1
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
2
|
Izanlou S, Afshar A, Zare A, Zhilisbayeva KR, Bakhshalizadeh S, Safaei Z, Sehat-Bakhsh S, Khaledi S, Asgari HR, Kazemnejad S, Ajami M, Ajami M, Dehghan Tarzjani M, Najafzadeh V, Kouchakian MR, Mussin NM, Kaliyev AA, Aringazina RA, Mahdipour M, Shirazi R, Tamadon A. Enhancing differentiation of menstrual blood-derived stem cells into female germ cells using a bilayer amniotic membrane and nano-fibrous fibroin scaffold. Tissue Cell 2023; 85:102215. [PMID: 37716177 DOI: 10.1016/j.tice.2023.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Three-dimensional nanofiber scaffolds offer a promising method for simulating in vivo conditions within the laboratory. This study aims to investigate the influence of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold on the differentiation of human menstrual blood mesenchymal stromal/stem cells (MenSCs) into female germ cells. MenSCs were isolated and assigned to four culture groups: (i) MenSCs co-cultured with granulosa cells (GCs) using the scaffold (3D-T group), (ii) MenSCs using the scaffold alone (3D-C group), (iii) MenSCs co-cultured only with GCs (2D-T group), and (iv) MenSCs without co-culture or scaffold (2D-C group). Both MenSCs and GCs were independently cultured for two weeks before co-culturing was initiated. Flow cytometry was employed to characterize MenSCs based on positive markers (CD73, CD90, and CD105) and negative markers (CD45 and CD133). Additionally, flow cytometry and immunocytochemistry were used to characterize the GCs. Differentiated MenSCs were analyzed using real-time PCR and immunostaining. The real-time PCR results demonstrated significantly higher levels of VASA expression in the 3D-T group compared to the 3D-C, 2D-T, and 2D-C groups. Similarly, the SCP3 mRNA level in the 3D-T group was notably elevated compared to the 3D-C, 2D-T, and 2D-C groups. Moreover, the expression of GDF9 was significantly higher in the 3D-T group when compared to the 3D-C, 2D-T, and 2D-C groups. Immunostaining results revealed a lack of signal for VASA, SCP3, or GDF9 markers in the 2D-T group, while some cells in the 3D-T group exhibited positive staining for all these proteins. These findings suggest that the combination of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold with co-culturing GCs facilitates the differentiation of MenSCs into female germ cells.
Collapse
Affiliation(s)
- Safoura Izanlou
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Islamic Republic of Iran
| | - Afshin Zare
- PerciaVista R&D Co., Shiraz, Islamic Republic of Iran
| | - Kulyash R Zhilisbayeva
- Department of Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Soheila Sehat-Bakhsh
- Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Islamic Republic of Iran
| | - Sajed Khaledi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamid-Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Islamic Republic of Iran
| | - Mansoureh Ajami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Islamic Republic of Iran
| | - Monireh Ajami
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Masoumeh Dehghan Tarzjani
- Department of Gynecology and Obstetrics, Imam Khomeinin Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Mohammad Reza Kouchakian
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nadiar M Mussin
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Asset A Kaliyev
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Raisa A Aringazina
- Department of Internal Medicine No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Shirazi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Anatomy, School of Biomedical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia.
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Islamic Republic of Iran; Department of Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| |
Collapse
|
3
|
Evolution of Electrospinning in Liver Tissue Engineering. Biomimetics (Basel) 2022; 7:biomimetics7040149. [PMID: 36278706 PMCID: PMC9589992 DOI: 10.3390/biomimetics7040149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The major goal of liver tissue engineering is to reproduce the phenotype and functions of liver cells, especially primary hepatocytes ex vivo. Several strategies have been explored in the recent past for culturing the liver cells in the most apt environment using biological scaffolds supporting hepatocyte growth and differentiation. Nanofibrous scaffolds have been widely used in the field of tissue engineering for their increased surface-to-volume ratio and increased porosity, and their close resemblance with the native tissue extracellular matrix (ECM) environment. Electrospinning is one of the most preferred techniques to produce nanofiber scaffolds. In the current review, we have discussed the various technical aspects of electrospinning that have been employed for scaffold development for different types of liver cells. We have highlighted the use of synthetic and natural electrospun polymers along with liver ECM in the fabrication of these scaffolds. We have also described novel strategies that include modifications, such as galactosylation, matrix protein incorporation, etc., in the electrospun scaffolds that have evolved to support the long-term growth and viability of the primary hepatocytes.
Collapse
|
4
|
Hamid HA, Ramasamy R, Mustafa MK, Hosseinpour Sarmadi V, Miskon A. Magnetic exposure using Samarium Cobalt (SmC O5) increased proliferation and stemness of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs). Sci Rep 2022; 12:8904. [PMID: 35618759 PMCID: PMC9135697 DOI: 10.1038/s41598-022-12653-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the extensive reports on the potential hazard of magnetic field (MF) exposures on humans, there are also concurrently reported on the improved proliferative property of stem cells at optimum exposure. However, the effect on mesenchymal stem cells (MSCs) remains unknown. Therefore, we aimed to investigate the impact of induced static MF (SMF) on human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) using Samarium Cobalt (SmCO5). At passage 3, hUC-MSCs (1 × 104) were exposed to 21.6 mT SMF by a direct exposure (DE) showed a significantly higher cell count (p < 0.05) in the growth kinetics assays with the shortest population doubling time relative to indirect exposure and negative control. The DE group was committed into the cell cycle with increased S phase (55.18 ± 1.38%) and G2/M phase (21.75 ± 1.38%) relative to the NC group [S-phase (13.54 ± 2.73%); G2/M phase (8.36 ± 0.28%)]. Although no significant changes were observed in the immunophenotype, the DE group showed an elevated expression of pluripotency-associated markers (OCT4, SOX2, NANOG, and REX1). These results suggest that the MFs could potentially induce proliferation of MSCs, a promising approach to promote stem cells propagation for clinical therapy and research without compromising the stemness of hUC-MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio Artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - Rajesh Ramasamy
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Malaysia.,Department of Dental Radiology, Faculty of Dental Medicine, Airlangga University, Surabaya, 60132, Indonesia
| | - Mohd Kamarulzaki Mustafa
- Department of Physics, Faculty of Applied Sciences and Technology, University Tun Hussein Onn Malaysia, Pagoh Campus, KM1, Jalan Panchor, Hub Pendidikan Tinggi Pagoh, 84600, Muar, Johor, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Azizi Miskon
- Bio Artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Hypoxia-Induced miR-210 Overexpression Promotes the Differentiation of Human-Induced Pluripotent Stem Cells to Hepatocyte-Like Cells on Random Nanofiber Poly-L-Lactic Acid/Poly ( ε-Caprolactone) Scaffolds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4229721. [PMID: 34858546 PMCID: PMC8630456 DOI: 10.1155/2021/4229721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
An alternative treatment to liver transplantation includes the use of differentiated stem cells. Hypoxia has been shown to endow human-induced pluripotent stem cells (hiPSCs) with enhanced hepatic differentiation. We have investigated a new strategy for hepatocyte differentiation from hiPSCs using a three-step differentiation protocol with lentiviral overexpression of hypoxia-microRNA-210 of cells grown on a hybrid scaffold. We analyzed the transduction of the miR-210 lentiviral and definitive endoderm and pluripotency gene markers, including SRY-box 17 (SOX17), forkhead box A2 (FOXA2), and octamer-binding transcription factor 4 (OCT-4) by Real-Time PCR and fluorescent microscope. The scanning electron microscopy (SEM) examined the 3D cell morphological changes. Immunocytochemistry staining was used together with assays for aspartate aminotransferase, alanine aminotransferase, and urea secretion to analyze hepatocyte biomarkers and functional markers consisting of α-fetoprotein (AFP), low-density lipoprotein (LDL) uptake, fat accumulation, and glycogen. The flow cytometry analyzed the generation of reactive oxygen species (ROS). Compared to cells transfected with the blank lentiviral vectors as a control, overexpressing miR-210 was at higher levels in hiPSCs. The expression of endodermal genes and glycogen synthesis significantly increased in the differentiated lentiviral miR-210 cells without any differences regarding lipid storage level. Additionally, cells containing miR-210 showed a greater expression of ALB, LDL, AST, ALT, urea, and insignificant lower AFP and ROS levels after 18 days. However, SEM showed no significant differences between cells under the differentiation process and controls. In conclusion, the differentiation of hiPSCs to hepatocyte-like cells under hypoxia miR-210 may be a suitable method for cell therapy and regenerative medicine.
