1
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
2
|
Zhou R, Li J, Chen Z, Wang R, Shen Y, Zhang R, Zhou F, Zhang Y. Pathological hemodynamic changes and leukocyte transmigration disrupt the blood-spinal cord barrier after spinal cord injury. J Neuroinflammation 2023; 20:118. [PMID: 37210532 DOI: 10.1186/s12974-023-02787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/21/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Blood-spinal cord barrier (BSCB) disruption is a key event after spinal cord injury (SCI), which permits unfavorable blood-derived substances to enter the neural tissue and exacerbates secondary injury. However, limited mechanical impact is usually followed by a large-scale BSCB disruption in SCI. How the BSCB disruption is propagated along the spinal cord in the acute period of SCI remains unclear. Thus, strategies for appropriate clinical treatment are lacking. METHODS A SCI contusion mouse model was established in wild-type and LysM-YFP transgenic mice. In vivo two-photon imaging and complementary studies, including immunostaining, capillary western blotting, and whole-tissue clearing, were performed to monitor BSCB disruption and verify relevant injury mechanisms. Clinically applied target temperature management (TTM) to reduce the core body temperature was tested for the efficacy of attenuating BSCB disruption. RESULTS Barrier leakage was detected in the contusion epicenter within several minutes and then gradually spread to more distant regions. Membrane expression of the main tight junction proteins remained unaltered at four hours post-injury. Many junctional gaps emerged in paracellular tight junctions at the small vessels from multiple spinal cord segments at 15 min post-injury. A previously unnoticed pathological hemodynamic change was observed in the venous system, which likely facilitated gap formation and barrier leakage by exerting abnormal physical force on the BSCB. Leukocytes were quickly initiated to transverse through the BSCB within 30 min post-SCI, actively facilitating gap formation and barrier leakage. Inducing leukocyte transmigration generated gap formation and barrier leakage. Furthermore, pharmacological alleviation of pathological hemodynamic changes or leukocyte transmigration reduced gap formation and barrier leakage. TTM had very little protective effects on the BSCB in the early period of SCI other than partially alleviating leukocyte infiltration. CONCLUSIONS Our data show that BSCB disruption in the early period of SCI is a secondary change, which is indicated by widespread gap formation in tight junctions. Pathological hemodynamic changes and leukocyte transmigration contribute to gap formation, which could advance our understanding of BSCB disruption and provide new clues for potential treatment strategies. Ultimately, TTM is inadequate to protect the BSCB in early SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Junzhao Li
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Hubei, Wuhan, 430060, People's Republic of China
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China.
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China.
| |
Collapse
|
3
|
Ayala C, Fishman M, Noyelle M, Bassiri H, Young W. Species Differences in Blood Lymphocyte Responses After Spinal Cord Injury. J Neurotrauma 2023; 40:807-819. [PMID: 36367185 PMCID: PMC10150731 DOI: 10.1089/neu.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
People with spinal cord injury (SCI) get recurrent infections, such as urinary tract infections (UTIs) and pneumonias, that cause mortality and worsen neurological recovery. Over the past decades, researchers have proposed that post-SCI lymphopenia and decreased lymphocyte function increase susceptibility to infections and worsen neurological outcome in humans, leading to a condition called SCI-induced immune depression syndrome (SCI-IDS). In this review, we explore how SCI affects blood lymphocyte homeostasis and function in humans and rodents. Understanding how SCI affects blood lymphocytes will help the management of recurrent infections in spinal cord injured people and shed light on the clinical translation of findings in animal models to humans.
Collapse
Affiliation(s)
- Carlos Ayala
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Morgan Fishman
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Margot Noyelle
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hamid Bassiri
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wise Young
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. Moderate systemic therapeutic hypothermia is insufficient to protect blood-spinal cord barrier in spinal cord injury. Front Neurol 2022; 13:1041099. [DOI: 10.3389/fneur.2022.1041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Blood–spinal cord barrier (BSCB) disruption is a pivotal event in spinal cord injury (SCI) that aggravates secondary injury but has no specific treatment. Previous reports have shown that systemic therapeutic hypothermia (TH) can protect the blood–brain barrier after brain injury. To verify whether a similar effect exists on the BSCB after SCI, moderate systemic TH at 32°C was induced for 4 h on the mice with contusion-SCI. In vivo two-photon microscopy was utilized to dynamically monitor the BSCB leakage 1 h after SCI, combined with immunohistochemistry to detect BSCB leakage at 1 and 4 h after SCI. The BSCB leakage was not different between the normothermia (NT) and TH groups at both the in vivo and postmortem levels. The expression of endothelial tight junctions was not significantly different between the NT and TH groups 4 h after SCI, as detected by capillary western blotting. The structural damage of the BSCB was examined with immunofluorescence, but the occurrence of junctional gaps was not changed by TH 4 h after SCI. Our results have shown that moderate systemic TH induced for 4 h does not have a protective effect on the disrupted BSCB in early SCI. This treatment method has a low value and is not recommended for BSCB disruption therapy in early SCI.
Collapse
|
5
|
Pang R, Wang J, Xiong Y, Liu J, Ma X, Gou X, He X, Cheng C, Wang W, Zheng J, Sun M, Bai X, Bai L, Zhang A. Relationship between gut microbiota and lymphocyte subsets in Chinese Han patients with spinal cord injury. Front Microbiol 2022; 13:986480. [PMID: 36225368 PMCID: PMC9549169 DOI: 10.3389/fmicb.2022.986480] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study is to investigate the changes of lymphocyte subsets and the gut microbiota in Chinese Han patients with spinal cord injury (SCI). We enrolled 23 patients with SCI and 21 healthy controls. Blood and fecal samples were collected. The proportion of lymphocyte subsets was detected by flow cytometry. 16S rDNA sequencing of the V4 region was used to analyze the gut microbiota. The changes of the gut microbiota were analyzed by bioinformatics. Correlation analysis between gut microbiota and lymphocyte subsets was performed. CD4 + cells, CD4 + /CD8 + ratio and CD4 + CD8 + cells in peripheral blood of SCI patients were significantly lower than those of the control group (P < 0.05). There was no significant difference in B cells and CIK cells between the SCI group and the control group. The gut microbiota community diversity index of SCI patients was significantly higher than that of healthy controls. In SCI patients, the relative abundance of Lachnospiraceae (related to lymphocyte subset regulation), Ruminococcaceae (closely related to central nervous system diseases), and Escherichia-Shigella (closely related to intestinal infections) increased significantly, while the butyrate producing bacteria (Fusobacterium) that were beneficial to the gut were dramatically decreased. Correlation analysis showed that the five bacterial genera of SCI patients, including Lachnospiraceae UCG-008, Lachnoclostridium 12, Tyzzerella 3, Eubacterium eligens group, and Rumencocciucg-002, were correlated with T lymphocyte subsets and NK cells. In the SCI group, the flora Prevotella 9, Lachnospiraceae NC2004 group, Veillonella, and Sutterella were positively correlated with B cells. However, Fusobacterium and Akkermansia were negatively correlated with B cells. Moreover, Roseburia and Ruminococcaceae UCG-003 were positively correlated with CIK cells. Our results suggest that the gut microbiota of patients with SCI is associated with lymphocyte subsets. Therefore, it is possible to improve immune dysregulation in SCI patients by modulating gut microbiota, which may serve as a new therapeutic method for SCI.
