1
|
Mu C, Wang Y, Han C, Song H, Wu Q, Yang J, Guo N, Ma Y, Zhang C, Zhang J, Liu X. Crosstalk between oxidative stress and neutrophil response in early ischemic stroke: a comprehensive transcriptome analysis. Front Immunol 2023; 14:1134956. [PMID: 37180174 PMCID: PMC10169595 DOI: 10.3389/fimmu.2023.1134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Background Ischemic stroke (IS) is the second leading cause of mortality worldwide, continuing to be a serious health concern. It is well known that oxidative stress and neutrophil response play vital roles in the pathophysiology of early IS. However, the complex interactions and critical genes associated with them have not been fully understood. Methods Two datasets (GSE37587 and GSE16561) from the Gene Expression Omnibus database were extracted and integrated as the discovery dataset. Subsequent GSVA and WGCNA approaches were used to investigate IS-specific oxidative stress-related genes (ISOSGS). Then, we explored IS-specific neutrophil-associated genes (ISNGS) using CIBERSORT analysis. Next, the protein-protein interaction network was established to ascertain candidate critical genes related with oxidative stress and neutrophil response. Furthermore, these candidate genes were validated using GSE58294 dataset and our clinical samples by RT-qPCR method. Finally, functional annotation, diagnostic capability evaluation and drug-gene interactions were performed by using GSEA analysis, ROC curves and DGIDB database. Result In our analysis of discovery dataset, 155 genes were determined as ISOSGS and 559 genes were defined as ISNGS. Afterward, 9 candidate genes were identified through the intersection of ISOSGS and ISNGS, PPI network construction, and filtration by degree algorithm. Then, six real critical genes, including STAT3, MMP9, AQP9, SELL, FPR1, and IRAK3, passed the validation using the GSE58294 dataset and our clinical samples. Further functional annotation analysis indicated these critical genes were associated with neutrophil response, especially neutrophil extracellular trap. Meanwhile, they had a good diagnostic performance. Lastly, 53 potential drugs targeting these genes were predicted by DGIDB database. Conclusion We identified 6 critical genes, STAT3, FPR1, AQP9, SELL, MMP9 and IRAK3, related to oxidative stress and neutrophil response in early IS, which may provide new insights into understanding the pathophysiological mechanism of IS. We hope our analysis could help develop novel diagnostic biomarkers and therapeutic strategies for IS.
Collapse
Affiliation(s)
- Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanzhi Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Song
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Junyi Yang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
3
|
Zhao Y, Ding M, Yan F, Yin J, Shi W, Yang N, Zhao H, Fang Y, Huang Y, Zheng Y, Yang X, Li W, Ji X, Luo Y. Inhibition of the JAK2/STAT3 pathway and cell cycle re-entry contribute to the protective effect of remote ischemic pre-conditioning of rat hindlimbs on cerebral ischemia/reperfusion injury. CNS Neurosci Ther 2022; 29:866-877. [PMID: 36419252 PMCID: PMC9928551 DOI: 10.1111/cns.14023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS Remote ischemic pre-conditioning (RIPC) protects against ischemia/reperfusion (I/R) injury. However, the mechanisms underlying this protection remain unclear. In the present study, we investigated the role of Janus-activated kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway and cell cycle arrest, and their relationship with neuronal apoptosis following RIPC. METHODS A rat cerebral I/R injury model was induced by middle cerebral artery occlusion (MCAO), and AG490 was used to investigate the mechanisms of RIPC. p-JAK2-, p-STAT3-, cyclin D1-, and cyclin-dependent kinase 6 (CDK6) expression was assessed by Western blotting and immunofluorescence staining. RESULTS RIPC reduced the infarct volume, improved neurological function, and increased neuronal survival. Furthermore, p-JAK2 and p-STAT3 were detected during the initial phase of reperfusion; the expression levels were significantly increased at 3 and 24 h after reperfusion and were suppressed by RIPC. Additionally, the MCAO-induced upregulation of the cell cycle regulators cyclin D1 and CDK6 was ameliorated by RIPC. Meanwhile, cyclin D1 and CDK6 were colocalized with p-STAT3 in the ischemic brain. CONCLUSION RIPC ameliorates the induction of the JAK2/STAT3 pathway and cell cycle regulators cyclin D1 and CDK6 by MCAO, and this net inhibition of cell cycle re-entry by RIPC is associated with downregulation of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Yongmei Zhao
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Mao Ding
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Jie Yin
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Wenjuan Shi
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Nan Yang
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Haiping Zhao
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yalan Fang
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yuyou Huang
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Xueqi Yang
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Wei Li
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Xunming Ji
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina,Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yumin Luo
- Institute of Cerebrovascular Disease ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina,Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Mechtouff L, Eker OF, Nighoghossian N, Cho TH. Fisiopatologia dell’ischemia cerebrale. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)46428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Wang X, Wang Q, Wang K, Ni Q, Li H, Su Z, Xu Y. Is Immune Suppression Involved in the Ischemic Stroke? A Study Based on Computational Biology. Front Aging Neurosci 2022; 14:830494. [PMID: 35250546 PMCID: PMC8896355 DOI: 10.3389/fnagi.2022.830494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Objective To identify the genetic mechanisms of immunosuppression-related genes implicated in ischemic stroke. Background A better understanding of immune-related genes (IGs) involved in the pathophysiology of ischemic stroke may help identify drug targets beneficial for immunomodulatory approaches and reducing stroke-induced immunosuppression complications. Methods Two datasets related to ischemic stroke were downloaded from the GEO database. Immunosuppression-associated genes were obtained from three databases (i.e., DisGeNET, HisgAtlas, and Drugbank). The CIBERSORT algorithm was used to calculate the mean proportions of 22 immune-infiltrating cells in the stroke samples. Differential gene expression analysis was performed to identify the differentially expressed genes (DEGs) involved in stroke. Immunosuppression-related crosstalk genes were identified as the overlapping genes between ischemic stroke-DEGs and IGs. Feature selection was performed using the Boruta algorithm and a classifier model was constructed to evaluate the prediction accuracy of the obtained immunosuppression-related crosstalk genes. Functional enrichment analysis, gene-transcriptional factor and gene-drug interaction networks were constructed. Results Twenty two immune cell subsets were identified in stroke, where resting CD4 T memory cells were significantly downregulated while M0 macrophages were significantly upregulated. By overlapping the 54 crosstalk genes obtained by feature selection with ischemic stroke-related genes obtained from the DisGenet database, 17 potentially most valuable immunosuppression-related crosstalk genes were obtained, ARG1, CD36, FCN1, GRN, IL7R, JAK2, MAFB, MMP9, PTEN, STAT3, STAT5A, THBS1, TLR2, TLR4, TLR7, TNFSF10, and VASP. Regulatory transcriptional factors targeting key immunosuppression-related crosstalk genes in stroke included STAT3, SPI1, CEPBD, SP1, TP53, NFIL3, STAT1, HIF1A, and JUN. In addition, signaling pathways enriched by the crosstalk genes, including PD-L1 expression and PD-1 checkpoint pathway, NF-kappa B signaling, IL-17 signaling, TNF signaling, and NOD-like receptor signaling, were also identified. Conclusion Putative crosstalk genes that link immunosuppression and ischemic stroke were identified using bioinformatics analysis and machine learning approaches. These may be regarded as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, China
| | - Kun Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian City Central Hospital, Taian, China
| | - Hu Li
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Zhiqiang Su
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Yuzhen Xu,
| |
Collapse
|
6
|
Yao Y, Li C, Qian F, Zhao Y, Shi X, Hong D, Ai Q, Zhong L. Ginsenoside Rg1 Inhibits Microglia Pyroptosis Induced by Lipopolysaccharide Through Regulating STAT3 Signaling. J Inflamm Res 2021; 14:6619-6632. [PMID: 34908862 PMCID: PMC8665869 DOI: 10.2147/jir.s326888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Neuroinflammation runs through the whole process of nervous system diseases and brain injury. Inflammasomes are thought to be especially relevant to immune homeostasis, and their dysregulation contributes to pyroptosis. The natural compound Ginsenoside Rg1 has been shown to possess anti-inflammatory effects; however, its underlying mechanisms are not entirely clear. Therefore, this study was undertaken to investigate the role and mechanisms of Rg1 in regulating the production of inflammasomes and pyroptosis of microglia in vivo and in vitro. Methods BV-2 microglial cells were pretreated with Rg1, stattic and interleukin-6 (IL-6), and then stimulated with lipopolysaccharide (LPS) (2μg/mL). Hoechst staining and Annexin V-FITC/PI assay were then carried out. The expression levels of cleaved-caspase-1, pro-caspase-1, interleukin-1β (IL-1β), mature-IL-1β, gasdermin D (GSDMD), activated NH(2)-terminal fragment of GSDMD (GSDMD-N), NOD-, LRR- and pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), absent in melanoma 2 (AIM2), signal transducer and activator of transcription 3 (STAT3) and phosphorylated STAT3 in BV-2 were detected by Western blotting. Additionally, immunofluorescence staining was used to determine the expression of NLRP3 and p-STAT3 in postnatal rat brain and BV-2 microglia subjected to LPS stimulation and Rg1 pretreatment. The targets of transcription factor STAT3 were predicted by hTFtarget and chromatin immunoprecipitation (ChIP) was used to confirm the interaction between STAT3 and AIM2. Results We showed here that Rg1 effectively inhibited the expression of inflammasomes and microglia pyroptosis induced by LPS. The targets predicted data of Rg1 from Swiss target prediction database showed STAT3 had the highest thresholds of probability score. Rg1 can regulate the phosphorylation of STAT3, which binds to the promoter region of inflammasome AIM2. Conclusion It is suggested that STAT3 signaling can initiate the transcription activity of AIM2. Rg1 regulates microglia pyroptosis in neuroinflammation induced by LPS through targeting STAT3 signaling.