Collapse
|
6
|
Neshat SY, Quiroz VM, Wang Y, Tamayo S, Doloff JC. Liver Disease: Induction, Progression, Immunological Mechanisms, and Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms22136777. [PMID: 34202537 PMCID: PMC8267746 DOI: 10.3390/ijms22136777] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is an organ with impressive regenerative potential and has been shown to heal sizable portions after their removal. However, certain diseases can overstimulate its potential to self-heal and cause excessive cellular matrix and collagen buildup. Decompensation of liver fibrosis leads to cirrhosis, a buildup of fibrotic ECM that impedes the liver’s ability to efficiently exchange fluid. This review summarizes the complex immunological activities in different liver diseases, and how failure to maintain liver homeostasis leads to progressive fibrotic tissue development. We also discuss a variety of pathologies that lead to liver cirrhosis, such as alcoholic liver disease and chronic hepatitis B virus (HBV). Mesenchymal stem cells are widely studied for their potential in tissue replacement and engineering. Herein, we discuss the potential of MSCs to regulate immune response and alter the disease state. Substantial efforts have been performed in preclinical animal testing, showing promising results following inhibition of host immunity. Finally, we outline the current state of clinical trials with mesenchymal stem cells and other cellular and non-cellular therapies as they relate to the detection and treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Sarah Y. Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Victor M. Quiroz
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Yuanjia Wang
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Sebastian Tamayo
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Joshua C. Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Oncology-Cancer Immunology Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Correspondence:
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Liver transplantation is the gold standard for the treatment of end-stage liver disease. However, a shortage of donor organs, high cost, and surgical complications limit the use of this treatment. Cellular therapies using hepatocytes, hematopoietic stem cells, bone marrow mononuclear cells, and mesenchymal stem cells (MSCs) are being investigated as alternative treatments to liver transplantation. The purpose of this review is to describe studies using MSC transplantation for liver diseases based on the reported literature and to discuss prospective research designed to improve the efficacy of MSC therapy. RECENT FINDINGS MSCs have several properties that show potential to regenerate injured tissues or organs, such as homing, transdifferentiation, immunosuppression, and cellular protective capacity. Additionally, MSCs can be noninvasively isolated from various tissues and expanded ex vivo in sufficient numbers for clinical evaluation. SUMMARY Currently, there is no approved MSC therapy for the treatment of liver disease. However, MSC therapy is considered a promising alternative treatment for end-stage liver diseases and is reported to improve liver function safely with no side effects. Further robust preclinical and clinical studies will be needed to improve the therapeutic efficacy of MSC transplantation.
Collapse
|
8
|
Lim TK, Dorthé E, Williams A, D'Lima DD. Nanofiber Scaffolds by Electrospinning for Rotator Cuff Tissue Engineering. Chonnam Med J 2021; 57:13-26. [PMID: 33537215 PMCID: PMC7840345 DOI: 10.4068/cmj.2021.57.1.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Rotator cuff tears continue to be at risk of retear or failure to heal after surgical repair, despite the use of various surgical techniques, which stimulate development of novel scaffolding strategies. They should be able to address the known causes of failure after the conventional rotator cuff repair: (1) failure to reproduce the normal tendon healing process, (2) resultant failure to reproduce four zones of the enthesis, and (3) failure to attain sufficient mechanical strength after repair. Nanofiber scaffolds are suited for this application because they can be engineered to mimic the ultrastructure and properties of the native rotator cuff tendon. Among various methods for tissue-engineered nanofibers, electrospinning has recently been highlighted in the rotator cuff field. Electrospinning can create fibrous and porous structures that resemble natural tendon's extracellular matrix. Other advantages include the ability to create relatively large surface-to-volume ratios, the ability to control fiber size from the micro to the nano scale, and the flexibility of material choices. In this review, we will discuss the anatomical and mechanical features of the rotator cuff tendon, their potential impacts on improper healing after repair, and the current knowledge of the use of electrospinning for rotator cuff tissue engineering.
Collapse
Affiliation(s)
- Tae Kang Lim
- Department of Orthopaedic Surgery, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.,Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Erik Dorthé
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Austin Williams
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
9
|
Allameh A, Ahmadi-Ashtiani HR, Maleki N. Glutathione-related inflammatory signature in hepatocytes differentiated from the progenitor mesenchymal stem cells. Heliyon 2020; 6:e04149. [PMID: 32551386 PMCID: PMC7287236 DOI: 10.1016/j.heliyon.2020.e04149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/28/2019] [Accepted: 06/02/2020] [Indexed: 11/03/2022] Open
Abstract
N-acetylcysteine (NAC) as a glutathione inducer is known for its anti-inflammatory effects in inflammatory conditions. The aim of the present study was to know if supplementation of the culture medium with NAC can improve anti-inflammatory activities of hepatocytes during their differentiation from mesenchymal stem cells (MSCs). For this, in vitro hepatic differentiation of MSCs was performed in culture medium supplemented with NAC and selected pro- and anti-inflammatory factors were monitored for two weeks. Treatment of the MSCs undergoing hepatic differentiation with NAC (0.1 and 1.0 mM) caused a significant (~5-fold) increase in proliferation rate of MSCs, whereas the rate of hepatic differentiation was declined in NAC-treated cells as compared to those untreated with NAC. Under these circumstances, NAC caused a significant increase in total glutathione in cell lysate during 2 weeks of differentiation as compared to untreated group. NAC-related increase in glutathione was associated with significant alterations in tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8 and IL-10 levels secreted in the culture medium. A substantial decrease in the IL-6, IL-8 and TNF-α levels in the culture medium supplemented with NAC was obvious in hepatocytes recovered 14 days after differentiation. In contrast, the secretary IL-10 was significantly increased as a result of NAC treatments. These data suggest that NAC supplementation can improve anti-inflammatory activities of the hepatocytes derived from MSCs. NAC function mediated by glutathione synthesis can also help in modulation of proliferation of the stem cells and their differentiation into hepatocyte-like cells.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Reza Ahmadi-Ashtiani
- Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 1941933311, Iran.,The Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Narges Maleki
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
El Baz H, Demerdash Z, Kamel M, Hammam O, Abdelhady DS, Mahmoud S, Hassan S, Mahmoud F, Atta S, Riad NM, Gaafar T. Induction of Hepatic Regeneration in an Experimental Model Using Hepatocyte-Differentiated Mesenchymal Stem Cells. Cell Reprogram 2020; 22:134-146. [PMID: 32243193 DOI: 10.1089/cell.2019.0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based liver tissue engineering on nanofibrous scaffold holds great promise for cell-based therapy in liver injuries and end-stage liver failure treatments. MSCs were generated from umbilical cord blood. Hepatogenic differentiation was induced on two-dimensional (2D) and three-dimensional (3D) culture system and characterized by morphology, scanning electron microscopy, immunocytochemistry, and gene expression. Albumin and α-1 antitrypsin (AAT) in culture supernatants were measured. Differentiated cells were administered intravenous into a murine model of carbon tetra induced liver cirrhosis. After 12 weeks of injection, liver pathology was examined. The hepatogenic differentiated MSCs stained positively for albumin, alpha fetoprotein, HepPar1, cytokeratin 7 and 18, and OV6 with more mature cells, hexagonal in shape with central nuclei forming large sheets in groups in 3D culture system. AAT secretion and indocyanine green uptake were significantly increased in 3D system. In experimental model, MSC-3D treated group exhibited maximal restoration of liver architecture with absent septal fibrosis and marked improvement of alanine transaminase (ALT) and aspartate transaminase (AST), and mild increase in albumin. Both 3D and 2D culture system are effective in functional hepatogenic differentiation from MSCs and serve as a vehicle in liver tissue engineering. In vivo hepatogenic differentiation is more effective on 3D scaffold, with better functional recovery.
Collapse
Affiliation(s)
- Hanan El Baz
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Zeinab Demerdash
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Manal Kamel
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Olfat Hammam
- Pathology Department, and Theodor Bilharz Research Institute, Cairo, Egypt
| | | | - Soheir Mahmoud
- Parasitology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Salwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Faten Mahmoud
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Shimaa Atta
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Nermine Magdi Riad
- Clinical and Chemical Pathology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Taghrid Gaafar
- Clinical and Chemical Pathology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Eom YW, Kang SH, Kim MY, Lee JI, Baik SK. Mesenchymal stem cells to treat liver diseases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:563. [PMID: 32775364 PMCID: PMC7347787 DOI: 10.21037/atm.2020.02.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are being developed for stem cell therapy and can be efficiently used in regenerative medicine. To date, more than 1,000 clinical trials have used MSCs; of these, more than 80 clinical trials have targeted liver disease. MSCs migrate to damaged liver tissues, differentiate into hepatocytes, reduce liver inflammatory responses, reduce liver fibrosis, and act as antioxidants. According to the reported literature, MSCs are safe, have no side effects, and improve liver function; however, their regenerative therapeutic effects are unsatisfactory. Here, we explain, in detail, the basic therapeutic effects and recent clinical advances of MSCs. Furthermore, we discuss future research directions for improving the regenerative therapeutic effects of MSCs.
