Ag-AXEPS). The second objective was to analyse the role of Ag-AXEPS nanoparticles (NPS) in treating bleomycin (BLM)-induced lung fibrosis. METHODS Intratracheal bleomycin (2.5 U/kg) was administered to prompt pulmonary fibrosis in rats, and pulmonary fibrosis was treated with Ag-AXEPS nanoparticles (100 ppm/twice a week for four weeks). KEY FINDINGS Ag-AXEPS nanoparticles significantly decreased the diversity of pulmonary inflammatory agents in rats with BLM-induced fibrosis. Reduced levels of respiratory tumor necrosis factor-alpha, monocyte chemotactic protein-1, matrix metalloproteinases (MMP-2 and MMP-9) were observed on treatment with synthesized Ag-AXEPS. Similarly, the treatment decreased IL-12, mRNA levels of BAX and plasma fibrosis markers like N-terminal procollagen III propeptide and transforming growth factor-β1. On the other hand, the treatment increased mRNA BCL2 and total antioxidant capacity. It also lowered the level of fibrosis, as was shown by a quantified pathologic study of hematoxylin-eosin-stained lung parts. The treatment, however, ensured that lung collagen was restored, as assessed by Masson's trichrome stain, and that overall survival was increased and enhanced. CONCLUSIONS Our work showed that nanoparticles could be obtained at 37°C and may be a possible pulmonary fibrosis therapeutic agent.
Collapse
Affiliation(s)
- Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Egypt
| | - Amer Samir
- Department of Pathology, National Cancer Institute, Cairo University, Egypt
| | - Hanan F Youssef
- Department of Ceramics, Refractories and Building Materials, National Research Centre, Dokki, Cairo, Egypt
| | - Sahar S Mohamed
- Department of Microbial Biotechnology, National Research Centre, Dokki, Cairo, Egypt
| | - Mohsen S Asker
- Department of Microbial Biotechnology, National Research Centre, Dokki, Cairo, Egypt
| | - Manal G Mahmoud
- Department of Microbial Biotechnology, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
11
|
Jacobson JR. Sphingolipids as a Novel Therapeutic Target in Radiation-Induced Lung Injury. Cell Biochem Biophys 2021; 79:509-516. [PMID: 34370281 PMCID: PMC8551086 DOI: 10.1007/s12013-021-01022-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022]
Abstract
Radiation-induced lung injury (RILI) is a potential complication of thoracic radiotherapy that can result in pneumonitis or pulmonary fibrosis and is associated with significant morbidity and mortality. The pathobiology of RILI is complex and includes the generation of free radicals and DNA damage that precipitate oxidative stress, endothelial cell (EC), and epithelial cell injury and inflammation. While the cellular events involved continue to be elucidated and characterized, targeted and effective therapies for RILI remain elusive. Sphingolipids are known to mediate EC function including many of the cell signaling events associated with the elaboration of RILI. Sphingosine-1-phosphate (S1P) and S1P analogs enhance EC barrier function in vitro and have demonstrated significant protective effects in vivo in a variety of acute lung injury models including RILI. Similarly, statin drugs that have pleiotropic effects that include upregulation of EC S1P receptor 1 (S1PR1) have been found to be strongly protective in a small animal RILI model. Thus, targeting of EC sphingosine signaling, either directly or indirectly, to augment EC function and thereby attenuate EC permeability and inflammatory responses, represents a novel and promising therapeutic strategy for the prevention or treatment of RILI.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Yetmar ZA, Chesdachai S, Kashour T, Riaz M, Gerberi DJ, Badley AD, Berbari EF, Tleyjeh IM. Prior Statin Use and Risk of Mortality and Severe Disease From Coronavirus Disease 2019: A Systematic Review and Meta-analysis. Open Forum Infect Dis 2021; 8:ofab284. [PMID: 34258316 PMCID: PMC8244756 DOI: 10.1093/ofid/ofab284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Statins up-regulate angiotensin-converting enzyme 2, the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while also exhibiting pleiotropic antiviral, antithrombotic, and anti-inflammatory properties. Uncertainties exist about their effect on the course of SARS-CoV-2 infection. We sought to systematically review the literature and perform a meta-analysis to examine the association between prior statin use and outcomes of patients with coronavirus disease 2019 (COVID-19). METHODS We searched Ovid Medline, Web of Science, Scopus, and the preprint server medRxiv from inception to December 2020. We assessed the quality of eligible studies with the Newcastle-Ottawa quality scale. We pooled adjusted relative risk (aRRs) of the association between prior statin use and outcomes of patients with COVID-19 using the DerSimonian-Laird random-effects model and assessed heterogeneity using the I 2 index. RESULTS Overall, 19 (16 cohorts and 3 case-control) studies were eligible, with a total of 395 513 patients. Sixteen of 19 studies had low or moderate risk of bias. Among 109 080 patients enrolled in 13 separate studies, prior statin use was associated with a lower risk of mortality (pooled aRR, 0.65 [95% confidence interval {CI}, .56-.77], I 2 = 84.1%) and a reduced risk of severe COVID-19 was also observed in 48 110 patients enrolled in 9 studies (pooled aRR, 0.73 [95% CI, .57-.94], I 2 = 82.8%), with no evidence of publication bias. CONCLUSIONS Cumulative evidence suggests that prior statin use is associated with lower risks of mortality or severe disease in patients with COVID-19. These data support the continued use of statins medications in patients with an indication for lipid-lowering therapy during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Zachary A Yetmar
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Tarek Kashour
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Muhammad Riaz
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Elie F Berbari
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Imad M Tleyjeh
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, USA
- Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
The effect of statin therapy on disease-related outcomes in idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Respir Med Res 2021; 80:100792. [PMID: 34091200 DOI: 10.1016/j.resmer.2020.100792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a progressive disease and antifibrotic therapies do not reverse existing fibrosis. There has been emerging evidence of potential role for statins in idiopathic pulmonary fibrosis. The aim of this review is to synthesise the evidence on the efficacy of statins in idiopathic pulmonary fibrosis, focusing on associations with all-cause mortality, disease-specific mortality and change in pulmonary function. METHODS Medline and Embase were reviewed to identify relevant publications. Studies were selected if they examined disease-related outcomes including mortality, pulmonary function and adverse events in people with idiopathic pulmonary fibrosis receiving statin therapy. RESULTS Five studies with a total of 3407 people with IPF were selected and analysed. The overall risk of bias of five included studies was moderate to serious. In the fixed effect meta-analysis, statin use was associated with a reduction in mortality (RR 0.8; 95% CI 0.72-0.99). However, in the random effects model, there was no longer any significant association between statin use and all-cause mortality (RR 0.87; 95% CI 0.68-1.12). There was no statistically significant association between statin use and decline in FVC % predicted. CONCLUSION There is currently insufficient evidence to conclude the effect of statin therapy on disease-related outcomes in idiopathic pulmonary fibrosis. Considering the limitations of available literature, we would recommend a prospective cohort study with capture of dosage and preparation of statin, statin adherence and use of concurrent antifibrotic treatment. PROSPERO REGISTRATION NUMBER CRD42019122745.
