1
|
Abd El-Fattah AA, Hamid Sadik NA, Shahin AM, Shahin NN. Simvastatin and eugenol restore autophagic flux and alleviate oxidative, inflammatory, and fibrotic perturbations in an arginine-induced chronic pancreatitis rat model. Arch Biochem Biophys 2025:110357. [PMID: 40015469 DOI: 10.1016/j.abb.2025.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Chronic pancreatitis (CP), a progressive inflammatory disease characterized by pancreatic tissue destruction and fibrosis, is considered a challenging health burden due to insufficiencies of current management procedures. Autophagy impairment has emerged as a major triggering event in pancreatitis, raising interest in exploring the potential of targeting autophagy as a possible interventional strategy. This study aimed to evaluate the possible ameliorative effect of two autophagy modulators, simvastatin and eugenol, on CP-related perturbations in an arginine-induced rat model. Repeated L-arginine administration (5 g/kg divided into 2 doses with a 1 hr interval, given intraperitoneally every 3rd day for a total of 10 times) provoked CP features, demonstrated by acinar damage, oxidative stress, inflammation, and fibrosis. Arginine-triggered pancreatitis was accompanied by hampered pancreatic autophagic flux, evidenced by overexpression of pancreatic p62 and LC3-Ⅱ and downregulation of pancreatic AMPK and LAMP-1 mRNA expression. Treatment with simvastatin (20 mg/kg, intraperitoneally 24 hr, before each arginine dose) and eugenol (50 mg/kg/day orally for 30 days) achieved significant anti-oxidative, anti-inflammatory, and anti-fibrotic effects, and reversed the arginine-instigated autophagic blockade, with superior ameliorative effects attained by eugenol. Altogether, simvastatin and eugenol provide a promising interventional approach for CP, at least partly, by restoring the impaired autophagic flux associated with CP.
Collapse
Affiliation(s)
| | | | - Ahmad Mustafa Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nancy Nabil Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
2
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Alhobayb T, Peravali R, Ashkar M. The Relationship between Acute and Chronic Pancreatitis with Pancreatic Adenocarcinoma: Review. Diseases 2021; 9:diseases9040093. [PMID: 34940031 PMCID: PMC8700754 DOI: 10.3390/diseases9040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with poor prognosis, leading to significant cancer-related mortality and an overall five-year survival rate of about nine percent. Acute and chronic pancreatitis have been associated with PDAC through common risk factors based on multiple epidemiological studies. Acute pancreatitis (AP) might be one of the earliest manifestations of PDAC, but evolving chronic pancreatitis (CP) following recurrent bouts of AP has been proposed as a risk factor for cancer development in the setting of persistent inflammation and ongoing exposure to carcinogens. This review aims to highlight the evidence supporting the relationship between acute and chronic pancreatitis with PDAC.
Collapse
Affiliation(s)
- Tamara Alhobayb
- Department of Medicine, Division of Gastroenterology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Rahul Peravali
- Department of Internal Medicine, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Motaz Ashkar
- Department of Medicine, Division of Gastroenterology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
- Correspondence:
| |
Collapse
|
4
|
Müller P, Maus H, Hammerschmidt SJ, Knaff P, Mailänder V, Schirmeister T, Kersten C. Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy. Curr Med Chem 2021; 29:635-665. [PMID: 34042026 DOI: 10.2174/0929867328666210526111318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023]
Abstract
Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since currently, there is no causative drug against this viral infection available, science is striving for new drugs and approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARS-CoV-2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.
Collapse
Affiliation(s)
- Patrick Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Josef Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Philip Knaff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Christian Kersten
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
5
|
Xu J, Xue Y, Zhou R, Shi PY, Li H, Zhou J. Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Med Res Rev 2021; 41:1375-1426. [PMID: 33277927 PMCID: PMC8044022 DOI: 10.1002/med.21763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS-CoV-2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti-CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID-19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID-19.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Mahmoud IS, Jarrar YB. Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes-prospects and challenges. Mol Biol Rep 2021; 48:4667-4675. [PMID: 34023987 PMCID: PMC8140747 DOI: 10.1007/s11033-021-06390-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
The transmembrane protease serine 2 (TMPRSS2) is a membrane anchored protease that primarily expressed by epithelial cells of respiratory and gastrointestinal systems and has been linked to multiple pathological processes in humans including tumor growth, metastasis and viral infections. Recent studies have shown that TMPRSS2 expressed on cell surface of host cells could play a crucial role in activation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein which facilitates the rapid early entry of the virus into host cells. In addition, direct suppression of TMPRSS2 using small drug inhibitors has been demonstrated to be effective in decreasing SARS-CoV-2 infection in vitro, which presents TMPRSS2 protease as a potential therapeutic strategy for SARS-CoV-2 infection. Recently, SARS-CoV-2 has been shown to be capable of infecting gastrointestinal enterocytes and to provoke gastrointestinal disorders in patients with COVID-19 disease, which is considered as a new transmission route and target organ of SARS-CoV-2. In this review, we highlight the biochemical properties of TMPRSS2 protease and discuss the potential targeting of TMPRSS2 by inhibitors to prevent the SARS-CoV-2 spreading through gastro-intestinal tract system as well as the hurdles that need to be overcome.
Collapse
Affiliation(s)
- Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | | |
Collapse
|
7
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
8
|
Xia SH. Prospect and clinical value of oxymatrine in prevention and treatment of pancreatic fibrosis. Shijie Huaren Xiaohua Zazhi 2020; 28:819-826. [DOI: 10.11569/wcjd.v28.i17.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies have confirmed that pancreatic stellate cell activation is the central event in the initiation and development of pancreatic fibrosis (PF), but the specific mechanism of PF is still unknown, and there is no specific treatment for PF. Some basic studies have confirmed that oxymatrine (OMT) has a certain therapeutic effect on PF, but further research is needed. It can be predicted that OMT has a far-reaching research prospect and good clinical application value for the prevention and treatment of PF, and is also conducive to the better development and utilization of traditional Chinese herbal medicine radix sophorae flavescentis.