Collapse
Affiliation(s)
- Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Junyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yisong Xiong
- Department of Laboratory Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xin Ma
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiang Gou
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xin He
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Chao Cheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jinqi Zheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Mengyuan Sun
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xingang Bai
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Ling Bai
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Anren Zhang,
| |
Collapse
|
6
|
Mayne K, White JA, McMurran CE, Rivera FJ, de la Fuente AG. Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe? Front Aging Neurosci 2020; 12:572090. [PMID: 33173502 PMCID: PMC7538701 DOI: 10.3389/fnagi.2020.572090] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases of the central nervous system (CNS) are characterized by progressive neuronal death and neurological dysfunction, leading to increased disability and a loss of cognitive or motor functions. Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis have neurodegeneration as a primary feature. However, in other CNS diseases such as multiple sclerosis, stroke, traumatic brain injury, and spinal cord injury, neurodegeneration follows another insult, such as demyelination or ischaemia. Although there are different primary causes to these diseases, they all share a hallmark of neuroinflammation. Neuroinflammation can occur through the activation of resident immune cells such as microglia, cells of the innate and adaptive peripheral immune system, meningeal inflammation and autoantibodies directed toward components of the CNS. Despite chronic inflammation being pathogenic in these diseases, local inflammation after insult can also promote endogenous regenerative processes in the CNS, which are key to slowing disease progression. The normal aging process in the healthy brain is associated with a decline in physiological function, a steady increase in levels of neuroinflammation, brain shrinkage, and memory deficits. Likewise, aging is also a key contributor to the progression and exacerbation of neurodegenerative diseases. As there are associated co-morbidities within an aging population, pinpointing the precise relationship between aging and neurodegenerative disease progression can be a challenge. The CNS has historically been considered an isolated, "immune privileged" site, however, there is mounting evidence that adaptive immune cells are present in the CNS of both healthy individuals and diseased patients. Adaptive immune cells have also been implicated in both the degeneration and regeneration of the CNS. In this review, we will discuss the key role of the adaptive immune system in CNS degeneration and regeneration, with a focus on how aging influences this crosstalk.
Collapse
Affiliation(s)
- Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Jessica A. White
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Alerie G. de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Alerie G. de la Fuente,
| |
Collapse
|
7
|
Wu Y, Lin YH, Shi LL, Yao ZF, Xie XM, Jiang ZS, Tang J, Hu JG, Lü HZ. Temporal kinetics of CD8 + CD28 + and CD8 + CD28 - T lymphocytes in the injured rat spinal cord. J Neurosci Res 2016; 95:1666-1676. [PMID: 27898179 DOI: 10.1002/jnr.23993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/09/2016] [Accepted: 10/31/2016] [Indexed: 01/13/2023]
Abstract
This study aims to explore the temporal changes of cytotoxic CD8+ CD28+ and regulatory CD8+ CD28- T-cell subsets in the lesion microenvironment after spinal cord injury (SCI) in rats, by combination of immunohistochemistry (IHC) and flow cytometry (FCM). In the sham-opened spinal cord, few CD8+ T cells were found. After SCI, the CD8+ T cells were detected at one day post-injury (dpi), then markedly increased and were significantly higher at 3, 7, and 14 dpi compared with one dpi (p < 0.01), the highest being seven dpi. In CD8+ T cells, more than 90% were CD28+ , and there were only small part of CD28- ( < 10%). After 14 days, the infiltrated CD8+ T cells were significantly decreased, and few could be found in good condition at 21 and 28 dpi. Annexin V and propidium iodide (PI) staining showed that the percentages of apoptotic/necrotic CD8+ cells at 14 dpi and 21 dpi were significantly higher than those of the other early time-points (p < 0.01). These results indicate that CD8+ T cells could rapidly infiltrate into the injured spinal cords and survive two weeks, however, cytotoxic CD8+ T cells were dominant. Therefore, two weeks after injury might be the "time window" for treating SCI by prolonging survival times and increasing the fraction of CD8+ regulatory T-cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Wu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Yu-Hong Lin
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Ling-Ling Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Zong-Feng Yao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - Xiu-Mei Xie
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - Zheng-Song Jiang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Jie Tang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| |
Collapse
|
8
|
Mazzon E, Bruscoli S, Galuppo M, Biagioli M, Sorcini D, Bereshchenko O, Fiorucci C, Migliorati G, Bramanti P, Riccardi C. Glucocorticoid-induced leucine zipper (GILZ) controls inflammation and tissue damage after spinal cord injury. CNS Neurosci Ther 2014; 20:973-81. [PMID: 25146427 DOI: 10.1111/cns.12315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023] Open
Abstract
AIMS Spinal cord injury (SCI) occurs following damage to the spinal column. Following trauma, tissue damage is further exacerbated by a secondary damage due to a SCI-activated inflammatory process. Control of leukocytes activity is essential to therapeutic inhibition of the spinal cord damage to ameliorate the patient's conditions. The mechanisms that regulate neuroinflammation following SCI, including T-cell infiltration, have not been completely clarified. Glucocorticoids (GC) are antiinflammatory drugs widely used in therapy, including treatment of SCI. GC efficacy may be linked to many molecular mechanisms that are involved in regulation of leukocytes migration, activation, and differentiation. We have previously shown that the antiinflammatory activity of GC is in part mediated by glucocorticoid-induced leucine zipper (GILZ). Here, we investigated the role of GILZ in inflammation and spinal cord tissue damage following a spinal trauma. METHODS We address the role of GILZ in SCI-induced inflammation and tissue damage using a model of SCI in gilz knockout (gilz KO) and wild-type (WT) mice. RESULTS We found that GILZ deficiency is associated with a strong reduction of SCI-induced inflammation and a significantly reduced lesion area following SCI. CONCLUSION These results demonstrate that GILZ is involved in induction of neuroinflammation and functional outcomes of spinal cord trauma.
Collapse
Affiliation(s)
- Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bloom O. Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury. Exp Neurol 2014; 258:130-40. [PMID: 25017894 PMCID: PMC4099969 DOI: 10.1016/j.expneurol.2013.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 01/09/2023]
Abstract
Mammals exhibit poor recovery after injury to the spinal cord, where the loss of neurons and neuronal connections can be functionally devastating. In contrast, it has long been appreciated that many non-mammalian vertebrate species exhibit significant spontaneous functional recovery after spinal cord injury (SCI). Identifying the biological responses that support an organism's inability or ability to recover function after SCI is an important scientific and medical question. While recent advances have been made in understanding the responses to SCI in mammals, we remain without an effective clinical therapy for SCI. A comparative biological approach to understanding responses to SCI in non-mammalian vertebrates will yield important insights into mechanisms that promote recovery after SCI. Presently, mechanistic studies aimed at elucidating responses, both intrinsic and extrinsic to neurons, that result in different regenerative capacities after SCI across vertebrates are just in their early stages. There are several inhibitory mechanisms proposed to impede recovery from SCI in mammals, including reactive gliosis and scarring, myelin associated proteins, and a suboptimal immune response. One hypothesis to explain the robust regenerative capacity of several non-mammalian vertebrates is a lack of some or all of these inhibitory signals. This review presents the current knowledge of immune responses to SCI in several non-mammalian species that achieve anatomical and functional recovery after SCI. This subject is of growing interest, as studies increasingly show both beneficial and detrimental roles of the immune response following SCI in mammals. A long-term goal of biomedical research in all experimental models of SCI is to understand how to promote functional recovery after SCI in humans. Therefore, understanding immune responses to SCI in non-mammalian vertebrates that achieve functional recovery spontaneously may identify novel strategies to modulate immune responses in less regenerative species and promote recovery after SCI.