Collapse
|
14
|
COVID-19: Direct and Indirect Mechanisms of Statins. Int J Mol Sci 2021; 22:ijms22084177. [PMID: 33920709 PMCID: PMC8073792 DOI: 10.3390/ijms22084177] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The virus responsible for the current COVID-19 pandemic is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a new virus with high infectivity and moderate mortality. The major clinical manifestation of COVID-19 is interstitial pneumonia, which may progress to acute respiratory distress syndrome (ARDS). However, the disease causes a potent systemic hyperin-flammatory response, i.e., a cytokine storm or macrophage activation syndrome (MAS), which is associated with thrombotic complications. The complexity of the disease requires appropriate intensive treatment. One of promising treatment is statin administration, these being 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that exert pleiotropic anti-inflammatory effects. Recent studies indicate that statin therapy is associated with decreased mortality in COVID-19, which may be caused by direct and indirect mechanisms. According to literature data, statins can limit SARS-CoV-2 cell entry and replication by inhibiting the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). The cytokine storm can be ameliorated by lowering serum IL-6 levels; this can be achieved by inhibiting Toll-like receptor 4 (TLR4) and modulating macrophage activity. Statins can also reduce the complications of COVID-19, such as thrombosis and pulmonary fibrosis, by reducing serum PAI-1 levels, attenuating TGF-β and VEGF in lung tissue, and improving endothelial function. Despite these benefits, statin therapy may have side effects that should be considered, such as elevated creatinine kinase (CK), liver enzyme and serum glucose levels, which are already elevated in severe COVID-19 infection. The present study analyzes the latest findings regarding the benefits and limitations of statin therapy in patients with COVID-19.
Collapse
|
15
|
Pathomechanisms and therapeutic opportunities in radiation-induced heart disease: from bench to bedside. Clin Res Cardiol 2021; 110:507-531. [PMID: 33591377 PMCID: PMC8055626 DOI: 10.1007/s00392-021-01809-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/16/2021] [Indexed: 12/14/2022]
Abstract
Cancer management has undergone significant improvements, which led to increased long-term survival rates among cancer patients. Radiotherapy (RT) has an important role in the treatment of thoracic tumors, including breast, lung, and esophageal cancer, or Hodgkin's lymphoma. RT aims to kill tumor cells; however, it may have deleterious side effects on the surrounding normal tissues. The syndrome of unwanted cardiovascular adverse effects of thoracic RT is termed radiation-induced heart disease (RIHD), and the risk of developing RIHD is a critical concern in current oncology practice. Premature ischemic heart disease, cardiomyopathy, heart failure, valve abnormalities, and electrical conduct defects are common forms of RIHD. The underlying mechanisms of RIHD are still not entirely clear, and specific therapeutic interventions are missing. In this review, we focus on the molecular pathomechanisms of acute and chronic RIHD and propose preventive measures and possible pharmacological strategies to minimize the burden of RIHD.
Collapse
|
16
|
Kashour T, Halwani R, Arabi YM, Sohail MR, O'Horo JC, Badley AD, Tleyjeh IM. Statins as an adjunctive therapy for COVID-19: the biological and clinical plausibility. Immunopharmacol Immunotoxicol 2021; 43:37-50. [PMID: 33406943 DOI: 10.1080/08923973.2020.1863984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus disease 2019 (COVID-19) has infected millions of individuals and has claimed hundreds of thousands of human lives worldwide. Patients with underlying cardiovascular conditions are at high risk for SARS-CoV-2 infection, and COVID-19 patients have high incidence of cardiovascular complications such as acute cardiac injury, arrhythmias, heart failure, and thromboembolism. The disease has no approved proven effective therapy and hence repurposing of existing approved drugs has been considered as the fastest treatment approach. Statins have been shown to exhibit lipid lowering dependent and independent cardiovascular protective effects as well as favorable effects in various other pathophysiological states. These beneficial properties of statins are a result of their multiple pleotropic effects that include, anti-inflammatory, immunomodulatory, antithrombotic and antimicrobial properties. In this review, we provide a comprehensive description of the mechanisms of the pleotropic effects of statins, the relevant pre-clinical and clinical data pertinent to their role in infections and acute lung injury, the possible cardiovascular benefits of statins in COVID-19, and the implications of the therapeutic potential of statins in COVID-19 disease. We conclude with the rationale for conducting randomized controlled trials of statins in COVID-19 disease.
Collapse
Affiliation(s)
- Tarek Kashour
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Yaseen M Arabi
- Intensive Care Department, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - M Rizwan Sohail
- Section of Infectious Diseases, Baylor College of Medicine Houston, TX, USA.,Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - John C O'Horo
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Imad M Tleyjeh
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Division of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Medical Specialties, Infectious Diseases Section, King Fahad Medical City, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Li H, Yang T, Fei Z. miR‑26a‑5p alleviates lipopolysaccharide‑induced acute lung injury by targeting the connective tissue growth factor. Mol Med Rep 2020; 23:5. [PMID: 33179083 PMCID: PMC7673325 DOI: 10.3892/mmr.2020.11643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the regulatory functions of microRNA (miR)‑26a‑5p on lipopolysaccharide (LPS)‑induced acute lung injury (ALI) and its molecular mechanisms. The role of miR‑26a‑5p on an ALI mouse model was evaluated by examining the histological changes, wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, malondialdehyde (MDA) expression levels in lung tissues and the survival of ALI mice. Moreover, the protein concentration and the number of neutrophils and lymphocytes in bronchoalveolar lavage fluid (BALF) was analyzed. To explore the effect of miR‑26a‑5p on inflammatory responses and apoptosis, the expression levels of tumour necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6 and apoptosis were measured by ELISA, terminal deoxynucleotidyl transferase‑mediated dUTP nick end labelling staining and flow cytometry in BALF, A549 cells and lung tissues. B‑cell lymphoma‑2 (Bcl‑2), Bax and cleaved caspase‑3 in lung tissues were measured by western blotting and reverse transcription‑quantitative PCR. Connective tissue growth factor (CTGF) was predicted as a direct target of miR‑26a‑5p using dual luciferase reporter assay. The present study sought to determine whether CTGF overexpression reversed the effect of miR‑26a‑5p on apoptosis and inflammatory responses in LPS‑induced A549 cells. The data revealed that miR‑26a‑5p overexpression ameliorated LPS‑induced ALI, which was implicated by fewer histopathological changes, W/D ratio, apoptosis in lung tissues and the survival of ALI mice. Moreover, miR‑26a‑5p overexpression alleviated LPS‑induced inflammatory responses in ALI mice via the reduction of total protein, neutrophil and lymphocyte counts and the expression levels of TNF‑α, IL‑1β, IL‑6, MDA and MPO activity in BALF. Similarly, miR‑26a‑5p overexpression decreased apoptosis and the expression of TNF‑α, IL‑1β and IL‑6 in LPS‑induced A549 cells. CTGF was a direct target of miR‑26a‑5p. CTGF overexpression reversed the effect of miR‑26a‑5p on cell apoptosis and inflammatory responses in LPS‑induced A549 cells. The present study demonstrated that miR‑26a‑5p could attenuate lung inflammation and apoptosis in LPS‑induced ALI by targeting CTGF.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Child Healthcare, Zibo Women & Children Hospital, Zibo, Shandong 255000, P.R. China