Collapse
Affiliation(s)
- Yueyi Yao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Changyan Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Fusheng Qian
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Yu Zhao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Xiaoyi Shi
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Dan Hong
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Qinglong Ai
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| |
Collapse
|
7
|
New Drug Targets to Prevent Death Due to Stroke: A Review Based on Results of Protein-Protein Interaction Network, Enrichment, and Annotation Analyses. Int J Mol Sci 2021; 22:ijms222212108. [PMID: 34829993 PMCID: PMC8619767 DOI: 10.3390/ijms222212108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
This study used established biomarkers of death from ischemic stroke (IS) versus stroke survival to perform network, enrichment, and annotation analyses. Protein-protein interaction (PPI) network analysis revealed that the backbone of the highly connective network of IS death consisted of IL6, ALB, TNF, SERPINE1, VWF, VCAM1, TGFB1, and SELE. Cluster analysis revealed immune and hemostasis subnetworks, which were strongly interconnected through the major switches ALB and VWF. Enrichment analysis revealed that the PPI immune subnetwork of death due to IS was highly associated with TLR2/4, TNF, JAK-STAT, NOD, IL10, IL13, IL4, and TGF-β1/SMAD pathways. The top biological and molecular functions and pathways enriched in the hemostasis network of death due to IS were platelet degranulation and activation, the intrinsic pathway of fibrin clot formation, the urokinase-type plasminogen activator pathway, post-translational protein phosphorylation, integrin cell-surface interactions, and the proteoglycan-integrin extracellular matrix complex (ECM). Regulation Explorer analysis of transcriptional factors shows: (a) that NFKB1, RELA and SP1 were the major regulating actors of the PPI network; and (b) hsa-mir-26-5p and hsa-16-5p were the major regulating microRNA actors. In conclusion, prevention of death due to IS should consider that current IS treatments may be improved by targeting VWF, the proteoglycan-integrin-ECM complex, TGF-β1/SMAD, NF-κB/RELA and SP1.
Collapse
|
8
|
Vize CJ, Kim SK, Matthews T, Macsai M, Merrell R, Hsu S, Kundu MG, Yoon J, Kennedy E, Pai M, Bain E, Lassman AB, Moazami G. Dysregulation of miR-637 Is Involved in the Development of Retinopathy in Hypertension Patients and Serves a Regulatory Role in Retinol Endothelial Cell Proliferation. Ophthalmic Res 2021; 66:1-7. [PMID: 33530086 PMCID: PMC10413800 DOI: 10.1159/000514915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND MicroRNAs play an important role in the proliferation and migration of retinal endothelial cells in patients with hypertension and hypertensive retinopathy (HR). This study aimed to investigate the clinical value of miR-637 in HR and its role in retinal endothelial cell proliferation and migration. METHODS A total of 126 subjects were recruited for the study, including 42 patients with hypertension (male/female 25/17), 42 healthy individuals (male/female 20/22), and 42 cases with HR (male/female 20/22). Except SBP and DBP, there was no significant difference in other indexes among the three groups. Quantitative real-time PCR was used to detect the expression of miR-637. The receiver operating curve (ROC) was used for diagnosis value analysis. Logistic regression analysis was used to evaluate the relationship between miR-637 and HR. CCK-8 and Transwell were used to detect the effect of miR-637 on the proliferation and migration of human umbilical vein endothelial cells. RESULTS Compared with hypertensive patients, HR patients had the lowest expression of miR-637. The area under the curve of miR-637 detected by the ROC curve method is 0.892, which has the ability to distinguish hypertension and HR patients. Logistic regression analysis showed that miR-637 was an independent influencing factor in HR. Cell experiment results showed that overexpression of miR-637 significantly inhibited cell proliferation and migration, while downregulation of miR-637 had the opposite effect. Luciferase analysis showed that STAT3 was the target gene of miR-637. CONCLUSION Our data indicate that miR-637 is a potential noninvasive marker for patients with HR. The action of miR-637 on STAT3 may inhibit the proliferation and migration of retinal endothelial cells, providing a possible target for the treatment of HR.
Collapse
Affiliation(s)
- Colin J. Vize
- Department of Ophthalmology, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Stella K. Kim
- Department of Ophthalmology and Visual Science, University of Texas McGovern Medical School, Houston, TX, USA
| | - Tim Matthews
- Birmingham Neuro-Ophthalmology Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Marian Macsai
- Northshore University Health System, Glenview, IL, USA
| | - Ryan Merrell
- NorthShore University Health System, Evanston, IL, USA
| | - Sigmund Hsu
- The Vivian L. Smith Department of Neurosurgery, University of Texas McGovern Medical School, Houston, TX, USA
| | | | | | | | | | | | - Andrew B. Lassman
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian, New York, NY, USA
| | - Golnaz Moazami
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Goebel U, Scheid S, Spassov S, Schallner N, Wollborn J, Buerkle H, Ulbrich F. Argon reduces microglial activation and inflammatory cytokine expression in retinal ischemia/reperfusion injury. Neural Regen Res 2021; 16:192-198. [PMID: 32788476 PMCID: PMC7818862 DOI: 10.4103/1673-5374.290098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously found that argon exerts its neuroprotective effect in part by inhibition of the toll-like receptors (TLR) 2 and 4. The downstream transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB) are also affected by argon and may play a role in neuroprotection. It also has been demonstrated that argon treatment could mitigate brain damage, reduce excessive microglial activation, and subsequently attenuate brain inflammation. Despite intensive research, the further exact mechanism remains unclear. In this study, human neuroblastoma cells were damaged in vitro with rotenone over a period of 4 hours (to mimic cerebral ischemia and reperfusion damage), followed by a 2-hour post-conditioning with argon (75%). In a separate in vivo experiment, retinal ischemia/reperfusion injury was induced in rats by increasing intraocular pressure for 1 hour. Upon reperfusion, argon was administered by inhalation for 2 hours. Argon reduced the binding of the transcription factors signal transducer and activator of transcription 3, nuclear factor kappa B, activator protein 1, and nuclear factor erythroid 2-related factor 2, which are involved in regulation of neuronal damage. Flow cytometry analysis showed that argon downregulated the Fas ligand. Some transcription factors were regulated by toll-like receptors; therefore, their effects could be eliminated, at least in part, by the TLR2 and TLR4 inhibitor oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC). Argon treatment reduced microglial activation after retinal ischemia/reperfusion injury. Subsequent quantitative polymerase chain reaction analysis revealed a reduction in the pro-inflammatory cytokines interleukin (IL-1α), IL-1β, IL-6, tumor necrosis factor α, and inducible nitric oxide synthase. Our results suggest that argon reduced the extent of inflammation in retinal neurons after ischemia/reperfusion injury by suppression of transcription factors crucial for microglial activation. Argon has no known side effects or narcotic properties; therefore, therapeutic use of this noble gas appears ideal for treatment of patients with neuronal damage in retinal ischemia/reperfusion injury. The animal experiments were approved by the Commission for Animal Care of the University of Freiburg (approval No. 35-9185.81/G14-122) on October 19, 2012.
Collapse
Affiliation(s)
- Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sashko Spassov
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Jia J, Li C, Zhang T, Sun J, Peng S, Xie Q, Huang Y, Yi L. CeO 2@PAA-LXW7 Attenuates LPS-Induced Inflammation in BV2 Microglia. Cell Mol Neurobiol 2019; 39:1125-1137. [PMID: 31256326 DOI: 10.1007/s10571-019-00707-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Microglia are the inherent immune effector cells in the central nervous system (CNS), are activated rapidly when the CNS is stimulated by ischaemia, infection, injury, etc. and participate in and aggravate the development of inflammatory reactions in the CNS. During the process of microglial activation, inflammatory factors such as TNF-α and IL-1β and an abundance of reactive oxygen species (ROS)/reactive nitrogen species (RNS), are released by damaged nerve cells. LXW7 is a small molecule peptide and specifically binds with integrin αvβ3. Cerium oxide nanoparticles (nanoceria) are strong free radical scavengers and are widely used in many studies. In this research, a model of inflammation was established using lipopolysaccharide (LPS) to induce BV2 microglia activation, and the effects of CeO2@PAA (synthetic nanoscale cerium oxide particles), LXW7 and CeO2@PAA-LXW7 were evaluated. We detected the expression level of inflammatory factors, the release of NO in BV2 cells and the generation of intracellular ROS. The expression levels of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) and their phosphorylated proteins were detected in BV2 microglia. We found that CeO2@PAA, LXW7 and CeO2@PAA-LXW7 all effectively inhibited the activation of BV2 microglia, reduced the production of cytokines and the release of NO and reduced the production of intracellular ROS. The three treatments all inhibited the phosphorylation of FAK and STAT3 in BV2 microglia. Regarding these effects, CeO2@PAA-LXW7 was more effective than the other two monotherapies. Our data indicate that CeO2@PAA, LXW7 and CeO2@PAA-LXW7 can exert a neuroprotective function by inhibiting the inflammatory response of LPS-induced BV2 microglia. LXW7 may inhibit the activation of FAK and STAT3 signals in combination with integrin αvβ3 to restrain neuroinflammation and the antioxidative stress effect of cerium oxide; hence, CeO2@PAA-LXW7 can exert a more robust anti-inflammatory and neuroprotective effect via synergistically suppressing the ability of LXW7 to influence the integrin pathway and the free radical-scavenging ability of CeO2@PAA.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia Province, China
| | - Ting Zhang
- Department of Phoenix International Medical Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Jingjing Sun
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Sijia Peng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Qizhi Xie
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China.
| |
Collapse
|
11
|
Zhang J, Dongwei Zhou, Zhang Z, Xinhui Qu, Kunwang Bao, Guohui Lu, Jian Duan. miR-let-7a suppresses α-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson's disease. Biochem Biophys Res Commun 2019; 519:740-746. [DOI: 10.1016/j.bbrc.2019.08.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
|
12
|
Abstract
BACKGROUND Signal Transducer and Activator of Transcription 3 (STAT3) gain-of-function germline mutations are associated with diverse clinical manifestations, including autoimmune cytopenia, lymphadenopathy, immunodeficiency, endocrinopathy, and enteropathy. We describe a new feature: raised intracranial pressure with papilledema. MATERIALS AND METHODS Report of two cases. RESULTS The first patient had a de novo heterozygous c.2144C>T (p.Pro715Leu) mutation in the STAT3 gene. At age 1 she had papilledema with marked sheathing of the proximal vessels on the optic discs. Follow-up 8 years later showed chronic papilledema, cystoid macular edema, and vision loss. The second patient had a de novo heterozygous c.2147C>T (p.Thr716Met) mutation. At age 12 he developed papilledema, which recurred despite treatment. In both patients, repeated sampling of the cerebrospinal fluid demonstrated a lymphocytic pleocytosis. CONCLUSIONS Papilledema can occur as a manifestation of STAT3 gain-of-function mutation, sometimes accompanied by prominent vascular sheathing and cystoid macular edema. The mechanism may be chronic meningeal infiltration by white blood cells, impairing cerebrospinal fluid absorption.