Collapse
Affiliation(s)
- Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seong Hee Kang
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong In Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
12
|
Natale A, Vanmol K, Arslan A, Van Vlierberghe S, Dubruel P, Van Erps J, Thienpont H, Buzgo M, Boeckmans J, De Kock J, Vanhaecke T, Rogiers V, Rodrigues RM. Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Arch Toxicol 2019; 93:1789-1805. [PMID: 31037322 DOI: 10.1007/s00204-019-02465-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Stem cells are characterized by their self-renewal capacity and their ability to differentiate into multiple cell types of the human body. Using directed differentiation strategies, stem cells can now be converted into hepatocyte-like cells (HLCs) and therefore, represent a unique cell source for toxicological applications in vitro. However, the acquired hepatic functionality of stem cell-derived HLCs is still significantly inferior to primary human hepatocytes. One of the main reasons for this is that most in vitro models use traditional two-dimensional (2D) setups where the flat substrata cannot properly mimic the physiology of the human liver. Therefore, 2D-setups are progressively being replaced by more advanced culture systems, which attempt to replicate the natural liver microenvironment, in which stem cells can better differentiate towards HLCs. This review highlights the most recent cell culture systems, including scaffold-free and scaffold-based three-dimensional (3D) technologies and microfluidics that can be employed for culture and hepatic differentiation of stem cells intended for hepatotoxicity testing. These methodologies have shown to improve in vitro liver cell functionality according to the in vivo liver physiology and allow to establish stem cell-based hepatic in vitro platforms for the accurate evaluation of xenobiotics.
Collapse
Affiliation(s)
- Alessandra Natale
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Koen Vanmol
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Aysu Arslan
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | | | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
13
|
Effect of Stem Cell Treatment on Acute Liver Failure Model Using Scaffold. Dig Dis Sci 2019; 64:781-791. [PMID: 30421375 DOI: 10.1007/s10620-018-5363-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Injecting MSCs via blood vessel is most commonly used method, which has a major drawback of safety. The aim of our study was to evaluate efficacy using scaffold-loaded MSCs in acute liver failure model. METHOD Acute liver failure was induced in mice using thioacetamide (TAA) (200 mg/kg, i.p) once a day for two consecutive days. The animals were divided in four acute liver failure groups: (1) TAA; (2) empty scaffold; (3) MSCs injected through tail vein; (4) MSC + Scaffold, scaffold loaded with MSCs, to evaluate the mortality and changes in liver function. Polylactic-co-glycolic acid scaffold alone and loaded with human MSCs was implanted on mice dorsum. RESULTS TAA dose was titrated until one-third mortality rate was achieved. TAA (200 mg/kg) once daily for two consecutive days was injected to establish the acute liver failure model. The mortality of TAA and scaffold groups was 55.9% and 63.2%, respectively. Although, mortality of MSC-TV group decreased 14.7% as compared to TAA group (p = 0.200), MSC + Scaffold group had the lowest mortality (31.4%) (p = 0.013). Cells implanted in PLGA biomaterial were survived until 3 weeks, and their function was increased. Area of hepatic inflammation and necrosis was significantly reduced in MSC-TV and MSC + Scaffold groups; but there was no difference between the two groups. Gene expressions related to inflammation were significantly decreased in MSC-TV and MSC + Scaffold groups compared to TAA group. In MSC + Scaffold group, no migration of stem cells to liver tissue was observed. Although, not all cells in scaffold were stained, some of them were differentiated into hepatocyte-like cells which stained positive for PAS and CYP2E1 antibody. CONCLUSION Scaffold loaded with MSCs showed protective effects via paracrine signaling on acute liver failure model.
Collapse
|
14
|
Mobarra N, Soleimani M, Ghayour‐Mobarhan M, Safarpour S, Ferns GA, Pakzad R, Pasalar P. Hybrid poly‐
l
‐lactic acid/poly(ε‐caprolactone) nanofibrous scaffold can improve biochemical and molecular markers of human induced pluripotent stem cell‐derived hepatocyte‐like cells. J Cell Physiol 2018; 234:11247-11255. [DOI: 10.1002/jcp.27779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Naser Mobarra
- Department of Laboratory Sciences School of Paramedical Sciences, Mashhad University of Medical Sciences Mashhad Iran
- Department of Clinical Biochemistry School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Stem Cell Research Center, Golestan University of Medical Sciences Gorgan Iran
| | - Masoud Soleimani
- Department of Hematology School of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Majid Ghayour‐Mobarhan
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Samaneh Safarpour
- Department of Clinical Biochemistry School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton and Sussex Medical School, Division of Medical Education Brighton UK
| | - Reza Pakzad
- Noor Research Center for Ophthalmic Epidemiology, Noor Eye Hospital Tehran Iran
- Department Biostatistics Faculty of Health, Ilam University of Medical Sciences Ilam Iran
- Department of Epidemiology Faculty of Health, Ilam University of Medical Sciences Ilam Iran
| | - Parvin Pasalar
- Metabolic Disorder Research Center, Endocrinology and Metabolism, Molecular Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Rajabi Z, Yazdekhasti H, Noori Mugahi SMH, Abbasi M, Kazemnejad S, Shirazi A, Majidi M, Zarnani AH. Mouse preantral follicle growth in 3D co-culture system using human menstrual blood mesenchymal stem cell. Reprod Biol 2018; 18:122-131. [PMID: 29454805 DOI: 10.1016/j.repbio.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
Abstract
Follicle culture provides a condition which can help investigators to evaluate various aspects of ovarian follicle growth and development and impact of different components and supplementations as well as presumably application of follicle culture approach in fertility preservation procedures. Mesenchymal Stem Cells (MSCs), particularly those isolated from menstrual blood has the potential to be used as a tool for improvement of fertility. In the current study, a 3D co-culture system with mice preantral follicles and human Menstrual Blood Mesenchymal Stem Cells (MenSCs) using either collagen or alginate beads was designed to investigate whether this system allows better preantral follicles growth and development. Results showed that MenSCs increase the indices of follicular growth including survival rate, diameter, and antrum formation as well as the rate of in vitro maturation (IVM) in both collagen and alginates beads. Although statistically not significant, alginate was found to be superior in terms of supporting survival rate and antrum formation. Hormone assay demonstrated that the amount of secreted 17 β-estradiol and progesterone in both 3D systems increased dramatically after 12 days, with the highest levels in system employing MenSCs. Data also demonstrated that relative expression of studied genes increased for Bmp15 and Gdf9 and decreased for Mater when follicles were cultured in the presence of MenSCs. Collectively, results of the present study showed that MenSCs could improve indices of follicular growth and maturation in vitro. Further studies are needed before a clinical application of MenSCs-induced IVM is considered.