| | - Tingting Yang
- Department of Child Healthcare, Zibo Women & Children Hospital, Zibo, Shandong 255000, P.R. China
| | - Zhaoxia Fei
- General Internal Medicine, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
18
|
Santos DM, Pantano L, Pronzati G, Grasberger P, Probst CK, Black KE, Spinney JJ, Hariri LP, Nichols R, Lin Y, Bieler M, Seither P, Nicklin P, Wyatt D, Tager AM, Medoff BD. Screening for YAP Inhibitors Identifies Statins as Modulators of Fibrosis. Am J Respir Cell Mol Biol 2020; 62:479-492. [PMID: 31944822 DOI: 10.1165/rcmb.2019-0296oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. In this study, we developed a high-throughput small-molecule screen for YAP inhibitors in primary human lung fibroblasts. Multiple HMG-CoA (hydroxymethylglutaryl-coenzyme A) reductase inhibitors (statins) were found to inhibit YAP nuclear localization via induction of YAP phosphorylation, cytoplasmic retention, and degradation. We further show that the mevalonate pathway regulates YAP activation, and that simvastatin treatment reduces fibrosis markers in activated human lung fibroblasts and in the bleomycin mouse model of pulmonary fibrosis. Finally, we show that simvastatin modulates YAP in vivo in mouse lung fibroblasts. Our results highlight the potential of small-molecule screens for YAP inhibitors and provide a mechanism for the antifibrotic activity of statins in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Lorena Pantano
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Gina Pronzati
- Division of Pulmonary and Critical Care Medicine, and
| | | | | | | | | | - Lida P Hariri
- Division of Pulmonary and Critical Care Medicine, and.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Yufei Lin
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | - David Wyatt
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | | |
Collapse
|
19
|
Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, Jiang X. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci 2019; 15:2128-2138. [PMID: 31592122 PMCID: PMC6775290 DOI: 10.7150/ijbs.35460] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
With the increasing incidence of thoracic tumors, radiation therapy (RT) has become an important component of comprehensive treatment. RT improves survival in many cancers, but it involves some inevitable complications. Radiation-induced heart disease (RIHD) is one of the most serious complications. RIHD comprises a spectrum of heart disease including cardiomyopathy, pericarditis, coronary artery disease, valvular heart disease and conduction system abnormalities. There are numerous clinical manifestations of RIHD, such as chest pain, palpitation, and dyspnea, even without obvious symptoms. Based on previous studies, the pathogenesis of RIHD is related to the production and effects of various cytokines caused by endothelial injury, inflammatory response, and oxidative stress (OS). Therefore, it is of great importance for clinicians to identify the mechanism and propose interventions for the prevention of RIHD.
Collapse
Affiliation(s)
- Heru Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China.,Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Qingshuang Zheng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32804,USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xia Yin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
20
|
Tsai MJ, Chang WA, Liao SH, Chang KF, Sheu CC, Kuo PL. The Effects of Epigallocatechin Gallate (EGCG) on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)-A Next-Generation Sequencing and Bioinformatic Approach. Int J Mol Sci 2019; 20:E1958. [PMID: 31013581 PMCID: PMC6514693 DOI: 10.3390/ijms20081958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disabling and lethal chronic progressive pulmonary disease. Epigallocatechin gallate (EGCG) is a polyphenol, which is the major biological component of green tea. The anti-oxidative, anti-inflammatory, and anti-fibrotic effects of EGCG have been shown in some studies, whereas its effects in altering gene expression in pulmonary fibroblasts have not been systematically investigated. This study aimed to explore the effect of EGCG on gene expression profiles in fibroblasts of IPF. The pulmonary fibroblasts from an IPF patient were treated with either EGCG or water, and the expression profiles of mRNAs and microRNAs were determined by next-generation sequencing (NGS) and analyzed with the bioinformatics approach. A total of 61 differentially expressed genes and 56 differentially expressed microRNAs were found in EGCG-treated IPF fibroblasts. Gene ontology analyses revealed that the differentially expressed genes were mainly involved in the biosynthetic and metabolic processes of cholesterol. In addition, five potential altered microRNA-mRNA interactions were found, including hsa-miR-939-5p-PLXNA4, hsa-miR-3918-CTIF, hsa-miR-4768-5p-PDE5A, hsa-miR-1273g-3p-VPS53, and hsa-miR-1972-PCSK9. In summary, differentially expressed genes and microRNAs in response to EGCG treatment in IPF fibroblasts were identified in the current study. Our findings provide a scientific basis to evaluate the potential benefits of EGCG in IPF treatment, and warrant future studies to understand the role of molecular pathways underlying cholesterol homeostasis in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ssu-Hui Liao
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | | | - Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
21
|
Patil MA, Upadhyay AK, Hernandez-Lagunas L, Good R, Carpenter TC, Sucharov CC, Nozik-Grayck E, Kompella UB. Targeted delivery of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1059-S1066. [PMID: 30450979 DOI: 10.1080/21691401.2018.1528984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ephrin type-A receptor 2 (EphA2) is a transmembrane receptor which is upregulated in injured lungs, including those treated with bleomycin. YSA peptide (YSAYPDSVPMMS), a mimic of ephrin ligands, binds to EphA2 receptors on cell surface with high affinity. In this study, we assessed the ability of YSA-functionalized and non-functionalized poly (dl-lactide-co-glycolide) (PLGA) nanoparticles to enhance delivery to bleomycin treated cultured vascular endothelial cells and, in a bleomycin induced lung injury mouse model. Nanoparticles were loaded with a lipophilic fluorescent dye. Human umbilical vein endothelial cells (HUVEC) with or without 2-day bleomycin pretreatment (25 µg/ml) and adult mice with or without intratracheal instillation of bleomycin (0.1 U) were dosed with nanoparticles. Mice received nanoparticles via tail vein injection 4 days after bleomycin treatment. Three days after nanoparticle injection, tissues (lung, heart, kidney, spleen, liver, brain, eyes and whole blood) were harvested and quantified for fluorescence using IVIS imaging. Mean particle uptake increased with time and concentration for both types of particles in HUVEC, with the uptake being higher for YSA-functionalized nanoparticles. Bleomycin treatment increased the 3-h uptake of both types of nanoparticles in HUVEC by about two-fold, with the YSA-functionalized nanoparticle uptake being 1.66-fold compared to non-functionalized nanoparticles (p < .05). In mice, bleomycin injury resulted in 2.3- and 4.7-fold increase in the lung levels of non-functionalized and YSA-functionalized nanoparticles (p < .05), respectively, although the differences between the two particle types were not significant. In conclusion, PLGA nanoparticle delivery to cultured vascular endothelial cells and mouse lungs in vivo is higher following bleomycin treatment, with the delivery tending to be higher for YSA functionalized nanoparticles.
