1
|
Špirková A, Kovaříková V, Šefčíková Z, Pisko J, Kšiňanová M, Koppel J, Fabian D, Čikoš Š. Glutamate can act as a signaling molecule in mouse preimplantation embryos. Biol Reprod 2022; 107:916-927. [PMID: 35746896 PMCID: PMC9562114 DOI: 10.1093/biolre/ioac126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Free amino acids are present in the natural environment of the preimplantation embryo, and their availability can influence early embryo development. Glutamic acid is one of the amino acids with highest concentrations in female reproductive fluids, and we investigated whether glutamic acid/glutamate can affect preimplantation embryo development by acting through cell membrane receptors. Using RT-PCR, we detected 15 ionotropic glutamate receptor transcripts and 8 metabotropic glutamate receptor transcripts in mouse ovulated oocytes and/or in vivo developed blastocysts. Using immunohistochemistry, we detected expression of two AMPA receptor subunits, three kainate receptor subunits and member 5 metabotropic glutamate receptor protein in blastocysts. Extracellular concentrations of glutamic acid starting at 5 mM impaired mouse blastocyst development, and this fact may be of great practical importance since glutamic acid and its salts (mainly monosodium glutamate) are widely used as food additives. Experiments with glutamate receptor agonists (in combination with gene expression analysis) revealed that specific AMPA receptors (formed from GRIA3 and/or GRIA4 subunits), kainate receptors (formed from GRIK 3 and GRIK 4 or GRIK 5 subunits) and GRM5 glutamate receptor were involved in this effect. The glutamic acid-induced effects were prevented or reduced by pre-treatment of blastocysts with AMPA, kainate and GRM5 receptor antagonists, further confirming the involvement of these receptor types. Our results show that glutamic acid can act as a signaling molecule in preimplantation embryos, exerting its effects through activation of cell membrane receptors.
Collapse
Affiliation(s)
- Alexandra Špirková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Veronika Kovaříková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Jozef Pisko
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Martina Kšiňanová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Juraj Koppel
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| | - Štefan Čikoš
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Košice, Slovakia
| |
Collapse
|
2
|
Zheng J, Chen J, Zou X, Zhao F, Guo M, Wang H, Zhang T, Zhang C, Feng W, Pessah IN, Cao Z. Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca 2+ concentration. Neurotoxicology 2019; 70:112-121. [PMID: 30458186 PMCID: PMC6342622 DOI: 10.1016/j.neuro.2018.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/28/2023]
Abstract
Saikosaponins (SSs) are a class of naturally occurring oleanane-type triterpenoid saponins found in Radix bupleuri that has been widely used in traditional Chinese medicine. As the main active principals of Radix bupleuri, SSs have been shown to suppress mouse motor activity, impair learning and memory, and decrease hippocampal neurogenesis. In the present study, we investigated the effect of five SSs (SSa, SSb1, SSb2, SSc, and SSd) on neuronal viability and the underlying mechanisms in cultured murine neocortical neurons. We demonstrate that SSa, SSb1 and SSd produce concentration-dependent apoptotic neuronal death and induce robust increase in intracellular Ca2+ concentration ([Ca2+]i) at low micromolar concentrations with a rank order of SSd > SSa > SSb1, whereas SSb2 and SSc have no detectable effect on both neuronal survival and [Ca2+]i. Mechanistically, SSd-induced elevation in [Ca2+]i is the primary result of enhanced extracellular Ca2+ influx, which likely triggers Ca2+-induced Ca2+ release through ryanodine receptor activation, but not SERCA inhibition. SSd-induced Ca2+ entry occurs through a non-selective mechanism since blockers of major neuronal Ca2+ entry pathways, including L-type Ca2+ channel, NMDA receptor, AMPA receptor, Na+-Ca2+ exchanger, and TRPV1, all failed to attenuate the Ca2+ response to SSd. Further studies demonstrate that SSd increases calcein efflux and induces an inward current in neocortical neurons. Together, these data demonstrate that SSd elevates [Ca2+]i due to its ability to increase membrane permeability, likely by forming pores in the surface of membrane, which leads to massive Ca2+ influx and apoptotic neuronal death in neocortical neurons.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China, 211198
| | - Juan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China, 211198
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China, 211198
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China, 211198
| | - Mengqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China, 2640050
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China, 2640050
| | - Tian Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China, 100875
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China, 211198
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA, 95616
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA, 95616
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China, 211198
| |
Collapse
|
3
|
Fukushima K, Tabata Y, Imaizumi Y, Kohmura N, Sugawara M, Sawada K, Yamazaki K, Ito M. Characterization of Human Hippocampal Neural Stem/Progenitor Cells and Their Application to Physiologically Relevant Assays for Multiple Ionotropic Glutamate Receptors. ACTA ACUST UNITED AC 2014; 19:1174-84. [PMID: 24980597 DOI: 10.1177/1087057114541149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/30/2014] [Indexed: 11/17/2022]
Abstract
The hippocampus is an important brain region that is involved in neurological disorders such as Alzheimer disease, schizophrenia, and epilepsy. Ionotropic glutamate receptors-namely,N-methyl-D-aspartate (NMDA) receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs), and kainic acid (KA) receptors (KARs)-are well known to be involved in these diseases by mediating long-term potentiation, excitotoxicity, or both. To predict the therapeutic efficacy and neuronal toxicity of drug candidates acting on these receptors, physiologically relevant systems for assaying brain region-specific human neural cells are necessary. Here, we characterized the functional differentiation of human fetal hippocampus-derived neural stem/progenitor cells-namely, HIP-009 cells. Calcium rise assay demonstrated that, after a 4-week differentiation, the cells responded to NMDA (EC50= 7.5 ± 0.4 µM; n= 4), AMPA (EC50= 2.5 ± 0.1 µM; n= 3), or KA (EC50= 33.5 ± 1.1 µM; n= 3) in a concentration-dependent manner. An AMPA-evoked calcium rise was observed in the absence of the desensitization inhibitor cyclothiazide. In addition, the calcium rise induced by these agonists was inhibited by antagonists for each receptor-namely, MK-801 for NMDA stimulation (IC50= 0.6 ± 0.1 µM; n= 4) and NBQX for AMPA and KA stimulation (IC50= 0.7 ± 0.1 and 0.7 ± 0.03 µM, respectively; n= 3). The gene expression profile of differentiated HIP-009 cells was distinct from that of undifferentiated cells and closely resembled that of the human adult hippocampus. Our results show that HIP-009 cells are a unique tool for obtaining human hippocampal neural cells and are applicable to systems for assay of ionotropic glutamate receptors as a physiologically relevant in vitro model.