Collapse
Affiliation(s)
- Young-Woo Suh
- a Department of Ophthalmology , Korea University College of Medicine , Seoul , South Korea.,b Beckman Vision Center, Program in Neuroscience , University of California , San Francisco , CA , USA
| | - Jonathan C Horton
- b Beckman Vision Center, Program in Neuroscience , University of California , San Francisco , CA , USA
| |
Collapse
|
13
|
Therapeutic Targeting of Stat3 Using Lipopolyplex Nanoparticle-Formulated siRNA in a Syngeneic Orthotopic Mouse Glioma Model. Cancers (Basel) 2019; 11:cancers11030333. [PMID: 30857197 PMCID: PMC6468565 DOI: 10.3390/cancers11030333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), WHO grade IV, is the most aggressive primary brain tumor in adults. The median survival time using standard therapy is only 12–15 months with a 5-year survival rate of around 5%. Thus, new and effective treatment modalities are of significant importance. Signal transducer and activator of transcription 3 (Stat3) is a key signaling protein driving major hallmarks of cancer and represents a promising target for the development of targeted glioblastoma therapies. Here we present data showing that the therapeutic application of siRNAs, formulated in nanoscale lipopolyplexes (LPP) based on polyethylenimine (PEI) and the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), represents a promising new approach to target Stat3 in glioma. We demonstrate that the LPP-mediated delivery of siRNA mediates efficient knockdown of Stat3, suppresses Stat3 activity and limits cell growth in murine (Tu2449) and human (U87, Mz18) glioma cells in vitro. In a therapeutic setting, intracranial application of the siRNA-containing LPP leads to knockdown of STAT3 target gene expression, decreased tumor growth and significantly prolonged survival in Tu2449 glioma-bearing mice compared to negative control-treated animals. This is a proof-of-concept study introducing PEI-based lipopolyplexes as an efficient strategy for therapeutically targeting oncoproteins with otherwise limited druggability.
Collapse
|
14
|
Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, Perez SP, Suganthan R, He C, Bjørås M, Klungland A. Ythdf2-mediated m 6A mRNA clearance modulates neural development in mice. Genome Biol 2018; 19:69. [PMID: 29855337 PMCID: PMC5984442 DOI: 10.1186/s13059-018-1436-y] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND N 6 -methyladenosine (m6A) modification in mRNAs was recently shown to be dynamically regulated, indicating a pivotal role in multiple developmental processes. Most recently, it was shown that the Mettl3-Mettl14 writer complex of this mark is required for the temporal control of cortical neurogenesis. The m6A reader protein Ythdf2 promotes mRNA degradation by recognizing m6A and recruiting the mRNA decay machinery. RESULTS We show that the conditional depletion of the m6A reader protein Ythdf2 in mice causes lethality at late embryonic developmental stages, with embryos characterized by compromised neural development. We demonstrate that neural stem/progenitor cell (NSPC) self-renewal and spatiotemporal generation of neurons and other cell types are severely impacted by the loss of Ythdf2 in embryonic neocortex. Combining in vivo and in vitro assays, we show that the proliferation and differentiation capabilities of NSPCs decrease significantly in Ythdf2 -/- embryos. The Ythdf2 -/- neurons are unable to produce normally functioning neurites, leading to failure in recovery upon reactive oxygen species stimulation. Consistently, expression of genes enriched in neural development pathways is significantly disturbed. Detailed analysis of the m6A-methylomes of Ythdf2 -/- NSPCs identifies that the JAK-STAT cascade inhibitory genes contribute to neuroprotection and neurite outgrowths show increased expression and m6A enrichment. In agreement with the function of Ythdf2, delayed degradation of neuron differentiation-related m6A-containing mRNAs is seen in Ythdf2 -/- NSPCs. CONCLUSIONS We show that the m6A reader protein Ythdf2 modulates neural development by promoting m6A-dependent degradation of neural development-related mRNA targets.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
| | - Xu Zhao
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway.
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hailing Shi
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Hospital, Memphis, TN, 38105, USA
| | - Zhike Lu
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Sonia Peña Perez
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway.
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| |
Collapse
|
15
|
Ding Y, Qian J, Li H, Shen H, Li X, Kong Y, Xu Z, Chen G. Effects of SC99 on cerebral ischemia-perfusion injury in rats: Selective modulation of microglia polarization to M2 phenotype via inhibiting JAK2-STAT3 pathway. Neurosci Res 2018; 142:58-68. [PMID: 29763638 DOI: 10.1016/j.neures.2018.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022]
Abstract
Inhibition of Janus kinases 2-Signal transducers and activators of transcription3 (JAK2-STAT3) pathway has been shown to exert anti-inflammatory actions. SC99, a novel specific inhibitor targeting JAK2-STAT3 pathway, has been verified to negatively modulate platelet activation and aggregation in vitro. In current study, a middle cerebral artery occlusion and reperfusion (MCAO/R) model was established in Sprague Dawley rats and primary cultured microglia was exposed to oxygen and glucose deprivation (OGD/R) in vitro. Different dosages were employed to detect the effects of SC99 on cerebral ischemia-perfusion (I/R) injury and evaluate the underlying mechanisms. Our results showed that intracerebroventricular injection of SC99 (10 mmol/L, 15 μL) produced an effective inhibitory effect on the phosphorylation of JAK2 and STAT3. Correspondingly, SC99 ameliorated neuronal apoptosis and degeneration, neurobehavioral deficits, inflammatory response and brain edema. And SC99 promoted microglia polarization to an anti-inflammatory M2 phenotype. We concluded that SC99 could alleviate brain damage and play an anti-inflammatory action by promoting microglia polarization to an anti-inflammatory phenotype after I/R injury, which provides an emerging and promising alternative to protect the brain against MCAO/R injury in the future investigations.
Collapse
Affiliation(s)
- Yiping Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Jinhong Qian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Zhuan Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| |
Collapse
|
16
|
Inhibition of JAK1 by microRNA-708 promotes SH-SY5Y neuronal cell survival after oxygen and glucose deprivation and reoxygenation. Neurosci Lett 2018; 664:43-50. [DOI: 10.1016/j.neulet.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
|
17
|
Ludwig PE, Thankam FG, Patil AA, Chamczuk AJ, Agrawal DK. Brain injury and neural stem cells. Neural Regen Res 2018; 13:7-18. [PMID: 29451199 PMCID: PMC5840995 DOI: 10.4103/1673-5374.224361] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Many therapies with potential for treatment of brain injury have been investigated. Few types of cells have spurred as much interest and excitement as stem cells over the past few decades. The multipotentiality and self-renewing characteristics of stem cells confer upon them the capability to regenerate lost tissue in ischemic or degenerative conditions as well as trauma. While stem cells have not yet proven to be clinically effective in many such conditions as was once hoped, they have demonstrated some effects that could be manipulated for clinical benefit. The various types of stem cells have similar characteristics, and largely differ in terms of origin; those that have differentiated to some extent may exhibit limited capability in differentiation potential. Stem cells can aid in decreasing lesion size and improving function following brain injury.
Collapse
Affiliation(s)
- Parker E. Ludwig
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Finosh G. Thankam
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Arun A. Patil
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
- Department of Neurosurgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Andrea J. Chamczuk
- Department of Neurosurgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
18
|
Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H, Huang G, Zhang X. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 2017; 14:187. [PMID: 28923114 PMCID: PMC5604224 DOI: 10.1186/s12974-017-0963-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/10/2017] [Indexed: 12/03/2022] Open
Abstract
Background Elevated plasma homocysteine (Hcy) levels have been indicated as a strong and modifiable risk factor of ischemic stroke; the previous studies have shown that exposure to Hcy activates cultured microglia. However, whether neurotoxicity of Hcy involves microglia activation following brain ischemia and the underlying mechanisms remains incompletely understood. Methods The cerebral damage was evaluated by staining with 2,3,5-triphenyltetrazolium chloride, hematoxylin-eosin, and Fluoro Jade B. The activation state of microglia was assessed via immunoreaction using the microglial markers Iba1 and OX-42. Then, the inflammatory factors such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) were examined by Western blot analysis and fluorescence immunohistochemistry. Results Elevated Hcy level augmented brain damage and neural cell toxicity in the brain cortex and the dentate gyrus region of the hippocampus after cerebral ischemia/reperfusion. Meanwhile, Hcy activated microglia and induced the expression of the inflammatory factors such as TNF-α and IL-6. Moreover, Hcy caused an increase in pSTAT3 expression which occurs in microglial cells. AG490, a JAK2-STAT3 inhibitor, effectively inhibited the phosphorylation of STAT3, microglial cell activation and the secretion of IL-6, TNF-α raised by Hcy treatment. Conclusions STAT3 signaling pathway located in microglia plays a critical role in mediating Hcy-induced activation of microglia and neuroinflammation in rat MCAO model. This suggests the feasibility of targeting the JAK2/STAT3 pathway as an effective therapeutic strategy to alleviate the progression of Hcy-associated ischemia stroke. Electronic supplementary material The online version of this article (10.1186/s12974-017-0963-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhiping Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Man Cheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yaqian Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Mengying Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Na Sai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
19
|
IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway. Sci Rep 2016; 6:30459. [PMID: 27456198 PMCID: PMC4960594 DOI: 10.1038/srep30459] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.