Collapse
Affiliation(s)
- Madhoosudan A Patil
- a Department of Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Arun K Upadhyay
- a Department of Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Laura Hernandez-Lagunas
- b Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine , University of Colorado Denver , Denver , CO , USA
| | - Ryan Good
- b Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine , University of Colorado Denver , Denver , CO , USA
| | - Todd C Carpenter
- c Division of Pediatric Critical Care Medicine, Department of Pediatrics , University of Colorado School of Medicine , Aurora , CO , USA
| | - Carmen C Sucharov
- d Division of Cardiology, Department of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Eva Nozik-Grayck
- b Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine , University of Colorado Denver , Denver , CO , USA.,c Division of Pediatric Critical Care Medicine, Department of Pediatrics , University of Colorado School of Medicine , Aurora , CO , USA
| | - Uday B Kompella
- a Department of Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,e Department of Ophthalmology , University of Colorado Anschutz Medical Campus , Aurora , Colorado.,f Department of Bioengineering , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,g Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
22
|
Du J, Zhu Y, Meng X, Xie H, Wang J, Zhou Z, Wang R. Atorvastatin attenuates paraquat poisoning-induced epithelial-mesenchymal transition via downregulating hypoxia-inducible factor-1 alpha. Life Sci 2018; 213:126-133. [PMID: 30336147 DOI: 10.1016/j.lfs.2018.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/13/2022]
Abstract
AIM This study investigated the effects of atorvastatin (ATS) on the paraquat (PQ)-induced epithelial-mesenchymal transition (EMT) and the potential mechanism through hypoxia-inducible factor-1 alpha (HIF-1α). MAIN METHODS Sprague-Dawley (SD) rats were randomly divided into a control group (n = 5), PQ group (n = 20), PQ + ATS L group (n = 20, ATS 20 mg/kg daily) and PQ + ATS H group (n = 20, ATS 40 mg/kg daily). All treated rats were given a 20% PQ solution (50 mg/kg) once by gavage and then sacrificed 12, 24, 72 and 168 h after PQ exposure. The A549 and RLE-6TN cell lines were treated with ATS, PQ or both for 24 h. Mesenchymal (α-SMA and vimentin) and epithelial (E-cadherin and ZO-1) cell marker expression was tested both in vivo and in vitro. The effects of ATS on HIF-1α and β‑catenin expression were also evaluated. KEY FINDINGS ATS alleviated PQ poisoning-induced lung injury and pulmonary fibrosis in vivo. This effect was dose-dependent. ATS treatment attenuated the EMT by increasing the levels of the epithelial markers E-cadherin and ZO-1 and by decreasing the expression of the mesenchymal markers α-SMA and vimentin in both lung tissues and in vitro cell culture. In addition, ATS treatment may decrease the HIF-1α and β‑catenin levels both in vivo and in vitro. SIGNIFICANCE In conclusion, ATS can attenuate PQ-induced pulmonary fibrosis. The mechanism may involve the downregulation of the HIF-1α/β‑catenin pathway and the inhibition of the PQ-induced EMT by ATS. ATS may be considered as a therapeutic agent for PQ poisoning-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiang Du
- Department of Emergency, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
| | - Hui Xie
- Department of Emergency, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - Jinfeng Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
| | - Zhigang Zhou
- Department of Emergency, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - Ruilan Wang
- Department of Emergency, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China.
| |
Collapse
|
23
|
Treatment with Atorvastatin Provides Additional Benefits to Imipenem in a Model of Gram-Negative Pneumonia Induced by Klebsiella pneumoniae in Mice. Antimicrob Agents Chemother 2018; 62:AAC.00764-17. [PMID: 29463546 DOI: 10.1128/aac.00764-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 02/03/2018] [Indexed: 12/14/2022] Open
Abstract
The clinical pathogen Klebsiella pneumoniae is a relevant cause of nosocomial infections, and resistance to current treatment with carbapenem antibiotics is becoming a significant problem. Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) used for controlling plasma cholesterol levels. There is clinical evidence showing other effects of statins, including decrease of lung inflammation. In the current study, we show that pretreatment with atorvastatin markedly attenuated lung injury, which was correlated with a reduction in the cellular influx into the alveolar space and lungs and downmodulation of the production of proinflammatory mediators in the initial phase of infection in C57BL/6 mice with K. pneumoniae However, atorvastatin did not alter the number of bacteria in the lungs and blood of infected mice, despite decreasing local inflammatory response. Interestingly, mice that received combined treatment with atorvastatin and imipenem displayed better survival than mice treated with vehicle, atorvastatin, or imipenem alone. These findings suggest that atorvastatin could be an adjuvant in host-directed therapies for multidrug-resistant K. pneumoniae, based on its powerful pleiotropic immunomodulatory effects. Together with antimicrobial approaches, combination therapy with anti-inflammatory compounds could improve the efficiency of therapy during acute lung infections.
Collapse
|
24
|
Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis 2017; 8:e2978. [PMID: 28796249 PMCID: PMC5596560 DOI: 10.1038/cddis.2017.372] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
Thoracic radiotherapy causes damage of normal lung tissue, which limits the cumulative radiation dose and, hence, confines the anticancer efficacy of radiotherapy and impacts the quality of life of tumor patients. Ras-homologous (Rho) small GTPases regulate multiple stress responses and cell death. Therefore, we investigated whether pharmacological targeting of Rho signaling by the HMG-CoA-reductase inhibitor lovastatin influences ionizing radiation (IR)-induced toxicity in primary human lung fibroblasts, lung epithelial and lung microvascular endothelial cells in vitro and subchronic mouse lung tissue damage following hypo-fractionated irradiation (4x4 Gy). The statin improved the repair of radiation-induced DNA double-strand breaks (DSBs) in all cell types and, moreover, protected lung endothelial cells from IR-induced caspase-dependent apoptosis, likely involving p53-regulated mechanisms. Under the in vivo situation, treatment with lovastatin or the Rac1-specific small molecule inhibitor EHT1864 attenuated the IR-induced increase in breathing frequency and reduced the percentage of γH2AX and 53BP1-positive cells. This indicates that inhibition of Rac1 signaling lowers IR-induced residual DNA damage by promoting DNA repair. Moreover, lovastatin and EHT1864 protected lung tissue from IR-triggered apoptosis and mitigated the IR-stimulated increase in regenerative proliferation. Our data document beneficial anti-apoptotic and genoprotective effects of pharmacological targeting of Rho signaling following hypo-fractionated irradiation of lung cells in vitro and in vivo. Rac1-targeting drugs might be particular useful for supportive care in radiation oncology and, moreover, applicable to improve the anticancer efficacy of radiotherapy by widening the therapeutic window of thoracic radiation exposure.
Collapse
|
25
|
Zhao W, Song H, Huo W. Long-term administration of simvastatin reduces ventilator-induced lung injury and upregulates heme oxygenase 1 expression in a rat model. J Surg Res 2015; 199:601-7. [DOI: 10.1016/j.jss.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
|
26
|
Mathew B, Takekoshi D, Sammani S, Epshtein Y, Sharma R, Smith BD, Mitra S, Desai AA, Weichselbaum RR, Garcia JGN, Jacobson JR. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1420-9. [PMID: 26498248 DOI: 10.1152/ajplung.00146.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2015] [Indexed: 11/22/2022] Open
Abstract
We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a(-/-)) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a(-/-) mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt(+/-) mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a(-/-) mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a(-/-) mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically.