Collapse
Affiliation(s)
- Zahra Rajabi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Hossein Yazdekhasti
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Masoumeh Majidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Lee CW, Chen YF, Wu HH, Lee OK. Historical Perspectives and Advances in Mesenchymal Stem Cell Research for the Treatment of Liver Diseases. Gastroenterology 2018; 154:46-56. [PMID: 29107021 DOI: 10.1053/j.gastro.2017.09.049] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022]
Abstract
Liver transplantation is the only effective therapy for patients with decompensated cirrhosis and fulminant liver failure. However, due to a shortage of donor livers and complications associated with immune suppression, there is an urgent need for new therapeutic strategies for patients with end-stage liver diseases. Given their unique function in self-renewal and differentiation potential, stem cells might be used to regenerate damaged liver tissue. Recent studies have shown that stem cell-based therapies can improve liver function in a mouse model of hepatic failure. Moreover, acellular liver scaffolds seeded with hepatocytes produced functional bioengineered livers for organ transplantation in preclinical studies. The therapeutic potential of stem cells or their differentiated progenies will depend on their capacity to differentiate into mature and functional cell types after transplantation. It will also be important to devise methods to overcome their genomic instability, immune reactivity, and tumorigenic potential. We review directions and advances in the use of mesenchymal stem cells and their derived hepatocytes for liver regeneration. We also discuss the potential applications of hepatocytes derived from human pluripotent stem cells and challenges to using these cells in treating end-stage liver disease.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Fan Chen
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Hsiang Wu
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Oscar K Lee
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
Caddeo S, Boffito M, Sartori S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Front Bioeng Biotechnol 2017; 5:40. [PMID: 28798911 PMCID: PMC5526851 DOI: 10.3389/fbioe.2017.00040] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
In the tissue engineering (TE) paradigm, engineering and life sciences tools are combined to develop bioartificial substitutes for organs and tissues, which can in turn be applied in regenerative medicine, pharmaceutical, diagnostic, and basic research to elucidate fundamental aspects of cell functions in vivo or to identify mechanisms involved in aging processes and disease onset and progression. The complex three-dimensional (3D) microenvironment in which cells are organized in vivo allows the interaction between different cell types and between cells and the extracellular matrix, the composition of which varies as a function of the tissue, the degree of maturation, and health conditions. In this context, 3D in vitro models can more realistically reproduce a tissue or organ than two-dimensional (2D) models. Moreover, they can overcome the limitations of animal models and reduce the need for in vivo tests, according to the "3Rs" guiding principles for a more ethical research. The design of 3D engineered tissue models is currently in its development stage, showing high potential in overcoming the limitations of already available models. However, many issues are still opened, concerning the identification of the optimal scaffold-forming materials, cell source and biofabrication technology, and the best cell culture conditions (biochemical and physical cues) to finely replicate the native tissue and the surrounding environment. In the near future, 3D tissue-engineered models are expected to become useful tools in the preliminary testing and screening of drugs and therapies and in the investigation of the molecular mechanisms underpinning disease onset and progression. In this review, the application of TE principles to the design of in vitro 3D models will be surveyed, with a focus on the strengths and weaknesses of this emerging approach. In addition, a brief overview on the development of in vitro models of healthy and pathological bone, heart, pancreas, and liver will be presented.
Collapse
Affiliation(s)
- Silvia Caddeo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Amsterdam, Netherlands
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
18
|
Hepatogenic Differentiation of Human Induced Pluripotent Stem cells on Collagen-Coated Polyethersulfone Nanofibers. ASAIO J 2017; 63:316-323. [DOI: 10.1097/mat.0000000000000469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Hong JH, Lee HJ, Jeong B. Injectable Polypeptide Thermogel as a Tissue Engineering System for Hepatogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11568-11576. [PMID: 28290667 DOI: 10.1021/acsami.7b02488] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A poly(ethylene glycol)-b-poly(l-alanine) (PEG-l-PA) hydrogel incorporating tonsil-derived mesenchymal stem cells (TMSCs), tauroursodeoxycholic acid (TUDCA), hepatocyte growth factor (HGF), and fibroblast growth factor 4 (FGF4) was prepared through thermal gelation of an aqueous polymer solution for an injectable tissue engineering application. The thermal gelation accompanied conformational changes of both PA and PEG blocks. The gel modulus at 37 °C was controlled to be 1000 Pa by using a 14.0 wt % aqueous polymer solution. The gel preserved its physical integrity during the 3D culture of the cells. TUDCA, HGF, and FGF4 were released from the PEG-l-PA hydrogel over 21 days of the 3D cell culture period. TMSCs initially exhibited a spherical shape, whereas some fibers protruded from the cells on days 14-21 of 3D culture. The injectable system exhibited pronounced expressions of the hepatic biomarkers at both mRNA and protein levels, which are significantly better than the commercially available hyaluronic acid gel. In particular, the hepatogenically differentiated cells from the TMSCs in the injectable system demonstrated hepatic biofunctions comparable to HepG2 cells for the uptakes of low density lipoproteins (52%) and indocyanine green (76%), and the production of albumin (40%) and urea (52%), which are also significantly better than the 3D-cultured cells in the commercially available hyaluronic acid gel. Our studies suggest that the PEG-l-PA thermogel incorporating TMSCs, TUDCA, and growth factors is highly promising as an in situ forming tissue engineering system.
Collapse
Affiliation(s)
- Ja Hye Hong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
20
|
Mesenchymal Stem Cells Transplantation following Partial Hepatectomy: A New Concept to Promote Liver Regeneration-Systematic Review of the Literature Focused on Experimental Studies in Rodent Models. Stem Cells Int 2017; 2017:7567958. [PMID: 28386285 PMCID: PMC5366767 DOI: 10.1155/2017/7567958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive source for regenerative medicine because they are easily accessible through minimally invasive methods and have the potential to enhance liver regeneration (LG) and improve liver function, following partial hepatectomy (PH) and acute or chronic liver injury. A systematic review of the literature was conducted for articles published up to September 1st, 2016, using the MEDLINE database. The keywords that were used in various combinations were as follows: “Mesenchymal stem cells”, “transplantation”, “stem cells”, “adipose tissue derived stem cells”, “bone marrow-derived stem cells”, “partial hepatectomy”, “acute liver failure”, “chronic liver failure”, “liver fibrosis”, “liver cirrhosis”, “rats”, “mice”, and “liver regeneration”. All introduced keywords were searched for separately in MeSH Database to control relevance and terminological accuracy and validity. A total of 41 articles were identified for potential inclusion and reviewed in detail. After a strict selection process, a total of 28 articles were excluded, leaving 13 articles to form the basis of this systematic review. MSCs transplantation promoted LG and improved liver function. Furthermore, MSCs had the ability to differentiate in hepatocyte-like cells, increase survival, and protect hepatocytes by paracrine mechanisms. MSCs transplantation may provide beneficial effects in the process of LG after PH and acute or chronic liver injury. They may represent a new therapeutic option to treat posthepatectomy acute liver failure.
Collapse
|
21
|
Esmaeli S, Allameh A, Adelipour M, Soleimani M, Allameh M. The impact of oxidative DNA changes and ATM expression on morphological and functional activities on hepatocytes obtained from mesenchymal stem cells. Biologicals 2017; 47:52-58. [PMID: 28262479 DOI: 10.1016/j.biologicals.2017.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/29/2017] [Indexed: 12/26/2022] Open
Abstract
Resistance to oxidative damages in undifferentiated mesenchymal stem cells (MSCs) in comparison with the undifferentiated progenitor cells may differ depending on several factors. This study was carried out to examine the impact of hepatogenic differentiation process of MSCs on oxidative DNA damage markers. Hepatic differentiation of MSCs was carried out using a two-step conventional protocol and the cells were processed for characterization using morphological and biochemical markers. During the course of differentiation cellular levels of reactive oxygen species (ROS), 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and expression of ataxia-telangiectasia mutated (ATM) protein were estimated at time intervals (10, 20 and 30 days). The results showed a decrease in cellular ROS (13%, P < 0.05) at early stages of hepatogenic differentiation. Similarly, there was a small but significant decrease in 8-OH-dG level and ATM expression in differentiated hepatocytes. Despite the small changes in oxidative damage factors and ATM expression during the differentiation process, the hepatocytes obtained were morphologically and biologically intact.
Collapse
Affiliation(s)
- Shahnaz Esmaeli
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Adelipour
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Allameh
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, Quebec, H9X 3V9, Canada
| |
Collapse
|
22
|
Adelipour M, Babaei F, Mirzababaei M, Allameh A. Correlation of micro vessel density and c-Myc expression in breast tumor of mice following mesenchymal stem cell therapy. Tissue Cell 2017; 49:315-322. [PMID: 28209368 DOI: 10.1016/j.tice.2017.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 02/07/2023]
Abstract
Stem cell therapy for degenerative diseases has been established; however there are controversies over the treatment of solid tumors with stem cell transplantation. In the present study, the anti-tumor action of mesenchymal stem cells (MSCs) has been examined in a mouse model of breast cancer with emphasize on tumor growth, angiogenesis and c-Myc expression in breast tumors. For this purpose, MSCs were isolated from bone marrow of Balb/c mice and characterized. A Balb/c mouse model of breast cancer was developed and subjected to cell therapy intra venous (I.V) or intra tumor (I.T) with MSCs. Tumor growth was measured using a digital caliber for until the end of experiment (30days). Then the mice were sacrificed and their tumors were removed and processed for histopathological examination, immunohistochemical assay of CD31 and measuring of c-Myc expression using quantitative PCR. Detection of the labeled-MSCs in tumors following injection of the cells (I.V or I.T) clearly showed the homing of MSCs into tumors. Tumor growth in case of MSC-treated mice by I.V and I.T routes was inhibited by approximately 28% and 34% respectively compared to controls. The suppression of angiogenesis was reflected in Micro Vessel Density (MVD) following I.V or I.T delivery of the MSCs. c-Myc gene expression in tumor tissues of mice treated I.V or IT with MSCs was down-regulated to 28.0% and 16.0% respectively compare to control groups. In conclusion, growth inhibition of breast tumors in mice due to MSC therapy is associated with modulation of c-Myc activation and angiogenesis markers.