Collapse
|
20
|
Proline-rich tyrosine kinase 2 via enhancing signal transducer and activator of transcription 3-dependent cJun expression mediates retinal neovascularization. Sci Rep 2016; 6:26480. [PMID: 27210483 PMCID: PMC4876476 DOI: 10.1038/srep26480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Despite the involvement of proline-rich tyrosine kinase 2 (Pyk2) in endothelial cell angiogenic responses, its role in pathological retinal angiogenesis is not known. In the present study, we show that vascular endothelial growth factor A (VEGFA) induces Pyk2 activation in mediating human retinal microvascular endothelial cell (HRMVEC) migration, sprouting and tube formation. Downstream to Pyk2, VEGFA induced signal transducer and activator of transcription 3 (STAT3) activation and cJun expression in the modulation of HRMVEC migration, sprouting and tube formation. Consistent with these observations, hypoxia induced activation of Pyk2-STAT3-cJun signaling axis and siRNA-mediated downregulation of Pyk2, STAT3 or cJun levels substantially inhibited hypoxia-induced retinal endothelial cell proliferation, tip cell formation and neovascularization. Together, these observations suggest that activation of Pyk2-mediated STAT3-cJun signaling is required for VEGFA-induced HRMVEC migration, sprouting and tube formation in vitro and hypoxia-induced retinal endothelial cell proliferation, tip cell formation and neovascularization in vivo.
Collapse
|
21
|
Association Between Microglia, Inflammatory Factors, and Complement with Loss of Hippocampal Mossy Fiber Synapses Induced by Trimethyltin. Neurotox Res 2016; 30:53-66. [PMID: 26892644 DOI: 10.1007/s12640-016-9606-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/16/2022]
Abstract
Complement-associated factors are implicated in pathogen presentation, neurodegeneration, and microglia resolution of tissue injury. To characterize complement activation with microglial clearance of degenerating mossy fiber boutons, hippocampal dentate granule neurons were ablated in CD-1 mice with trimethyltin (TMT; 2.2 mg/kg, i.p.). Neuronal apoptosis was accompanied by amoeboid microglia and elevations in tumor necrosis factor [Tnfa], interleukin 1β [Il1b], and Il6 mRNA and C1q protein. Inos mRNA levels were unaltered. Silver degeneration and synaptophysin staining indicated loss of synaptic innervation to CA3 pyramidal neurons. Reactive microglia with thickened bushy morphology showed co-localization of synaptophysin+ fragments. The initial response at 2 days post-TMT included transient elevations in Tnfa, Il1b, Il6, and Inos mRNA levels. A concurrent increase at 2 days was observed in arginase-1 [Arg1], Il10, transforming growth factor β1 [Tgfb1], and chitinase 3 like-3 [Ym1] mRNA levels. At 2 days, C1q protein was evident in the CA3 with elevated C1qa, C1qb, C3, Cr3a, and Cr3b mRNA levels. mRNA levels remained elevated at 5 days, returning to control by 14 days, corresponding to silver degeneration. mRNA levels for pentraxin3 (Ptx3) were elevated on day 2 and Ptx1 was not altered. Our data suggest an association between microglia reactivity, the induction of anti-inflammatory genes concurrent with pro-inflammatory genes and the expression of complement-associated factors with the degeneration of synapses following apoptotic neuronal loss.
Collapse
|
22
|
Wang F, Li M, Li X, Kinden R, Zhou H, Guo F, Wang Q, Xiong L. 2-Arachidonylglycerol Protects Primary Astrocytes Exposed to Oxygen-Glucose Deprivation Through a Blockade of NDRG2 Signaling and STAT3 Phosphorylation. Rejuvenation Res 2016; 19:215-22. [PMID: 26414218 DOI: 10.1089/rej.2015.1703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human N-Myc downstream-regulated gene 2 (NDRG2) is expressed in astrocytes, and may be involved in the modulation of gliacyte function in the central nervous system. Our previous study found suppression of NDRG2 up-regulation in reactive astrocytes in cerebral ischemic tolerance. 2-Arachidonylglycerol (2-AG) can induce cerebral ischemic tolerance. However, the underlying mechanism of NDRG2 in cytoprotection induced by 2-AG in primary astrocytesis still unknown. In this study, we investigated the role of NDRG2 in cerebral ischemic tolerance induced by 2-AG after oxygen-glucose deprivation (OGD) in primary astrocytes. The results showed that primary astrocytes exposed to OGD resulted in marked increase of lactate dehydrogenase (LDH) release and decrease of methyl thiazolyl tetrazolium (MTT) reduction activity in comparison to control cultures. The levels of NDRG2 and phospho-signal transducer and activator of transcription 3 (pSTAT3) in the OGD group were comparably higher than those in the control group, and the up-regulation of NDRG2 and pSTAT3 was suppressed in NDRG2 siRNA group. The cell viability in the 2-AG group was higher than that in the OGD group, and transfecting the NDRG2 pSRL-CDH1-GFP vector reversed the protective effects of 2-AG. The levels of NDRG2 and pSTAT3 in the 2-AG group were lower than those in the OGD group. 2-AG suppressed STAT3 phosphorylation by decreased expression of NDRG2. In conclusion, 2-AG protects primary astrocytes exposed to oxygen-glucose deprivation through a blockade of NDRG2 signaling and STAT3 phosphorylation. These findings bring insight to the roles of NDRG2 in ischemic-hypoxic injury and provide novel potential targets for future potent clinical therapies on cerebral ischemia injury.
Collapse
Affiliation(s)
- Feng Wang
- 1 Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi Province, China
| | - Mo Li
- 2 Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi Province, China
| | - Xin Li
- 1 Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi Province, China
| | - Renee Kinden
- 3 Department of Psychiatry, University of Ottawa Institute of Mental Health Research at the Royal , Ottawa, Canada
| | - Heng Zhou
- 1 Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi Province, China
| | - Fan Guo
- 1 Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi Province, China
| | - Qiang Wang
- 1 Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi Province, China
| | - Lize Xiong
- 1 Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi Province, China
| |
Collapse
|
23
|
Hristova M, Rocha-Ferreira E, Fontana X, Thei L, Buckle R, Christou M, Hompoonsup S, Gostelow N, Raivich G, Peebles D. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem 2016; 136:981-94. [PMID: 26669927 PMCID: PMC4843952 DOI: 10.1111/jnc.13490] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/08/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Hypoxic‐ischaemic encephalopathy is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy and cognitive disabilities. Hypoxia‐ischaemia (HI) strongly up‐regulates Signal Transducer and Activator of Transcription 3 (STAT3) in the immature brain. Our aim was to establish whether STAT3 up‐regulation is associated with neonatal HI‐brain damage and evaluate the phosphorylated STAT3‐contribution from different cell types in eliciting damage. We subjected postnatal day seven mice to unilateral carotid artery ligation followed by 60 min hypoxia. Neuronal STAT3‐deletion reduced cell death, tissue loss, microglial and astroglial activation in all brain regions. Astroglia‐specific STAT3‐deletion also reduced cell death, tissue loss and microglial activation, although not as strongly as the deletion in neurons. Systemic pre‐insult STAT3‐blockade at tyrosine 705 (Y705) with JAK2‐inhibitor WP1066 reduced microglial and astroglial activation to a more moderate degree, but in a pattern similar to the one produced by the cell‐specific deletions. Our results suggest that STAT3 is a crucial factor in neonatal HI‐brain damage and its removal in neurons or astrocytes, and, to some extent, inhibition of its phosphorylation via JAK2‐blockade reduces inflammation and tissue loss. Overall, the protective effects of STAT3 inactivation make it a possible target for a therapeutic strategy in neonatal HI.
Current data show that neuronal and astroglial STAT3 molecules are involved in the pathways underlying cell death, tissue loss and gliosis following neonatal hypoxia‐ischaemia, but differ with respect to the target of their effect. Y705‐phosphorylation contributes to hypoxic‐ischaemic histopathology. Protective effects of STAT3 inactivation make it a possible target for a therapeutic strategy in neonatal hypoxia‐ischaemia.
Collapse
Affiliation(s)
- Mariya Hristova
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Eridan Rocha-Ferreira
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Xavier Fontana
- Cell Growth and Regeneration Lab, MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, UK
| | - Laura Thei
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Rheanan Buckle
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Melina Christou
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Supanida Hompoonsup
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Naomi Gostelow
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Gennadij Raivich
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Donald Peebles
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| |
Collapse
|
24
|
Cheng Z, Li L, Mo X, Zhang L, Xie Y, Guo Q, Wang Y. Non-invasive remote limb ischemic postconditioning protects rats against focal cerebral ischemia by upregulating STAT3 and reducing apoptosis. Int J Mol Med 2014; 34:957-66. [PMID: 25092271 PMCID: PMC4152138 DOI: 10.3892/ijmm.2014.1873] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) signaling pathway has been implicated in cell apoptosis and inflammatory processes. Ischemic preconditioning (IPC) and ischemic postconditioning (IPTC) inhibit both of these processes. In the present study, we investigated the role of phosphorylated STAT3 (p-STAT3)-mediated apoptosis and inflammation following non-invasive remote limb IPTC (NRIPoC) using a classic rat model of focal cerebral ischemia. Forty-five adult male Sprague-Dawley rats were divided randomly into 3 groups (n=15 per group): the sham-operated, ischemia/reperfusion (I/R) and NRIPoC groups. NRIPoC was implemented at the beginning of reperfusion. At 24 h after cerebral reperfusion, we evaluated the neurological deficit score (NDS), assessed the cerebral infarct size and tissue morphology, and evaluated neuronal apoptosis. The protein expression levels of Bcl-2, Bax, nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α) and p-STAT3 in the penumbra region were assessed by western blot analysis. The cerebral infarct volume, the number of apoptotic cells and the protein expression levels of Bcl-2, Bax, NF-κB and TNF-α were all found to be increased in the I/R group compared with the sham-operated group. However, these levels were decreased in the NRIPoC group compared with the I/R group. The number of apoptotic cells in the penumbra in the I/R group was increased compared with that in the NRIPoC and sham-operated groups. The protein expression of p-STAT3 was increased in the NRIPoC group compared with the sham-operated and I/R groups. These results indicate that the protective effects of NRIPoC against cerebral I/R injury may be related to the attenuation of neuronal apoptosis and inflammation through the activation of STAT3.