Collapse
Affiliation(s)
- Biji Mathew
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Daisuke Takekoshi
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Respiratory Medicine, Tohoku University Hospital, Miyagi, Japan
| | - Saad Sammani
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Yulia Epshtein
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Rajesh Sharma
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Brett D Smith
- Department of Radiation Oncology, University of Chicago, Chicago, Illinois; and
| | - Sumegha Mitra
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Ankit A Desai
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | | | - Joe G N Garcia
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois;
| |
Collapse
|
27
|
Zeki AA, Bratt JM, Chang KY, Franzi LM, Ott S, Silveria M, Fiehn O, Last JA, Kenyon NJ. Intratracheal instillation of pravastatin for the treatment of murine allergic asthma: a lung-targeted approach to deliver statins. Physiol Rep 2015; 3:3/5/e12352. [PMID: 25969462 PMCID: PMC4463814 DOI: 10.14814/phy2.12352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Systemic treatment with statins mitigates allergic airway inflammation, TH2 cytokine production, epithelial mucus production, and airway hyperreactivity (AHR) in murine models of asthma. We hypothesized that pravastatin delivered intratracheally would be quantifiable in lung tissues using mass spectrometry, achieve high drug concentrations in the lung with minimal systemic absorption, and mitigate airway inflammation and structural changes induced by ovalbumin. Male BALB/c mice were sensitized to ovalbumin (OVA) over 4 weeks, then exposed to 1% OVA aerosol or filtered air (FA) over 2 weeks. Mice received intratracheal instillations of pravastatin before and after each OVA exposure (30 mg/kg). Ultra performance liquid chromatography – mass spectrometry was used to quantify plasma, lung, and bronchoalveolar lavage fluid (BALF) pravastatin concentration. Pravastatin was quantifiable in mouse plasma, lung tissue, and BALF (BALF > lung > plasma for OVA and FA groups). At these concentrations pravastatin inhibited airway goblet cell hyperplasia/metaplasia, and reduced BALF levels of cytokines TNFα and KC, but did not reduce BALF total leukocyte or eosinophil cell counts. While pravastatin did not mitigate AHR, it did inhibit airway hypersensitivity (AHS). In this proof-of-principle study, using novel mass spectrometry methods we show that pravastatin is quantifiable in tissues, achieves high levels in mouse lungs with minimal systemic absorption, and mitigates some pathological features of allergic asthma. Inhaled pravastatin may be beneficial for the treatment of asthma by having direct airway effects independent of a potent anti-inflammatory effect. Statins with greater lipophilicity may achieve better anti-inflammatory effects warranting further research.
Collapse
Affiliation(s)
- Amir A Zeki
- University of California, Davis, California Department of Internal Medicine, University of California, Davis, California Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, California Center for Comparative Respiratory Biology and Medicine (CCRBM) University of California, Davis, California
| | - Jennifer M Bratt
- University of California, Davis, California Department of Internal Medicine, University of California, Davis, California Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, California Center for Comparative Respiratory Biology and Medicine (CCRBM) University of California, Davis, California
| | | | - Lisa M Franzi
- University of California, Davis, California Department of Internal Medicine, University of California, Davis, California Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, California Center for Comparative Respiratory Biology and Medicine (CCRBM) University of California, Davis, California
| | - Sean Ott
- University of California, Davis, California Department of Internal Medicine, University of California, Davis, California Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, California Center for Comparative Respiratory Biology and Medicine (CCRBM) University of California, Davis, California
| | - Mark Silveria
- U.C. Davis, West Coast Metabolomics Center (WCMC) University of California, Davis, California
| | - Oliver Fiehn
- U.C. Davis, West Coast Metabolomics Center (WCMC) University of California, Davis, California King Abdulaziz University, Biochemistry Department, Jeddah, Saudi Arabia
| | - Jerold A Last
- University of California, Davis, California Department of Internal Medicine, University of California, Davis, California Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, California Center for Comparative Respiratory Biology and Medicine (CCRBM) University of California, Davis, California
| | - Nicholas J Kenyon
- University of California, Davis, California Department of Internal Medicine, University of California, Davis, California Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, California Center for Comparative Respiratory Biology and Medicine (CCRBM) University of California, Davis, California
| |
Collapse
|
28
|
Rosuvastatin improves hepatopulmonary syndrome through inhibition of inflammatory angiogenesis of lung. Clin Sci (Lond) 2015; 129:449-60. [PMID: 25940601 DOI: 10.1042/cs20140622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Abstract
The hepatopulmonary syndrome (HPS) is characterized by hypoxia and increased intrapulmonary shunts in cirrhotic patients. Emerging evidence showed promising results of treating HPS by abolishment of intrapulmonary inflammation and angiogenesis. Rosuvastatin is a kind of 3-hydroxy-methyl-3-glutamyl coenzyme A reductase inhibitor. In addition to lipid-lowering effects, it has anti-inflammation and anti-angiogenesis properties. We postulated that rosuvastatin treatment can ameliorate HPS. Common bile duct ligation (CBDL) was applied in an experimental HPS animal model. CBDL rats received 2-week rosuvastatin (20 mg/kg/day) treatments from the fifteenth day after operation. The haemodynamic data, blood gas analysis, liver biochemistries, tumour necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) were examined after rosuvastatin treatment. The liver and lung tissues were dissected for histopathological studies and protein analyses. In the parallel groups, intrapulmonary shunts were determined. The haemodynamic and liver biochemistries were not changed after rosuvastatin treatment in CBDL rats, but the alveolar-arterial oxygen pressure gradient was significantly decreased, implying that HPS-induced hypoxia was reversed after rosuvastatin treatment. In addition, rosuvastatin treatment reduced intrapulmonary shunts and plasma levels of VEGF and TNF-α. Besides, the intrapulmonary protein expression of nuclear factor kappa B (NF-κB), VEGF receptor (VEGFR)-1,2 and Rho-associated A kinase were significantly down-regulated and the intrapulmonary angiogenesis was ameliorated. We concluded that rosuvastatin alleviates experimental HPS through blockade of pulmonary inflammatory angiogenesis via TNF-α/NF-κB and VEGF/Rho-associated A kinase pathways down-regulation.
Collapse
|
29
|
Boorsma CE, Dekkers BGJ, van Dijk EM, Kumawat K, Richardson J, Burgess JK, John AE. Beyond TGFβ--novel ways to target airway and parenchymal fibrosis. Pulm Pharmacol Ther 2014; 29:166-80. [PMID: 25197006 DOI: 10.1016/j.pupt.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 01/18/2023]
Abstract
Within the lungs, fibrosis can affect both the parenchyma and the airways. Fibrosis is a hallmark pathological change in the parenchyma in patients with idiopathic pulmonary fibrosis (IPF), whilst in asthma or chronic obstructive pulmonary disease (COPD) fibrosis is a component of the remodelling of the airways. In the past decade, significant advances have been made in understanding the disease behaviour and pathogenesis of parenchymal and airway fibrosis and as a result a variety of novel therapeutic targets for slowing or preventing progression of these fibrotic changes have been identified. This review highlights a number of these targets and discusses the potential for treating parenchymal or airway fibrosis through these mediators/pathways in the future.