Collapse
Affiliation(s)
- Shi-Hai Xia
- Gastroenterology Department of Medical Center of the Chinese People's Armed Police Force (Institute of Digestive Diseases of Medical Center), Medical Center for Hepatobiliary, Pancreatic and Splenic Disease of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin 300162, China
| |
Collapse
|
9
|
Ji T, Feng W, Zhang X, Zang K, Zhu X, Shang F. HDAC inhibitors promote pancreatic stellate cell apoptosis and relieve pancreatic fibrosis by upregulating miR-15/16 in chronic pancreatitis. Hum Cell 2020; 33:1006-1016. [PMID: 32524326 PMCID: PMC7505886 DOI: 10.1007/s13577-020-00387-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
In chronic pancreatitis, PSCs are activated by proinflammatory cytokines to induce pancreatic fibrogenesis. HDAC inhibition protected against the pancreatic fibrosis and the apoptosis of PSCs through induced apoptosis and depressed inflammation. In our study, we found that miR-15 and miR-16 decreased significantly in chronic pancreatitis and HDAC inhibition could recover the levels of these two miRNAs. HDAC regulated the transcription of miR-15 and miR-16, which then modulate the apoptosis and fibrosis of PSCs. And we proved that Bcl-2 and Smad5 were the target genes of miR-15 and miR-16, which illustrated how HDAC inhibition alleviated the apoptosis and fibrogenesis of PSCs in chronic pancreatitis. These results suggested that HDAC inhibition protects against CP by promoting apoptosis and TGF-β/Smads signaling pathways, and indicated that HDAC inhibition is a potential therapy to alleviate CP patients in clinic, and these need to be explored further.
Collapse
Affiliation(s)
- Ting Ji
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Weiguang Feng
- Intensive Care Unit, Huai'an No 4 People's Hospital, 128 Yan'an East Road, Qingjiangpu District, Huai'an, 223002, Jiangsu, China
| | - Xiangcheng Zhang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Kui Zang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xingxing Zhu
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Futai Shang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
10
|
Ahmed A, Deep A, Kothari DJ, Sheth SG. Bone disease in chronic pancreatitis. World J Clin Cases 2020; 8:1574-1579. [PMID: 32432135 PMCID: PMC7211537 DOI: 10.12998/wjcc.v8.i9.1574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 02/05/2023] Open
Abstract
Bone disease (osteopenia or osteoporosis) is a highly prevalent condition in society and presents a tremendous, preventable public health burden. Screening procedures, such as, dual-energy X-ray absorptiometry scans, have allowed early identification and intervention to improve bone health, and reduce the risk of osteoporotic fractures, which carry significant morbidity and mortality. The association of bone disease has been recognized in several diseases of the gastrointestinal tract, resulting in established guidelines for screening in patients with malabsorptive disorders such as inflammatory bowel disease and celiac disease. Increasingly, the risk of bone disease has been recognized in patients with chronic pancreatitis (CP), who share similar risk factors as patients with other high gastrointestinal disorders. As a result, there have been a number of studies examining the prevalence and risks of bone disease and fractures in patients with CP. This review aims to summarize the recent literature and current recommendations related to bone disease in CP.
Collapse
Affiliation(s)
- Awais Ahmed
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Aman Deep
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Darshan J Kothari
- Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, United States
| | - Sunil G Sheth
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| |
Collapse
|
11
|
Ramakrishnan P, Loh WM, Gopinath SC, Bonam SR, Fareez IM, Mac Guad R, Sim MS, Wu YS. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B 2020; 10:399-413. [PMID: 32140388 PMCID: PMC7049637 DOI: 10.1016/j.apsb.2019.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Activated pancreatic stellate cells (PSCs) have been widely accepted as a key precursor of excessive pancreatic fibrosis, which is a crucial hallmark of chronic pancreatitis (CP) and its formidable associated disease, pancreatic cancer (PC). Hence, anti-fibrotic therapy has been identified as a novel therapeutic strategy for treating CP and PC by targeting PSCs. Most of the anti-fibrotic agents have been limited to phase I/II clinical trials involving vitamin analogs, which are abundant in medicinal plants and have proved to be promising for clinical application. The use of phytomedicines, as new anti-fibrotic agents, has been applied to a variety of complementary and alternative approaches. The aim of this review was to present a focused update on the selective new potential anti-fibrotic agents, including curcumin, resveratrol, rhein, emodin, green tea catechin derivatives, metformin, eruberin A, and ellagic acid, in combating PSC in CP and PC models. It aimed to describe the mechanism(s) of the phytochemicals used, either alone or in combination, and the associated molecular targets. Most of them were tested in PC models with similar mechanism of actions, and curcumin was tested intensively. Future research may explore the issues of bioavailability, drug design, and nano-formulation, in order to achieve successful clinical outcomes with promising activity and tolerability.
Collapse
Affiliation(s)
- Puvanesswaray Ramakrishnan
- Ageing and Age-Associated Disorders Research Group, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wei Mee Loh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Subash C.B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Srinivasa Reddy Bonam
- UMR 7242, CNRS-University of Strasbourg, Biotechnology and Cell Signaling/Laboratory of Excellence Medalis, Illkirch 67400, France
| | - Ismail M. Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
- Corresponding authors. Tel./fax: +60 3 51022709 (Yuan Seng Wu); +60 3 79675749 (Maw Shin Sim).
| | - Yuan Seng Wu
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor 42610, Malaysia
- Corresponding authors. Tel./fax: +60 3 51022709 (Yuan Seng Wu); +60 3 79675749 (Maw Shin Sim).