Collapse
Affiliation(s)
- Zhigang Cheng
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling Li
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xueying Mo
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lu Zhang
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongqiu Xie
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qulian Guo
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yunjiao Wang
- Department of Anesthesiology, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
25
|
Raible DJ, Frey LC, Brooks-Kayal AR. Effects of JAK2-STAT3 signaling after cerebral insults. JAKSTAT 2014; 3:e29510. [PMID: 25105066 PMCID: PMC4124058 DOI: 10.4161/jkst.29510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
The JAK2-STAT3 signaling pathway has been shown to regulate the expression of genes involved in cell survival, cell proliferation, cell-cycle progression, and angiogenesis in development and after cerebral insults. Until recently, little has been known about the effects of this pathway activation after cerebral insults and if blocking this pathway leads to better recovery. This review exams the role of this pathway after 3 cerebral insults (traumatic brain injury, stroke, and status epilepticus).
Collapse
Affiliation(s)
- Daniel J Raible
- Neuroscience Program; University of Colorado; Anschutz Medical Campus; Aurora, CO USA
| | - Lauren C Frey
- Department of Neurology; University of Colorado School of Medicine; Aurora, CO USA
| | - Amy R Brooks-Kayal
- Neuroscience Program; University of Colorado; Anschutz Medical Campus; Aurora, CO USA ; Department of Neurology; University of Colorado School of Medicine; Aurora, CO USA ; Division of Neurology; Department of Pediatrics; University of Colorado School of Medicine; Aurora, CO USA ; Children's Hospital Colorado; Aurora, CO USA
| |
Collapse
|
26
|
The Effects of Fludarabine on Rat Cerebral Ischemia. J Mol Neurosci 2014; 55:289-96. [DOI: 10.1007/s12031-014-0320-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
27
|
Zeng KW, Wang S, Dong X, Jiang Y, Tu PF. Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:298-306. [PMID: 24055519 DOI: 10.1016/j.phymed.2013.08.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Microglia-involved neuroinflammation is thought to promote brain damage in various neurodegenerative disorders. Therefore, novel therapeutics suppressing microglia over-activation could prove useful for neuroprotection in inflammation-mediated neurodegenerative diseases. DSF-52 is a novel sesquiterpene dimer compound isolated from medical plant Artemisia argyi by our group. In this study, we investigated whether DSF-52 inhibited the neuroinflammatory responses in lipopolysaccharide (LPS)-activated microglia. Our findings showed that DSF-52 inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), as well as mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage inflammatory protein-1α (MIP-1α) in LPS-activated BV-2 microglia. Moreover, DSF-52 markedly up-regulated mRNA levels of anti-inflammatory cytokine IL-10. Mechanism study indicated that DSF-52 suppressed Akt/IκB/NF-κB inflammation pathway against LPS treatment. Also, DSF-52 down-regulated the phosphorylation levels of JNK and p38 MAPKs, but not ERK. Furthermore, DSF-52 blocked Jak2/Stat3 dependent inflammation pathway through inhibiting Jak2 and Stat3 phosphorylation, as well as Stat3 nuclear translocation. We concluded that the inhibitory ability of DSF-52 on microglia-mediated neuroinflammation may offer a novel neuroprotective modality and could be potentially useful in inflammation-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medicinal Chemistry and Pharmaceutical Analysis, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Xin Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
28
|
The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol Dis 2013; 62:73-85. [PMID: 24051278 DOI: 10.1016/j.nbd.2013.09.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 01/07/2023] Open
Abstract
Pilocarpine-induced status epilepticus (SE), which results in temporal lobe epilepsy (TLE) in rodents, activates the JAK/STAT pathway. In the current study, we evaluate whether brief exposure to a selective inhibitor of the JAK/STAT pathway (WP1066) early after the onset of SE affects the severity of SE or reduces later spontaneous seizure frequency via inhibition of STAT3-regulated gene transcription. Rats that received systemic WP1066 or vehicle at the onset of SE were continuously video-EEG monitored during SE and for one month to assess seizure frequency over time. Protein and/or mRNA levels for pSTAT3, and STAT3-regulated genes including: ICER, Gabra1, c-myc, mcl-1, cyclin D1, and bcl-xl were evaluated in WP1066 and vehicle-treated rats during stages of epileptogenesis to determine the acute effects of WP1066 administration on SE and chronic epilepsy. WP1066 (two 50mg/kg doses) administered within the first hour after onset of SE results in transient inhibition of pSTAT3 and long-term reduction in spontaneous seizure frequency. WP1066 alters the severity of chronic epilepsy without affecting SE or cell death. Early WP1066 administration reduces known downstream targets of STAT3 transcription 24h after SE including cyclin D1 and mcl-1 levels, known for their roles in cell-cycle progression and cell survival, respectively. These findings uncover a potential effect of the JAK/STAT pathway after brain injury that is physiologically important and may provide a new therapeutic target that can be harnessed for the prevention of epilepsy development and/or progression.
Collapse
|
29
|
Zhang S, Li W, Wang W, Zhang SS, Huang P, Zhang C. Expression and activation of STAT3 in the astrocytes of optic nerve in a rat model of transient intraocular hypertension. PLoS One 2013; 8:e55683. [PMID: 23383263 PMCID: PMC3561308 DOI: 10.1371/journal.pone.0055683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/28/2012] [Indexed: 12/31/2022] Open
Abstract
Lamina cribosa, an astrocyte-rich region, is the origin of axonal degeneration in glaucomatous neuropathy. Astrocytes are particularly activated during optic nerve (ON) degeneration and are likely to contribute to the pathogenesis of glaucomatous optic neuropathy. Signalling mechanisms that regulate different aspects of astrocyte reactiviation in response to intraocular hypertensive injury are not well defined. Signal transducer and activator of transcription protein-3 (STAT3) is a transcription factor that participates in many biological processes and has been implicated as activator of reactive astrogliosis. In this study, we investigated the role of STAT3 in regulating the activation of astrocytes to transient intraocular hypertension in vivo by using a rat ocular hypertension model. ON astrocytes hypertrophy was observed early after intraocular hypertensive stress. Morphological changes in glial fibrillary acidic protein (GFAP) positive cells coupled with axon loss in the optic nerve was detected at day 7 after the injury. Nestin was significantly upregulated in ON astrocytes as early as day 2 post injury and kept elevated through post injury day 7. Phosphorylated STAT3 (pSTAT3) was markedly upregulated in ON astrocytes at post injury day 1, prior to the reactivation of ON astrocytes. These findings indicate that STAT3 signalling is involved in the initiation of astrocyte reactivation in optic nerve injury.
Collapse
Affiliation(s)
- Shaodan Zhang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
- Department of Ophthalmology, the 4th People's Hospital of Shenyang, Shenyang Institute of Ophthalmology, Liaoning, China
| | - Weiyi Li
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
| | - Wenqian Wang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
| | - Samuel S. Zhang
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, Pennsylvania, United States of America
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ping Huang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
- * E-mail:
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
| |
Collapse
|
30
|
Raible DJ, Frey LC, Cruz Del Angel Y, Russek SJ, Brooks-Kayal AR. GABA(A) receptor regulation after experimental traumatic brain injury. J Neurotrauma 2012; 29:2548-54. [PMID: 22827467 DOI: 10.1089/neu.2012.2483] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The gamma-aminobutyric acid (GABA) type A receptor (GABA(A)R) is responsible for most fast synaptic inhibition in the adult brain. The GABA(A)R protein is composed of multiple subunits that determine the distribution, properties, and dynamics of the receptor. Several studies have shown that the Janus kinase/signal transducer and activator of transcription (JaK/STAT) and early growth response 3 (Egr3) signaling pathways can alter GABA(A)R subunit expression after status epilepticus (SE). In this study we investigated changes in these pathways after experimental TBI in the rat using a lateral fluid percussion injury (FPI) model. Our results demonstrated changes in the expression of several GABA(A)R subunit levels after injury, including GABA(A)R α1 and α4 subunits. This change appears to be transcriptional, and there is an associated increase in the phosphorylation of STAT3, and an increase in the expression of Egr3 and inducible cAMP element repressor (ICER) after FPI. These findings suggest that the activation of the JaK/STAT and Egr3 pathways after TBI may regulate injury-related changes in GABA(A)R subunit expression.
Collapse
Affiliation(s)
- Daniel J Raible
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
31
|
Oliva AA, Kang Y, Sanchez-Molano J, Furones C, Atkins CM. STAT3 signaling after traumatic brain injury. J Neurochem 2012; 120:710-20. [PMID: 22145815 DOI: 10.1111/j.1471-4159.2011.07610.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Astrocytes respond to trauma by stimulating inflammatory signaling. In studies of cerebral ischemia and spinal cord injury, astrocytic signaling is mediated by the cytokine receptor glycoprotein 130 (gp130) and Janus kinase (Jak) which phosphorylates the transcription factor signal transducer and activator of transcription-3 (STAT3). To determine if STAT3 is activated after traumatic brain injury (TBI), adult male Sprague-Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery, and then the ipsilateral cortex and hippocampus were analyzed at various post-traumatic time periods for up to 7 days. Western blot analyses indicated that STAT3 phosphorylation significantly increased at 30 min and lasted for 24 h post-TBI. A significant increase in gp130 and Jak2 phosphorylation was also observed. Confocal microscopy revealed that STAT3 was localized primarily within astrocytic nuclei. At 6 and 24 h post-TBI, there was also an increased expression of STAT3 pathway-related genes: suppressor of cytokine signaling 3, nitric oxide synthase 2, colony stimulating factor 2 receptor β, oncostatin M, matrix metalloproteinase 3, cyclin-dependent kinase inhibitor 1A, CCAAT/enhancer-binding protein β, interleukin-2 receptor γ, interleukin-4 receptor α, and α-2-macroglobulin. These results clarify some of the signaling pathways operative in astrocytes after TBI and demonstrate that the gp130-Jak2-STAT3 signaling pathway is activated after TBI in astrocytes.