Collapse
Affiliation(s)
- Maryam Adelipour
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Li Y, Wu Q, Wang Y, Li L, Chen F, Shi Y, Bu H, Bao J. Immunogenicity of hepatic differentiated human umbilical cord mesenchymal stem cells promoted by porcine decellularized liver scaffolds. Xenotransplantation 2017; 24. [PMID: 28102609 DOI: 10.1111/xen.12287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Yi Li
- Laboratory of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
- Key Laboratory of Transplant Engineering and Immunology; Ministry of Health; West China Hospital; Sichuan University; Chengdu China
- Division of Transplant Surgery; Department of Surgery; Mayo Clinic; Rochester MN USA
| | - Qiong Wu
- Laboratory of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
- Key Laboratory of Transplant Engineering and Immunology; Ministry of Health; West China Hospital; Sichuan University; Chengdu China
| | - Yujia Wang
- Laboratory of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
- Key Laboratory of Transplant Engineering and Immunology; Ministry of Health; West China Hospital; Sichuan University; Chengdu China
- Division of Transplant Surgery; Department of Surgery; Mayo Clinic; Rochester MN USA
| | - Li Li
- Laboratory of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
- Key Laboratory of Transplant Engineering and Immunology; Ministry of Health; West China Hospital; Sichuan University; Chengdu China
| | - Fei Chen
- Laboratory of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
- Key Laboratory of Transplant Engineering and Immunology; Ministry of Health; West China Hospital; Sichuan University; Chengdu China
| | - Yujun Shi
- Laboratory of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
- Key Laboratory of Transplant Engineering and Immunology; Ministry of Health; West China Hospital; Sichuan University; Chengdu China
| | - Hong Bu
- Laboratory of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
- Key Laboratory of Transplant Engineering and Immunology; Ministry of Health; West China Hospital; Sichuan University; Chengdu China
- Department of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
| | - Ji Bao
- Laboratory of Pathology; West China Hospital; Sichuan University; Chengdu Sichuan China
- Key Laboratory of Transplant Engineering and Immunology; Ministry of Health; West China Hospital; Sichuan University; Chengdu China
| |
Collapse
|
24
|
Perez RA, Jung CR, Kim HW. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Adv Healthc Mater 2017; 6. [PMID: 27860372 DOI: 10.1002/adhm.201600791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Indexed: 12/18/2022]
Abstract
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies.
Collapse
Affiliation(s)
- Roman A. Perez
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Regenerative Medicine Research Institute; Universitat Internacional de Catalunya; Barcelona 08017 Spain
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; KRIBB; 125 Gwahak-ro Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
- Department of Biomaterials Science; Dankook University Dental College; Cheonan 330-714 Republic of Korea
| |
Collapse
|
25
|
Wang Y, Lee JH, Shirahama H, Seo J, Glenn JS, Cho NJ. Extracellular Matrix Functionalization and Huh-7.5 Cell Coculture Promote the Hepatic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells in a 3D ICC Hydrogel Scaffold. ACS Biomater Sci Eng 2016; 2:2255-2265. [PMID: 33465898 DOI: 10.1021/acsbiomaterials.6b00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we constructed a microporous hydrogel scaffold with hexagonally packed interconnected cavities and extracellular matrix (ECM)-functionalized interior surface, and systematically investigated the hepatic differentiation of human adipose-derived mesenchymal stem cells (hAD-MSCs) under the influence of three key factors: three-dimensional (3D) geometry, ECM presence, and coculture with hepatocyte-derived cell line. Results confirmed that (i) hepatic differentiation of hAD-MSC is more efficient in a 3D microporous scaffold than in 2D monolayer culture; (ii) the presence of both ECM components (fibronectin and collagen-I) in the scaffold is superior to collagen-I only, highlighting the importance of fibronectin; and (iii) coculture with Huh-7.5 hepatocyte-derived cells promoted liver-specific functions of the hAD-MSC-derived hepatocytes. The optimized differentiation process only took 21 days to complete, a time length that is shorter or at least comparable to previous reports, and more importantly, yielded an albumin production more than 10-fold higher than conventional 2D culture. Our approach of optimizing hAD-MSC hepatic differentiation could provide a potential solution to the challenges such as hepatocyte transplantation or the establishment of human physiologically relevant liver models in vitro.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jae-Ho Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Hitomi Shirahama
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jeongeun Seo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Alway Building, Room M211, 300 Pasteur Drive, Stanford, California 94305, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild Building, D300, 299 Campus Drive, Stanford, California 94305, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.,School of Chemical and Biomolecular Engineering, Nanyang Technological University, 62 Nanyang Avenue 637459, Singapore
| |
Collapse
|
26
|
Cipriano M, Freyer N, Knöspel F, Oliveira NG, Barcia R, Cruz PE, Cruz H, Castro M, Santos JM, Zeilinger K, Miranda JP. Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro. Arch Toxicol 2016; 91:1815-1832. [PMID: 27590069 DOI: 10.1007/s00204-016-1838-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/24/2016] [Indexed: 01/11/2023]
Abstract
3D cultures of human stem cell-derived hepatocyte-like cells (HLCs) have emerged as promising models for short- and long-term maintenance of hepatocyte phenotype in vitro cultures by better resembling the in vivo environment of the liver and consequently increase the translational value of the resulting data. In this study, the first stage of hepatic differentiation of human neonatal mesenchymal stem cells (hnMSCs) was performed in 2D monolayer cultures for 17 days. The second stage was performed by either maintaining cells in 2D cultures for an extra 10 days, as control, or alternatively cultured in 3D as self-assembled spheroids or in multicompartment membrane bioreactor system. All systems enabled hnMSC differentiation into HLCs as shown by positive immune staining of hepatic markers CK-18, HNF-4α, albumin, the hepatic transporters OATP-C and MRP-2 as well as drug-metabolizing enzymes like CYP1A2 and CYP3A4. Similarly, all models also displayed relevant glucose, phase I and phase II metabolism, the ability to produce albumin and to convert ammonia into urea. However, EROD activity and urea production were increased in both 3D systems. Moreover, the spheroids revealed higher bupropion conversion, whereas bioreactor showed increased albumin production and capacity to biotransform diclofenac. Additionally, diclofenac resulted in an IC50 value of 1.51 ± 0.05 and 0.98 ± 0.03 in 2D and spheroid cultures, respectively. These data suggest that the 3D models tested improved HLC maturation showing a relevant biotransformation capacity and thus provide more appropriate reliable models for mechanistic studies and more predictive systems for in vitro toxicology applications.
Collapse
Affiliation(s)
- Madalena Cipriano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Nora Freyer
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Fanny Knöspel
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Rita Barcia
- ECBio S.A., Rua Henrique Paiva Couceiro, Nº 27, 2700-451, Amadora, Portugal
| | - Pedro E Cruz
- ECBio S.A., Rua Henrique Paiva Couceiro, Nº 27, 2700-451, Amadora, Portugal
| | - Helder Cruz
- ECBio S.A., Rua Henrique Paiva Couceiro, Nº 27, 2700-451, Amadora, Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Jorge M Santos
- ECBio S.A., Rua Henrique Paiva Couceiro, Nº 27, 2700-451, Amadora, Portugal
| | - Katrin Zeilinger
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
27
|
Chitrangi S, Nair P, Khanna A. Three-dimensional polymer scaffolds for enhanced differentiation of human mesenchymal stem cells to hepatocyte-like cells: a comparative study. J Tissue Eng Regen Med 2016; 11:2359-2372. [DOI: 10.1002/term.2136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Swati Chitrangi
- Department of Biological Sciences, Sunandan Divatia School of Science; SVMK'S NMIMS University; Mumbai Maharashtra India
| | - Prabha Nair
- Division of Tissue Engineering and Regeneration Technologies; Shree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - Aparna Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science; SVMK'S NMIMS University; Mumbai Maharashtra India
| |
Collapse
|
28
|
Comparative Immunophenotypic Characteristics, Proliferative Features, and Osteogenic Differentiation of Stem Cells Isolated from Human Permanent and Deciduous Teeth with Bone Marrow. Mol Biotechnol 2016; 58:415-27. [DOI: 10.1007/s12033-016-9941-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Obara C, Tomiyama KI, Takizawa K, Islam R, Yasuda T, Gotoh T, Tajima K. Characteristics of three-dimensional prospectively isolated mouse bone marrow mesenchymal stem/stromal cell aggregates on nanoculture plates. Cell Tissue Res 2016; 366:113-27. [DOI: 10.1007/s00441-016-2405-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/04/2016] [Indexed: 01/01/2023]
|
30
|
Li Z, Hu X, Mao J, Liu X, Zhang L, Liu J, Li D, Shan H. Optimization of mesenchymal stem cells (MSCs) delivery dose and route in mice with acute liver injury by bioluminescence imaging. Mol Imaging Biol 2015; 17:185-94. [PMID: 25273323 DOI: 10.1007/s11307-014-0792-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Both experimental and initial clinical studies have shown the therapeutic potential of mesenchymal stem cells (MSCs) in liver disease. Noninvasive tracking of MSCs could facilitate its clinical translation. The purpose of this study was to optimize MSCs delivery dose and route in mice with acute liver injury using bioluminescence imaging (BLI) to track the cells. PROCEDURES MSCs were labeled with the Luc2-mKate2 dual-fusion reporter gene (MSCs-R). The fate of MSCs-R was tracked through in vivo BLI after administration of different doses or delivery through different routes. RESULTS When delivered via the superior mesenteric vein (SMV), the high-dose (1.0 × 10(6) and 5.0 × 10(5)) group mice demonstrated high liver BLI signal but also had lethal portal vein embolization (PVE). By contrast, no PVE and its related death occurred in the low-dose (2.5 × 10(5)) group mice. Thus, 2.5 × 10(5) is the optimal delivery dose. Three delivery routes, i.e., inferior vena cava (IVC), SMV, and intrahepatic (IH) injection, were also systematically compared. After IVC infusion, MSCs-R were quickly trapped inside the lungs, and no detectable homing to the liver and other organs was observed. By IH injection, lung entrapment was bypassed, but MSCs-R distribution was only localized in the injection region of the liver. By contrast, after SMV infusion, MSCs-R were dispersedly distributed and stayed as long as 7-day posttransplantation in the liver. The in vivo imaging results were further validated by ex vivo imaging, digital subtraction angiography (DSA), and tissue analysis. Therefore, SMV is the optimal MSCs delivery route for liver disease. CONCLUSIONS Collectively, BLI, which could dynamically and quantitatively track cellular location and survival, is useful in determining MSCs transplantation parameters.