Collapse
Affiliation(s)
- C E Boorsma
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B G J Dekkers
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E M van Dijk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - K Kumawat
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - J Richardson
- Division of Respiratory Medicine, Nottingham University Hospitals, QMC Campus, Nottingham NG7 2UH, United Kingdom
| | - J K Burgess
- Woolcock Institute of Medical Research, Glebe 2037, Australia; Discipline of Pharmacology, The University of Sydney, Sydney 2006, Australia
| | - A E John
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
30
|
Hamblin MJ, Eberlein M, Black K, Hallowell R, Collins S, Chan-Li Y, Horton MR. Lovastatin Inhibits Low Molecular Weight Hyaluronan Induced Chemokine Expression via LFA-1 and Decreases Bleomycin-Induced Pulmonary Fibrosis. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2014; 10:146-57. [PMID: 25324695 PMCID: PMC4199473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/13/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Lovastatin has a unique ability to bind Leukocyte Function Antigen-1 (LFA-1), an integrin necessary for the full expression of inflammatory cytokines induced by the low molecular weight form of the extracellular matrix glycosaminoglycan hyaluronan (LMW HA). We hypothesized that lovastatin could inhibit LMW HA inflammatory signals via interaction with LFA-1, and attenuate bleomycin induced pulmonary fibrosis. METHODS We evaluated the effects of lovastatin, pravastatin, LFA-1 blocking antibodies, and a novel LFA-1 inhibitor LFA 878 on LMW HA induced cytokine production in alveolar macrophages. We evaluated the effect of lovastatin in a bleomycin model of lung injury. RESULTS Lovastatin immediately inhibited the LMW HA induced cytokine MIP 1-α (p=0.001) independent of HMG CoA reductase. Pravastatin showed no inhibitory profile when administered simultaneously with LMW HA. LFA-1 blocking antibodies and the small molecule statin derivative LFA 878 showed an inhibitory profile similar to lovastatin. Lovastatin showed decreased fibrosis on histopathology and improved survival at day 14, with a decrease in fibrocytes noted at day 8. CONCLUSION Lovastatin and LFA 878 inhibit LMW HA inflammatory signaling independent of HMG-CoA decreasing the chemotactic cytokine MIP 1-α. Lovastatin treatment improves survival in bleomycin lung injury with decreased fibrocytes and fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Collins
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yee Chan-Li
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
31
|
Chen W, Sharma R, Rizzo AN, Siegler JH, Garcia JGN, Jacobson JR. Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin. Am J Respir Cell Mol Biol 2014; 50:328-36. [PMID: 24028293 DOI: 10.1165/rcmb.2013-0058oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The statins are now recognized to have pleiotropic properties, including augmentation of endothelial barrier function. To explore the mechanisms involved, we investigated the effect of simvastatin on endothelial cell (EC) tight junctions. Western blotting of human pulmonary artery ECs treated with simvastatin (5 μM) confirmed a significant time-dependent increase (16-48 h) in claudin-5 protein expression compared with controls, without detectable alterations in zonula occludens-1 or occludin. These effects were associated with membrane translocation of VE-cadherin, whereas translocation of vascular endothelial cadherin (VE-cadherin; silencing RNA) inhibited simvastatin-induced claudin-5 up-regulation. Moreover, simvastatin treatment of ECs induced increased phosphorylation of both FoxO1 and β-catenin, transcriptional regulators of claudin-5 expression mediated by VE-cadherin. Subsequently, we found no effect of claudin-5 silencing on EC barrier protection by simvastatin in response to thrombin stimulation, as measured by either transendothelial electrical resistance or by EC monolayer flux of FITC-dextran (2,000 kD). However, silencing of claudin-5 did significantly attenuate simvastatin-mediated EC barrier protection in response to thrombin, as measured by monolayer flux of sodium fluorescein (376 Da). Finally, employing a murine model of LPS-induced acute lung injury, there was no effect of claudin-5 silencing in vivo (intratracheal injection) on bronchoalveolar lavage fluid protein or cell counts, but LPS-induced lung tissue extravasation of the small molecular weight markers, sodium fluorescein and Hochst stain (562 Da), were significantly increased in claudin-5-silenced animals compared with simvastatin-treated control animals. These findings implicate a distinct mechanism underlying size-selective endothelial barrier-protective properties of statins, and may ultimately lead to new novel therapeutic targets for patients with acute lung injury.
Collapse
Affiliation(s)
- Weiguo Chen
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
32
|
Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA, Ghavami S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 2014; 143:87-110. [PMID: 24582968 DOI: 10.1016/j.pharmthera.2014.02.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/21/2022]
Abstract
The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Emilia Wiechec
- Dept. Clinical & Experimental Medicine, Division of Cell Biology & Integrative Regenerative Med. Center (IGEN), Linköping University, Sweden
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan Sharma
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, 4C46 HRIC, 3280 Hospital Drive NW, Calgary, Alberta, Canada
| | - Adel Rezaei Moghadam
- Scientific Association of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Martin Post
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Darren H Freed
- Department of Physiology, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir A Zeki
- U.C. Davis, School of Medicine, U.C. Davis Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology & Medicine, Davis, CA, USA.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, St. Boniface Research Centre, Manitoba Institute of Child Health, Biology of Breathing Theme, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
33
|
Oka H, Ishii H, Iwata A, Kushima H, Toba S, Hashinaga K, Umeki K, Tokimatsu I, Hiramatsu K, Kadota JI. Inhibitory effects of pitavastatin on fibrogenic mediator production by human lung fibroblasts. Life Sci 2013; 93:968-74. [PMID: 24211780 DOI: 10.1016/j.lfs.2013.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/11/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023]
Abstract
AIMS Idiopathic pulmonary fibrosis continues to be a devastating clinical disorder for which there are few therapeutic options, and the pathogenesis of this disease remains largely unknown. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in cholesterol biosynthesis, and they have been reported to exert pleiotropic effects on the cellular signaling involved in tissue inflammation and in organ fibrosis/remodeling. We examined the preventive effects of statins on fibrogenic mediator expression and production in normal human lung fibroblasts (NHLF). MAIN METHODS NHLF were pretreated with 100nM pitavastatin or medium alone (control), and were then stimulated with transforming growth factor-β1 (TGF-β1). mRNA expression and protein secretion of several mediators from cells were analyzed by real-time polymerase chain reaction, enzyme-linked immunosorbent assay or multiplex assay. KEY FINDINGS TGF-β1-induced expression or production of mediators, such as collagen-1, vascular endothelial growth factor and chemokine C-X-C motif ligand 8, in NHLF pretreated with pitavastatin was significantly suppressed with inhibition of Smad-3 phosphorylation, as compared to untreated controls. In addition, the inhibitory effects of pitavastatin were negated by addition of mevalonate. SIGNIFICANCE Pitavastatin appeared to inhibit TGF-β1-induced fibrogenic mediator production from lung fibroblasts via the mevalonic cascade. Although further evaluation of the signaling pathways for these phenomena is necessary, our results suggest the potential benefits of pitavastatin.