Collapse
Affiliation(s)
- Ona Bloom
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; The Hofstra North Shore-LIJ School of Medicine, Hempstead Turnpike, Hempstead, NY 11549, USA.
| |
Collapse
|
10
|
Failli V, Kopp MA, Gericke C, Martus P, Klingbeil S, Brommer B, Laginha I, Chen Y, DeVivo MJ, Dirnagl U, Schwab JM. Functional neurological recovery after spinal cord injury is impaired in patients with infections. ACTA ACUST UNITED AC 2012; 135:3238-50. [PMID: 23100450 DOI: 10.1093/brain/aws267] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infections are a common threat to patients after spinal cord injury. Furthermore, infections might propagate neuronal death, and consequently contribute to the restriction of neurological recovery. We investigated the association of infections (i.e. pneumonia and/or postoperative wound infections) with functional neurological outcome after acute severe traumatic spinal cord injury. We screened data sets of 24 762 patients enrolled in a prospective cohort study (National Spinal Cord Injury Database, Birmingham, AL, USA). Patients were assessed according to the ASIA classification. ASIA impairment scale-classified A and B patients recruited within 24 h post-trauma (n = 1436) were selected as being a major recruitment population for interventional trials. Patients with documented pneumonia and/or postoperative wound infections (n = 581) were compared with control subjects (non-documented infections, n = 855). The functional neurological outcome parameters (i) upward ASIA impairment scale conversions; (ii) gain of ASIA motor scores; and (iii) gain of motor and sensory levels were consecutively analysed over time up to 1 year after spinal cord injury. The group with pneumonia and/or postoperative wound infections revealed less ASIA impairment scale upward conversions after 1 year than the control group (ASIA impairment scale A: 17.2 versus 23.9%, P = 0.03; ASIA impairment scale B: 57.1 versus 74.7%, P = 0.009). ASIA motor score gain [median (interquartile range)] was lower in patients with infections [ASIA impairment scale A: 8 (4-12) versus 10 (5-17), P = 0.01; ASIA impairment scale B: 19.5 (8-53.5) versus 42 (20.5-64), P = 0.03)]. Analysis of acquired motor/sensory levels supported these findings. In ASIA impairment scale A patients, the gain in motor levels (21.7 versus 33.3%, P = 0.04) and sensory levels (24.4 versus 38 of 102, 37.3%, P = 0.03) was significantly lower in the group with pneumonia and/or postoperative wound infections than in the control group. Multiple regression analysis identified pneumonia and/or postoperative wound infections as independent risk factors for impaired ASIA impairment scale upward conversion (odds ratio: 1.89, 95% confidence interval: 1.36-2.63, P < 0.0005) or lower gain in ASIA motor score (regression coefficient: -8.21, 95% confidence interval: -12.29 to -4.14, P < 0.0005). Infections associated with spinal cord injury, such as pneumonia and/or postoperative wound infections, qualify as independent risk factors for poor neurological outcome after motor complete spinal cord injury. Infections constitute a clinically relevant target for protecting the limited endogenous functional regeneration capacity. Upcoming interventional trials might gain in efficacy with improved patient stratification and might benefit from complementary protection of the intrinsic recovery potential after spinal cord injury.
Collapse
Affiliation(s)
- Vieri Failli
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research, Neuroparaplegiology, Charité—Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu B, Matic D, Djogo N, Szpotowicz E, Schachner M, Jakovcevski I. Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes. Exp Neurol 2012; 237:274-85. [PMID: 22868200 DOI: 10.1016/j.expneurol.2012.07.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/14/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
It is widely accepted that the immune system plays important functional roles in regeneration after injury to the spinal cord. Immune response towards injury involves a complex interplay of immune system cells, such as neutrophils, macrophages and microglia, T- and B-lymphocytes. We investigated the influence of the lymphocyte component of the immune system on the locomotor outcome of severe spinal cord injury in a genetic mouse model of immune suppression. Transgenic mice lacking mature T- and B-lymphocytes due to the recombination activating gene 2 gene deletion (RAG2-/- mice) were subjected to severe compression of the lower thoracic spinal cord, with the wild-type mice of the same inbred background serving as controls. According to both the Basso Mouse Scale score and single frame motion analysis, the RAG2-/- mice showed improved recovery in comparison to control mice at six weeks after injury. Better locomotor function was associated with enhanced catecholaminergic and cholinergic reinnervation of the spinal cord caudal to injury and increased axonal regrowth/sprouting at the site of injury. Myelination of axons in the ventral column measured as g-ratio was more extensive in RAG2-/- than in control mice 6weeks after injury. Additionally, the number of microglia/macrophages was decreased in the lumbar spinal cord of RAG2-/- mice after injury, whereas the number of astrocytes was increased compared with controls. We conclude that T- and B-lymphocytes restrict functional recovery from spinal cord injury by increasing numbers of microglia/macrophages as well as decreasing axonal sprouting and myelination.
Collapse
Affiliation(s)
- Bin Wu
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Yunta M, Nieto-Díaz M, Esteban FJ, Caballero-López M, Navarro-Ruíz R, Reigada D, Pita-Thomas DW, del Águila Á, Muñoz-Galdeano T, Maza RM. MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One 2012; 7:e34534. [PMID: 22511948 PMCID: PMC3325277 DOI: 10.1371/journal.pone.0034534] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/01/2012] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury. The microarray data reveal the induction of a specific microRNA expression pattern following moderate contusive SCI that is characterized by a marked increase in the number of down-regulated microRNAs, especially at 7 days after injury. MicroRNA downregulation is paralleled by mRNA upregulation, strongly suggesting that microRNAs regulate transcriptional changes following injury. Bioinformatic analyses indicate that changes in microRNA expression affect key processes in SCI physiopathology, including inflammation and apoptosis. MicroRNA expression changes appear to be influenced by an invasion of immune cells at the injury area and, more importantly, by changes in microRNA expression specific to spinal cord cells. Comparisons with previous data suggest that although microRNA expression patterns in the spinal cord are broadly similar among vertebrates, the results of studies assessing SCI are much less congruent and may depend on injury severity. The results of the present study demonstrate that moderate spinal cord injury induces an extended microRNA downregulation paralleled by an increase in mRNA expression that affects key processes in the pathophysiology of this injury.
Collapse
Affiliation(s)
- Mónica Yunta
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Francisco J. Esteban
- System Biology Unit, Experimental Biology Department, Faculty of Experimental and Health Sciences, Universidad de Jaén, Jaén, Spain
| | - Marcos Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rosa Navarro-Ruíz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - David Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - D. Wolfgang Pita-Thomas
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, United States of America
| | - Ángela del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
- * E-mail:
| |
Collapse
|
13
|
Abstract
Brain and spinal cord traumas include blunt and penetrating trauma, disease, and required surgery. Such traumas trigger events such as inflammation, infiltration of inflammatory and other cells, oxidative stress, acidification, excitotoxicity, ischemia, and the loss of calcium homeostasis, all of which cause neurotoxicity and neuron death. To prevent trauma-induced neurological deficits and death, each of the many neurotoxic events that occur in parallel or sequentially must be minimized or prevented. Although neuroprotective techniques have been developed that block single neurotoxic events, most provide only limited neuroprotection and are only applied singly. However, because many neurotoxicity triggers arise from common events, an approach for invoking more effective neuroprotection is to apply multiple neuroprotective methods simultaneously before the many neurotoxic triggers and cascades are initiated and become irreversible. This paper first discusses some triggers of neurotoxicity and neuroprotective mechanisms that block them, including hypothermia, alkalinization, and the administration of adenosine. It then examines how the simultaneous application of these techniques provides significantly greater neuroprotection than is provided by any technique alone. The paper also stresses the importance of determining whether the neuroprotection provided by these techniques can be further enhanced by combining them with additional techniques, such as the systemic administration of glucocorticoids. Finally, the paper stresses the absolute critical importance of applying these techniques within the "golden hour" following trauma, before the many neurotoxic events and cascades are manifest and before the neurotoxic cascades become irreversible.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
14
|
Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 2008; 158:1112-21. [PMID: 18674593 DOI: 10.1016/j.neuroscience.2008.07.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 12/12/2022]
Abstract
Traumatic spinal cord injury (SCI) in mammals causes widespread glial activation and recruitment to the CNS of innate (e.g. neutrophils, monocytes) and adaptive (e.g. T and B lymphocytes) immune cells. To date, most studies have sought to understand or manipulate the post-traumatic functions of astrocytes, microglia, neutrophils or monocytes. Significantly less is known about the consequences of SCI-induced lymphocyte activation. Yet, emerging data suggest that T and B cells are activated by SCI and play significant roles in shaping post-traumatic inflammation and downstream cascades of neurodegeneration and repair. Here, we provide neurobiologists with a timely review of the mechanisms and implications of SCI-induced lymphocyte activation, including a discussion of different experimental strategies that have been designed to manipulate lymphocyte function for therapeutic gain.