| |
Collapse
|
12
|
Liu JS, Cui ZJ. Pancreatic Stellate Cells Serve as a Brake Mechanism on Pancreatic Acinar Cell Calcium Signaling Modulated by Methionine Sulfoxide Reductase Expression. Cells 2019; 8:cells8020109. [PMID: 30717164 PMCID: PMC6406918 DOI: 10.3390/cells8020109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Although methionine sulfoxide reductase (Msr) is known to modulate the activity of multiple functional proteins, the roles of Msr in pancreatic stellate cell physiology have not been reported. In the present work we investigated expression and function of Msr in freshly isolated and cultured rat pancreatic stellate cells. Msr expression was determined by RT-PCR, Western blot and immunocytochemistry. Msr over-expression was achieved by transfection with adenovirus vectors. Pancreatic stellate cells were co-cultured with pancreatic acinar cells AR4-2J in monolayer culture. Pancreatic stellate and acinar cell function was monitored by Fura-2 calcium imaging. Rat pancreatic stellate cells were found to express MsrA, B1, B2, their expressions diminished in culture. Over-expressions of MsrA, B1 or B2 were found to enhance ATP-stimulated calcium increase but decreased reactive oxygen species generation and lipopolysaccharide-elicited IL-1 production. Pancreatic stellate cell-co-culture with AR4-2J blunted cholecystokinin- and acetylcholine-stimulated calcium increases in AR4-2J, depending on acinar/stellate cell ratio, this inhibition was reversed by MsrA, B1 over-expression in stellate cells or by Met supplementation in the co-culture medium. These data suggest that Msr play important roles in pancreatic stellate cell function and the stellate cells may serve as a brake mechanism on pancreatic acinar cell calcium signaling modulated by stellate cell Msr expression.
Collapse
Affiliation(s)
- Jin Shuai Liu
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
13
|
Czekaj R, Majka J, Magierowska K, Sliwowski Z, Magierowski M, Pajdo R, Ptak-Belowska A, Surmiak M, Kwiecien S, Brzozowski T. Mechanisms of curcumin-induced gastroprotection against ethanol-induced gastric mucosal lesions. J Gastroenterol 2018; 53:618-630. [PMID: 28856444 PMCID: PMC5910495 DOI: 10.1007/s00535-017-1385-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/13/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Curcumin, a pleiotropic substance used for centuries in traditional medicine, exhibits antioxidant, anti-inflammatory and antiproliferative efficacy against various tumours, but the role of curcumin in gastroprotection is little studied. We determined the effect of curcumin against gastric haemorrhagic lesions induced by 75% ethanol and alterations in gastric blood flow (GBF) in rats with cyclooxygenase-1 (COX-1) and COX-2 activity inhibited by indomethacin, SC-560 or rofecoxib, inhibited NO-synthase activity, capsaicin denervation and blockade of TRPV1 receptors by capsazepine. METHODS One hour after ethanol administration, the gastric mucosal lesions were assessed by planimetry, the GBF was examined by H2 gas clearance, plasma gastrin was determined by radioimmunoassay, and the gastric mucosal mRNA expression of Cdx-2, HIF-1α, HO-1 and SOD 2 was analysed by RT-PCR. RESULTS Curcumin, in a dose-dependent manner, reduced ethanol-induced gastric lesions and significantly increased GBF and plasma gastrin levels. Curcumin-induced protection was completely reversed by indomethacin and SC-560, and significantly attenuated by rofecoxib, L-NNA, capsaicin denervation and capsazepine. Curcumin downregulated Cdx-2 and Hif-1α mRNA expression and upregulated HO-1 and SOD 2, and these effects were reversed by L-NNA and further restored by co-treatment of L-NNA with L-arginine. CONCLUSIONS Curcumin-induced protection against ethanol damage involves endogenous PG, NO, gastrin and CGRP released from sensory nerves due to activation of the vanilloid TRPV1 receptor. This protective effect can be attributed to the inhibition of HIF-1α and Cdx-2 expression and the activation of HO-1 and SOD 2 expression.
Collapse
Affiliation(s)
| | - Jolanta Majka
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland.
| |
Collapse
|
14
|
Ben-Harosh Y, Anosov M, Salem H, Yatchenko Y, Birk R. Pancreatic stellate cell activation is regulated by fatty acids and ER stress. Exp Cell Res 2017; 359:76-85. [DOI: 10.1016/j.yexcr.2017.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023]
|
15
|
Curcumin Suppresses Intestinal Fibrosis by Inhibition of PPAR γ-Mediated Epithelial-Mesenchymal Transition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7876064. [PMID: 28203261 PMCID: PMC5292200 DOI: 10.1155/2017/7876064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/04/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
Intestinal fibrotic stricture is a major complication of Crohn's disease (CD) and epithelial-to-mesenchymal transition (EMT) is considered as an important contributor to the formation of intestinal fibrosis by increasing extracellular matrix (ECM) proteins. Curcumin, a compound derived from rhizomes of Curcuma, has been demonstrated with a potent antifibrotic effect. However, its effect on intestinal fibrosis and the potential mechanism is not completely understood. Here we found that curcumin pretreatment significantly represses TGF-β1-induced Smad pathway and decreases its downstream α-smooth muscle actin (α-SMA) gene expression in intestinal epithelial cells (IEC-6); in contrast, curcumin increases expression of E-cadherin and peroxisome proliferator-activated receptor γ (PPARγ) in IEC-6. Moreover, curcumin promotes nuclear translocation of PPARγ and the inhibitory effect of curcumin on EMT could be reversed by PPARγ antagonist GW9662. Consistently, in the rat model of intestinal fibrosis induced by 2,4,5-trinitrobenzene sulphonic acid (TNBS), oral curcumin attenuates intestinal fibrosis by increasing the expression of PPARγ and E-cadherin and decreasing the expression of α-SMA, FN, and CTGF in colon tissue. Collectively, these results indicated that curcumin is able to prevent EMT progress in intestinal fibrosis by PPARγ-mediated repression of TGF-β1/Smad pathway.