Collapse
Affiliation(s)
- Anthony A Oliva
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
32
|
Rosenkranz K, Meier C. Umbilical cord blood cell transplantation after brain ischemia--from recovery of function to cellular mechanisms. Ann Anat 2011; 193:371-9. [PMID: 21514122 DOI: 10.1016/j.aanat.2011.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 01/14/2023]
Abstract
Cell transplantation has been proposed as a potential approach to the treatment of neurological disorders. One cell population of interest consists of human umbilical cord blood (hUCB) cells, which have previously been shown to be useful for reparative medicine in haematological diseases. However, hUCB cells are also capable of differentiating into various non-haematopoietic cells, including those of the neural lineage. Moreover, hUCB cells can secrete numerous neurotrophic factors and modulate immune function and inflammatory reaction. Several studies on animal models of ischemic brain injury have demonstrated the potential of hUCB cells to minimize damage and promote recovery after ischemic brain injury.This review focuses on the treatment of both stroke and perinatal hypoxic-ischemic brain injury using hUCB cells. We discuss the therapeutic effects demonstrated after hUCB cell transplantation and emphasize possible mechanisms counteracting pathophysiological events of ischemia, thus leading to the generation of a regenerative environment that allows neural plasticity and functional recovery. The therapeutic functional effects of hUCB cells observed in animal models make the transplantation of hUCB cells a promising experimental approach in the treatment of ischemic brain injury. Together with its availability, low risk of transplantation, immaturity of cells, and simple route of application, hUCB transplantation may stand a good chance of being translated into a clinical setting for the therapy of ischemic brain injury.
Collapse
Affiliation(s)
- Katja Rosenkranz
- Department of Functional Proteomics, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
33
|
González MI, Brooks-Kayal A. Altered GABA(A) receptor expression during epileptogenesis. Neurosci Lett 2011; 497:218-22. [PMID: 21376781 DOI: 10.1016/j.neulet.2011.02.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 02/17/2011] [Accepted: 02/22/2011] [Indexed: 12/19/2022]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. GABA(A) receptors are heteropentamers formed by assembly of multiple subunits that generate a wide array of receptors with particular distribution and pharmacological profiles. Malfunction of these receptors has been associated with the pathophysiology of epilepsy and contribute to an imbalance of excitatory and inhibitory neurotransmission. The process of epilepsy development (epileptogenesis) is associated with changes in the expression and function of a large number of gene products. One of the major challenges is to effectively determine which changes directly contribute to epilepsy development versus those that are compensatory or not involved in the pathology. Substantial evidence suggests that changes in the expression and function of GABA(A) receptors are involved in the pathogenesis of epilepsy. Identification of the mechanisms involved in GABA(A) receptor malfunction during epileptogenesis and the ability to reverse this malfunction are crucial steps towards definitively answering this question and developing specific and effective therapies.
Collapse
Affiliation(s)
- Marco I González
- Department of Pediatrics, Division of Neurology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, United States.
| | | |
Collapse
|
34
|
Kang W, Hébert JM. Signaling pathways in reactive astrocytes, a genetic perspective. Mol Neurobiol 2011; 43:147-54. [PMID: 21234816 DOI: 10.1007/s12035-011-8163-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/03/2011] [Indexed: 12/11/2022]
Abstract
Reactive astrocytes are associated with a vast array of central nervous system (CNS) pathologies. The activation of astrocytes is characterized by changes in their molecular and morphological features, and depending on the type of damage can also be accompanied by inflammatory responses, neuronal damage, and in severe cases, scar formation. Although reactive astrogliosis is the normal physiological response essential for containing damage, it can also have detrimental effects on neuronal survival and axon regeneration, particularly in neurodegenerative diseases. It is believed that progressive changes in astrocytes as they become reactive are finely regulated by complex intercellular and intracellular signaling mechanisms. However, these have yet to be sorted out. Much has been learned from gain-of-function approaches in vivo and culture paradigms, but in most cases, loss-of-function genetic studies, which are a critical complementary approach, have been lacking. Understanding which signaling pathways are required to control different aspects of astrogliosis will be necessary for designing therapeutic strategies to improve their beneficial effects and limit their detrimental ones in CNS pathologies. In this article, we review recent advances in the mechanisms underlying the regulation of aspects of astrogliosis, with the main focus on the signaling pathways that have been studied using loss-of-function genetic mouse models.
Collapse
Affiliation(s)
- Wenfei Kang
- Department of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
35
|
Age exaggerates proinflammatory cytokine signaling and truncates signal transducers and activators of transcription 3 signaling following ischemic stroke in the rat. Neuroscience 2010; 170:633-44. [PMID: 20633608 DOI: 10.1016/j.neuroscience.2010.07.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 11/23/2022]
Abstract
Neuroinflammation is associated with glial activation following a variety of brain injuries, including stroke. While activation of perilesional astrocytes and microglia following ischemic brain injury is well documented, the influence of age on these cellular responses after stroke is unclear. This study investigated the influence of advanced age on neuronal degeneration, neuroinflammation, and glial activation in female Sprague-Dawley rats after reversible embolic occlusion of the middle cerebral artery (MCAO). Results indicate that in comparison to young adult rats (3 months), aged rats (18 months) showed enhanced neuronal degeneration, altered microglial response, and a markedly increased expression of proinflammatory cytokines/chemokines following MCAO. In addition, the time-course for activation of signal transducers and activators of transcription 3 (STAT3), the signaling mechanism that regulates astrocyte reactivity, was truncated in the aged rats after MCAO. Moreover, the expression of suppressor of cytokine signaling 3 (SOCS3), which is associated with termination of astrogliosis, was enhanced as a function of age after MCAO. These findings are suggestive of an enhanced proinflammatory response and a truncated astroglial response as a function of advanced age following MCAO. These data provide further evidence of the prominent role played by age in the molecular and cellular responses to ischemic stroke and suggest that astrocytes may represent targets for future therapies aimed at improving stroke outcome.
Collapse
|
36
|
Dziennis S, Alkayed NJ. Role of signal transducer and activator of transcription 3 in neuronal survival and regeneration. Rev Neurosci 2009; 19:341-61. [PMID: 19145989 DOI: 10.1515/revneuro.2008.19.4-5.341] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal Transducers and Activators of Transcription (STATs) comprise a family of transcription factors that mediate a wide variety of biological functions in the central and peripheral nervous systems. Injury to neural tissue induces STAT activation, and STATs are increasingly recognized for their role in neuronal survival. In this review, we discuss the role of STAT3 during neural development and following ischemic and traumatic injury in brain, spinal cord and peripheral nerves. We focus on STAT3 because of the expanding body of literature that investigates protective and regenerative effects of growth factors, hormones and cytokines that use STAT3 to mediate their effect, in part through transcriptional upregulation of neuroprotective and neurotrophic genes. Defining the endogenous molecular mechanisms that lead to neuroprotection by STAT3 after injury might identify novel therapeutic targets against acute neural tissue damage as well as chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Suzan Dziennis
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | |
Collapse
|
37
|
Yao C, Williams AJ, Ottens AK, May Lu XC, Chen R, Wang KK, Hayes RL, Tortella FC, Dave JR. Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats. Brain Inj 2009; 22:723-32. [PMID: 18720098 DOI: 10.1080/02699050802304706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PRIMARY OBJECTIVE Recent efforts have been aimed at developing a panel of protein biomarkers for the diagnosis/prognosis of the neurological damage associated with acute brain injury. METHODS AND PROCEDURES This study utilized high-throughput immunoblotting (HTPI) technology to compare changes between two animal models of acute brain injury: penetrating ballistic-like brain injury (PBBI) which mimics the injury created by a gunshot wound and transient middle cerebral artery occlusion (MCAo) which is a model of stroke. Brain and blood were collected at 24-hours post-injury. MAIN OUTCOMES AND RESULTS This study identified the changes in 18 proteins following PBBI and 17 proteins following MCAo out of a total of 998 screened proteins. Distinct differences were observed between the two models: five proteins were up- or down-regulated in both models, 23 proteins changed in only one model and one protein was differentially expressed. Western blots were used to verify HTPI results for selected proteins with measurable changes observed in both blood and brain for the proteins STAT3, Tau, PKA RII beta, 14-3-3 epsilon and p43/EMAPII. CONCLUSIONS These results suggest distinct post-injury protein profiles between brain injury types (traumatic vs. ischemic) that will facilitate strategies aimed at the differential diagnosis and prognosis of acute brain injury.
Collapse
Affiliation(s)
- Changping Yao
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 2009; 29:464-79. [PMID: 19018268 DOI: 10.1038/jcbfm.2008.141] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interleukin-6 (IL-6) is pleiotropic cytokine involved in many central nervous system disorders including stroke, and elevated serum IL-6 has been found in acute stroke patients. IL-6 is implicated in the inflammation, which contributes to both injury and repair process after cerebral ischemia. However, IL-6 is one of the neurotrophic cytokines sharing a common receptor subunit, gp130, with other neurotrophic cytokines, such as leukemia inhibitory factor (LIF) and ciliary neurotrophic factor. The expression of IL-6 is most prominently identified in neurons in the peri-ischemic regions, and LIF expression shows a similar pattern. The direct injection of these cytokines into the brain after ischemia can reduce ischemic brain injury. The cytokine receptors are localized on the neuron surface, suggesting that neurons are the cytokine target. The major IL-6 downstream signaling pathway is JAK-STAT, and Stat3 activation occurs mainly in neurons during postischemic reperfusion. Further investigation is necessary to clarify the exact role of Stat3 signaling in neuroprotection. Taken together, the information suggests that IL-6 plays a double role in cerebral ischemia, as an inflammatory mediator during the acute phase and as a neurotrophic mediator between the subacute and prolonged phases.