Collapse
|
15
|
Hu P, Bembrick AL, Keay KA, McLachlan EM. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun 2007; 21:599-616. [PMID: 17187959 DOI: 10.1016/j.bbi.2006.10.013] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 01/10/2023] Open
Abstract
Chronic constriction injury (CCI) of the sciatic nerve in rodents produces mechanical and thermal hyperalgesia and is a common model of neuropathic pain. Here we compare the inflammatory responses in L4/5 dorsal root ganglia (DRGs) and spinal segments after CCI with those after transection and ligation at the same site. Expression of ATF3 after one week implied that 75% of sensory and 100% of motor neurones had been axotomized after CCI. Macrophage invasion of DRGs and microglial and astrocytic activation in the spinal cord were qualitatively similar but quantitatively distinct between the lesions. The macrophage and glial reactions around neurone somata in DRGs and ventral horn were slightly greater after transection than CCI while, in the dorsal horn, microglial activation (using markers OX-42(for CD11b) and ED1(for CD68)) was greater after CCI. In DRGs, macrophages positive for OX-42(CD11b), CD4, MHC II and ED1(CD68) more frequently formed perineuronal rings beneath the glial sheath of ATF3+ medium to large neurone somata after CCI. There were more invading MHC II+ macrophages lacking OX-42(CD11b)/CD4/ED1(CD68) after transection. MHC I was expressed in DRGs and in spinal sciatic territories to a similar extent after both lesions. CD8+ T-lymphocytes aggregated to a greater extent both in DRGs and the dorsal horn after CCI, but in the ventral horn after transection. This occurred mainly by migration, additional T-cells being recruited only after CCI. Some of these were probably CD4+. It appears that inflammation of the peripheral nerve trunk after CCI triggers an adaptive immune response not seen after axotomy.
Collapse
Affiliation(s)
- Ping Hu
- Prince of Wales Medical Research Institute, Randwick, NSW 2031, Australia
| | | | | | | |
Collapse
|
16
|
Trivedi A, Olivas AD, Noble-Haeusslein LJ. Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes. ACTA ACUST UNITED AC 2006; 6:283-292. [PMID: 18059979 DOI: 10.1016/j.cnr.2006.09.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The immune response that accompanies spinal cord injury contributes to both injury and reparative processes. It is this duality that is the focus of this review. Here we consider the complex cellular and molecular immune responses that lead to the infiltration of leukocytes and glial activation, promote oxidative stress and tissue damage, influence wound healing, and subsequently modulate locomotor recovery. Immunomodulatory strategies to improve outcomes are gaining momentum as ongoing research carefully dissects those pathways, which likely mediate cell injury from those, which favor recovery processes. Current therapeutic strategies address divergent approaches including early immunoblockade and vaccination with immune cells to prevent early tissue damage and support a wound-healing environment that favors plasticity. Despite these advances, there remain basic questions regarding how inflammatory cells interact in the injured spinal cord. Such questions likely arise as a result of our limited understanding of immune cell/neural interactions in a dynamic environment that culminates in progressive cell injury, demyelination, and regenerative failure.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Neurosurgery, University of California San Francisco, CA 94143
| | | | | |
Collapse
|
17
|
Guertin PA. Semiquantitative assessment of hindlimb movement recovery without intervention in adult paraplegic mice. Spinal Cord 2004; 43:162-6. [PMID: 15570318 DOI: 10.1038/sj.sc.3101701] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Experimental laboratory investigation of hindlimb movement recovery in chronic paraplegic mice. OBJECTIVES Development of an assessment method to discriminatively quantify motor and locomotor-like movements of paraplegic mice. SETTING Laval University Medical Center, Quebec, Canada. METHODS Signs of 'functional recovery' were examined in open-field condition during 1 month in adult mice with a complete spinal cord transection at the low-thoracic level. RESULTS None of the mice exhibited hindlimb movements after spinalization. At 7 days, 33% of them displayed weak nonbilaterally alternating movements (NBA). At 14 days, increased NBA were observed and the first bilaterally alternating movements (BA) in 10% of the mice. A progressive increase of movement frequency and amplitude was found after 2-3 weeks. By the end of the month, 86% displayed mixed NBA and BA. However, none of them recovered the ability to stand or bear their own weight with the hindlimbs. CONCLUSION This study reports signs of partial hindlimb movement recovery in chronic paraplegic mice and provides evidence of plasticity in sublesional circuits of neurons occurring in the absence of inputs from the brain, locomotor training or pharmacological treatment. This assessment method can be used to characterize hindlimb movements in complete spinal cord transected mice tested in open-field condition.
Collapse
Affiliation(s)
- P A Guertin
- Department of Anatomy and Physiology, Research Centre of the Laval University Medical Center, Laval University, Quebec, Canada
| |
Collapse
|
18
|
Tjoa T, Strausbaugh HJ, Maida N, Dazin PF, Rosen SD, Noble-Haeusslein LJ. The use of flow cytometry to assess neutrophil infiltration in the injured murine spinal cord. J Neurosci Methods 2003; 129:49-59. [PMID: 12951232 DOI: 10.1016/s0165-0270(03)00205-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inflammatory cells, including neutrophils, are likely candidates in promoting early cell death after spinal cord injury. We describe a simple and reliable method for obtaining neutrophils from the injured murine spinal cord for flow cytometric quantification. Mice were subjected to either a moderate or severe spinal cord contusion injury and euthanized 24 h later. The area of maximal damage, designated the epicenter, was prepared for assessment of myeloperoxidase (MPO) activity, quantitative immunocytochemistry, or quantification of immunolabeled neutrophils by flow cytometry. For flow cytometry, a cell suspension was prepared from the epicenter by gentle mechanical disruption. After centrifugation, the pellet was resuspended, immunolabeled for neutrophils, and analyzed. There was no detectable MPO activity in the injured spinal cord. In contrast, neutrophil infiltration was confirmed by immunocytochemistry and found to be significantly greater in the more severely injured group. Flow cytometry, using a standard neutrophil marker, revealed a similar significant increase in immunolabeled cells in the more severely injured group. However, when cell viability was determined in the neutrophil labeled population, no significant difference in the numbers of live neutrophils were noted between the two injured groups. Together, these findings demonstrate an effective method for the detection and quantification of viable neutrophils in the injured murine spinal cord.