Collapse
|
16
|
Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry. J Virol 2016; 91:JVI.01387-16. [PMID: 27733646 DOI: 10.1128/jvi.01387-16] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
Human coronavirus 229E (HCoV-229E), a causative agent of the common cold, enters host cells via two distinct pathways: one is mediated by cell surface proteases, particularly transmembrane protease serine 2 (TMPRSS2), and the other by endosomal cathepsin L. Thus, specific inhibitors of these proteases block virus infection. However, it is unclear which of these pathways is actually utilized by HCoV-229E in the human respiratory tract. Here, we examined the mechanism of cell entry used by a pseudotyped virus bearing the HCoV-229E spike (S) protein in the presence or absence of protease inhibitors. We found that, compared with a laboratory strain isolated in 1966 and passaged for a half century, clinical isolates of HCoV-229E were less likely to utilize cathepsin L; rather, they showed a preference for TMPRSS2. Two amino acid substitutions (R642M and N714K) in the S protein of HCoV-229E clinical isolates altered their sensitivity to a cathepsin L inhibitor, suggesting that these amino acids were responsible for cathepsin L use. After 20 passages in HeLa cells, the ability of the isolate to use cathepsin increased so that it was equal to that of the laboratory strain; this increase was caused by an amino acid substitution (I577S) in the S protein. The passaged virus showed a reduced ability to replicate in differentiated airway epithelial cells cultured at an air-liquid interface. These results suggest that the endosomal pathway is disadvantageous for HCoV-229E infection of human airway epithelial cells; therefore, clinical isolates are less able to use cathepsin. IMPORTANCE Many enveloped viruses enter cells through endocytosis. Viral spike proteins drive the fusion of viral and endosomal membranes to facilitate insertion of the viral genome into the cytoplasm. Human coronavirus 229E (HCoV-229E) utilizes endosomal cathepsin L to activate the spike protein after receptor binding. Here, we found that clinical isolates of HCoV-229E preferentially utilize the cell surface protease TMPRSS2 rather than endosomal cathepsin L. The endosome is a main site of Toll-like receptor recognition, which then triggers an innate immune response; therefore, HCoV-229E presumably evolved to bypass the endosome by entering the cell via TMPRSS2. Thus, the virus uses a simple mechanism to evade the host innate immune system. Therefore, therapeutic agents for coronavirus-mediated diseases, such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), should target cell surface TMPRSS2 rather than endosomal cathepsin.
Collapse
|
17
|
Hsu MT, Lin CL, Chung WS. Increased Risk of Acute Coronary Syndrome in Patients With Chronic Pancreatitis: A Nationwide Cohort Analysis. Medicine (Baltimore) 2016; 95:e3451. [PMID: 27196450 PMCID: PMC4902392 DOI: 10.1097/md.0000000000003451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation may promote development of coronary heart disease. Studies on the relationship between chronic pancreatitis (CP) and cardiovascular diseases are scant.We conducted a nationwide retrospective cohort study to determine the risk of acute coronary syndrome (ACS) in patients with CP.We randomly selected a comparison cohort of individuals without CP from the Taiwan National Health Insurance Research Database (N = 23.74 million) and frequency-matched them with patients with CP from 2000 to 2010 in a 1:4 ratio according to age, sex, and index year. The follow-up period lasted from the index date of the new CP diagnosis to the date of ACS diagnosis, censoring, or the end of 2011. We analyzed the risk of ACS by using Cox proportional-hazard models.In total, 17,405 patients with CP and 69,620 individuals without CP were followed for 84,430 and 417,426 person-years. Most patients with CP were men, and the mean age of the patients was 48.3 ± 15.0 years. The overall ACS incidence was 2.15-fold higher in the CP cohort than in the non-CP cohort (4.89 vs 2.28 per 10,000 person-years) with an adjusted hazard ratio (aHR) of 1.40 (95% confidence interval [CI] 1.20-1.64). Compared with individuals without CP, patients with CP aged ≤39 years exhibited the highest risk of ACS (aHR 2.14, 95% CI 1.13-4.02), followed by those aged 40 to 54 years (aHR 1.66, 95% CI 1.23-2.24) and those aged 55 to 69 years (aHR 1.53, 95% CI 1.15-2.03).CP may become an independent risk factor for ACS.
Collapse
Affiliation(s)
- Ming-Tse Hsu
- From the Division of Gastroenterology (M-TH), Department of Internal Medicine, Chia-Yi Christian Hospital, Chiayi; Management Office for Health Data (C-LL), China Medical University Hospital; College of Medicine (C-LL), China Medical University; Department of Internal Medicine (W-SC), Taichung Hospital, Ministry of Health and Welfare; Department of Health Services Administration (W-SC), China Medical University; and Department of Healthcare Administration (W-SC), Central Taiwan University of Science and Technology, Taichung, Taiwan
| | | | | |
Collapse
|
18
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15:327-47. [PMID: 26868298 PMCID: PMC7097181 DOI: 10.1038/nrd.2015.37] [Citation(s) in RCA: 1177] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are examples of emerging zoonotic coronavirus infections capable of person-to-person transmission that result in large-scale epidemics with substantial effects on patient health and socioeconomic factors. Unlike patients with mild illnesses that are caused by other human-pathogenic coronaviruses, patients with SARS or MERS coronavirus infections may develop severe acute respiratory disease with multi-organ failure. The case–fatality rates of SARS and MERS are approximately 10% and 35%, respectively. Both SARS and MERS pose major clinical management challenges because there is no specific antiviral treatment that has been proven to be effective in randomized clinical trials for either infection. Substantial efforts are underway to discover new therapeutic agents for coronavirus infections. Virus-based therapies include monoclonal antibodies and antiviral peptides that target the viral spike glycoprotein, viral enzyme inhibitors, viral nucleic acid synthesis inhibitors and inhibitors of other viral structural and accessory proteins. Host-based therapies include agents that potentiate the interferon response or affect either host signalling pathways involved in viral replication or host factors utilized by coronaviruses for viral replication. The major challenges in the clinical development of novel anti-coronavirus drugs include the limited number of suitable animal models for the evaluation of potential treatments for SARS and MERS, the current absence of new SARS cases, the limited number of MERS cases — which are also predominantly geographically confined to the Middle East — as well as the lack of industrial incentives to develop antivirals for mild infections caused by other, less pathogenic coronaviruses. The continuing threat of MERS-CoV to global health 3 years after its discovery presents a golden opportunity to tackle current obstacles in the development of new anti-coronavirus drugs. A well-organized, multidisciplinary, international collaborative network consisting of clinicians, virologists and drug developers, coupled to political commitment, should be formed to carry out clinical trials using anti-coronavirus drugs that have already been shown to be safe and effective in vitro and/or in animal models, particularly lopinavir–ritonavir, interferon beta-1b and monoclonal antibodies and antiviral peptides targeting the viral spike glycoprotein.