Collapse
Affiliation(s)
- Zhengran Li
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21:12334-12350. [PMID: 26604641 PMCID: PMC4649117 DOI: 10.3748/wjg.v21.i43.12334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals.
Collapse
|
32
|
Athinarayanan J, Periasamy VS, Alhazmi M, Alshatwi AA. Synthesis and biocompatibility assessment of sugarcane bagasse-derived biogenic silica nanoparticles for biomedical applications. J Biomed Mater Res B Appl Biomater 2015; 105:340-349. [DOI: 10.1002/jbm.b.33511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture; King Saud University; Riyadh Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture; King Saud University; Riyadh Saudi Arabia
| | - Mohammad Alhazmi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture; King Saud University; Riyadh Saudi Arabia
| | - Ali A. Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
33
|
Mobini S, Taghizadeh-Jahed M, Khanmohammadi M, Moshiri A, Naderi MM, Heidari-Vala H, Ashrafi Helan J, Khanjani S, Springer A, Akhondi MM, Kazemnejad S. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers. J Biomater Appl 2015; 30:793-809. [DOI: 10.1177/0885328215601925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, exceptional advantages of silk fibroin over synthetic and natural polymers have impelled the scientists to application of this biomaterial for tissue engineering purposes. Recently, we showed that embedding natural degummed silk fibers in regenerated Bombyx mori silk-based scaffold significantly increases the mechanical stiffness, while the porosity of the scaffolds remains the same. In the present study, we evaluated degradation rate, biocompatibility and regenerative properties of the regenerated 2% and 4% wt silk-based composite scaffolds with or without embedded natural degummed silk fibers within 90 days in both athymic nude and wild-type C57BL/6 mice through subcutaneous implantation. In all scaffolds, a suitable interconnected porous structure for cell penetration was seen under scanning electron microscopy. Compressive tests revealed a functional relationship between fiber reinforcement and compressive modulus. In addition, the fiber/fibroin composite scaffolds support cell attachment and proliferation. On days 30 to 90 after subcutaneous implantation, the retrieved tissues were examined via gross morphology, histopathology, immunofluorescence staining and reverse transcription-polymerase chain reaction as shown in Figure 1 . Results showed that embedding the silk fibers within the matrix enhances the biodegradability of the matrix resulting in replacement of the composite scaffolds with the fresh connective tissue. Fortification of the composites with degummed fibers not only regulates the degradation profile but also increases the mechanical performance of the scaffolds. This report also confirmed that pore size and structure play an important role in the degradation rate. In conclusion, the findings of the present study narrate key role of additional surface area in improving in vitro and in vivo biological properties of the scaffolds and suggest the potential ability of these fabricated composite scaffolds for connective tissue regeneration. [Figure: see text]
Collapse
Affiliation(s)
- Sahba Mobini
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Masoud Taghizadeh-Jahed
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Manijeh Khanmohammadi
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Moshiri
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Mehdi Naderi
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hamed Heidari-Vala
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Javad Ashrafi Helan
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sayeh Khanjani
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Armin Springer
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Dresden, Germany
| | - Mohammad-Mehdi Akhondi
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
34
|
Hakimi O, Mouthuy PA, Zargar N, Lostis E, Morrey M, Carr A. A layered electrospun and woven surgical scaffold to enhance endogenous tendon repair. Acta Biomater 2015; 26:124-35. [PMID: 26275911 DOI: 10.1016/j.actbio.2015.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 08/01/2015] [Accepted: 08/11/2015] [Indexed: 01/26/2023]
Abstract
Surgical reattachments of tendon to bone in the rotator cuff are reported to fail in around 40% of cases. There are no adequate solutions to improve tendon healing currently available. Electrospun, sub-micron materials, have been extensively studied as scaffolds for tendon repair with promising results, but are too weak to be surgically implanted or to mechanically support the healing tendon. To address this, we developed a bonding technique that enables the processing of electrospun sheets into multi-layered, robust, implantable fabrics. Here, we show a first prototype scaffold created with this method, where an electrospun sheet was reinforced with a woven layer. The resulting scaffold presents a maximum suture pull out strength of 167N, closely matched with human rotator cuff tendons, and the desired nanofibre-mediated bioactivity in vitro and in vivo. This type of scaffold has potential for broader application for augmenting other soft tissues.
Collapse
Affiliation(s)
- O Hakimi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom.
| | - P A Mouthuy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom
| | - N Zargar
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom
| | - E Lostis
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom
| | - M Morrey
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom; Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom
| |
Collapse
|
35
|
Tissue Engineering and Regenerative Medicine in Iran: Current State of Research and Future Outlook. Mol Biotechnol 2015; 57:589-605. [DOI: 10.1007/s12033-015-9865-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
van Wenum M, Chamuleau RAFM, van Gulik TM, Siliakus A, Seppen J, Hoekstra R. Bioartificial liversin vitroandin vivo: tailoring biocomponents to the expanding variety of applications. Expert Opin Biol Ther 2014; 14:1745-60. [DOI: 10.1517/14712598.2014.950651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Kim SJ, Park MH, Moon HJ, Park JH, Ko DY, Jeong B. Polypeptide thermogels as a three dimensional culture scaffold for hepatogenic differentiation of human tonsil-derived mesenchymal stem cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17034-17043. [PMID: 25192309 DOI: 10.1021/am504652y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tonsil-derived mesenchymal stem cells (TMSCs) were investigated for hepatogenic differentiation in the 3D matrixes of poly(ethylene glycol)-b-poly(l-alanine) (PEG-L-PA) thermogel. The diblock polymer formed β-sheet based fibrous nanoassemblies in water, and the aqueous polymer solution undergoes sol-to-gel transition as the temperature increases in a concentration range of 5.0-8.0 wt %. The cell-encapsulated 3D matrix was prepared by increasing the temperature of the cell-suspended PEG-L-PA aqueous solution (6.0 wt %) to 37 °C. The gel modulus at 37 °C was about 1000 Pa, which was similar to that of decellularized liver tissue. Cell proliferation, changes in cell morphology, hepatogenic biomarker expressions, and hepatocyte-specific biofunctions were compared for the following 3D culture systems: TMSC-encapsulated thermogels in the absence of hepatogenic growth factors (protocol M), TMSC-encapsulated thermogels where hepatogenic growth factors were supplied from the medium (protocol MGF), and TMSC-encapsulated thermogels where hepatogenic growth factors were coencapsulated with TMSCs during the sol-to-gel transition (protocol GGF). The spherical morphology and size of the encapsulated cells were maintained in the M system during the 3D culture period of 28 days, whereas the cells changed their morphology and significant aggregation of cells was observed in the MGF and GGF systems. The hepatocyte-specific biomarker expressions and metabolic functions were negligible for the M system. However, hepatogenic genes of albumin, cytokeratin 18 (CK-18), and hepatocyte nuclear factor 4α (HNF 4α) were significantly expressed in both MGF and GGF systems. In addition, production of albumin and α-fetoprotein was also significantly observed in both MGF and GGF systems. The uptake of cardiogreen and low-density lipoprotein, typical metabolic functions of hepatocytes, was apparent for MGF and GGF. The above data indicate that the 3D culture system of PEG-L-PA thermogels provides cytocompatible microenvironments for hepatogenic differentiation of TMSCs. In particular, the successful results of the GGF system suggest that the PEG-L-PA thermogel can be a promising injectable tissue engineering system for liver tissue regeneration after optimizing the aqueous formulation of TMSCs, hepatogenic growth factors, and other biochemicals.