Collapse
Affiliation(s)
- Tjoson Tjoa
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ibarra A, Correa D, Willms K, Merchant MT, Guizar-Sahagún G, Grijalva I, Madrazo I. Effects of cyclosporin-A on immune response, tissue protection and motor function of rats subjected to spinal cord injury. Brain Res 2003; 979:165-78. [PMID: 12850583 DOI: 10.1016/s0006-8993(03)02898-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this work was to test the effect of cyclosporin-A (CsA) on some immunological, morphological and functional aspects developed after spinal cord injury. The specific cellular immune response against spinal cord constituents, the amount of spared tissue and myelination at the site of injury, and the motor function outcome were assessed in a first series of experiments. Rats were subjected to spinal cord compression and treated with cyclosporin-A before lesion and during the entire study. A specific lymphocyte response against spinal cord antigens was found in untreated spinal cord injured rats but not in cyclosporine-A treated injured rats. A significantly better myelination index was also found in injured cyclosporin-A-treated rats, as compared to untreated animals. The amount of spared spinal cord tissue at the epicenter was not significantly different comparing CsA-treated with vehicle-treated rats. Looking for a potential therapeutic use of CsA, in a second series of experiments, rats were subjected to spinal cord contusion and treated with cyclosporin-A from 1 to 72 h after lesion. Motor recovery and red nuclei neurons survival, were evaluated, and found to be significantly better in spinal cord injured rats treated with cyclosporin-A than in injured-untreated rats. This work confirms the existence of an autoimmune cellular reaction after injury that can be inhibited by cyclosporin-A treatment. Furthermore, cyclosporin-A promotes neuroprotection by diminishing both demyelination and neuronal cell death, resulting in a better motor outcome after spinal cord injury.
Collapse
Affiliation(s)
- Antonio Ibarra
- Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, IMSS, DF, México, Mexico.
| | | | | | | | | | | | | |
Collapse
|
20
|
Pan JZ, Ni L, Sodhi A, Aguanno A, Young W, Hart RP. Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion. J Neurosci Res 2002; 68:315-22. [PMID: 12111861 DOI: 10.1002/jnr.10215] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Injury of the spinal cord leads to an inflammatory tissue response, probably mediated in part by cytokines. Because a common therapy for acute spinal cord injury is the use of an antiinflammatory synthetic glucocorticoid (methylprednisolone), we sought to determine mechanisms contributing to inflammation shortly after acute injury. Cytokine mRNAs [interleukin (IL)-1alpha, IL-1beta, tumor necrosis factor (TNF)-alpha, and IL-6] were increased during the first 2 hr following weight-drop compression injury by RNase protection assay, prior to the reported appearance of circulating lymphocytes. This immediate pattern of cytokine mRNA induction could be replicated in cultured, explanted spinal cord slices but not in whole blood of injured animals, which is consistent with a tissue source of cytokine mRNAs. Western blotting detected IL-1beta-like immunoreactivity released into culture medium following explantation and pro-IL-1beta-like immunoreactivity in freshly dissected spinal cord tissue. Pharmacologically blocking IL-1 and TNF-alpha receptors significantly reduced expression of IL-1alpha, IL-1beta, and TNF-alpha mRNAs. Finally, mice lacking both IL-1 and TNF-alpha receptors exhibited diminished induction of TNF-alpha, IL-6, and IL-1ra mRNAs following injury. Therefore, we conclude that contusion injury induces an immediate release of cytokines, which then contributes to the induction of cytokine mRNAs.
Collapse
MESH Headings
- Animals
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Interleukin-1/genetics
- Interleukin-6/genetics
- Male
- Mice
- Mice, Knockout
- Myelitis/genetics
- Myelitis/immunology
- Myelitis/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Long-Evans
- Receptors, Cytokine/antagonists & inhibitors
- Receptors, Cytokine/metabolism
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Spinal Cord Injuries/genetics
- Spinal Cord Injuries/immunology
- Spinal Cord Injuries/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Jonathan Z Pan
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The immune status of the central nervous system (CNS) is strictly regulated. In the healthy brain, immune responses are kept to a minimum. In contrast, in a variety of inflammatory and neurodegenerative diseases, including multiple sclerosis, infections, trauma, stroke, neoplasia, and Alzheimer's disease, glial cells such as microglia gain antigen-presenting capacity through the expression of major histocompatibility complex (MHC) molecules. Further, proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF), interleukin-1beta (IL-1beta), and interferon-gamma (IFN-gamma), as well as chemokines, are synthesized by resident brain cells and T lymphocytes invade the affected brain tissue. The proinflammatory cytokines stimulate microglial MHC expression in the lesioned CNS areas only. However, the induction of brain immunity is strongly counterregulated in intact CNS areas. For instance, recent work demonstrated that microglia are kept in a quiescent state in the intact CNS by local interactions between the microglia receptor CD200 and its ligand, which is expressed on neurons. Work done in our laboratory showed that neurons suppressed MHC expression in surrounding glial cells, in particular microglia and astrocytes. This control of MHC expression by neurons was dependent on their electrical activity. In brain tissue with intact neurons, the MHC class II inducibility of microglia and astrocytes by the proinflammatory cytokine IFN-gamma was reduced. Paralysis of neuronal electric activity by neurotoxins restored the induction of MHC molecules on microglia and astrocytes. Loss of neurons or their physiological activity would render the impaired CNS areas recognizable by invading T lymphocytes. Thus, immunity in the CNS is inhibited by the local microenvironment, in particular by physiologically active neurons, to prevent unwanted immune mediated damage of neurons.
Collapse
Affiliation(s)
- H Neumann
- Neuroimmunology, Max-Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
22
|
Whiteley SJ, Klassen H, Coffey PJ, Young MJ. Photoreceptor rescue after low-dose intravitreal IL-1beta injection in the RCS rat. Exp Eye Res 2001; 73:557-68. [PMID: 11825026 DOI: 10.1006/exer.2001.1066] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photoreceptor survival in the dystrophic rat was evaluated following administration of IL-1beta at dosages much lower than those used previously for this purpose. Royal College of Surgeons rats (pink-eyed, pigmented, or non-dystrophic) received 1 microl intravitreal injections of murine recombinant IL-1beta (0.5, 2, or 5 microg ml(-1); at 3 or 4 weeks of age). Eyes were harvested 4 weeks later and outer nuclear layer profiles counted. Additional animals received intravitreal basic fibroblast growth factor (1000 microg ml(-1)), or vehicle alone. Others were treated with IL-1beta to evaluate the inflammatory response (CD45+ profiles) or visual function via opto-kinetic response. IL-1beta was associated with photoreceptor rescue that was both dose-dependent and comparable to that seen following high-dose basic fibroblast growth factor. Significant anatomical rescue relative to controls was seen in both pink-eyed and pigmented strains, although the degree and distribution varied between strains. Functional rescue was confirmed by opto-kinetic response using the pigmented strain. At 5 microg ml(-1), IL-1beta resulted in numerous CD45+ profiles within the retina and vitreous. Infiltration peaked at 48 hr and was minimal at 4 weeks, without dysplastic sequelae. IL-1beta therefore induces visually significant photoreceptor rescue in a potent, dose-dependent manner that need not entail cytoarchitectural disruption. This is consistent with the known association between injury and rescue in the rat retina. Neuroprotection may be a general, if under-appreciated, consequence of inflammatory cascade activation.