Collapse
Affiliation(s)
- Kazuyuki Fukushima
- Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yoshikuni Tabata
- Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yoichi Imaizumi
- Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naohiro Kohmura
- Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Michiko Sugawara
- Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kohei Sawada
- Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kazuto Yamazaki
- Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Masashi Ito
- Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Gisabella B, Bolshakov VY, Benes FM. Kainate receptor-mediated modulation of hippocampal fast spiking interneurons in a rat model of schizophrenia. PLoS One 2012; 7:e32483. [PMID: 22396770 PMCID: PMC3291556 DOI: 10.1371/journal.pone.0032483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/31/2012] [Indexed: 12/04/2022] Open
Abstract
Kainate receptor (KAR) subunits are believed to be involved in abnormal GABAergic neurotransmission in the hippocampus (HIPP) in schizophrenia (SZ) and bipolar disorder. Postmortem studies have shown changes in the expression of the GluR5/6 subunits of KARs in the stratum oriens (SO) of sectors CA2/3, where the basolateral amygdala (BLA) sends a robust projection. Previous work using a rat model of SZ demonstrated that BLA activation leads to electrophysiological changes in fast-spiking interneurons in SO of CA2/3. The present study explores KAR modulation of interneurons in CA2/3 in response to BLA activation. Intrinsic firing properties of these interneurons through KAR-mediated activity were measured with patch-clamp recordings from rats that received 15 days of picrotoxin infusion into the BLA. Chronic BLA activation induced changes in the firing properties of CA2/3 interneurons associated with modifications in the function of KARs. Specifically, the responsiveness of these interneurons to activation of KARs was diminished in picrotoxin-treated rats, while the after-hyperpolarization (AHP) amplitude was increased. In addition, we tested blockers of KAR subunits which have been shown to have altered gene expression in SO sector CA2/3 of SZ subjects. The GluR5 antagonist UBP296 further decreased AP frequency and increased AHP amplitude in picrotoxin-treated rats. Application of the GluR6/7 antagonist NS102 suggested that activation of GluR6/7 KARs may be required to maintain the high firing rates in SO interneurons in the presence of KA. Moreover, the GluR6/7 KAR-mediated signaling may be suppressed in PICRO-treated rats. Our findings indicate that glutamatergic activity from the BLA may modulate the firing properties of CA2/3 interneurons through GluR5 and GluR6/7 KARs. These receptors are expressed in GABAergic interneurons and play a key role in the synchronization of gamma oscillations. Modulation of interneuronal activity through KARs in response to amygdala activation may lead to abnormal oscillatory rhythms reported in SZ subjects.
Collapse
Affiliation(s)
- Barbara Gisabella
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vadim Y. Bolshakov
- Department of Psychiatry Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francine M. Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Berezhnov AV, Kononov AV, Fedotova EI, Zinchenko VP. A method for detection and characterization of GABA(A) receptor ligands using calcium-sensitive fluorescent probes. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Swanson GT, Sakai R. Ligands for ionotropic glutamate receptors. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 46:123-57. [PMID: 19184587 PMCID: PMC2901239 DOI: 10.1007/978-3-540-87895-7_5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.
Collapse
MESH Headings
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Amino Acids/physiology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Kainic Acid/metabolism
- Kainic Acid/pharmacology
- Ligands
- Mammals
- Mollusk Venoms/pharmacology
- Mollusk Venoms/toxicity
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Opioid, delta/physiology
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Geoffrey T Swanson
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| | | |
Collapse
|
7
|
Reid CA, Xu S, Williams DA. Spontaneous release from mossy fiber terminals inhibits Ni2+‐sensitive T‐type Ca2+channels of CA3 pyramidal neurons in the rat organotypic hippocampal slice. Hippocampus 2008; 18:623-30. [DOI: 10.1002/hipo.20419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Lash LL, Sanders JM, Akiyama N, Shoji M, Postila P, Pentikäinen OT, Sasaki M, Sakai R, Swanson GT. Novel analogs and stereoisomers of the marine toxin neodysiherbaine with specificity for kainate receptors. J Pharmacol Exp Ther 2008; 324:484-96. [PMID: 18032572 PMCID: PMC2796858 DOI: 10.1124/jpet.107.129890] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antagonists for kainate receptors (KARs), a family of glutamategated ion channels, are efficacious in a number of animal models of neuropathologies, including epilepsy, migraine pain, and anxiety. To produce molecules with novel selectivities for kainate receptors, we generated three sets of analogs related to the natural marine convulsant neodysiherbaine (neoDH), and we characterized their pharmacological profiles. Radioligand displacement assays with recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and KARs demonstrated that functional groups at two positions on the neoDH molecule are critical pharmacological determinants; only binding to the glutamate receptor (GluR)5-2a subunit was relatively insensitive to structural modifications of the critical functional groups. NeoDH analogs in which the l-glutamate congener was disrupted by epimerization retained low affinity for GluR5-2a and GluR6a KAR subunits. Most of the analogs showed agonist activity in electrophysiological recordings from human embryonic kidney-T/17 cells expressing GluR5-2a KARs, similar to the natural convulsant neoDH. In contrast, 2,4-epi-neoDH inhibited glutamate currents evoked from both GluR5-2a and GluR6a receptor-expressing cells. Therefore, this compound represents the first compound to exhibit functional antagonist activity on GluR5-2a and GluR6a KAR subunits without concurrent activity on AMPA receptor subunits. Finally, binding affinity of the synthetic ligands for the GluR5-2a subunit closely correlated with their seizurogenic potency, strongly supporting a role for receptors containing this subunit in the convulsant reaction to KAR agonists. The analogs described here offer further insight into structural determinants of ligand selectivity for KARs and potentially represent useful pharmacological tools for studying the role of KARs in synaptic physiology and pathology.
Collapse
Affiliation(s)
- L Leanne Lash
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Du M, Ulrich H, Zhao X, Aronowski J, Jayaraman V. Water soluble RNA based antagonist of AMPA receptors. Neuropharmacology 2007; 53:242-51. [PMID: 17588619 PMCID: PMC2001231 DOI: 10.1016/j.neuropharm.2007.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/27/2007] [Accepted: 05/14/2007] [Indexed: 11/18/2022]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are one of the important receptor classes involved in glutamate-mediated excitotoxicity. Although small molecule antagonists of this receptor have been shown to have neuroprotective properties, their low solubilities pose severe side effects in clinical trials. Here we have used the SELEX method to obtain water-soluble nuclease-resistant RNA ligands that bind to the agonist binding site of AMPA receptors. Using whole-cell current recordings, we have characterized the functional consequences of a representative aptamer from this class and show that it is a competitive antagonist of AMPA receptors and in the concentration range where it acts as an inhibitor of the AMPA receptor the RNA has no effect on the GluR6 homomeric kainate receptors. Additionally, using a fluorescence resonance energy transfer (FRET) probe, we show that this RNA ligand stabilizes the open cleft conformation of the ligand binding domain, consistent with the known structures of small antagonist-bound states of the soluble domain of this protein. Finally, using rat primary cortical neurons, we show that this RNA ligand significantly reduces neurotoxicity associated with oxygen glucose deprivation. The water-soluble and antagonistic properties of this aptamer coupled with its neuroprotective properties make it an excellent candidate for potential use in diseases or pathological conditions involving glutamate-mediated excitotoxicity.
Collapse
Affiliation(s)
- Mei Du
- 6431 Fannin, Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
10
|
Sun HY, Dobrunz LE. Presynaptic kainate receptor activation is a novel mechanism for target cell-specific short-term facilitation at Schaffer collateral synapses. J Neurosci 2006; 26:10796-807. [PMID: 17050718 PMCID: PMC6674734 DOI: 10.1523/jneurosci.2746-06.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Target cell-specific differences in short-term plasticity have been attributed to differences in the initial release probability of synapses. Using GIN (GFP-expressing inhibitory neurons) transgenic mice that express enhanced green fluorescent protein (EGFP) in a subset of interneurons containing somatostatin, we show that Schaffer collateral synapses onto the EGFP-expressing somatostatin interneurons in CA1 have very large short-term facilitation, even larger facilitation than onto pyramidal cells, in contrast to the majority of interneurons that have little or no facilitation. Using a combination of electrophysiological recordings and mathematical modeling, we show that the large short-term facilitation is caused both by a very low initial release probability and by synaptic activation of presynaptic kainate receptors that increase release probability on subsequent stimuli. Thus, we have discovered a novel mechanism for target cell-specific short-term plasticity at Schaffer collateral synapses in which the activation of presynaptic kainate receptors by synaptically released glutamate contributes to large short-term facilitation, enabling selective enhancement of the inputs to a subset of interneurons.