Collapse
Affiliation(s)
- Seung-Jin Kim
- Department of Chemistry and Nano Science, Ewha Womans University , Global Top 5 Research Program, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Liu X, Zhang Z, Yan X, Liu H, Zhang L, Yao A, Guo C, Liu X, Xu T. The Rho kinase inhibitor Y-27632 facilitates the differentiation of bone marrow mesenchymal stem cells. J Mol Histol 2014; 45:707-14. [DOI: 10.1007/s10735-014-9594-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
|
39
|
Chaudhury K, Kumar V, Kandasamy J, RoyChoudhury S. Regenerative nanomedicine: current perspectives and future directions. Int J Nanomedicine 2014; 9:4153-67. [PMID: 25214780 PMCID: PMC4159316 DOI: 10.2147/ijn.s45332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined.
Collapse
Affiliation(s)
- Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Vishu Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Jayaprakash Kandasamy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
40
|
Zhang Y, Zhang Y, Chen M, Zhou Y, Lang M. Galactosylated poly(ε-caprolactone) membrane promoted liver-specific functions of HepG2 cells in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:52-8. [DOI: 10.1016/j.msec.2014.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/25/2014] [Accepted: 03/07/2014] [Indexed: 11/25/2022]
|
41
|
Khademi F, Soleimani M, Verdi J, Tavangar SM, Sadroddiny E, Masumi M, Ai J. Human endometrial stem cells differentiation into functional hepatocyte-like cells. Cell Biol Int 2014; 38:825-34. [DOI: 10.1002/cbin.10278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/07/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Farzaneh Khademi
- Department of Tissue Engineering; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Stem Cells Technology Research Center; Tehran Iran
| | - Masoud Soleimani
- Stem Cells Technology Research Center; Tehran Iran
- Department of Hematology; Faculty of Medical Science; Tarbiat Modares University; Tehran Iran
| | - Javad Verdi
- Department of Tissue Engineering; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Applied Cell; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Seyed Mohammad Tavangar
- Department of Tissue Engineering; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pathology; Shariaty Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Masumi
- Stem Cells Technology Research Center; Tehran Iran
- Induced Pluripotent Stem Cell Biotechnology Team; Stem Cells Department; National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Brain and Spinal Injury Research Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
42
|
Khanjani S, Khanmohammadi M, Zarnani AH, Akhondi MM, Ahani A, Ghaempanah Z, Naderi MM, Eghtesad S, Kazemnejad S. Comparative evaluation of differentiation potential of menstrual blood- versus bone marrow-derived stem cells into hepatocyte-like cells. PLoS One 2014; 9:e86075. [PMID: 24505254 PMCID: PMC3914790 DOI: 10.1371/journal.pone.0086075] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/05/2013] [Indexed: 12/12/2022] Open
Abstract
Menstrual blood has been introduced as an easily accessible and refreshing stem cell source with no ethical consideration. Although recent works have shown that menstrual blood stem cells (MenSCs) possess multi lineage differentiation capacity, their efficiency of hepatic differentiation in comparison to other stem cell resources has not been addressed so far. The aim of this study was to investigate hepatic differentiation capacity of MenSCs compared to bone marrow-derived stem cells (BMSCs) under protocols developed by different concentrations of hepatocyte growth factor (HGF) and oncostatin M (OSM) in combination with other components in serum supplemented or serum-free culture media. Such comparison was made after assessment of immunophenotye, trans-differentiation potential, immunogenicity and tumorigeicity of these cell types. The differential expression of mature hepatocyte markers such as albumin (ALB), cytokeratin 18 (CK-18), tyrosine aminotransferase and cholesterol 7 alpha-hydroxylase activities (CYP7A1) at both mRNA and protein levels in differentiating MenSCs was significantly higher in upper concentration of HGF and OSM (P1) compared to lower concentration of these factors (P2). Moreover, omission of serum during differentiation process (P3) caused typical improvement in functions assigned to hepatocytes in differentiated MenSCs. While up-regulation level of ALB and CYP7A1 was higher in differentiated MenSCs compared to driven BMSCs, expression level of CK-18, detected level of produced ALB and glycogen accumulation were lower or not significantly different. Therefore, based on the overall comparable hepatic differentiation ability of MenSCs with BMSCs, and also accessibility, refreshing nature and lack of ethical issues of MenSCs, these cells could be suggested as an apt and safe alternative to BMSCs for future stem cell therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Sayeh Khanjani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Manijeh Khanmohammadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Ahani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Ghaempanah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Saman Eghtesad
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|
43
|
|
44
|
Abstract
Liver extracellular matrix (ECM) composition, topography and biomechanical properties influence cell-matrix interactions. The ECM presents guiding cues for hepatocyte phenotype maintenance, differentiation and proliferation both in vitro and in vivo. Current understanding of such cell-guiding cues along with advancement of techniques for scaffold fabrication has led to evolution of matrices for liver tissue culture from simple porous scaffolds to more complex 3D matrices with microarchitecture similar to in vivo. Natural and synthetic polymeric biomaterials fabricated in different topographies and porous matrices have been used for hepatocyte culture. Heterotypic and homotypic cell interactions are necessary for developing an adult liver as well as an artificial liver. A high oxygen demand of hepatocytes as well as graded oxygen distribution in liver is another challenging attribute of the normal liver architecture that further adds to the complexity of engineered substrate design. A balanced interplay of cell-matrix interactions along with cell-cell interactions and adequate supply of oxygen and nutrient determines the success of an engineered substrate for liver cells. Techniques devised to incorporate these features of hepatic function and mimic liver architecture range from maintaining liver cells in mm-sized tailor-made scaffolds to a more bottoms up approach that starts from building the microscopic subunit of the whole tissue. In this review, we discuss briefly various biomaterials used for liver tissue engineering with respect to design parameters such as scaffold composition and chemistry, biomechanical properties, topography, cell-cell interactions and oxygenation.
Collapse
Affiliation(s)
- Era Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.,Biomedical Engineering Department, St. Louis University, St. Louis, MO, USA
| | - Apeksha Damania
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
45
|
Kiani AA, Abdi J, Halabian R, Roudkenar MH, Amirizadeh N, Soleiman Soltanpour M, Kazemi A. Over expression of HIF-1α in human mesenchymal stem cells increases their supportive functions for hematopoietic stem cells in an experimental co-culture model. ACTA ACUST UNITED AC 2013; 19:85-98. [PMID: 23710560 DOI: 10.1179/1607845413y.0000000093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Bone marrow transplantation is a critical approach for the treatment of many hematological disorders. Success of this approach is dependent on many factors the most important of which is the number of hematopoietic stem cells along with an efficient stroma. Co-transplantation of efficient mesenchymal stem cells can greatly improve the outcome of transplantations. Current researches assign a critical role for hypoxia inducible factor (HIF)-1α in protection of various cells and tissues probably through induction of cytokines. To make this feature applicable to human bone marrow-derived mesenchymal stem cells, we manipulated these cells to over express HIF-1α gene. MATERIALS AND METHODS Full-length cDNA of human HIF-1α was inserted into human bone marrow mesenchymal stem cells by pcDNA.3.1 non-viral plasmid vector, and the effect of this over expression on production of some hematopoietic growth factors was explored. Moreover, using a co-culture system, the interactive impact of HIF-1α-overexpressed mesenchymal stem cells on hematopoietic stem cells was evaluated. Results Over expression of HIF-1α in mesenchymal stem cells in normoxia increased production of one of the most important hematopoietic growth factors, Stem cell factor (also known as Steel factor or c-kit ligand). HIF-1α overexpression had no effect on production of other hematopoietic growth factors. In co-culture of mesenchymal stem cells-HIF-1α with hematopoietic stem cells, enhancement of colony formation and reduced differentiation of hematopoietic stem cells were observed. Conclusion Over expression of HIF-1α in human bone marrow-derived mesenchymal stem cells can augment the production of some hematopoietic growth factors, and we suggest this response of mesenchymal stem cells could help to improve the outcome of bone marrow transplantation.