Collapse
Affiliation(s)
- S J Whiteley
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
23
|
Abstract
T-cell autoimmunity to myelin basic protein was recently shown to be neuroprotective in injured rat optic nerves. In the present study, using the mouse optic nerve, we examined whether active immunization rather than passive transfer of T-cells can be beneficial in protecting retinal ganglion cells (RGCs) from post-traumatic death. Before severe crush injury of the optic nerve, SJL/J and C3H.SW mice were actively immunized with encephalitogenic or nonencephalitogenic peptides of proteolipid protein (PLP) or myelin oligodendrocyte glycoprotein (MOG), respectively. At different times after the injury, the numbers of surviving RGCs in both strains immunized with the nonencephalitogenic peptides pPLP 190-209 or pMOG 1-22 were significantly higher than in injured controls treated with the non-self-antigen ovalbumin or with a peptide derived from beta-amyloid, a non-myelin-associated protein. Immunization with the encephalitogenic myelin peptide pPLP 139-151 was beneficial only when the disease it induced, experimental autoimmune encephalomyelitis, was mild. The results of this study show that survival of RGCs after axonal injury can be enhanced by vaccination with an appropriate self-antigen. Furthermore, the use of nonencephalitogenic myelin peptides for immunization apparently allows neuroprotection without incurring the risk of an autoimmune disease. Application of these findings might lead to a promising new approach for treating optic neuropathies such as glaucoma.
Collapse
|
24
|
Fisher J, Levkovitch-Verbin H, Schori H, Yoles E, Butovsky O, Kaye JF, Ben-Nun A, Schwartz M. Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J Neurosci 2001; 21:136-42. [PMID: 11150329 PMCID: PMC6762428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
T-cell autoimmunity to myelin basic protein was recently shown to be neuroprotective in injured rat optic nerves. In the present study, using the mouse optic nerve, we examined whether active immunization rather than passive transfer of T-cells can be beneficial in protecting retinal ganglion cells (RGCs) from post-traumatic death. Before severe crush injury of the optic nerve, SJL/J and C3H.SW mice were actively immunized with encephalitogenic or nonencephalitogenic peptides of proteolipid protein (PLP) or myelin oligodendrocyte glycoprotein (MOG), respectively. At different times after the injury, the numbers of surviving RGCs in both strains immunized with the nonencephalitogenic peptides pPLP 190-209 or pMOG 1-22 were significantly higher than in injured controls treated with the non-self-antigen ovalbumin or with a peptide derived from beta-amyloid, a non-myelin-associated protein. Immunization with the encephalitogenic myelin peptide pPLP 139-151 was beneficial only when the disease it induced, experimental autoimmune encephalomyelitis, was mild. The results of this study show that survival of RGCs after axonal injury can be enhanced by vaccination with an appropriate self-antigen. Furthermore, the use of nonencephalitogenic myelin peptides for immunization apparently allows neuroprotection without incurring the risk of an autoimmune disease. Application of these findings might lead to a promising new approach for treating optic neuropathies such as glaucoma.
Collapse
Affiliation(s)
- J Fisher
- Departments of Neurobiology and Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Partial injury to the spinal cord can propagate itself, sometimes leading to paralysis attributable to degeneration of initially undamaged neurons. We demonstrated recently that autoimmune T cells directed against the CNS antigen myelin basic protein (MBP) reduce degeneration after optic nerve crush injury in rats. Here we show that not only transfer of T cells but also active immunization with MBP promotes recovery from spinal cord injury. Anesthetized adult Lewis rats subjected to spinal cord contusion at T7 or T9, using the New York University impactor, were injected systemically with anti-MBP T cells at the time of contusion or 1 week later. Another group of rats was immunized, 1 week before contusion, with MBP emulsified in incomplete Freund's adjuvant (IFA). Functional recovery was assessed in a randomized, double-blinded manner, using the open-field behavioral test of Basso, Beattie, and Bresnahan. The functional outcome of contusion at T7 differed from that at T9 (2.9+/-0.4, n = 25, compared with 8.3+/-0.4, n = 12; p<0.003). In both cases, a single T cell treatment resulted in significantly better recovery than that observed in control rats treated with T cells directed against the nonself antigen ovalbumin. Delayed treatment with T cells (1 week after contusion) resulted in significantly better recovery (7.0+/-1; n = 6) than that observed in control rats treated with PBS (2.0+/-0.8; n = 6; p<0.01; nonparametric ANOVA). Rats immunized with MBP obtained a recovery score of 6.1+/-0.8 (n = 6) compared with a score of 3.0+/-0.8 (n = 5; p<0.05) in control rats injected with PBS in IFA. Morphometric analysis, immunohistochemical staining, and diffusion anisotropy magnetic resonance imaging showed that the behavioral outcome was correlated with tissue preservation. The results suggest that T cell-mediated immune activity, achieved by either adoptive transfer or active immunization, enhances recovery from spinal cord injury by conferring effective neuroprotection. The autoimmune T cells, once reactivated at the lesion site through recognition of their specific antigen, are a potential source of various protective factors whose production is locally regulated.
Collapse
|
26
|
Hauben E, Butovsky O, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Leibowitz-Amit R, Pevsner E, Akselrod S, Neeman M, Cohen IR, Schwartz M. Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J Neurosci 2000; 20:6421-30. [PMID: 10964948 PMCID: PMC6772980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Partial injury to the spinal cord can propagate itself, sometimes leading to paralysis attributable to degeneration of initially undamaged neurons. We demonstrated recently that autoimmune T cells directed against the CNS antigen myelin basic protein (MBP) reduce degeneration after optic nerve crush injury in rats. Here we show that not only transfer of T cells but also active immunization with MBP promotes recovery from spinal cord injury. Anesthetized adult Lewis rats subjected to spinal cord contusion at T7 or T9, using the New York University impactor, were injected systemically with anti-MBP T cells at the time of contusion or 1 week later. Another group of rats was immunized, 1 week before contusion, with MBP emulsified in incomplete Freund's adjuvant (IFA). Functional recovery was assessed in a randomized, double-blinded manner, using the open-field behavioral test of Basso, Beattie, and Bresnahan. The functional outcome of contusion at T7 differed from that at T9 (2.9+/-0.4, n = 25, compared with 8.3+/-0.4, n = 12; p<0.003). In both cases, a single T cell treatment resulted in significantly better recovery than that observed in control rats treated with T cells directed against the nonself antigen ovalbumin. Delayed treatment with T cells (1 week after contusion) resulted in significantly better recovery (7.0+/-1; n = 6) than that observed in control rats treated with PBS (2.0+/-0.8; n = 6; p<0.01; nonparametric ANOVA). Rats immunized with MBP obtained a recovery score of 6.1+/-0.8 (n = 6) compared with a score of 3.0+/-0.8 (n = 5; p<0.05) in control rats injected with PBS in IFA. Morphometric analysis, immunohistochemical staining, and diffusion anisotropy magnetic resonance imaging showed that the behavioral outcome was correlated with tissue preservation. The results suggest that T cell-mediated immune activity, achieved by either adoptive transfer or active immunization, enhances recovery from spinal cord injury by conferring effective neuroprotection. The autoimmune T cells, once reactivated at the lesion site through recognition of their specific antigen, are a potential source of various protective factors whose production is locally regulated.
Collapse
Affiliation(s)
- E Hauben
- Departments of Neurobiology, Immunology, and Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
AbstractTraumatic spinal cord injury results in the disruption of neural and vascular structures (primary injury) and is characterized by an evolution of secondary pathogenic events that collectively define the extent of functional recovery. This article reviews the vascular responses to spinal cord injury, focusing on both early and delayed events, including intraparenchymal hemorrhage, inflammation, disruption of the blood-spinal cord barrier, and angiogenesis. These vascular-related events not only influence the evolution of secondary tissue damage but also define an environment that fosters neural plasticity in the chronically injured spinal cord.