Collapse
Affiliation(s)
- Hua Yu Sun
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lynn E. Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
11
|
Monnerie H, Le Roux PD. Glutamate receptor agonist kainate enhances primary dendrite number and length from immature mouse cortical neurons in vitro. J Neurosci Res 2006; 83:944-56. [PMID: 16498632 DOI: 10.1002/jnr.20805] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate is an important regulator of dendrite development that may inhibit, (during ischemic injury), or facilitate (during early development) dendrite growth. Previous studies have reported mainly on the N-methyl-D-aspartate (NMDA) receptor-mediated dendrite growth-promoting effect of glutamate. In this study, we examined how the non-NMDA receptor agonist kainate influenced dendrite growth. E18 mouse cortical neurons were grown for 3 days in vitro and immunolabeled with anti-microtubule-associated protein 2 (MAP2) and anti-neurofilament (NF-H), to identify dendrites and axons, respectively. Exposure of cortical neurons to kainate increased dendrite growth without affecting neuron survival. This effect was dose-dependent, reversible and blocked by the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA)/kainate receptor antagonist NBQX and the low-affinity kainate receptor antagonist NS-102, but not by the AMPA receptor antagonist CFM-2. In addition, the NMDA receptor antagonist MK-801 had no effect on kainate-induced dendrite growth. Immunolabeling and Western blot analysis of kainate receptors using antibodies against the GluR6 and KA2 subunits, demonstrated that the immature cortical neurons used in this study express kainate receptor proteins. These results suggest that kainate-induced non-NMDA receptor activation promotes dendrite growth, and in particular primary dendrite number and length, from immature cortical neurons in vitro, and that kainate receptors may be directly involved in this process. Furthermore, these data support the possibility that like NMDA receptors, kainate receptor activation may also contribute to early neurite growth from cortical neurons in vitro.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
12
|
|
13
|
Verleye M, André N, Heulard I, Gillardin JM. Nefopam blocks voltage-sensitive sodium channels and modulates glutamatergic transmission in rodents. Brain Res 2004; 1013:249-55. [PMID: 15193535 DOI: 10.1016/j.brainres.2004.04.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 11/23/2022]
Abstract
In order to specify the nature of interactions between the analgesic compound nefopam and the glutamatergic system, we examined the effects of nefopam on binding of specific ligands on the three main subtypes ionotropic glutamate receptors: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), or quisqualic acid (QA) and kainic acid (KA) in rat brain membrane preparations. Functionally, we investigated the effects of nefopam against the seizures induced by agonists of these excitatory glutamate receptors in mice. Since the synaptic release of glutamate mainly depends upon the activation of membrane voltage-sensitive sodium channels (VSSCs), the nature of interactions between nefopam and these ionic channels was studied by evaluating the effects of nefopam on binding of 3H-batrachotoxinin, a specific ligand of the VSSCs in rat brain membrane preparations. The functional counterpart of the binding of nefopam on VSSCs was evaluated by its effects on the 22Na uptake-stimulated by veratridine on human neuroblastoma cells and in the maximal electroshock test in mice. Nefopam showed no affinity for the subtypes of ionotropic glutamate receptors up to 100 microM. On the other hand, nefopam was effective against NMDA, QA and KA induced clonic seizures in mice. Nefopam displaced 3H-batrachotoxinin and inhibited the uptake of 22Na in the micromolar range and it protected mice against electroshock induced seizures. Nefopam may block the VSSCs activity: consequently, at the presynaptic level, this effect led to a reduction of glutamate release and at the postsynaptic level, it led to a decrease of the neuronal excitability following activation of the glutamate receptors.
Collapse
Affiliation(s)
- Marc Verleye
- Laboratoires Biocodex-Service de Pharmacologie-Zac de Mercières, 60200 Compiègne, France.
| | | | | | | |
Collapse
|
14
|
Christensen JK, Varming T, Ahring PK, Jørgensen TD, Nielsen EØ. In vitro characterization of 5-carboxyl-2,4-di-benzamidobenzoic acid (NS3763), a noncompetitive antagonist of GLUK5 receptors. J Pharmacol Exp Ther 2004; 309:1003-10. [PMID: 14985418 DOI: 10.1124/jpet.103.062794] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accumulating preclinical data suggest that compounds that block the excitatory effect of glutamate on the kainate subtype of glutamate receptors may have utility for the treatment of pain, migraine, and epilepsy. In the present study, the in vitro pharmacological properties of the novel glutamate antagonist 5-carboxyl-2,4-di-benzamido-benzoic acid (NS3763) are described. In functional assays in human embryonic kidney (HEK)293 cells expressing homomeric GLU(K5) or GLU(K6) receptors, NS3763 is shown to display selectivity for inhibition of domoate-induced increase in intracellular calcium mediated through the GLU(K5) subtype (IC(50) = 1.6 microM) of kainate receptors compared with the GLU(K6) subtype (IC(50) > 30 microM). NS3763 inhibits the GLU(K5)-mediated response in a noncompetitive manner and does not inhibit [(3)H]alpha-amino-3-hydroxy-5-tertbutylisoxazole-4-propionic acid binding to GLU(K5) receptors. Furthermore, NS3763 selectively inhibits l-glutamate- and domoate-evoked currents through GLU(K5) receptors in HEK293 cells and does not significantly inhibit alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid- or N-methyl-d-aspartate-induced currents in cultured mouse cortical neurons at 30 microM. This is the first report on a selective and noncompetitive GLU(K5) antagonist.
Collapse
|
15
|
Leuchtmann EA, Ratner AE, Vijitruth R, Qu Y, McDonald JW. AMPA receptors are the major mediators of excitotoxic death in mature oligodendrocytes. Neurobiol Dis 2004; 14:336-48. [PMID: 14678751 DOI: 10.1016/j.nbd.2003.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Myelination of axons is important for central nervous system function, but oligodendrocytes, which constitute CNS myelin, are vulnerable to excitotoxic injury and death. Although mature oligodendrocytes express functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) and kainate-type glutamate receptors, the relative roles of these subtypes in excitotoxicity are not well understood. Using recently developed selective antagonists for subtypes of ionotropic non-NMDA receptors, we addressed this issue. By examining the pharmacological, biochemical, and morphologic features of kainite-induced excitotoxic death, we also determined whether it occurs by apoptosis, necrosis, or both. We conclude that when mature oligodendrocytes die after exposure to kainate: (1) AMPA receptors are the most important mediators, (2) kainate receptors play a smaller role, and (3) death occurs predominantly by necrosis, not apoptosis.
Collapse
Affiliation(s)
- Elizabeth A Leuchtmann
- Center for the Study of Nervous System Injury, Washington University School of Medicine, Box 8518, St. Louis, MO 63108, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Excitatory glutamatergic transmission involves a variety of different receptor types, each with distinct properties and functions. Physiological studies have identified both post- and presynaptic roles for kainate receptors, which are a subtype of the ionotropic glutamate receptors. Kainate receptors contribute to excitatory postsynaptic currents in many regions of the central nervous system including hippocampus, cortex, spinal cord and retina. In some cases, postsynaptic kainate receptors are co-distributed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors, but there are also synapses where transmission is mediated exclusively by postsynaptic kainate receptors: for example, in the retina at connections made by cones onto off bipolar cells. Modulation of transmitter release by presynaptic kainate receptors can occur at both excitatory and inhibitory synapses. The depolarization of nerve terminals by current flow through ionotropic kainate receptors appears sufficient to account for most examples of presynaptic regulation; however, a number of studies have provided evidence for metabotropic effects on transmitter release that can be initiated by activation of kainate receptors. Recent analysis of knockout mice lacking one or more of the subunits that contribute to kainate receptors, as well as studies with subunit-selective agonists and antagonists, have revealed the important roles that kainate receptors play in short- and long-term synaptic plasticity. This review briefly addresses the properties of kainate receptors and considers in greater detail the physiological analysis of their contributions to synaptic transmission.