Collapse
Affiliation(s)
- Hiroaki Oka
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Yufu, Oita 879-5593, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Bleomycin is a chemotherapeutic agent commonly used to treat curable diseases such as germinative tumors and Hodgkin’s lymphoma. The major limitation of bleomycin therapy is pulmonary toxicity, which can be life threatening in up to 10% of patients receiving the drug. The mechanism of bleomycin-induced pneumonitis (BIP) involves oxidative damage, relative deficiency of the deactivating enzyme bleomycin hydrolase, genetic susceptibility, and the elaboration of inflammatory cytokines. Ultimately, BIP can progress to lung fibrosis. The diagnosis of BIP is established by the combination of systemic symptoms, radiological and histological findings, and respiratory function tests abnormalities, while other disorders should be excluded. Although the diagnosis and pathophysiology of this disease have been better characterized over the past few years, there is no effective therapy for the disease. In general, the clinical picture is extremely complex. A greater understanding of the BIP pathogenesis may lead to the development of new agents capable of preventing or even treating the injury already present. Physicians who prescribe bleomycin must be aware of the potential pulmonary toxicity, especially in the presence of risk factors. This review will focus on BIP, mainly regarding recent advances and perspectives in diagnosis and treatment.
Collapse
|
35
|
Schroll S, Lange TJ, Arzt M, Sebah D, Nowrotek A, Lehmann H, Wensel R, Pfeifer M, Blumberg FC. Effects of simvastatin on pulmonary fibrosis, pulmonary hypertension and exercise capacity in bleomycin-treated rats. Acta Physiol (Oxf) 2013; 208:191-201. [PMID: 23527830 DOI: 10.1111/apha.12085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/09/2012] [Accepted: 02/07/2013] [Indexed: 11/29/2022]
Abstract
AIM Pulmonary fibrosis is often complicated by pulmonary hypertension. Statins reduce fibroblast activity in vitro and pulmonary hypertension in vivo. We investigated whether Simvastatin exerts beneficial effects on pulmonary fibrosis and pulmonary hypertension in Bleomycin-treated rats in vivo. METHODS Rats were randomly assigned to controls, Bleomycin, Bleomycin plus Simvastatin from day 1 to 28 and Bleomycin plus Simvastatin from day 13 to 28. 28 days after Bleomycin instillation, right ventricular systolic pressure (RVSP), right ventricular mass (RV/(LV+S)), right ventricular and circulating brain natriuretic peptide (BNP) levels were determined to assess pulmonary hypertension. Pulmonary hydroxyproline content (HPC), pulmonary connective tissue growth factor (CTGF) transcription and lung compliance (LC) were analysed to characterize pulmonary fibrosis. Exercise capacity was determined by treadmill tests. RESULTS Compared with controls, Bleomycin increased RVSP, RV/(LV+S), BNP levels, HPC and CTGF transcription and decreased LC significantly. Simvastatin administered from day 1 to 28 normalized all these parameters. Simvastatin administered from day 13 to 28 had no effect on HPC and LC, but reduced RV/(LV+S) significantly and induced a strong trend to lower RVSP and BNP levels. Exercise capacity was reduced by Bleomycin. Simvastatin significantly improved exercise intolerance in both treatment groups. CONCLUSIONS Simvastatin prevents the development of pulmonary fibrosis, but fails to attenuate already established pulmonary fibrosis. In contrast, it ameliorates pulmonary hypertension and thereby exercise capacity in the prevention and the treatment group regardless of its effects on pulmonary fibrosis. Whether statins are a treatment option in humans with pulmonary fibrosis needs to be investigated by further study.
Collapse
Affiliation(s)
- S. Schroll
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - T. J. Lange
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - M. Arzt
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - D. Sebah
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - A. Nowrotek
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - H. Lehmann
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | | | | | | |
Collapse
|
36
|
Guo H, Ji F, Liu B, Chen X, He J, Gong J. Peiminine ameliorates bleomycin-induced acute lung injury in rats. Mol Med Rep 2013; 7:1103-10. [PMID: 23404624 DOI: 10.3892/mmr.2013.1312] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/21/2012] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to investigate whether or not peiminine inhibits lung inflammation and pulmonary fibrosis in a rat model of bleomycin-induced lung injury. Rats were randomly divided into 4 groups. In 3 groups, intratracheal bleomycin (5 mg/kg) was used to induce acute lung injury, followed by administration of either carboxymethyl cellulose (control group, n=14), dexamethasone (DXS group, n=14) or peiminine (peiminine group, n=10). In the fourth group (sham-operated, n=12), normal saline was instilled instead of bleomycin, followed by administration of carboxymethyl cellulose. Drugs were administered intragastrically for 28 days. Lung sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome, to grade the degree of alveolitis and pulmonary fibrosis. The lung index was calculated as the ratio of lung to body weight. Serum levels of interleukin-4 (IL-4), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were obtained using a radioimmunoassay. Immunocytochemical methods were employed to assess the expression of transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), NF-κB, extracellular signal-related kinase (ERK1/2), Fas and FasL in lung tissue. Peiminine and DXS significantly reduced alveolar inflammation and pulmonary interstitial inflammation in rats with bleomycin-induced lung injury. These protective effects were associated with significant (P<0.05) decreases in the levels of IFN-γ in serum and of TGF-β, CTGF, ERK1/2, NF-κB and FasL in lung tissue. No effects were observed on serum TNF-α or IL-4. In conclusion, peiminine inhibits lung inflammation and pulmonary fibrosis in a rat model of bleomycin-induced lung injury, by reducing circulating IFN-γ levels and inhibiting signal transduction pathways involving TGF-β, CTGF, ERK1/2, NF-κB and FasL.
Collapse
Affiliation(s)
- Hai Guo
- Cancer Center, Huai'an First People's Hospital, Huai'an 223300, P.R. China
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Acute lung injury (ALI) is a devastating clinical condition associated with pulmonary and systemic inflammation and characterized by incompetence of the pulmonary microvascular barrier culminating in noncardiogenic pulmonary edema. An understanding of the mechanisms underlying endothelial barrier dysfunction in ALI has been facilitated by study of the effects of statins in relevant cellular and animals models. Many of the pleotropic properties of these drugs, including direct effects on endothelial cell (EC) cytoskeletal rearrangement, NADPH oxidase, and nitric oxide activity, as well as effects on differential EC gene expression, are relevant to the pathobiology of ALI and suggest a potential therapeutic role for statins in this context. Moreover, results from preclinical studies and observations in relevant patient populations support the protective potential of statins in ALI, paving the way now for definitive clinical trials.