Collapse
|
28
|
Frei E, Klusman I, Schnell L, Schwab ME. Reactions of oligodendrocytes to spinal cord injury: cell survival and myelin repair. Exp Neurol 2000; 163:373-80. [PMID: 10833310 DOI: 10.1006/exnr.2000.7379] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to elucidate whether oligodendrocytes die in fiber tracts that are spared by a spinal cord injury but are in close vicinity of inflammatory cells. Adult rat spinal cords were studied histologically 1 day to 2 weeks after a contusion lesion that left the ventral white matter largely intact. Massive oligodendrocyte death occurred in the lesion center, along with the death of neurons, microglia, and astrocytes. Oligodendrocytes, specifically positive for proteolipid protein (PLP) mRNA, were counted in the ventral white matter where axons at the rostral and caudal edges of the lesion were histologically intact. Although these regions contained many macrophages and neutrophils hypothesized to contribute to secondary tissue loss, there was no significant loss of oligodendrocytes. In the ventral funiculus, 3 and 6 mm rostral and caudal to the lesion, oligodendrocyte numbers were also unchanged, in spite of the presence of many activated microglial cells. From day 7 on, oligodendrocytes in close vicinity to the lesion increased their expression of PLP mRNA. We conclude that, at least within the first 2 weeks after a spinal cord contusion lesion, there is no major devastating influence of inflammatory cells or their mediators on oligodendrocytes. When death occurs, it may be due to mechanical trauma, ischemia, or excitotoxicity within the lesion or it may occur as a result of axonal degeneration.
Collapse
Affiliation(s)
- E Frei
- Brain Research Institute, Department Neuromorphology, Swiss Federal Institute of Technology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | | | | | | |
Collapse
|
29
|
Hu P, Pollard JD, Chan-Ling T. Breakdown of the blood-retinal barrier induced by activated T cells of nonneural specificity. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1139-49. [PMID: 10751337 PMCID: PMC1876898 DOI: 10.1016/s0002-9440(10)64982-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cellular and microvascular responses of JC Lewis rats to an intravenous injection of activated T cells specific for ovalbumin were examined with the retinal whole mount technique. The retina was examined at various times post-injection (pi) with the use of antibodies to the alphabeta T cell receptor (TCR) or to major histocompatibility complex class II (MHC II), the monoclonal antibody ED1, and intravascular tracers. By 12 hours pi, small numbers of TCR(+), ED1(+), and MHC II(+) cells were present within the lumen of retinal vessels, and minor breakdown of the blood-retinal barrier (BRB) and microglial activation were evident. The intensity of these responses had increased by 1 day pi, when small numbers of TCR(+) cells had also undergone extravasation. By 2 to 3 days pi, the numbers of TCR(+), ED1(+), and MHC II(+) cells in the retinal parenchyma had increased, but the BRB breakdown and microglial activation had subsided. Thus, in the absence of target antigen, activated T cells induced limited and transient breakdown of the BRB, microglial activation, and the extravasation of ED1(+), MHC II(+) monocytes. In contrast, the retina of rats that received an intraocular injection of ovalbumin in addition to the intravascular injection of T cells showed massive cellular recruitment and breakdown of the BRB. These results indicate that an increase in the number of activated T cells in the circulation, such as that which occurs during viral or bacterial infection, has the potential to result in transient breakdown of the BRB and a mild local microglial response.
Collapse
Affiliation(s)
- P Hu
- Department of Anatomy and Histology and Institute of Biomedical Research, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
30
|
Wekerle H, Flügel A, Neumann H. Neuronal Control of the Immune Response in the Central Nervous System: From Pathogenesis to Therapy. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/978-3-642-59643-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
31
|
Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 1999; 11:3648-58. [PMID: 10564372 DOI: 10.1046/j.1460-9568.1999.00792.x] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lesion-induced inflammatory responses in both brain and spinal cord have recently become a topic of active investigation. Using C57BL/6J mice, we compared the tissue reaction in these two central nervous system (CNS) compartments with mechanical lesions of similar size involving both grey and white matter. This evaluation included the quantitative assessment of neutrophils, lymphocytes and activated macrophages/microglia, as well as astrocyte activation, upregulation of vascular cell adhesion molecules (ICAM-1, VCAM-1, PECAM) and the extent of blood-brain barrier (BBB) breakdown. Time points analysed post-lesioning included 1, 2, 4 and 7 days (as well as 10 and 14 days for the BBB). We found clear evidence that the acute inflammatory response to traumatic injury is significantly greater in the spinal cord than in the cerebral cortex. The numbers of both neutrophils and macrophages recruited to the lesion site were significantly higher in the spinal cord than in the brain, and the recruitment of these cells into the surrounding parenchyma was also more widespread in the cord. The area of BBB breakdown was substantially larger in the spinal cord and vascular damage persisted for a longer period. In the brain, as in spinal cord, the area to which neutrophils were recruited correlated well with the area of BBB breakdown. It will be of interest to determine the extent to which the infiltration of inflammatory cells contributes, either directly or indirectly, to the vascular permeability and secondary tissue damage or, conversely, to local tissue repair in the brain and the spinal cord.
Collapse
Affiliation(s)
- L Schnell
- Brain Research Institute, University of Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Raivich G, Jones LL, Werner A, Blüthmann H, Doetschmann T, Kreutzberg GW. Molecular signals for glial activation: pro- and anti-inflammatory cytokines in the injured brain. ACTA NEUROCHIRURGICA. SUPPLEMENT 1999; 73:21-30. [PMID: 10494337 DOI: 10.1007/978-3-7091-6391-7_4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injury to the central nervous system leads to cellular changes not only in the affected neurons but also in adjacent glial cells. This neuroglial activation is a consistent feature in almost all forms of brain pathology and appears to reflect an evolutionarily-conserved program which plays an important role for the repair of the injured nervous system. Recent work in mice that are genetically-deficient for different cytokines (M-CSF, IL-6, TNF-alpha, TGF-beta 1) has begun to shed light on the molecular signals that regulate this cellular response. Here, the availability of cytokine-deficient animals with reduced or abolished neuroglial activation provides a direct approach to determine the function of the different components of the cellular response leading to repair and regeneration following neural trauma.
Collapse
Affiliation(s)
- G Raivich
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:77-105. [PMID: 10407127 DOI: 10.1016/s0165-0173(99)00007-7] [Citation(s) in RCA: 623] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Damage to the central nervous system (CNS) leads to cellular changes not only in the affected neurons but also in adjacent glial cells and endothelia, and frequently, to a recruitment of cells of the immune system. These cellular changes form a graded response which is a consistent feature in almost all forms of brain pathology. It appears to reflect an evolutionarily conserved program which plays an important role in the protection against infectious pathogens and the repair of the injured nervous system. Moreover, recent work in mice that are genetically deficient for different cytokines (MCSF, IL1, IL6, TNFalpha, TGFbeta1) has begun to shed light on the molecular signals that regulate this cellular response. Here we will review this work and the insights it provides about the biological function of the neuroglial activation in the injured brain.