Collapse
Affiliation(s)
- James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Ruscheweyh R, Sandkühler J. Role of kainate receptors in nociception. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 40:215-22. [PMID: 12589919 DOI: 10.1016/s0165-0173(02)00203-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nociceptive nerve fibers use L-glutamate as a fast excitatory neurotransmitter and it is therefore not surprising that both, ionotropic and metabotropic glutamate receptors play pivotal roles for transmission of nociceptive information in spinal cord. A subtype of ionotropic glutamate receptors, the kainate receptor, is present in spinal dorsal horn. However, its role has remained obscure as specific antagonists and agonists have become available only recently. Kainate receptors are present on small, including nociceptive, dorsal root ganglion cells and on intrinsic dorsal horn neurons, and those two locations can be targeted separately by appropriate agonists and antagonists. Postsynaptic kainate receptors on spinal dorsal horn neurons are activated by high intensity electrical stimulation of the dorsal root entry zone that activates nociceptive primary afferent fibers. In contrast, low intensity stimulation that activates only non-nociceptive fibers is ineffective. Selective blockade of kainate receptors may produce analgesia. Here, we review what is known about localization of kainate receptors in dorsal root ganglia and spinal dorsal horn and their physiological and pathophysiological importance with special reference to nociceptive pathways. A short overview on molecular biology and agonist and antagonist pharmacology is included.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Cellular and Integrative Neurophysiology, Brain Research Institute, Vienna University Medical School, Spitalgasse 4, A-1090, Vienna, Austria
| | | |
Collapse
|
18
|
Maccaferri G, Dingledine R. Complex effects of CNQX on CA1 interneurons of the developing rat hippocampus. Neuropharmacology 2002; 43:523-9. [PMID: 12367599 DOI: 10.1016/s0028-3908(02)00161-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the effect of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), on spontaneous GABA(A) receptor-mediated transmission in the hippocampal CA1 subfield. On average, simultaneous recordings from CA1 str. radiatum interneurons and pyramidal cells showed that CNQX application doubled the frequency of bicuculline sensitive spontaneous inhibitory postsynaptic currents (sIPSCs) without apparently changing their amplitude. However, despite the increase in sIPSC frequency, current-clamp recording showed that CNQX application was sufficient in most cases to depolarize interneurons to firing threshold. In contrast, CNQX application could not induce firing in pyramidal cells. In the presence of tetrado-toxin (TTX), CNQX increased interneuron membrane conductance, and depolarized interneurons from resting potentials. The axons of the studied interneurons ramify widely in the CA1 region and suggest that the cells of our sample are mostly involved with control of dendritic excitability. Our results indicate that CNQX-induced increase of sIPSC frequency is not limited to excitatory cells, but also impacts GABAergic interneurons. However, despite the increase of sIPSC frequency, CNQX-induced depolarization is sufficient to selectively generate firing in interneurons and thus modify the network properties mediated by GABA(A) receptors in the hippocampus.
Collapse
Affiliation(s)
- G Maccaferri
- Department of Physiology, Tarry Bldg, Rm 5-707 M211, 303 E. Chicago Ave., IL 60611, USA.
| | | |
Collapse
|
19
|
Essin K, Nistri A, Magazanik L. Evaluation of GluR2 subunit involvement in AMPA receptor function of neonatal rat hypoglossal motoneurons. Eur J Neurosci 2002; 15:1899-906. [PMID: 12099896 DOI: 10.1046/j.1460-9568.2002.02045.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AMPA receptors (AMPAr) mediate fast synaptic responses to glutamate and, when they lack the GluR2 subunit, are strongly Ca2+ permeable and may increase intracellular Ca2+ levels. Because hypoglossal motoneurons possess restricted ability to buffer internal Ca2+ and are vulnerable to Ca2+ excitotoxicity, we wondered if, in these cells, any significant Ca2+ influx could be generated via AMPAr activity. Using whole cell patch-clamp recording from neonatal rat hypoglossal motoneurons, we tested the AMPAr properties conferred by GluR2 subunits, namely Ca2+ permeability, current rectification and sensitivity to pentobarbital or to the subunit-specific channel blockers, IEM-1460 and IEM-1925. We recorded membrane currents generated by the agonist, kainate, and compared them with those obtained from hippocampal pyramidal neurons (expressing GluR2-containing AMPAr) and from striatal giant aspiny or hippocampal interneurons (with GluR2-lacking AMPAr). Ca2+ vs. Na+ permeability of motoneuron AMPAr was relatively low (0.25 +/- 0.05), although higher than that of pyramidal neurons. With intracellularly applied spermine, significant inward rectification was absent from motoneurons. These data indicated the prevalence of functional GluR2 subunits. However, the sensitivity of motoneuron AMPAr to pentobarbital did not differ from that of GluR2-lacking AMPAr on interneurons. Motoneurons possessed sensitivity to IEM-1460 (IC50 = 90 +/- 10 microm) approximately 10-fold lower than striatal interneurons, although 10-fold higher than hippocampal pyramidal cells. IEM-1925 also reduced the amplitude of excitatory synaptic currents in brainstem slice motoneurons. We hypothesize that hypoglossal motoneuron AMPAr (moderately Ca2+ permeable because they contain few GluR2 subunits) may contribute to intracellular Ca2+ rises especially if persistent AMPAr activation (or the pathological GluR2 down-regulation) occurs.
Collapse
Affiliation(s)
- K Essin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 193224 St. Petersburg, Russia
| | | | | |
Collapse
|
20
|
Brickley SG, Farrant M, Swanson GT, Cull-Candy SG. CNQX increases GABA-mediated synaptic transmission in the cerebellum by an AMPA/kainate receptor-independent mechanism. Neuropharmacology 2001; 41:730-6. [PMID: 11640927 DOI: 10.1016/s0028-3908(01)00135-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GABA(A) receptor-mediated inhibitory synaptic transmission within the CNS is often studied in the presence of glutamate receptor antagonists. However, for nearly a decade it has been known that, in the hippocampus, one of the most commonly used alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), can increase the frequency of spontaneous GABA(A) receptor-mediated postsynaptic currents (sIPSCs). In the present study we examined the effect of CNQX and related compounds on GABA-mediated synaptic transmission in the cerebellum. At various stages of development, low concentrations of CNQX increased the frequency of sIPSCs recorded from granule cells. This effect was independent of the blocking action of CNQX on ionotropic glutamate receptors, as it was not observed with the broad-spectrum glutamate receptor antagonist kynurenate. No increase in sIPSC frequency was observed with the NMDA receptor antagonists D-AP5 or 7-ClK, the selective AMPA receptor antagonists GYKI 52466 or GYKI 53655, or the kainate receptor antagonist NS-102. In contrast, two other quinoxaline derivatives, NBQX and DNQX, were capable of increasing sIPSC frequency. These results demonstrate that the novel excitatory action of CNQX, unrelated to blockade of ionotropic glutamate receptors, is not restricted to the hippocampus and can be observed with structurally related compounds.