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which are caused by coronaviruses, have attracted substantial attention owing to their high mortality rates and potential to cause epidemics. Yuen and colleagues discuss progress with treatment options for these syndromes, including virus- and host-targeted drugs, and the challenges that need to be overcome in their further development. In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
19
|
He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 2015; 20:9183-213. [PMID: 26007179 PMCID: PMC6272784 DOI: 10.3390/molecules20059183] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023] Open
Abstract
It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.
Collapse
Affiliation(s)
- Yan He
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Yuan Yue
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Xi Zheng
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Kun Zhang
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Shaohua Chen
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510030, China.
| | - Zhiyun Du
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
20
|
Xue J, Sharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ, Habtezion A. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun 2015; 6:7158. [PMID: 25981357 PMCID: PMC4632846 DOI: 10.1038/ncomms8158] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/10/2015] [Indexed: 12/17/2022] Open
Abstract
Chronic pancreatitis (CP) is a progressive and irreversible inflammatory and fibrotic disease with no cure. Unlike acute pancreatitis (AP), we find that alternatively activated macrophages (AAMs) are dominant in mouse and human CP. AAMs are dependent on interleukin (IL)-4 and IL-13 signalling, and we show that mice lacking IL-4Rα, myeloid-specific IL-4Rα and IL-4/IL-13 were less susceptible to pancreatic fibrosis. Furthermore, we demonstrate that mouse and human pancreatic stellate cells (PSCs) are a source of IL-4/IL-13. Notably, we show that pharmacologic inhibition of IL-4/IL-13 in human ex vivo studies as well as in established mouse CP decreases pancreatic AAMs and fibrosis. We identify a critical role for macrophages in pancreatic fibrosis and in turn PSCs as important inducers of macrophage-alternative activation. Our study challenges and identifies pathways involved in crosstalk between macrophages and PSCs that can be targeted to reverse or halt pancreatic fibrosis progression.
Collapse
Affiliation(s)
- Jing Xue
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Vishal Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael H Hsieh
- Department of Urology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Ajay Chawla
- Department of Physiology and Medicine, Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA
| | - Ramachandran Murali
- Research division of immunology, Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Stephen J Pandol
- Research division of immunology, Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
21
|
Rong YM, Xia SH, Xiang XH, Chen K, Zhang ZG. Effect of oxymatrine on lipopolysaccharide induced expression of NF-κB in pancreatic stellate cells. Shijie Huaren Xiaohua Zazhi 2015; 23:761-766. [DOI: 10.11569/wcjd.v23.i5.761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of oxymatrine (OM) on lipopolysaccharide (LPS) induced expression of nuclear factor κB (NF-κB) in pancreatic stellate cells (LTC-14).
METHODS: LTC-14 cells were cultured with suitable concentrations of LPS as well as the corresponding concentrations of OM. Cell proliferation was detected by MTT assay. The expression of cytoplasmic and nuclear NF-κB was detected by immunohistochemistry. The expression of NF-κB mRNA was evaluated by Q-PCR. The protein expression of NF-κB was measured by Western blot.
RESULTS: OM inhibited the proliferation of LTC-14 cells in a time- and dose-dependent manner. The expression of NF-κB mRNA and protein was significantly increased in LTC-14 cells incubated with LPS (10 μg/mL), which could be down-regulated by OM. The nuclear translocation of NF-κB could also be inhibited by OM.
CONCLUSION: The reduction of NF-κB mRNA and protein as well as the inhibition of NF-κB nuclear translocation might be involved in the therapeutic effects of OM on pancreatic fibrosis.
Collapse
|
22
|
Abstract
Alcohol and gallstones are the most common etiologic factors in acute pancreatitis (AP). Recurrent AP can lead to chronic pancreatitis (CP). Although the underlying pathophysiology of the disease is complex, immune cells are critical in the pathogenesis of pancreatitis and determining disease severity. In this review, we discuss the role of innate and adaptive immune cells in both AP and CP, potential immune-based therapeutic targets, and animal models used to understand our knowledge of the disease. The relative difficulty of obtaining human pancreatic tissue during pancreatitis makes animal models necessary. Animal models of pancreatitis have been generated to understand disease pathogenesis, test therapeutic interventions, and investigate immune responses. Although current animal models do not recapitulate all aspects of human disease, until better models can be developed available models are useful in addressing key research questions. Differences between experimental and clinical pancreatitis need consideration, and when therapies are tested, models with established disease ought to be included.
Collapse
|
23
|
Modified Xiaochaihu Decoction () prevents the progression of chronic pancreatitis in rats possibly by inhibiting transforming growth factor-β1/Sma- and mad-related proteins signaling pathway. Chin J Integr Med 2013; 19:935-9. [PMID: 24307314 DOI: 10.1007/s11655-013-1656-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the effect of modified Xiaochaihu Decoction (, MXD) on transforming growth factor-β1/Sma- and Mad-related proteins (TGF-β1/Smads) signaling pathway in rats with chronic pancreatitis (CP) induced by dibutyltin dichloride. METHODS Thirty healthy male Wistar rats were randomly divided into the normal control group, CP group and CP+MXD-treated group. CP was induced by injection of dibutyltin dichloride (DBTC, 7 mg/kg of body weight) into the right caudal vein, and the control rats were treated with vehicle. MXD was given daily by gavage at a dose of 10 g/kg of body weight, starting from the day after CP induction. After 28-day treatment, the n-benzoyl-tyrosyl para-aminobenzoic acid (NBT-PABA) test was carried out to evaluate exocrine pancreatic function. Then, rats were sacrificed, and pancreatic tissues were harvested for histological evaluation. In addition, the mRNA expression of TGF-β1, TGF-β1 type II receptor (TGFβRII), Smad3 and Smad7 was determined in pancreatic tissues by using real-time polymerase chain reaction. RESULTS Treatment of CP with MXD improved the PABA recovery, decreased the histological lesion, and reduced the mRNA expression of TGF-β1, TGFβRII and Smad3 (P<0.05). However, MXD had no effect on Smad7 mRNA level. CONCLUSIONS MXD could protect the pancreas against chronic injury and improve pancreatic exocrine function in DBTC induced rat CP model. Its mechanism may involve inhibition of the TGF-β1/Smads signaling pathway.