Collapse
|
46
|
Yamazoe T, Shiraki N, Toyoda M, Kiyokawa N, Okita H, Miyagawa Y, Akutsu H, Umezawa A, Sasaki Y, Kume K, Kume S. A synthetic nanofibrillar matrix promotes in vitro hepatic differentiation of embryonic stem cells and induced pluripotent stem cells. J Cell Sci 2013; 126:5391-9. [PMID: 24101719 DOI: 10.1242/jcs.129767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem (ES) cells recapitulate normal developmental processes and serve as an attractive source for routine access to a large number of cells for research and therapies. We previously reported that ES cells cultured on M15 cells, or a synthesized basement membrane (sBM) substratum, efficiently differentiated into an endodermal fate and subsequently adopted fates of various digestive organs, such as the pancreas and liver. Here, we established a novel hepatic differentiation procedure using the synthetic nanofiber (sNF) as a cell culture scaffold. We first compared endoderm induction and hepatic differentiation between murine ES cells grown on sNF and several other substrata. The functional assays for hepatocytes reveal that the ES cells grown on sNF were directed into hepatic differentiation. To clarify the mechanisms for the promotion of ES cell differentiation in the sNF system, we focused on the function of Rac1, which is a Rho family member protein known to regulate the actin cytoskeleton. We observed the activation of Rac1 in undifferentiated and differentiated ES cells cultured on sNF plates, but not in those cultured on normal plastic plates. We also show that inhibition of Rac1 blocked the potentiating effects of sNF on endoderm and hepatic differentiation throughout the whole differentiation stages. Taken together, our results suggest that morphological changes result in cellular differentiation controlled by Rac1 activation, and that motility is not only the consequence, but is also able to trigger differentiation. In conclusion, we believe that sNF is a promising material that might contribute to tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Taiji Yamazoe
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Allameh A, Ahmadi-Ashtiani H, Emami Aleagha MS, Rastegar H. The metabolic function of hepatocytes differentiated from human mesenchymal stem cells is inversely related to cellular glutathione levels. Cell Biochem Funct 2013; 32:194-200. [PMID: 24038178 DOI: 10.1002/cbf.2994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/07/2013] [Accepted: 08/05/2013] [Indexed: 11/06/2022]
Abstract
Differentiation of mesenchymal stem cells (MSCs) to hepatocytes-like cells is associated with alteration in the level of reactive oxygen species (ROS) and antioxidant defense system. Here, we report the role of glutathione in the functions of hepatocytes derived from MSCs. The stem cells undergoing differentiation were treated with glutathione modifiers [buthionine sulfoxide (BSO) or N-acetyl cysteine (NAC)], and hepatocytes were collected on day 14 of differentiation and analysed for their biological and metabolic functions. Differentiation process has been performed in presence of glutathione modifiers viz. BSO and NAC. Depending on the level of cellular glutathione, the proliferation rate of MSCs was affected. Glutathione depletion by BSO resulted in increased levels of albumin and ROS in hepatocytes. Whereas, albumin and ROS were inhibited in cells treated with glutathione precursor (NAC). The metabolic function of hepatocytes was elevated in BSO-treated cells as judged by increased urea, transferrin, albumin, alanine transaminase and aspartate transaminase secretions in the media. However, the metabolic activity of the hepatocytes was inhibited when glutathione was increased by NAC. We conclude that the efficiency of metabolic function of hepatocytes is inversely related to the levels of cellular glutathione. These data may suggest a novel role of glutathione in regulation of metabolic function of hepatocytes.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
48
|
Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, Stellini E, Roman M, Pinton P, Sivolella S, Zavan B. Nanotechnology to drive stem cell commitment. Nanomedicine (Lond) 2013; 8:469-86. [PMID: 23477337 DOI: 10.2217/nnm.13.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stem cells (SCs) are undifferentiated cells responsible for the growth, homeostasis and repair of many tissues. The maintenance and survival of SCs is strongly influenced by several stimuli from the local microenvironment. The majority of signaling molecules interact with SCs at the nanoscale level. Therefore, scaffolds with surface nanostructures have potential applications for SCs and in the field of regenerative medicine. Although some strategies have already reached the field of cell biology, strategies based on modification at nanoscale level are new players in the fields of SCs and tissue regeneration. The introduction of the possibility to perform such modifications to these fields is probably due to increasing improvements in nanomaterials for biomedical applications, as well as new insights into SC biology. The aim of the present review is to exhibit the most recent applications of nanostructured materials that drive the commitment of adult SCs for potential clinical applications.
Collapse
Affiliation(s)
- Eriberto Bressan
- Department of Neurosciences, University of Padova, Via Venezia 90, 35100 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bruinink A, Bitar M, Pleskova M, Wick P, Krug HF, Maniura-Weber K. Addition of nanoscaled bioinspired surface features: A revolution for bone related implants and scaffolds? J Biomed Mater Res A 2013; 102:275-94. [PMID: 23468287 DOI: 10.1002/jbm.a.34691] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/16/2013] [Accepted: 02/11/2013] [Indexed: 11/08/2022]
Abstract
Our expanding ability to handle the "literally invisible" building blocks of our world has started to provoke a seismic shift on the technology, environment and health sectors of our society. During the last two decades, it has become increasingly evident that the "nano-sized" subunits composing many materials—living, natural and synthetic—are becoming more and more accessible for predefined manipulations at the nanosize scale. The use of equally nanoscale sized or functionalised tools may, therefore, grant us unprecedented prospects to achieve many therapeutic aims. In the past decade it became clear that nano-scale surface topography significantly influences cell behaviour and may, potentially, be utilised as a powerful tool to enhance the bioactivity and/ or integration of implanted devices. In this review, we briefly outline the state of the art and some of the current approaches and concepts for the future utilisation of nanotechnology to create biomimetic implantable medical devices and scaffolds for in vivo and in vitro tissue engineering,with a focus on bone. Based on current knowledge it must be concluded that not the materials and surfaces themselves but the systematic biological evaluation of these new material concepts represent the bottleneck for new biomedical product development based on nanotechnological principles.
Collapse
Affiliation(s)
- Arie Bruinink
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials - Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Khanjani S, Khanmohammadi M, Zarnani AH, Talebi S, Edalatkhah H, Eghtesad S, Nikokar I, Kazemnejad S. Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells. J Tissue Eng Regen Med 2013; 9:E124-34. [PMID: 23505217 DOI: 10.1002/term.1715] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/22/2012] [Accepted: 01/04/2013] [Indexed: 12/24/2022]
Abstract
In recent years, the advantages of menstrual blood-derived stem cells (MenSCs), such as minimal ethical considerations, easy access and high proliferative ability, have inspired scientists to investigate the potential of MenSCs in cell therapy of different diseases. In order to characterize the potency of these cells for future cell therapy of liver diseases, we examined the potential of MenSCs to differentiate into hepatocytes, using different protocols. First, the immunophenotyping properties and potential of MenSCs to differentiate into osteoblasts, adipocytes and chondrocytes were evaluated. Thereafter, the differentiation protocols developed by two concentrations of hepatocyte growth factor (HGF) and oncostatin M (OSM), in combination with other components in serum-supplemented or serum-free culture media, were also investigated. The sequential differentiation was monitored by real-time PCR, immunostaining and functional assays. Our primary data revealed that the isolated MenSCs exhibited mesenchymal stem cell markers in parallel to OCT-4 as an embryonic marker. Regardless of differentiation procedures, the developed cells expressed mature hepatocyte markers, such as albumin, tyrosine aminotransferase and cytokeratin-18 at the mRNA and protein levels. They also showed functional properties of hepatocytes, including albumin secretion, glycogen storage and cytochrome P450 7A1 expression. However, the degree of differentiation was dependent on the concentrations of HGF and OSM. Indeed, omission of serum during the differentiation process caused typical improvement in hepatocyte-specific functions. This study is a novel report demonstrating the differentiation potential of MenSCs into hepatocyte-like cells. We recommend a complementary serum-free differentiation protocol for enrichment of in vitro production of functional MenSC-derived hepatocyte-like cells that could lead to a major step toward applied stem cell therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Sayeh Khanjani
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Manijeh Khanmohammadi
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Hassan Zarnani
- Nanobiotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran.,Immunology Research Centre, Tehran University of Medical Sciences, Iran
| | - Saeed Talebi
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Saman Eghtesad
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iraj Nikokar
- Paramedical Faculty of Guilan, University of Medical Sciences, Langroud, Guilan, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|