Collapse
Affiliation(s)
- S G Brickley
- Department of Pharmacology, University College London, Gower Street, WC1E 6BT, London, UK
| | | | | | | |
Collapse
|
21
|
Lerma J, Paternain AV, Rodríguez-Moreno A, López-García JC. Molecular physiology of kainate receptors. Physiol Rev 2001; 81:971-98. [PMID: 11427689 DOI: 10.1152/physrev.2001.81.3.971] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A decade ago, our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology was essentially null. A plethora of recent studies has altered this situation profoundly such that kainate receptors are now regarded as key players in the modulation of transmitter release, as important mediators of the postsynaptic actions of glutamate, and as possible targets for the development of antiepileptic and analgesic drugs. In this review, we summarize our current knowledge of the properties of kainate receptors focusing on four key issues: 1) their structural and biophysical features, 2) the important progress in their pharmacological characterization, 3) their pre- and postsynaptic mechanisms of action, and 4) their involvement in a series of physiological and pathological processes. Finally, although significant progress has been made toward the elucidation of their importance for brain function, kainate receptors remain largely an enigma and, therefore, we propose some new roads that should be explored to obtain a deeper understanding of this young, but intriguing, class of proteins.
Collapse
Affiliation(s)
- J Lerma
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Janssens N, Lesage AS. Glutamate receptor subunit expression in primary neuronal and secondary glial cultures. J Neurochem 2001; 77:1457-74. [PMID: 11413230 DOI: 10.1046/j.1471-4159.2001.00369.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report on the expression of ionotropic glutamate receptor subunits in primary neuronal cultures from rat cortex, hippocampus and cerebellum and of metabotropic glutamate (mGlu) receptor subtypes in these neuronal cultures as well as in cortical astroglial cultures. We found that the NMDA receptor (NR) subunits NR1, NR2A and NR2B were expressed in all three cultures. Each of the three cultures showed also expression of the four AMPA receptor subunits. Although RT-PCR detected mRNA of all kainate (KA) subunits in the three cultures, western blot showed only expression of Glu6 and KA2 receptor subunits. The expression analysis of mGlu receptors indicated the presence of all mGlu receptor subtype mRNAs in the three neuronal cultures, except for mGlu2 receptor mRNA, which was not detected in the cortical and cerebellar culture. mGlu1a/alpha, -2/3 and -5 receptor proteins were present in all three cultures, whereas mGlu4a and mGlu8a receptor proteins were not detected. Astroglial cultures were grown in either serum-containing or chemically defined medium. Only mGlu5 receptor protein was found in astroglial cultures grown in serum-containing medium. When astrocytes were cultured in chemically defined medium, mGlu3, -5 and -8 receptor mRNAs were detected, but at the protein level, still only mGlu5 receptor was found.
Collapse
Affiliation(s)
- N Janssens
- CNS Research, Janssen Research Foundation, Beerse, Belgium
| | | |
Collapse
|
23
|
Gonzalez de la Vega A, Buño W, Pons S, Garcia-Calderat MS, Garcia-Galloway E, Torres-Aleman I. Insulin-like growth factor I potentiates kainate receptors through a phosphatidylinositol 3-kinase dependent pathway. Neuroreport 2001; 12:1293-6. [PMID: 11338209 DOI: 10.1097/00001756-200105080-00047] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurotrophic factors modulate synaptic plasticity through mechanisms that include regulation of membrane ion channels and neurotransmitter receptors. Recently, it was shown that insulin-like growth factor I (IGF-I) induces depression of AMPA-mediated currents without affecting NMDA-receptor function in neurons. We now report that IGF-I markedly potentiates the kainate-preferring ionotropic glutamate receptor in young cerebellar granule neurons expressing functional kainate-, but not AMPA-mediated currents. Potentiation of kainate responses by IGF-I is blocked by wortmannin, a phosphatidylinositol 3-kinase (P13K) inhibitor, indicating a role for this kinase in the effect of IGF-I. These results reinforce the notion that modulation of ionotropic glutamate receptors are involved in the regulatory actions of IGF-I on neuronal plasticity.
Collapse
|
24
|
Tarazi FI, Zhang K, Baldessarini RJ. Effects of nigrostriatal dopamine denervation on ionotropic glutamate receptors in rat caudate-putamen. Brain Res 2000; 881:69-72. [PMID: 11033095 DOI: 10.1016/s0006-8993(00)02812-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in ionotropic glutamate NMDA, AMPA and KA receptor binding in rat caudate-putamen were examined by quantitative in vitro receptor autoradiography 5 weeks after lesioning nigrostriatal dopaminergic projections. In this animal model of Parkinson's disease, density of binding in caudate-putamen increased at KA, but not NMDA or AMPA receptors. The findings indicate that nigrostriatal dopamine denervation can selectively enhance KA receptor levels in rat basal ganglia, suggest that KA receptors contribute to the pathophysiology of Parkinson's disease, and may suggest innovative treatments.
Collapse
Affiliation(s)
- F I Tarazi
- Mailman Research Center, McLean Division of Massachusetts General Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | |
Collapse
|
25
|
Abstract
The excitatory amino acid receptor (EAAR) types involved in the generation of light-evoked excitatory postsynaptic currents (EPSCs) were examined in X-type retinal ganglion cells. Using isolated and sliced preparations of cat and ferret retina, the light-evoked EPSCs of X cells were isolated by adding picrotoxin and strychnine to the bath to remove synaptic inhibition. N-methyl-D-aspartate (NMDA) receptors contribute significantly to the light-evoked EPSCs of ON- and OFF-X cells at many different holding potentials. An NMDA receptor contribution to the EPSCs was observable when retinal synaptic inhibition was either normally present or pharmacologically blocked. NMDA receptors formed 80% of the peak light-evoked EPSC at a holding potential of -40 mV; however, even at -80 mV, 20% of the light-evoked EPSC was NMDA-mediated. An alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor-mediated component to the light-evoked EPSCs predominated at a holding potential of -80 mV. The light-evoked EPSC was blocked by the AMPA receptor-selective antagonist GYKI52466 (50-100 microM). The AMPA receptor-mediated EPSC component had a linear current-voltage relation. AMPA receptors form the main non-NMDA EAAR current on both ON- and OFF- X ganglion cell dendrites. When synaptic transmission was blocked by the addition of Cd(2+) to the Ringer, application of kainate directly to ganglion cells evoked excitatory currents that were strongly blocked by GYKI52466. Experiments using selective EAAR modulators showed the AMPA receptor-selective modulator cyclothiazide potentiated glutamate-evoked currents on X cells, while the kainate receptor-selective modulator concanavalin A (ConA) had no effect on kainate-evoked currents. Whereas the present study confirms the general notion that AMPA EAAR-mediated currents are transient and NMDA receptor-mediated currents are sustained, current-voltage relations of the light-evoked EPSC at different time points showed the contributions of these two receptor types significantly overlap. Both NMDA and AMPA EAARs can transmit transient and sustained visual signals in X ganglion cells, suggesting that much signal shaping occurs presynaptically in bipolar cells.
Collapse
MESH Headings
- Animals
- Cats
- Electrophysiology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Ferrets
- In Vitro Techniques
- Patch-Clamp Techniques
- Photic Stimulation
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/physiology
- Synapses/drug effects
- Synapses/physiology
Collapse
Affiliation(s)
- E D Cohen
- Yale Vision Research Center, Yale School of Medicine, New Haven, Connecticut 06520-8061, USA
| |
Collapse
|
26
|
Bailey GP, Sewell WF. Contribution of glutamate receptors to spontaneous and stimulus-evoked discharge in afferent fibers innervating hair cells of the Xenopus lateral line organ. Hear Res 2000; 144:8-20. [PMID: 10831861 DOI: 10.1016/s0378-5955(00)00023-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relative contributions of NMDA (N-methyl-D-aspartate) and non-NMDA glutamate receptors to spontaneous and stimulus-evoked transmission at the hair cell/afferent fiber synapse were determined in the Xenopus laevis lateral line organ. The non-NMDA receptor antagonist, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), reversibly reduced both spontaneous and stimulus-evoked discharge rate with an EC(50) of 0.5 microM. NMDA receptor antagonism with the combination of chlorokynurenic acid (100 microM) and elevated magnesium (1.1 mM), or elevated magnesium alone, blocked responses to NMDA without significantly altering spontaneous or stimulus-evoked discharge rate or the responses to kainate. All non-NMDA receptor agonists tested increased discharge rate at low concentrations and, at higher concentrations, increased, then suppressed discharge rate. The EC(50)s were: domoic acid (2.4 mcM)<quisqualic acid (6 mcM)<kainic acid (18 mcM)<AMPA (82 mcM)<<glutamate (1150 mcM). NMDA and ibotenic acid also produced an increase in discharge followed by a suppression, but the suppressive phase of the response predominated and maximum increases in discharge rates were low compared to effects of the non-NMDA agonists. The EC(50)s were: NMDA (148 mcM)<ibotenic acid (463 mcM). The EC(50) for the suppression of afferent discharge that followed the initial excitatory effect was similar to the EC(50) for excitation. Perfusion with active concentrations of kainate, AMPA, or NMDA did not alter the threshold for electrical stimulation of these nerve fibers. We conclude that most of the postsynaptic signal normally seen in afferent fibers is mediated by non-NMDA receptors.