Collapse
|
24
|
Latella G, Vetuschi A, Sferra R, Speca S, Gaudio E. Localization of ανβ6 integrin-TGF-β1/Smad3, mTOR and PPARγ in experimental colorectal fibrosis. Eur J Histochem 2013; 57:e40. [PMID: 24441193 PMCID: PMC3896042 DOI: 10.4081/ejh.2013.e40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/26/2013] [Accepted: 11/04/2013] [Indexed: 02/08/2023] Open
Abstract
A simultaneous action of several pro-fibrotic mediators appears relevant in the development of fibrosis. There are evidences that transforming growth factor-β (TGF-β)/Smad3 pathway forms with αvβ6 integrin, mammalian target of Rapamycin (mTOR) and peroxisome proliferator-activated receptor-γ (PPARγ) a complex signalling network with extensive crosstalk and strong effects on fibrosis development. The present study evaluated the expression of TGFβ, Smad3, αvβ6 integrin, mTOR and PPARγ in 2, 4, 6-trinitrobenzenesulphonic acid (TNBS)-induced colorectal fibrosis in Smad3 wild-type (WT) and null mice. Smad3 WT mice treated with TNBS developed a marked colorectal fibrosis and showed a concomitant up-regulation of TGFβ, Smad3, αvβ6 and mTOR and a reduction of PPARγ expression. On the other hand, Smad3 Null mice similarly treated with TNBS did not develop fibrosis and showed a very low or even absent expression of TGFβ, Smad3, αvβ6 and mTOR and a marked over-expression of PPARγ. At the same time the expression of α-smooth muscle actin (a marker of activated myofibroblasts), collagen I-III and connective tissue growth factor (a downstream effector of TGFβ/Smad3-induced extracellular matrix proteins) were up-regulated in Smad3 WT mice treated with TNBS compared to Null TNBS-treated mice. These preliminary results suggest a possible interaction between these pro-fibrotic molecules in the development of intestinal fibrosis.
Collapse
|
25
|
Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, Bloomston M, Lesinski GB. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 2013; 73:3007-18. [PMID: 23514705 DOI: 10.1158/0008-5472.can-12-4601] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic stellate cells (PSC) are a subset of pancreatic cancer-associated fibroblasts. These cells provide prosurvival signals to tumors; however, little is known regarding their interactions with immune cells within the tumor microenvironment. We hypothesized that factors produced by human PSC could enhance myeloid-derived suppressor cell (MDSC) differentiation and function, which promotes an immunosuppressive microenvironment. Primary PSC cell lines (n = 7) were generated from human specimens and phenotypically confirmed via expression of vimentin, α-smooth muscle actin (α-SMA), and glial fibrillary acidic protein (GFAP). Luminex analysis indicated that PSC but not human fetal primary pancreatic fibroblast cells (HPF; negative controls) produced MDSC-promoting cytokines [interleukin (IL-6), VEGF, macrophage colony-stimulating factor (M-CSF) ] and chemokines (SDF-1, MCP-1). Culture of peripheral blood mononuclear cells [peripheral blood mononuclear cell (PBMC), n = 3 donors] with PSC supernatants or IL-6/granulocyte macrophage colony-stimulating factor (GM-CSF; positive control) for 7 days promoted PBMC differentiation into an MDSC (CD11b+CD33+) phenotype and a subpopulation of polymorphonuclear CD11b+CD33+CD15+ cells. The resulting CD11b+CD33+ cells functionally suppressed autologous T-lymphocyte proliferation. In contrast, supernatants from HPF did not induce an MDSC phenotype in PBMCs. Culture of normal PBMCs with PSC supernatants led to STAT3 but not STAT1 or STAT5 phosphorylation. IL-6 was an important mediator as its neutralization inhibited PSC supernatant-mediated STAT3 phosphorylation and MDSC differentiation. Finally, the FLLL32 STAT3 inhibitor abrogated PSC supernatant-mediated MDSC differentiation, PSC viability, and reduced autocrine IL-6 production indicating these processes are STAT3 dependent. These results identify a novel role for PSC in driving immune escape in pancreatic cancer and extend the evidence that STAT3 acts as a driver of stromal immunosuppression to enhance its interest as a therapeutic target.