Collapse
Affiliation(s)
- Sunit Singla
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
38
|
Yeo CD, Rhee CK, Kim IK, Kang HH, Lee SH, Lee SY, Kwon SS, Kim YK, Kim KH, Kim JW. Protective effect of pravastatin on lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. Exp Lung Res 2013; 39:99-106. [DOI: 10.3109/01902148.2013.763388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Gowdy KM, Fessler MB. Emerging roles for cholesterol and lipoproteins in lung disease. Pulm Pharmacol Ther 2012; 26:430-7. [PMID: 22706330 DOI: 10.1016/j.pupt.2012.06.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 01/02/2023]
Abstract
Dyslipidemia, the condition of elevated serum triglycerides, elevated low-density lipoprotein cholesterol, and/or low high-density lipoprotein cholesterol, is a public health problem of growing concern. Dyslipidemia clusters with other disorders of the metabolic syndrome that together influence, and may derive from, chronic inflammation. While best recognized as a risk factor for atherosclerotic cardiovascular disease, lipid dysregulation has recently been shown to influence a variety of disease processes in several organ systems. This review highlights our current understanding of the role of cholesterol and its homeostatic trafficking in pulmonary physiology and pathophysiology. Gene-targeted mice deficient in regulatory proteins that govern reverse cholesterol transport (e.g., ATP Binding Cassette transporter G1, apolipoprotein E) have recently been shown to have abnormal lung physiology, including dysregulated pulmonary innate and adaptive immune responses to the environment. It has also recently been shown that diet-induced dyslipidemia alters trafficking of immune cells to the lung in a manner that may have important implications for the pathogenesis of acute lung injury, asthma, pneumonia, and other lung disorders. Conversely, cholesterol-targeting pharmacologic agents, such as statins, apolipoprotein mimetic peptides, and Liver X Receptor agonists, have shown early promise in the treatment of several lung disorders. An improved understanding of the precise molecular mechanisms by which cholesterol and its trafficking modify pulmonary immunity will be required before the full implications of dyslipidemia as a lung disease modifier, and the full potential of lipid-targeting agents as pulmonary therapeutics, can be realized.
Collapse
Affiliation(s)
- Kymberly M Gowdy
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, PO Box 12233, MD D2-01, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
40
|
Xu JF, Washko GR, Nakahira K, Hatabu H, Patel AS, Fernandez IE, Nishino M, Okajima Y, Yamashiro T, Ross JC, Estépar RSJ, Diaz AA, Li HP, Qu JM, Himes BE, Come CE, D'Aco K, Martinez FJ, Han MK, Lynch DA, Crapo JD, Morse D, Ryter SW, Silverman EK, Rosas IO, Choi AMK, Hunninghake GM. Statins and pulmonary fibrosis: the potential role of NLRP3 inflammasome activation. Am J Respir Crit Care Med 2012; 185:547-56. [PMID: 22246178 DOI: 10.1164/rccm.201108-1574oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE The role of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) in the development or progression of interstitial lung disease (ILD) is controversial. OBJECTIVES To evaluate the association between statin use and ILD. METHODS We used regression analyses to evaluate the association between statin use and interstitial lung abnormalities (ILA) in a large cohort of smokers from COPDGene. Next, we evaluated the effect of statin pretreatment on bleomycin-induced fibrosis in mice and explored the mechanism behind these observations in vitro. MEASUREMENTS AND MAIN RESULTS In COPDGene, 38% of subjects with ILA were taking statins compared with 27% of subjects without ILA. Statin use was positively associated in ILA (odds ratio, 1.60; 95% confidence interval, 1.03-2.50; P = 0.04) after adjustment for covariates including a history of high cholesterol or coronary artery disease. This association was modified by the hydrophilicity of statin and the age of the subject. Next, we demonstrate that statin administration aggravates lung injury and fibrosis in bleomycin-treated mice. Statin pretreatment enhances caspase-1-mediated immune responses in vivo and in vitro; the latter responses were abolished in bone marrow-derived macrophages isolated from Nlrp3(-/-) and Casp1(-/-) mice. Finally, we provide further insights by demonstrating that statins enhance NLRP3-inflammasome activation by increasing mitochondrial reactive oxygen species generation in macrophages. CONCLUSIONS Statin use is associated with ILA among smokers in the COPDGene study and enhances bleomycin-induced lung inflammation and fibrosis in the mouse through a mechanism involving enhanced NLRP3-inflammasome activation. Our findings suggest that statins may influence the susceptibility to, or progression of, ILD. Clinical trial registered with www.clinicaltrials.gov (NCT 00608764).
Collapse
Affiliation(s)
- Jin-Fu Xu
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Araújo FA, Rocha MA, Ferreira MA, Campos PP, Capettini LSA, Lemos VS, Andrade SP. Implant-induced intraperitoneal inflammatory angiogenesis is attenuated by fluvastatin. Clin Exp Pharmacol Physiol 2011; 38:262-8. [PMID: 21309808 DOI: 10.1111/j.1440-1681.2011.05496.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA) inhibitors, exert anti-inflammatory, anti-oxidant and anti-angiogenic effects. These effects are associated with downregulation of pro-inflammatory/pro-angiogenic molecules and upregulation of endothelial nitric oxide synthase (e-NOS) expression/nitric oxide (NO) production. 2. Using the murine sponge model to induce chronic intraperitoneal inflammatory response, we evaluated the inflammatory components, angiogenic and NO production of the fibrovascular tissue, and their modulation by fluvastatin. 3. Our results showed that fluvastatin (0.6 and 6 mg/kg per day) inhibited haemoglobin (Hb) content 4.9±0.4 (n=15; control) vs 2.2±0.2 (n=6; fluvastatin 0.6) and 1.8±0.2 (n=6; fluvastatin 6.0) and the number of vessels in the treated group when compared with the control group. The inflammatory component, as assessed by myeloperoxidase and N-acetyl-β-d-glucosaminidase activities and by the pro-inflammatory cytokines, tumour necrosis factor-α (TNF-α) and Monocyte chemotactic protein-1 (MCP-1)/CCL2/JE levels, was also decreased by the compound. In the treated group, inhibition of both enzyme activities was 54% and 57%, respectively. The levels of the cytokines (TNF-α and CCL2/JE) intra-implant were decreased relative to the control. In these implants, fluvastatin was also able to increase NO production, as detected with an NO-sensitive electrode. 4. The inhibitory function of fluvastatin on key components of intraperitoneal inflammatory angiogenesis shown in the present study is clearly associated with the modulatory effects of this statin on vascular endothelial growth factor, TNF-α and NO production.
Collapse
Affiliation(s)
- Fernanda A Araújo
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Fritz G, Henninger C, Huelsenbeck J. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br Med Bull 2011; 97:17-26. [PMID: 21252099 DOI: 10.1093/bmb/ldq044] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HMG-CoA reductase inhibitors (statins) are widely used in the therapy of hypercholesterolemia. Apart from their lipid-lowering activity, they have pleiotropic effects that are attributed to the inhibition of regulatory proteins, including Ras-homologous (Rho) GTPases. Here, we discuss the potential usefulness of statins to prevent normal tissue damage provoked by radiotherapy. Statins reduce the mRNA expression of pro-inflammatory and pro-fibrotic cytokines stimulated by ionizing radiation in vitro and alleviate IR-induced inflammation and fibrosis in vivo. The currently available data indicate that statins accelerate the rapid repair of DNA double-strand breaks and, moreover, mitigate the DNA damage response induced by IR. Furthermore, statins increase the mRNA expression of DNA repair factors in vivo. Thus, although the molecular mechanisms involved are still ambiguous, preclinical data concordantly show a promising radioprotective capacity of statins.
Collapse
Affiliation(s)
- Gerhard Fritz
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Toxicology, Germany.
| | | | | |
Collapse
|