Collapse
Affiliation(s)
- G P Bailey
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston 02114, USA
| | | |
Collapse
|
27
|
Gibbs JW, Sombati S, DeLorenzo RJ, Coulter DA. Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia 2000; 41:10-6. [PMID: 10768293 DOI: 10.1111/j.1528-1157.2000.tb02164.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This study was undertaken to evaluate the effects of topiramate (TPM) on excitatory amino acid-evoked currents. METHODS Kainate and N-methyl-D-aspartate (NMDA) were applied to cultured rat hippocampal neurons by using a concentration-clamp apparatus to selectively activate the AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid)/kainate and NMDA receptor subtypes, respectively. The evoked membrane currents were recorded by using perforated-patch whole-cell voltage-clamp techniques. RESULTS TPM partially blocked kainate-evoked currents with an early-onset reversible phase (phase I) and a late-onset phase (phase II) that occurred after a 10- to 20-min delay and did not reverse during a 2-h washout period. Application of dibutyryl cyclic adenosine monophosphate (cAMP; 2 mM) during washout after phase II block enhanced reversal, with the kainate current amplitude being restored by approximately 50%. Phase II but not phase I block was prevented by prior application of okadaic acid (1 microM), a broad-spectrum phosphatase inhibitor, suggesting that phase II block may be mediated through interactions with intracellular intermediaries that alter the phosphorylation state of kainate-activated channels. Topiramate at 100 microM blocked kainate-evoked currents by 90% during phase II, but had no effect on NMDA-evoked currents. The median inhibitory concentration (IC50) values for phase I and II block of kainate currents were 1.6 and 4.8 microM, respectively, which are within the range of free serum levels of TPM in patients. CONCLUSIONS The specific blockade of the kainate-induced excitatory conductance is consistent with the ability of TPM to reduce neuronal excitability and could contribute to the anticonvulsant efficacy of this drug.
Collapse
Affiliation(s)
- J W Gibbs
- Department of Neurology, Medical College of Virginia, Richmond, USA
| | | | | | | |
Collapse
|
28
|
Abstract
We investigated the mechanisms of long-lasting depolarizing potentials (LLDs) generated in mitral cells with whole-cell patch recordings in the rat olfactory bulb slice. LLDs occur spontaneously and are evoked by either orthodromic stimulation of the olfactory nerve or antidromic stimulation of mitral and tufted (M/T) cells. LLDs are followed by a long refractory period, limiting LLD generation to approximately 1 Hz. LLD production does not appear to involve either intrinsic voltage-activated or metabotropic mechanisms. The initiation of LLDs requires activation of non-NMDA but not NMDA receptors. Dual recordings from the apical dendrites and somata of mitral cells show that LLDs are generated in the distal portion of the apical dendrite, most likely in the glomerulus. The rising phase of LLDs shows characteristics of polyneuronal input, including a high variability and sensitivity to charge screening. Paired recordings from adjacent mitral cells suggest that LLDs occur synchronously only in cells whose apical dendrites ramify in the same glomerulus. These findings suggest that LLDs involve recurrent, intraglomerular dendrodendritic interactions among M/T cells.
Collapse
|
29
|
Lees GJ. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 2000; 59:33-78. [PMID: 10718099 DOI: 10.2165/00003495-200059010-00004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It has been postulated, consistent with the ubiquitous presence of glutamatergic neurons in the brain, that defects in glutamatergic neurotransmission are associated with many human neurological and psychiatric disorders. This review evaluates the possible application of ligands acting on glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate (KA) receptors to minimise the pathology and/or symptoms of various diseases. Glutamate activation of AMPA receptors is thought to mediate most fast synaptic neurotransmission in the brain, while transmission via KA receptors contributes only a minor component. Variants of the protein subunits forming these receptors greatly extend the pharmacological and electrophysiological properties of AMPA/KA receptors. Disease and drug use can differentially affect the expression of the subunits and their variants. Ligands bind to AMPA receptors by competing with glutamate at the glutamate binding site, or non-competitively at other sites on the proteins (allosteric modulators). Ligands showing selective competitive antagonist actions at the AMPA/ KA class of glutamate receptors were first reported in 1988, and the systemically active antagonist 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX) was first shown to have useful therapeutic effects on animal models of neurological diseases in 1990. Since then, newer antagonists with increased potency, higher specificity, increased water solubility, and a longer duration of action in vivo have been developed. Negative allosteric modulators such as the prototype GYKI-52466 also block AMPA receptors but have little action at KA receptors. Positive allosteric modulators enhance glutamatergic neurotransmission at AMPA receptors. Polyamines and adamantane derivatives bind within the ion channel of calcium-permeable AMPA receptors. The latest developments include ligands selective for KA receptors containing Glu-R5 subunits. Evidence for advantages of AMPA receptor antagonists over N-methyl-D-aspartate (NMDA) receptor antagonists for symptomatic treatment of neurological and psychiatric conditions, and for minimising neuronal loss occurring after acute neurological diseases, such as physical trauma, ischaemia or status epilepticus, have been shown in animal models. However, as yet AMPA receptor antagonists have not been shown to be effective in clinical trials. On the other hand, a limited number of clinical trials have been reported for AMPA receptor ligands that enhance glutamatergic neurotransmission by extending the ion channel opening time (positive allosteric modulators). These acute studies demonstrate enhanced memory capability in both young and aged humans, without any apparent serious adverse effects. The use of these allosteric modulators as antipsychotic drugs is also possible. However, the long term use of both direct agonists and positive allosteric modulators must be approached with considerable caution because of potential adverse effects.
Collapse
Affiliation(s)
- G J Lees
- Department of Psychiatry and Behavioural Science, University of Auckland School of Medicine, New Zealand.
| |
Collapse
|
30
|
Liu QS, Patrylo PR, Gao XB, van den Pol AN. Kainate acts at presynaptic receptors to increase GABA release from hypothalamic neurons. J Neurophysiol 1999; 82:1059-62. [PMID: 10444697 DOI: 10.1152/jn.1999.82.2.1059] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent reports suggest that kainate acting at presynaptic receptors reduces the release of the inhibitory transmitter GABA from hippocampal neurons. In contrast, in the hypothalamus in the presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor antagonists [1-(4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466) and D,L-2-amino-5-phosphonopentanoic acid (AP5)], kainate increased GABA release. In the presence of tetrodotoxin, the frequency, but not the amplitude, of GABA-mediated miniature inhibitory postsynaptic currents (IPSCs) was enhanced by kainate, consistent with a presynaptic site of action. Postsynaptic activation of kainate receptors on cell bodies/dendrites was also found. In contrast to the hippocampus where kainate increases excitability by reducing GABA release, in the hypothalamus where a much higher number of GABAergic cells exist, kainate-mediated activation of transmitter release from inhibitory neurons may reduce the level of neuronal activity in the postsynaptic cell.