Collapse
Affiliation(s)
- Thomas A Mace
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bai H, Chen X, Zhang L, Dou X. The effect of sulindac, a non-steroidal anti-inflammatory drug, attenuates inflammation and fibrosis in a mouse model of chronic pancreatitis. BMC Gastroenterol 2012; 12:115. [PMID: 22920325 PMCID: PMC3503779 DOI: 10.1186/1471-230x-12-115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/02/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic pancreatitis is characterized by progressive fibrosis, pain and loss of exocrine and endocrine functions. The long-standing chronic pancreatitis and its associated pancreatic fibrosis are the most common pathogenic events involved in human pancreatic carcinogenesis, but the therapeutic strategies to chronic pancreatitis and the chemoprevention of pancreatic carcinogenesis are very limited. METHODS We investigated the effect of sulindac, a non-steroidal anti-inflammatory drug (NSAID), on inhibition of chronic pancreatitis in a caerulein induced chronic pancreatitis mouse model. RESULTS Sulindac significantly reduced the severity of chronic pancreatitis including the extent of acini loss, inflammatory cell infiltration and stromal fibrosis. The protein expression of phosphorylation of MEK/ERK was inhibited in the chronic pancreatic tissues by sulindac treatment as measured by Western blot assay. The levels of inflammatory cytokines including TNF-α and MCP-1 were also significantly decreased with sulindac treatment, as well as the expression of TGF-β, PDGF-β, SHH and Gli in the chronic pancreatic tissue detected by qPCR assay and confirmed by western blot assay. The activation of pancreatic satellet cells was also inhibited by sulindac as measured by the activity of α-smooth muscle actin (α-SMA) in the pancreatic tissue of chronic pancreatitis. CONCLUSIONS Sulindac is a promising reagent for the treatment of chronic pancreatitis via inhibition of inflammatory cell infiltration and stromal fibrosis, the inhibitory effect of sulindac on chronic pancreatitis may through targeting the activation ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Han Bai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
27
|
Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol 2012; 18:3635-61. [PMID: 22851857 PMCID: PMC3406417 DOI: 10.3748/wjg.v18.i28.3635] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a chronic and progressive process characterized by an excessive accumulation of extracellular matrix (ECM) leading to stiffening and/or scarring of the involved tissue. Intestinal fibrosis may develop in several different enteropathies, including inflammatory bowel disease. It develops through complex cell, extracellular matrix, cytokine and growth factor interactions. Distinct cell types are involved in intestinal fibrosis, such as resident mesenchymal cells (fibroblasts, myofibroblasts and smooth muscle cells) but also ECM-producing cells derived from epithelial and endothelial cells (through a process termed epithelial- and endothelial-mesenchymal transition), stellate cells, pericytes, local or bone marrow-derived stem cells. The most important soluble factors that regulate the activation of these cells include cytokines, chemokines, growth factors, components of the renin-angiotensin system, angiogenic factors, peroxisome proliferator-activated receptors, mammalian target of rapamycin, and products of oxidative stress. It soon becomes clear that although inflammation is responsible for triggering the onset of the fibrotic process, it only plays a minor role in the progression of this condition, as fibrosis may advance in a self-perpetuating fashion. Definition of the cellular and molecular mechanisms involved in intestinal fibrosis may provide the key to developing new therapeutic approaches.
Collapse
|
28
|
Lee BJ, Lee HS, Kim CD, Jung SW, Seo YS, Kim YS, Jeen YT, Chun HJ, Um SH, Lee SW, Choi JH, Ryu HS. The Effects of Combined Treatment with an HMG-CoA Reductase Inhibitor and PPARγ Agonist on the Activation of Rat Pancreatic Stellate Cells. Gut Liver 2012; 6:262-9. [PMID: 22570758 PMCID: PMC3343167 DOI: 10.5009/gnl.2012.6.2.262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/15/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) and peroxisome proliferator-activated receptor gamma (PPARγ) ligands can modulate cellular differentiation, proliferation, and apoptosis through various pathways. It has been shown that HMG-CoA reductase inhibitors and PPARγ agonists separately inhibit pancreatic stellate cell (PaSC) activation. We studied the effects of a combination of both types of drugs on activated PaSCs via platelet-derived growth factor (PDGF), which has not previously been reported. The present study was performed to elucidate the underlying mechanisms of these effects by focusing on the impact of the signaling associated with cell-cycle progression. Methods Primary cultures of rat PaSCs were exposed to simvastatin and troglitazone. Proliferation was quantified using the BrdU method, and cell-cycle analysis was performed using a fluorescent activated cell sorter. The protein expression levels of smooth muscle actin (SMA), extracellular signal-regulated kinase (ERK), and a cell cycle machinery protein (p27Kip1) were investigated using Western blot analysis. Results Simvastatin reversed the effects of PDGF on cell proliferation in a dose-dependent manner. The combination of a low concentration of simvastatin (1 mM) and troglitazone (10 mM) synergistically reversed the effects of PDGF on cell proliferation but had no effect on cell viability. The expression of a-SMA was markedly attenuated by combining the two drugs, which blocked the cell cycle beyond the G0/G1 phase by reducing the levels of phosphorylated ERK and reversed the expression of p27Kip1 interrupted by PDGF. Conclusions Simvastatin and troglitazone synergistically inhibited cell proliferation in activated PaSCs by blocking the cell cycle beyond the G0/G1 phase. This inhibition was due to the synergistic modulation of the ERK pathway and the cell cycle machinery protein p27Kip1.
Collapse
Affiliation(s)
- Beom Jae Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 2012; 86:6537-45. [PMID: 22496216 DOI: 10.1128/jvi.00094-12] [Citation(s) in RCA: 404] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The type II transmembrane protease TMPRSS2 activates the spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) on the cell surface following receptor binding during viral entry into cells. In the absence of TMPRSS2, SARS-CoV achieves cell entry via an endosomal pathway in which cathepsin L may play an important role, i.e., the activation of spike protein fusogenicity. This study shows that a commercial serine protease inhibitor (camostat) partially blocked infection by SARS-CoV and human coronavirus NL63 (HCoV-NL63) in HeLa cells expressing the receptor angiotensin-converting enzyme 2 (ACE2) and TMPRSS2. Simultaneous treatment of the cells with camostat and EST [(23,25)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester], a cathepsin inhibitor, efficiently prevented both cell entry and the multistep growth of SARS-CoV in human Calu-3 airway epithelial cells. This efficient inhibition could be attributed to the dual blockade of entry from the cell surface and through the endosomal pathway. These observations suggest camostat as a candidate antiviral drug to prevent or depress TMPRSS2-dependent infection by SARS-CoV.