Collapse
Affiliation(s)
- G Raivich
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Ng YK, Yong VW, Ling EA. Microglial reaction in some CNS nuclei following nerves transection in BALB/c and interferon-gamma gene knockout mice. Neurosci Lett 1999; 262:207-10. [PMID: 10218892 DOI: 10.1016/s0304-3940(99)00076-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study was aimed to ascertain if the endogenous IFN-gamma is necessary for induction of microglial reaction associated with the CNS neurons after neurectomy of the vagus and hypoglossal nerves in IFN-gamma gene knockout mice and BALB/c mice serving as controls. Vigorous microglial reaction as detected by Mac-1 antibody was elicited in the brainstem nuclei in both strains of mice. Increased Mac-1 immunoreactivity in microglia was detected as early as 1 day post-operation in the ipsilateral dorsal nucleus of vagus, nucleus ambiguus and the hypoglossal nucleus; a similar feature was observed in the nucleus tractus solitarius bilaterally. Mac-1 immunoreactivity in reactive microglia appeared to increase with survival intervals and was comparable throughout in both strains of mice. It is therefore concluded that endogenous IFN-gamma is not responsible for upregulation of complement type 3 receptor immunomolecules in reactive microglia following nerves sectioning.
Collapse
Affiliation(s)
- Y K Ng
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
35
|
Schwaiger FW, Hager G, Raivich G, Kreutzberg GW. Cellular activation in neuroregeneration. PROGRESS IN BRAIN RESEARCH 1999; 117:197-210. [PMID: 9932410 DOI: 10.1016/s0079-6123(08)64017-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- F W Schwaiger
- Department of Neuromorphology, Max-Planck-Institute of Neurobiology, Martinsried, Germany.
| | | | | | | |
Collapse
|
36
|
Betmouni S, Perry VH. The acute inflammatory response in CNS following injection of prion brain homogenate or normal brain homogenate. Neuropathol Appl Neurobiol 1999; 25:20-8. [PMID: 10194772 DOI: 10.1046/j.1365-2990.1999.00153.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuropathological hallmarks of end-stage prion disease are vacuolation, neuronal loss, astrocytosis and deposition of PrPSc amyloid. We have also shown that there is an inflammatory response in the brains of scrapie-affected mice from 8 weeks post-injection. In this study we have investigated the acute CNS response to the intracerebral injection of scrapie-affected brain homogenate. The ME7 strain of scrapie (Neuropathogenesis Unit, Edinburgh) was used, and control mice were injected with brain homogenate derived from normal C57BL/6 J mice. One microlitre of 10% w/v ME7 (n = 33) and normal brain homogenate (n = 28) was injected stereotaxically into the right dorsal hippocampus. Cryostat sections of brains taken at 1, 2, 5, 7, 14 and 28 days post-injection were examined histologically for neuronal loss, and immunocytochemically to study the inflammatory response. This study shows that ME7 is not acutely neurotoxic in vivo. There is also no difference (ANOVA) in the inflammatory response, which peaked between 2 and 5 days and resolved by 4 weeks after intracerebral injection of either ME7 or normal brain homogenate. The well circumscribed inflammatory response seen previously at 8 weeks is therefore a consequence of a disease process rather than a surgical artefact. This disease process may be related to a localized accumulation of PrPSc sufficient to stimulate an inflammatory response which in turn may contribute to neuronal loss. The role of the inflammatory response in chronic neurodegeneration can be usefully studied using this mouse model of prion disease, and this will undoubtedly shed light on the pathogenic mechanisms underlying other chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- S Betmouni
- School of Biological Sciences, University of Southampton, UK
| | | |
Collapse
|
37
|
Gu�nard V, Schweitzer B, Flechsig E, Hemmi S, Martini R, Suter U, Schachner M. Effective gene transfer oflacZ andP0 into Schwann cells of P0-deficient mice. Glia 1999. [DOI: 10.1002/(sici)1098-1136(19990115)25:2<165::aid-glia7>3.0.co;2-l] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Perry VH, Bolton SJ, Anthony DC, Betmouni S. The contribution of inflammation to acute and chronic neurodegeneration. RESEARCH IN IMMUNOLOGY 1998; 149:721-5. [PMID: 9851531 DOI: 10.1016/s0923-2494(99)80046-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- V H Perry
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Great Britain
| | | | | | | |
Collapse
|
39
|
Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 1998. [PMID: 9671668 DOI: 10.1523/jneurosci.18-15-05804.1998] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the CNS is an established immune-privileged site, it is under surveillance by the immune system, particularly under pathological conditions. In the current study we examined the lymphocyte infiltration, a key component of this neuroimmune surveillance, into the axotomized facial motor nucleus and analyzed the changes in proinflammatory cytokines and the blood-brain barrier. Peripheral nerve transection led to a rapid influx of CD3-, CD11a (alphaL, LFA1alpha)- and CD44-immunoreactive T-cells into the axotomized mouse facial motor nucleus, with a first, low-level plateau 2-4 d after injury, and a second, much stronger increase at 14 d. These T-cells frequently formed aggregates and exhibited typical cleaved lymphocyte nuclei at the EM level. Immunohistochemical colocalization with thrombospondin (TSP), a marker for phagocytotic microglia, revealed aggregation of the T-cells around microglia removing neuronal debris. The massive influx of lymphocytes at day 14 was also accompanied by the synthesis of mRNA encoding IL1beta, TNFalpha, and IFN-gamma. There was no infiltration by the neutrophil granulocytes, and the intravenous injection of horseradish peroxidase also showed an intact blood-brain barrier. However, mice with severe combined immunodeficiency (SCID), which lack differentiated T- and B-cells, still exhibited infiltration with CD11a-positive cells. These CD11a-positive cells also aggregated around phagocytotic microglial nodules. In summary, there is a site-selective infiltration of activated T-cells into the mouse CNS during the retrograde reaction to axotomy. The striking aggregation of these lymphocytes around neuronal debris and phagocytotic microglia suggests an important role for the immune surveillance during neuronal cell death in the injured nervous system.
Collapse
|
40
|
Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW. Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 1998; 18:5804-16. [PMID: 9671668 PMCID: PMC6793073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the CNS is an established immune-privileged site, it is under surveillance by the immune system, particularly under pathological conditions. In the current study we examined the lymphocyte infiltration, a key component of this neuroimmune surveillance, into the axotomized facial motor nucleus and analyzed the changes in proinflammatory cytokines and the blood-brain barrier. Peripheral nerve transection led to a rapid influx of CD3-, CD11a (alphaL, LFA1alpha)- and CD44-immunoreactive T-cells into the axotomized mouse facial motor nucleus, with a first, low-level plateau 2-4 d after injury, and a second, much stronger increase at 14 d. These T-cells frequently formed aggregates and exhibited typical cleaved lymphocyte nuclei at the EM level. Immunohistochemical colocalization with thrombospondin (TSP), a marker for phagocytotic microglia, revealed aggregation of the T-cells around microglia removing neuronal debris. The massive influx of lymphocytes at day 14 was also accompanied by the synthesis of mRNA encoding IL1beta, TNFalpha, and IFN-gamma. There was no infiltration by the neutrophil granulocytes, and the intravenous injection of horseradish peroxidase also showed an intact blood-brain barrier. However, mice with severe combined immunodeficiency (SCID), which lack differentiated T- and B-cells, still exhibited infiltration with CD11a-positive cells. These CD11a-positive cells also aggregated around phagocytotic microglial nodules. In summary, there is a site-selective infiltration of activated T-cells into the mouse CNS during the retrograde reaction to axotomy. The striking aggregation of these lymphocytes around neuronal debris and phagocytotic microglia suggests an important role for the immune surveillance during neuronal cell death in the injured nervous system.
Collapse
Affiliation(s)
- G Raivich
- Department of Neuromorphology, Max-Planck-Institute for Neurobiology, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|