Collapse
Affiliation(s)
- Q S Liu
- Department of Neurosurgery, Yale University Medical School, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Glutamic acid is the principal excitatory neurotransmitter in the mammalian central nervous system. Glutamic acid binds to a variety of excitatory amino acid receptors, which are ligand-gated ion channels. It is activation of these receptors that leads to depolarisation and neuronal excitation. In normal synaptic functioning, activation of excitatory amino acid receptors is transitory. However, if, for any reason, receptor activation becomes excessive or prolonged, the target neurones become damaged and eventually die. This process of neuronal death is called excitotoxicity and appears to involve sustained elevations of intracellular calcium levels. Impairment of neuronal energy metabolism may sensitise neurones to excitotoxic cell death. The principle of excitotoxicity has been well-established experimentally, both in in vitro systems and in vivo, following administration of excitatory amino acids into the nervous system. A role for excitotoxicity in the aetiology or progression of several human neurodegenerative diseases has been proposed, which has stimulated much research recently. This has led to the hope that compounds that interfere with glutamatergic neurotransmission may be of clinical benefit in treating such diseases. However, except in the case of a few very rare conditions, direct evidence for a pathogenic role for excitotoxicity in neurological disease is missing. Much attention has been directed at obtaining evidence for a role for excitotoxicity in the neurological sequelae of stroke, and there now seems to be little doubt that such a process is indeed a determining factor in the extent of the lesions observed. Several clinical trials have evaluated the potential of antiglutamate drugs to improve outcome following acute ischaemic stroke, but to date, the results of these have been disappointing. In amyotrophic lateral sclerosis, neurolathyrism, and human immunodeficiency virus dementia complex, several lines of circumstantial evidence suggest that excitotoxicity may contribute to the pathogenic process. An antiglutamate drug, riluzole, recently has been shown to provide some therapeutic benefit in the treatment of amyotrophic lateral sclerosis. Parkinson's disease and Huntington's disease are examples of neurodegenerative diseases where mitochondrial dysfunction may sensitise specific populations of neurones to excitotoxicity from synaptic glutamic acid. The first clinical trials aimed at providing neuroprotection with antiglutamate drugs are currently in progress for these two diseases.
Collapse
Affiliation(s)
- A Doble
- Neuroscience Dept. Rhŏne-Poulenc Rorer S.A., Antony, France
| |
Collapse
|
32
|
Banke TG, Lambert JD. Novel potent AMPA analogues differentially affect desensitisation of AMPA receptors in cultured hippocampal neurons. Eur J Pharmacol 1999; 367:405-12. [PMID: 10079017 DOI: 10.1016/s0014-2999(98)00975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The agonist actions of two AMPA receptor analogues, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) and (RS)-2-amino-3-(3-hydroxy-5-trfluoromethyl-4-isoxazolyl)prop ionic acid (Tri-F-AMPA) have been studied on cultured rat hippocampal neurons. Whole-cell recordings with semi-rapid application of the agonists were used to study steady-state (plateau) responses. ACPA was the most potent agonist (EC50, 1.2 microM), followed by AMPA (4.3 microM) and Tri-F-AMPA (4.6 microM), corresponding to a potency ratio of 4:1:1. Hill coefficients were close to 1 for AMPA and ACPA and close to 2 for Tri-F-AMPA, respectively. Plateau responses to maximal concentrations of the three agonists varied more than 2-fold. ACPA responses were 2.1 times greater and responses to Tri-F-AMPA were 1.6 times greater than responses to AMPA, respectively. Peak responses and desensitization were studied by using a fast piezoelectric device to apply agonists rapidly to outside-out patches. The time constants of desensitization were 8 ms for AMPA, 12 ms for Tri-F-AMPA and 17 ms for ACPA. There were no significant differences in the time-to-peak and 10-90% rise-time of the responses. The results indicate that of the three agonists tested, ACPA is the most potent at AMPA receptors expressed in cultured hippocampal neurons and that the maximum response to the agonists is inversely related to the rate of desensitization.
Collapse
Affiliation(s)
- T G Banke
- PharmaBiotec Research Center, Department of Physiology, University of Aarhus, Denmark
| | | |
Collapse
|
33
|
Abstract
Kainate receptors are abundantly expressed in the hippocampus. Mice with disruption of kainate receptor subunits allow the genetic dissection of the role of each kainate receptor subunits in the synaptic physiology of the hippocampus, as well as in excitotoxic processes. We have compared the action of domoate and kainate on CA1 pyramidal neurons in slices from wild-type and GluR6-/- mice. The difference in the amplitude of inward currents evoked by domoate and kainate between wild-type and GluR6-/- mice demonstrates the presence of functional kainate receptors in CA1 pyramidal neurons. Block of domoate-activated inward currents by the AMPA receptor antagonists 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo(F)quinoxaline (1 microM) and 1-(4-aminophenyl)-3-methylcarbamyl-4-methyl7, 8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine) (GYKI 53655) (50 microM) is complete in GluR6-/- mice but only partial in wild-type mice. In the presence of GYKI 53655, kainate receptor activation dramatically increases the frequency of spontaneous IPSCs in CA1 pyramidal cells from wild-type, as well as GluR6-/-, mice. This results from the kainate receptor-mediated activation of a sustained inward current and an increased action potential firing in afferent GABAergic interneurons of the CA1 field. These effects are observed in wild-type, as well as GluR6-/-, mice. Kainate receptors also decrease the amplitude of evoked IPSCs in CA1 pyramidal cells by increasing synaptic failures in wild-type and GluR6-/- mice. These results indicate that in CA1 pyramidal cells, distinct subtypes of kainate receptors mediate several functionally antagonistic effects.
Collapse
|
34
|
Jensen JB, Schousboe A, Pickering DS. Role of desensitization and subunit expression for kainate receptor-mediated neurotoxicity in murine neocortical cultures. J Neurosci Res 1999; 55:208-17. [PMID: 9972823 DOI: 10.1002/(sici)1097-4547(19990115)55:2<208::aid-jnr8>3.0.co;2-p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N-methyl-D-aspartate (NMDA) receptors, (2) toxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-im ine (MK-801), an NMDA receptor antagonist, was able to block part of the toxicity. The activation of NMDA receptors is most likely a secondary effect resulting from glutamate release upon kainate or domoate stimulation. 1-(4-Aminophenyl)-3-methylcarbamyl-4-methyl-3,4-dihydro-7,8-ethyle nedioxy-5H-2,3-benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate- and domoate-mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization of kainate receptors led to an increased neurotoxicity upon stimulation with kainate or domoate. In neurons cultured for 12 days in vitro a small but significant neurotoxic effect was observed when stimulated with agonist in the presence of MK-801 and GYKI 53655. This indicates that the toxicity is produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures.
Collapse
Affiliation(s)
- J B Jensen
- The Royal Danish School of Pharmacy, PharmaBiotec Research Center, Department of Pharmacology, Copenhagen
| | | | | |
Collapse
|
35
|
Chittajallu R, Braithwaite SP, Clarke VR, Henley JM. Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 1999; 20:26-35. [PMID: 10101959 DOI: 10.1016/s0165-6147(98)01286-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although it is well established that kainate receptors constitute an entirely separate group of proteins from AMPA receptors, their physiological functions remain unclear. The molecular cloning of subunits that form kainate receptors and the ability to study recombinant receptors is leading to an increased understanding of their functional properties. Furthermore, the development of kainate receptor-selective agonists and antagonists over the past few years is now allowing the physiological roles of these receptors and, in some cases, specific subunits to be investigated. As a consequence, the synaptic activation of postsynaptic kainate receptors and the presence of presynaptic kainate receptors that serve to regulate excitatory and inhibitory synaptic transmission have been described, and will be discussed in this article by Ramesh Chittajallu, Steven Braithwaite, Vernon Clarke and Jeremy Henley.