Collapse
|
30
|
Yang L, Shen J, He S, Hu G, Shen J, Wang F, Xu L, Dai W, Xiong J, Ni J, Guo C, Wan R, Wang X. L-cysteine administration attenuates pancreatic fibrosis induced by TNBS in rats by inhibiting the activation of pancreatic stellate cell. PLoS One 2012; 7:e31807. [PMID: 22359633 PMCID: PMC3281011 DOI: 10.1371/journal.pone.0031807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/16/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs. METHODS CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR. RESULTS The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group. CONCLUSION L-cysteine treatment attenuated pancreatic fibrosis in chronic pancreatitis in rats.
Collapse
Affiliation(s)
- LiJuan Yang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - JiaQing Shen
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - ShanShan He
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - GuoYong Hu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Jie Shen
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Ling Xu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - WeiQi Dai
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Jie Xiong
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - JianBo Ni
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - ChuanYong Guo
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Rong Wan
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - XingPeng Wang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Paulo JA, Lee LS, Wu B, Banks PA, Steen H, Conwell DL. Mass spectrometry-based proteomics of endoscopically collected pancreatic fluid in chronic pancreatitis research. Proteomics Clin Appl 2011; 5:109-20. [PMID: 21360826 DOI: 10.1002/prca.201000098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/16/2011] [Accepted: 01/18/2011] [Indexed: 12/14/2022]
Abstract
MS-based investigation of pancreatic fluid enables the high-throughput identification of proteins present in the pancreatic secretome. Pancreatic fluid is a complex admixture of digestive, inflammatory, and other proteins secreted by the pancreas into the duodenum, and thus is amenable to MS-based proteomic analysis. Recent advances in endoscopic techniques, in particular the endoscopic pancreatic function test (ePFT), have improved the collection methodology of pancreatic fluid for proteomic analysis. Here, we provide an overview of MS-based proteomic techniques as applied to the study of pancreatic fluid. We address sample collection, protein extraction, MS sample preparation and analysis, and bioinformatic approaches, and summarize current MS-based investigations of pancreatic fluid. We then examine the limitations and the future potential of such technologies in the investigation of pancreatic disease. We conclude that pancreatic fluid represents a rich reservoir of potential biomarkers and that the study of the molecular mechanisms of chronic pancreatitis may benefit substantially from MS-based proteomics.
Collapse
Affiliation(s)
- Joao A Paulo
- Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells. J Gastroenterol 2009; 44:249-60. [PMID: 19271115 DOI: 10.1007/s00535-009-0013-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 02/04/2023]
Abstract
Pancreatic fibrosis is a characteristic feature of chronic pancreatitis and of desmoplastic reaction associated with pancreatic cancer. For over a decade, there has been accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis in these pathological settings. In response to pancreatic injury or inflammation, quiescent PSCs undergo morphological and functional changes to become myofibroblast-like cells, which express alpha-smooth muscle actin (alpha-SMA). Activated PSCs actively proliferate, migrate, produce extracellular matrix (ECM) components, such as type I collagen, and express cytokines and chemokines. In addition, PSCs might play roles in local immune functions and angiogenesis in the pancreas. Following the initiation of activation, if the inflammation and injury are sustained or repeated, PSCs activation is perpetuated, leading to the development of pancreatic fibrosis. From this point of view, pancreatic fibrosis can be defined as pathological changes of ECM composition in the pancreas both in quantity and quality, resulting from perpetuated activation of PSCs. Because the activation and cell functions in PSCs are regulated by the dynamic but coordinated activation of intracellular signaling pathways, identification of signaling molecules that play a crucial role in PSCs activation is important for the development of anti-fibrosis therapy. Recent studies have identified key mediators of stimulatory and inhibitory signals. Signaling molecules, such as peroxisome proliferator-activated receptor-gamma (PPAR-gamma), Rho/Rho kinase, nuclear factor-kappaB (NF-kappaB), mitogen-activated protein (MAP) kinases, phosphatidylinositol 3 kinase (PI3K), Sma- and Mad-related proteins, and reactive oxygen species (ROS) might be candidates for the development of anti-fibrosis therapy targeting PSCs.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | | |
Collapse
|
33
|
Weylandt KH, Nadolny A, Kahlke L, Köhnke T, Schmöcker C, Wang J, Lauwers GY, Glickman JN, Kang JX. Reduction of inflammation and chronic tissue damage by omega-3 fatty acids in fat-1 transgenic mice with pancreatitis. Biochim Biophys Acta Mol Basis Dis 2008; 1782:634-41. [PMID: 18832028 DOI: 10.1016/j.bbadis.2008.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/23/2008] [Accepted: 08/25/2008] [Indexed: 12/17/2022]
Abstract
Pancreatitis is a severe debilitating disease with high morbidity and mortality. Treatment is mostly supportive, and until now there are no clinically useful strategies for anti-inflammatory therapy. Although omega-3 polyunsaturated fatty acids (n-3 PUFA) are known to have anti-inflammatory effects, the utility of these fatty acids in the alleviation of pancreatitis remained to be investigated. The aim of this study was to examine the effect of n-3 PUFA on both acute and chronic pancreatitis in a well-controlled experimental system. We used the fat-1 transgenic mouse model, characterized by endogenously increased tissue levels of n-3 PUFA, and their wild-type littermates to examine the effect of n-3 PUFA on both acute and chronic cerulein-induced pancreatitis. Disease activity and inflammatory status were assessed by both histology and molecular methods. In acute pancreatitis, fat-1 mice showed a trend towards decreased necrosis and significantly reduced levels of plasma IL-6 levels as well as reduced neutrophil infiltration in the lung. In chronic pancreatitis there was less pancreatic fibrosis and collagen content accompanied by decreased pancreatic stellate cell activation in the fat-1 animals with increased n-3 PUFA tissue levels as compared to wild-type littermates with high levels of omega-6 (n-6) PUFA in their tissues. Our data provide evidence for a reduction of systemic inflammation in acute pancreatitis and of tissue fibrosis in chronic pancreatitis by increasing the tissue content of omega-3 polyunsaturated fatty acids. These results suggest a beneficial potential for n-3 PUFA supplementation in acute and particularly chronic pancreatitis.
Collapse
Affiliation(s)
- Karsten H Weylandt
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|