Collapse
Affiliation(s)
- Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | |
Collapse
|
39
|
Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, Brooks-Kayal AR. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal 2008; 1:ra9. [PMID: 18922788 DOI: 10.1126/scisignal.1162396] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gamma-aminobutyric acid (GABA) type A receptor (GABA(A)R) is the major inhibitory neurotransmitter receptor in the brain. Its multiple subunits show regional, developmental, and disease-related plasticity of expression; however, the regulatory networks controlling GABA(A)R subunit expression remain poorly understood. We report that the seizure-induced decrease in GABA(A)R alpha1 subunit expression associated with epilepsy is mediated by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway regulated by brain-derived neurotrophic factor (BDNF). BDNF- and seizure-dependent phosphorylation of STAT3 cause the adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB) family member ICER (inducible cAMP early repressor) to bind with phosphorylated CREB at the Gabra1:CRE site. JAK/STAT pathway inhibition prevents the seizure-induced decrease in GABA(A)R alpha1 abundance in vivo and, given that BDNF is known to increase the abundance of GABA(A)R alpha4 in a JAK/STAT-independent manner, indicates that BDNF acts through at least two distinct pathways to influence GABA(A)R-dependent synaptic inhibition.
Collapse
Affiliation(s)
- Ingrid V Lund
- Neuroscience Graduate Group and Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Induction of suppressor of cytokine signaling-3 in astrocytes of the rat hippocampus following transient forebrain ischemia. Neurosci Lett 2008; 441:323-7. [PMID: 18586073 DOI: 10.1016/j.neulet.2008.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 11/22/2022]
Abstract
We investigated the spatiotemporal expression of suppressor of cytokine signaling-3 (SOCS-3) in the rat hippocampus following transient forebrain ischemia using in situ hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Messenger RNA for SOCS-3 was constitutively expressed in neurons of the pyramidal cell and granule cell layers in control animals; however, significant induction was detected in reactive astrocytes preferentially located in the CA1 and the dentate hilar regions of the ischemic hippocampus. SOCS-3 mRNA was induced within 3 days of ischemia and maintained for more than 2 weeks. The in situ hybridization data agreed with the semiquantitative RT-PCR analysis. These results demonstrate SOCS-3 induction occurs in reactive astrocytes of the post-ischemic hippocampus, suggesting that SOCS-3 is involved in regulating the astroglial reaction to an ischemic insult.
Collapse
|
41
|
Therapeutic Potential of PPARγ Activation in Stroke. PPAR Res 2008; 2008:461981. [PMID: 21909480 PMCID: PMC2293414 DOI: 10.1155/2008/461981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/27/2008] [Indexed: 02/07/2023] Open
Abstract
Stroke (focal cerebral ischemia) is a leading cause of death and disability among adult population. Many pathological events including inflammation and oxidative stress during the acute period contributes to the secondary neuronal death leading the neurological dysfunction after stroke. Transcriptional regulation of genes that promote these pathophysiological mechanisms can be an effective strategy to minimize the poststroke neuronal death. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors known to be upstream to many inflammatory and antioxidant genes. The goal of this review is to discuss the therapeutic potential and putative mechanisms of neuroprotection following PPAR activation after stroke.
Collapse
|
42
|
Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:1813-26. [PMID: 17981670 DOI: 10.2741/2802] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. The 3 PPAR isoforms (alpha, delta/beta and gamma) are known to control many physiological functions including glucose absorption, lipid balance, and cell growth and differentiation. Of interest, PPAR-gamma activation was recently shown to mitigate the inflammation associated with chronic and acute neurological insults. Particular attention was paid to test the therapeutic potential of PPAR agonists in acute conditions like stroke, spinal cord injury (SCI) and traumatic brain injury (TBI), in which massive inflammation plays a detrimental role. While 15d-prostaglandin J2 (15d PGJ2) is the natural ligand of PPAR-gamma, the thiazolidinediones (TZDs) are potent exogenous agonists. Due to their insulin-sensitizing properties, 2 TZDs rosiglitazone and pioglitazone are currently FDA-approved for type-2 diabetes treatment. Recent studies from our laboratory and other groups have shown that TZDs induce significant neuroprotection in animal models of focal ischemia and SCI by multiple mechanisms. The beneficial actions of TZDs were observed to be both PPAR-gamma-dependent as well as -independent. The major mechanism of TZD-induced neuroprotection seems to be prevention of microglial activation and inflammatory cytokine and chemokine expression. TZDs were also shown to prevent the activation of pro-inflammatory transcription factors at the same time promoting the anti-oxidant mechanisms in the injured CNS. This review article discusses the multiple mechanisms of TZD-induced neuroprotection in various animal models of CNS injury with an emphasis on stroke.
Collapse
Affiliation(s)
- Ramya Kapadia
- Department of Neurological Surgery and the Neuroscience Training Program, University of Wisconsin, Madison WI 53792, USA
| | | | | |
Collapse
|
43
|
Gorina R, Sanfeliu C, Galitó A, Messeguer A, Planas AM. Exposure of glia to pro-oxidant agents revealed selective Stat1 activation by H2O2 and Jak2-independent antioxidant features of the Jak2 inhibitor AG490. Glia 2007; 55:1313-24. [PMID: 17607690 DOI: 10.1002/glia.20542] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The JAK/STAT pathway is activated in response to cytokines and growth factors. In addition, oxidative stress can activate this pathway, but the causative pro-oxidant forms are not well identified. We exposed cultures of rat glia to H2O2, FeSO4, nitroprussiate, or paraquat. We assessed oxidative stress by measuring reactive oxygen species (ROS) and oxidated proteins, we determined phosphorylated Stat1 (pStat1), and we evaluated the effect of antioxidants (trolox, propyl gallate, and N-acetylcysteine) and of Jak2 (Janus tyrosine kinases) inhibitors (AG490 and Jak2-Inhibitor-II). Pro-oxidant agents induced ROS and protein oxidation, excluding nitroprussiate that induced protein nitrosylation. H2O2, and to a lesser extent FeSO4, increased the level of pStat1, whereas nitroprussiate and paraquat did not. Trolox and propyl gallate strongly prevented ROS formation but they did not abolish H2O2-induced pStat1. In contrast, NAC did not reduce the level of ROS but it prevented the increase of pStat1 induced by H2O2, evidencing a differential effect on ROS formation and on Stat1 phosphorylation. H2O2 induced pStat1 in mixed glia cultures and, to a lesser extent, in purified astroglia, but not in microglia. Jak2 inhibitors reduced H2O2-induced pStat1, suggesting the involvement of this kinase in the increased phosphorylation of Stat1 by peroxide. Unexpectedly, AG490, but not Jak2-Inhibitor-II, reduced ROS formation, and it abrogated lipid peroxidation in microsomal preparations. Furthermore, AG490 reduced ROS in glial cells that were transfected with siRNA to silence Jak2 expression. These findings reveal previously unrecognized Jak2-independent antioxidant properties of AG490, and show that Jak2-dependent Stat1 activation by peroxide is dissociated from ROS generation.
Collapse
Affiliation(s)
- Roser Gorina
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | | | | | | |
Collapse
|
44
|
Yi JH, Park SW, Kapadia R, Vemuganti R. Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem Int 2007; 50:1014-27. [PMID: 17532542 PMCID: PMC2040388 DOI: 10.1016/j.neuint.2007.04.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/16/2007] [Accepted: 04/18/2007] [Indexed: 12/20/2022]
Abstract
Inflammation is a known precipitator of neuronal death after cerebral ischemia. The mechanisms that promote or curtail the start and spread of inflammation in brain are still being debated. By virtue of their capability to modulate gene expression, several transcription factors induced in the ischemic brain can modulate the post-ischemic inflammation. While the induction of transcription factors such as IRF1, NF-kappaB, ATF-2, STAT3, Egr1 and C/EBPbeta is thought to promote post-ischemic inflammation, activation of transcription factors such as HIF-1, CREB, c-fos, PPARalpha, PPARgamma and p53 is thought to prevent post-ischemic inflammation and neuronal damage. Of these, PPARgamma which is a ligand-activated transcription factor was recently shown to prevent inflammatory gene expression in several animal models CNS disorders. This review article discusses some of the molecular mechanisms of PPARgamma induction by its agonists following focal cerebral ischemia.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Seung-Won Park
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery (SP), Chung-Ang University, Seoul, Korea
| | - Ramya Kapadia
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- Cardiovascular Research Center, University of Wisconsin, Madison, WI, USA
- Regenerative Medicine Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
45
|
Planas AM, Gorina R, Chamorro A. Signalling pathways mediating inflammatory responses in brain ischaemia. Biochem Soc Trans 2007; 34:1267-70. [PMID: 17073799 DOI: 10.1042/bst0341267] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Stroke causes neuronal necrosis and generates inflammation. Pro-inflammatory molecules intervene in this process by triggering glial cell activation and leucocyte infiltration to the injured tissue. Cytokines are major mediators of the inflammatory response. Pro-inflammatory and anti-inflammatory cytokines are released in the ischaemic brain. Anti-inflammatory cytokines, such as interleukin-10, promote cell survival, whereas pro-inflammatory cytokines, such as TNFalpha (tumour necrosis factor alpha), can induce cell death. However, deleterious effects of certain cytokines can turn to beneficial actions, depending on particular features such as the concentration, time point and the very intricate network of intracellular signals that become activated and interact. A key player in the intracellular response to cytokines is the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) pathway that induces alterations in the pattern of gene transcription. These changes are associated either with cell death or survival depending, among other things, on the specific proteins involved. STAT1 activation is related to cell death, whereas STAT3 activation is often associated with survival. Yet, it is clear that STAT activation must be tightly controlled, and for this reason the function of JAK/STAT modulators, such as SOCS (suppressors of cytokine signalling) and PIAS (protein inhibitor of activated STAT), and phosphatases is most relevant. Besides local effects in the ischaemic brain, cytokines are released to the circulation and affect the immune system. Unbalanced pro-inflammatory and anti-inflammatory plasma cytokine concentrations favouring an 'anti-inflammatory' state can decrease the immune response. Robust evidence now supports that stroke can induce an immunodepression syndrome, increasing the risk of infection. The contribution of individual cytokines and their intracellular signalling pathways to this response needs to be further investigated.