Collapse
Affiliation(s)
- R Chittajallu
- Department of Anatomy, Medical School, University of Bristol, UK
| | | | | | | |
Collapse
|
36
|
Dai WM, Ebert B, Madsen U, Lambert JD. Studies of the antagonist actions of (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl] propionic acid (ATPO) on non-NMDA receptors in cultured rat neurones. Br J Pharmacol 1998; 125:1517-28. [PMID: 9884081 PMCID: PMC1565742 DOI: 10.1038/sj.bjp.0702236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whole-cell patch-clamp recordings from single cultured cortical neurones have been used to study the action of (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl+ ++]propionic acid (ATPO), which has previously been proposed to be a potent selective antagonist of 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors. ATPO competitively reduced peak responses evoked by semi-rapid applications of AMPA (Ki = 16 microM) but had variable effects on plateau responses, which were on average unchanged. Following blockade of AMPA receptor desensitization by cyclothiazide (CTZ, 100 microM), the plateau responses were reduced by ATPO to a similar extent as the peak responses, indicating that ATPO reduces desensitization of AMPA receptors. Semi-rapid application of kainic acid (KA) and the KA receptor-selective agonist, (2S,4R)-4-methylglutamic acid (MeGlu) evoked non-desensitizing responses which were competitively antagonized by ATPO (Ki values: 27 and 23 microM, respectively). Responses to MeGlu were unaffected by CTZ (100 microM), but potentiated 3 fold following blockade of KA receptor desensitization by concanavalin A (Con A, 300 microg ml(-1)). Responses of spinal cord neurones to MeGlu were blocked by ATPO to a similar extent before and after blockade of KA receptor desensitization by Con A. Although selectively potentiated by Con A, plateau responses to MeGlu were reduced by 69.6% by the AMPA selective antagonist, GYKI 53655 (10 microM). The remaining component was further reduced by ATPO with a Ki of 36 microM, which was not significantly different from that in the absence of GYKI 53655, but was greater than that on responses to AMPA. It is concluded that ATPO is a moderate-potency competitive inhibitor of naturally expressed non-NMDA receptors.
Collapse
Affiliation(s)
- W M Dai
- Department of Physiology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
37
|
Paternain AV, Rodríguez-Moreno A, Villarroel A, Lerma J. Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 1998; 37:1249-59. [PMID: 9849662 DOI: 10.1016/s0028-3908(98)00098-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation-inactivation properties of membrane currents induced by the rapid application of glutamate or kainate were studied in cultured hippocampal neurons and in HEK cells transfected with a cDNA encoding the GluR6 subunit. The onset of desensitization was rapid and similar in native and recombinant channels (approximately 80 s(-1) of onset rate constant). Recovery from desensitization was slow and agonist-dependent in neurons, proceeding slightly faster in GluR6 receptors. Half-maximal activation (EC50) of native channels was obtained at a glutamate concentration of 330 microM, while the half-maximal steady state desensitization (IC1/2) was attained at 2.8 microM. These values differed from those obtained in recombinant receptors (EC50 = 762 microM and IC1/2 = 0.44 microM). A small window under the crossing point of activation and inactivation curves was observed, indicating that, for some concentrations of either agonist, steady state channel activity could exist. In native receptors, this window presented maximum values at approximately 100 microM for glutamate, which predicted well the potency of glutamate to reduce the GABAergic drive in hippocampal slices. These data indicate that for neuronal kainate receptors, the concentrations for half activation and half inactivation differ by two orders of magnitude such that the maximum response to a maintained concentration of glutamate is small, and the steady state dose response curve is skewed and bell shaped.
Collapse
Affiliation(s)
- A V Paternain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Abstract
The potent excitatory amino acid glutamate mediates its excitatory effects through a great variety of specific ionotropic receptors, including NMDA, AMPA and kainate receptors. Despite the identification, isolation and cloning of several subunits of the kainate receptor, this receptor has been rather elusive and its function remains enigmatic. Recent results indicate that kainate receptors can be reached by synaptically released glutamate and that their activation downregulates GABAergic inhibition by modulating the reliability of GABA synapses. Thus, kainate receptors may have a role in the etiology of epilepsy and could become a target for antiepileptic drugs.
Collapse
Affiliation(s)
- J Lerma
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
39
|
Yamamoto C, Sawada S, Ohno-Shosaku T. Distribution and properties of kainate receptors distinct in the CA3 region of the hippocampus of the guinea pig. Brain Res 1998; 783:227-35. [PMID: 9507146 DOI: 10.1016/s0006-8993(97)01350-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To characterize the nature of kainate (KA) receptors distinct in the CA3 region of the hippocampus, properties of depolarizations induced by pulses of KA or AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) applied to dendrites of CA3 neurons with micropipettes were studied in thin transverse slices of the guinea pig hippocampus. KA induced depolarizations at negligible latencies only when administered to the most proximal dendritic areas. The depolarization was unaffected by tetrodotoxin or by a decrease in Ca2+ and an increase in Mg2+ concentrations. The declining slope of the KA-induced depolarization was significantly slower than that of the AMPA-induced depolarization. In comparison with the AMPA-induced depolarization, the KA-induced depolarization was much less susceptible to antagonists such as 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and 1-(4-aminophenyl)-4-methyl-7, 8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI52466). 6, 7,8,9-Tetrahydro-5-nitro-1H-benz[g]indole-2,3-dione-3-oxime (NS-102) and (2S,4R)-4-methylglutamate (SYM 2081) were without effects. The threshold concentration of pressure-ejected KA to induce depolarizations was about 200 nM. Excitatory postsynaptic potentials elicited by mossy fiber stimulation were more potently suppressed by CNQX than by GYKI52466. These results indicate that receptors responsible for the slow KA depolarization in the CA3 region of the hippocampus are not AMPA receptors but KA receptors. They are localized in the most proximal part of the apical dendrite and distinct from those observed in primary cultures of hippocampal neurons.
Collapse
Affiliation(s)
- C Yamamoto
- Department of Physiology, Faculty of Medicine, Kanazawa University, Kanazawa 920, Japan
| | | | | |
Collapse
|
40
|
Rodríguez-Moreno A, Herreras O, Lerma J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 1997; 19:893-901. [PMID: 9354335 DOI: 10.1016/s0896-6273(00)80970-8] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using microcultured neurons and hippocampal slices, we found that under conditions that completely block AMPA receptors, kainate induces a reduction in the effectiveness of GABAergic synaptic inhibition. Evoked inhibitory postsynaptic currents (IPSCs) were decreased by kainate by up to 90%, showing a bell-shaped dose-response curve similar to that of native kainate-selective receptors. The down-regulation of GABAergic inhibition was not affected by antagonism of metabotropic receptors, while it was attenuated by CNQX. Kainate increased synaptic failures and reduced the frequency of miniature IPSCs, indicating a presynaptic locus of action. In vivo experiments using brain dialysis demonstrated that kainate reversibly abolished recurrent inhibition and induced an epileptic-like electroencephalogram (EEG) activity. These results indicate that kainate receptor activation down-regulates GABAergic inhibition by modulating the reliability of GABA synapses.
Collapse
Affiliation(s)
- A Rodríguez-Moreno
- Department of Neural Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|