Collapse
Affiliation(s)
- A M Planas
- IIBB (Institute for Biomedical Research)--CSIC (Spanish Research Council), IDIBAPS (Institute of Biomedical Investigation 'August Pi i Sunyer'), Rosselló 161, planta 6, E-08036 Barcelona, Spain.
| | | | | |
Collapse
|
46
|
Satriotomo I, Bowen KK, Vemuganti R. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J Neurochem 2006; 98:1353-68. [PMID: 16923154 DOI: 10.1111/j.1471-4159.2006.04051.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increased levels of interleukin-6 (IL-6) play a role in post-ischemic cerebral inflammation. IL-6 binding to its receptors induces phosphorylation of the receptor associated janus kinases (JAKs), and the down-stream signal transducer and activator of transcription (STAT) family of transcription factors, which amplify the IL-6 signal transduction. We evaluated the functional significance of JAK2 and STAT3 activation in focal ischemia-induced neuronal damage. Transient middle cerebral artery occlusion in adult rats led to increased JAK2 and STAT3 phosphorylation in the ipsilateral cortex and striatum after 6-72 h of reperfusion. Fluorescent immunohistochemistry with cell specific markers (NeuN for neurons, glial fibrillary acidic protein for reactive astrocytes and ED1/OX42 for activated macrophages/microglia) showed that both pJAK2 and pSTAT3 staining is predominantly localized in the macrophages/microglia in the post-ischemic brain. Intracerebroventricular infusion of rats with AG490 (a JAK2 phosphorylation inhibitor) prevented the post-ischemic JAK2 and STAT3 phosphorylation and significantly decreased the infarct volume, number of apoptotic cells and neurological deficits, compared to vehicle control. Furthermore, intracerebral injection of siRNA specific for STAT3 led to curtailed STAT3 mRNA expression and phosphorylation, decreased infarct volume, fewer apoptotic cells and improved neurological function following transient middle cerebral artery occlusion. These studies show that JAK2-STAT3 activation plays a role in post-ischemic brain damage.
Collapse
Affiliation(s)
- Irawan Satriotomo
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | |
Collapse
|
47
|
Kapadia R, Tureyen K, Bowen KK, Kalluri H, Johnson PF, Vemuganti R. Decreased brain damage and curtailed inflammation in transcription factor CCAAT/enhancer binding protein beta knockout mice following transient focal cerebral ischemia. J Neurochem 2006; 98:1718-31. [PMID: 16899075 DOI: 10.1111/j.1471-4159.2006.04056.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CCAAT/enhancer binding protein beta (C/EBPbeta) is a leucine-zipper transcription factor that regulates cell growth and differentiation in mammals. Expression of many pro-inflammatory genes including the cytokine interleukin-6 is known to be controlled by C/EBPbeta. We report that focal cerebral ischemia induced by transient middle cerebral artery occlusion (MCAO) significantly increases C/EBPbeta gene expression in mouse brain at between 6 and 72 h of reperfusion. To understand the functional significance of C/EBPbeta in postischemic inflammation and brain damage, we induced transient MCAO in cohorts of adult C/EBPbeta null mice and their wild-type littermates. At 3 days of reperfusion following transient MCAO, C/EBPbeta null mice showed significantly smaller infarcts, reduced neurological deficits, decreased terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells, decreased intercellular adhesion molecule 1 (ICAM1) immunopositive vessels, decreased extravasated neutrophils and fewer activated microglia/macrophages, compared with their wild-type littermates. Furthermore, GeneChip analysis showed that postischemic induction of many transcripts known to promote inflammation and neuronal damage was less pronounced in the brains of C/EBPbeta-/- mice compared with C/EBPbeta+/+ mice. These results suggest a significant role for C/EBPbeta in postischemic inflammation and brain damage.
Collapse
Affiliation(s)
- Ramya Kapadia
- Department of Neurological Surgery, Universit of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
48
|
Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, Mochizuki H, Mizuno Y, Urabe T. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab 2006; 26:402-13. [PMID: 16049425 DOI: 10.1038/sj.jcbfm.9600195] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral ischemia induces the expression of several growth factors and cytokines, which protect neurons against ischemic insults. Recent studies showed that granulocyte colony-stimulating factor (G-CSF) has a neuroprotective effect through the signaling pathway for the antiapoptotic cascade. The current study was designed to assess the neuroprotective mechanisms of G-CSF in ischemia/reperfusion injury using bone marrow chimera mice known to express enhanced green fluorescent protein (EGFP). Mice were subjected to ischemia/reperfusion and divided into two groups: those treated with G-CSF (G-CSF group) and vehicle (control group) (n = 35 in each group). Immunohistochemistry and immunoblotting for antiapoptotic protein, nitrotyrosine, and inducible nitrate oxide synthase (iNOS) were performed. G-CSF significantly reduced stroke volume (34%, P < 0.006). G-CSF upregulated Stat3, pStat3, and Bcl-2 (P < 0.05), and suppressed iNOS and nitrotyrosine expression. In EGFP chimera mice, G-CSF decreased the migration of Iba-1/EGFP-positive bone marrow-derived monocytes/macrophages and increased intrinsic microglia/macrophages at ischemic penumbra (P < 0.05), suggesting that bone marrow-derived monocytes/macrophages are not involved in G-CSF-induced reduction of ischemic injury size. Our study indicated that G-CSF exerts a neuroprotective effect through the direct activation of antiapoptotic pathway, and suggested that G-CSF is important for expansion of the therapeutic time window in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Miki Komine-Kobayashi
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yamauchi K, Osuka K, Takayasu M, Usuda N, Nakazawa A, Nakahara N, Yoshida M, Aoshima C, Hara M, Yoshida J. Activation of JAK/STAT signalling in neurons following spinal cord injury in mice. J Neurochem 2006; 96:1060-70. [PMID: 16417589 DOI: 10.1111/j.1471-4159.2005.03559.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway is one of the most important in transducing signals from the cell surface to the nucleus in response to cytokines. In the present study, we investigated chronological alteration and cellular location of JAK1, STAT3, phosphorylated (p)-Tyr1022/1023-JAK1, p-Tyr705-STAT3, and interleukin-6 (IL-6) following spinal cord injury (SCI) in mice. Western blot analysis showed JAK1 to be significantly phosphorylated at Tyr1022/1023 from 6 h after SCI, peaking at 12 h and gradually decreasing thereafter, accompanied by phosphorylation of STAT3 at Tyr705 with a similar time course. ELISA analysis showed the concentration of IL-6 in injured spinal cord to also significantly increase from 3 h after SCI, peaking at 12 h, then gradually decreasing. Immunohistochemistry revealed p-Tyr1022/1023-JAK1, p-Tyr705-STAT3, and IL-6 to be mainly expressed in neurons of the anterior horns at 12 h after SCI. Pretreatment with a JAK inhibitor, AG-490, suppressed phosphorylation of JAK1 and STAT3 at 12 h after SCI, reducing recovery of motor functions. These findings suggest that SCI at the acute stage produces IL-6 mainly in neurons of the injured spinal cord, which activates the JAK/STAT pathway, and that this pathway may be involved with neuronal response to SCI.
Collapse
Affiliation(s)
- Katsuaki Yamauchi
- Department of Neurosurgery, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gorina R, Petegnief V, Chamorro A, Planas AM. AG490 prevents cell death after exposure of rat astrocytes to hydrogen peroxide or proinflammatory cytokines: involvement of the Jak2/STAT pathway. J Neurochem 2005; 92:505-18. [PMID: 15659221 DOI: 10.1111/j.1471-4159.2004.02878.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Janus kinases/STAT pathway mediates cellular responses to certain oxidative stress stimuli and cytokines. Here we examine the activation of Stat1 and Stat3 in rat astrocyte cultures and its involvement in cell death. H(2)O(2), interferon (INF)-gamma and interleukin (IL)-6 but not IL-10 caused cell death. Stat1 was phosphorylated on tyrosine (Tyr)-701 after exposure to H(2)O(2), INF-gamma or IL-6 but not IL-10. Tyr-705 pStat3 was observed after H(2)O(2), IL-6 and IL-10. Also, H(2)O(2) induced serine (Ser)-727 phosphorylation of Stat1 but not Stat3. The degree of Tyr-701 pStat1 by the different treatments positively correlated with the corresponding reduction of cell viability. AG490, a Jak2 inhibitor, prevented Tyr-701 but not Ser-727, Stat1 phosphorylation. Also, AG490 inhibited Tyr-705 Stat3 phosphorylation induced by H(2)O(2) and IL-6 but did not prevent that induced by IL-10. Furthermore, AG490 conferred strong protection against cell death induced by INF-gamma, IL-6 and H(2)O(2). These results suggest that Jak2/Stat1 activation mediates cell death induced by proinflammatory cytokines and peroxides. However, we found evidence suggesting that AG490 reduces oxidative stress induced by H(2)O(2), which further shows that H(2)O(2) and/or derived reactive oxygen species directly activate Jak2/Stat1, but masks the actual involvement of this pathway in H(2)O(2)-induced cell death.
Collapse
Affiliation(s)
- Roser Gorina
- Departament de Farmacologia i Toxicologia, IIBB-CSIC, IDIBAPS, Rosselló 161, Planta 6, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|